
iSeries

CL Programming
Version 5

SC41-5721-04

���

iSeries

CL Programming
Version 5

SC41-5721-04

���

Note
Before using this information and the product it supports, be sure to read the information in
“Appendix F. Notices” on page 445.

Fifth Edition (May 2001)

This edition replaces SC41-5721-03. This edition applies only to reduced instruction set computer (RISC) systems.

© Copyright International Business Machines Corporation 1997, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

About CL Programming (SC41-5721) . . ix
Who should read this book ix
Prerequisite and related information ix

Operations Navigator x
How to send your comments x

Chapter 1. Introduction 1
Control Language 1

Procedure 1
Module 1
Program 2
Service Program 2
Command Syntax. 2

CL Procedures 2
Command Definition 4
Menus 4
Objects and Libraries 4

Objects 5
Libraries 5

Messages 7
Message Descriptions 8
Message Queues 8

Testing Functions 8

Chapter 2. CL Programming. 11
Creating a CL Program 13

Interactive Entry. 13
Batch Entry 13
Parts of a CL Procedure 14
Example of a Simple CL Program 15

Commands Used in CL Procedures 17
Commands Entered on the RQSDTA and CMD
Parameters 17
CL Commands 17

Using CL Procedures 18
Working with Variables 22

Declaring a Variable 24
Using Variables to Specify a List or Qualified
Name 24
Lowercase Characters in Variables 25
Variables Replacing Reserved or Numeric
Parameter Values 26
Changing the Value of a Variable 27
Trailing Blanks on Command Parameters . . . 28
Writing Comments in CL Procedures 29

Controlling Processing within a CL Procedure . . . 30
Using the GOTO Command and Labels 30
Using the IF Command 31
Using the DO Command and DO Groups . . . 33
Using the ELSE Command 34
Using Embedded IF Commands 36
Using the *AND, *OR, and *NOT Operators . . 37
Using the %BINARY Built-In Function 41

Using the %SUBSTRING Built-In Function . . . 43
Using the %SWITCH Built-In Function 45
Using the Monitor Message (MONMSG)
Command 46

Values That Can Be Used as Variables 48
Retrieving System Values 48
Retrieving Configuration Source 51
Retrieving Configuration Status 51
Retrieving Network Attributes 51
Retrieving Job Attributes 52
Retrieving Object Descriptions 53
Retrieving User Profile Attributes 53
Retrieving Member Description Information . . 54

Working with CL Procedures 55
Logging CL Procedure Commands 55
CL Module Compiler Listings 56
Errors Encountered during Compilation 58
Obtaining a Procedure Dump 59
Displaying Module Attributes 60
Displaying Program Attributes 60
Return Code Summary 61

Compiling Source Programs for a Previous Release 62
Previous-Release (*PRV) Libraries 62
Installing CL Compiler Support for a Previous
Release 63

Chapter 3. Controlling Flow and
Communicating between Programs and
Procedures 65
CALL Command 65
CALLPRC Command 66
RETURN Command 68
Passing Parameters between Programs and
Procedures 68

Using the CALL Command 71
Common Errors When Calling Programs and
Procedures 74

Using Data Queues to Communicate between
Programs and Procedures 78

Remote Data Queues 81
Comparisons with Using Database Files as
Queues 82
Similarities to Message Queues 82
Prerequisites for Using Data Queues 83
Managing the Storage Used by a Data Queue . . 83
Allocating Data Queues 83
Examples Using a Data Queue 84
Creating Data Queues Associated with an Output
Queue 88
Sample Data Queue Entry 88

Using Data Areas to Communicate between
Procedures and Programs 89

Local Data Area 90
Group Data Area 90
Program Initialization Parameter (PIP) Data Area 91

© Copyright IBM Corp. 1997, 2001 iii

Remote Data Areas 91
Creating a Data Area 92
Data Area Locking and Allocation 92
Displaying a Data Area 93
Changing a Data Area 93
Retrieving a Data Area 93
Retrieve Data Area Examples 93
Changing and Retrieving a Data Area Example 94

Chapter 4. Objects and Libraries . . . 97
Object Types and Common Attributes 97
Functions Performed on Objects 97

Functions the System Performs Automatically . . 97
Functions You Can Perform Using Commands. . 98

Libraries 98
Library Lists 99
Displaying a Library List 107
Using Generic Object Names 107
Searching for Multiple Objects or a Single Object 108

Using Libraries 108
Creating a Library 109
Specifying Authority for Libraries 109
Security Considerations for Objects 111
Default Public Authority for Newly Created
Objects 111
Default Auditing Attribute for Newly Created
Objects 113
Placing Objects in Libraries 113
Deleting and Clearing Libraries 113
Displaying Library Names and Contents . . . 114
Displaying and Retrieving Library Descriptions 115

OS/400 Globalization. 115
Describing Objects 117
Displaying Object Descriptions 117
Retrieving Object Descriptions. 120

RTVOBJD Example 122
Creation Information for Objects 122
Detecting Unused Objects on the System 123
Moving Objects from One Library to Another . . 129
Creating Duplicate Objects 131
Renaming Objects 133
Compressing or Decompressing Objects 134

Compression of Objects 134
Temporarily Decompressed Objects 135
Automatic Decompression of Objects 135

Deleting Objects 136
Allocating Resources 137

Displaying the Lock States for Objects 140

Chapter 5. Working with Objects in CL
Procedures and Programs 143
Accessing Objects in CL Programs 143

Exceptions: Accessing Command Definitions,
Files, and Procedures 144
Checking for the Existence of an Object . . . 145

Working with Files in CL Procedures 146
Referring to Files in a CL Procedure 149
Opening and Closing Files in a CL Procedure 149
Declaring a File 150
Sending and Receiving Data with a Display File 151

Writing a CL Program to Control a Menu . . . 152
Overriding Display Files in a CL Procedure . . 154
Working with Multiple Device Display Files . . 155
Receiving Data from a Database File 158
Overriding Database Files in a CL Procedure or
Program 158
Referring to Output Files from Display
Commands 159

Chapter 6. Advanced Programming
Topics 161
Using the QCAPCMD Program 161
Using the QCMDEXC Program 161

Using the QCMDEXC Program with DBCS Data 164
Using the QCMDCHK Program 165
Using Message Subfiles in a CL Program or
Procedure 166
Allowing User Changes to CL Commands at Run
Time 167

Using the Prompter within a CL Procedure or
Program 167
Selective Prompting for CL Commands. . . . 168
QCMDEXC with Prompting in CL Procedures
and Programs 171

Using the Programmer Menu 172
Uses of the Start Programmer Menu
(STRPGMMNU) Command. 172

Command Analyzer Exit Points 173
Application Programming for DBCS Data 173

Designing DBCS Application Programs. . . . 174
Converting Alphanumeric Programs to Process
DBCS Data 174

Using DBCS Data in a CL Program 174
Sample CL Programs 175

Initial Program for Setup (Programmer) . . . 175
Moving an Object from a Test Library to a
Production Library (Programmer) 176
Saving Specific Objects in an Application
(System Operator) 176
Recovery from Abnormal End (System
Operator). 177
Submitting a Job (System Operator) 177
Timing Out While Waiting for Input from a
Device Display 177
Retrieving Program Attributes 178

Loading and Running an Application from Tapes
or Diskettes 179

Responsibilities of the Application Writer . . . 179

Chapter 7. Defining Messages 181
Creating a Message File 183

Determining the Size of a Message File 184
Adding Messages to a File 184

Assigning a Message Identifier 185
Defining Messages and Message Help 186
Assigning a Severity Code 186
Defining Substitution Variables 187
Specifying Validity Checking for Replies . . . 189
Sending an Immediate Message and Handling a
Reply 190

iv CL Programming V5R1

Defining Default Values for Replies 191
Specifying Default Message Handling for
Escape Messages 192
Example of Describing a Message 193
Defining Double-Byte Messages 194

System Message File Searches 194
Searching for a Message File 195
Overriding Message Files 195

Types of Message Queues 199
Creating or Changing a Message Queue . . . 200
Job Message Queues 203

Chapter 8. Working with Messages 207
Sending Messages to a System User 207
Sending Messages from a CL Program 208

Messages 209
Examples of Sending Messages 211
Call Stack Entry Identification on
SNDPGMMSG 214
Receiving Messages in a CL Procedure or
Program 228
Retrieving Messages in a CL Procedure. . . . 234
Removing Messages from a Message Queue . . 235

Monitoring for Messages in a CL Program or
Procedure 236

Default Handling 240
Notify Messages 241
Status Messages 241
Preventing the Display of Status Messages . . 242

Break-Handling Programs 243
QSYSMSG Message Queue 245

Messages Sent to QSYSMSG Message Queue 245
Sample Program to Receive Messages from
QSYSMSG 260

Using the System Reply List 262
Message Logging 265

Job Log 266
QHST History Log 275
Format of the History Log 278
Processing the QHST File 279
QHST Job Start and Completion Messages . . 279
Deleting QHST Files 281

Chapter 9. Defining Commands . . . 283
Overview of How to Define Commands 283

Step Description 284
Authority Needed for the Commands You
Define 286
Example of Creating a Command 286

How to Define Commands 286
Using the CMD Statement 287
Defining Parameters 288

Data Type and Parameter Restrictions 293
Defining Lists for Parameters 301

Defining a Simple List 302
Defining a Mixed List 306
Defining Lists within Lists 308
Defining a Qualified Name 312
Defining a Dependent Relationship 315
Possible Choices and Values 316

Using Prompt Control 317
Conditional Prompting 317
Additional Parameters 320

Using Key Parameters and a Prompt Override
Program 320

Procedure for Using Prompt Override Programs 321
CL Sample for Using the Prompt Override
Program 324

Creating Commands 327
Command Definition Source Listing 328
Errors Encountered when Processing Command
Definition Statements. 330

Displaying a Command Definition 331
Effect of Changing the Command Definition of a
Command in a Procedure or Program 332

Changing Command Defaults 333
Writing a Command Processing Program or
Procedure 336

Writing a CL or HLL Command Processing
Program 337
Writing a REXX Command Processing
Procedure 338

Writing a Validity Checking Program 339
Examples of Defining and Creating Commands 340

Calling Application Programs 340
Substituting a Default Value 341
Displaying an Output Queue 341
Displaying Messages from IBM Commands
More Than Once 343
Creating Abbreviated Commands 343
Deleting Files and Source Members 344
Deleting Program Objects 345

Chapter 10. Debugging ILE Programs 347
The ILE Source Debugger 347
Debug Commands 348
Preparing a Program Object for a Debug Session 349

Using a Root Source View 349
Using a Listing View 350
Using a Statement View 350

Starting the ILE Source Debugger 350
Adding Program Objects to a Debug Session . . . 351
Removing Program Objects from a Debug Session 352
Viewing the Program Source 354
Changing a Module Object 354

Changing the View of a Module Object. . . . 355
Setting and Removing Breakpoints 356
Setting and Removing Unconditional
Breakpoints 357
Setting and Removing Conditional Breakpoints 358
Removing All Breakpoints 361

Stepping through the Program Object 361
Using F10 or F22 on the Display Source Display 361
Using the STEP Debug Command 362
Step Over and Step Into 362

Stepping over Program Objects 362
Using F10(Step) 362
Using the Step Over Debug Command 362

Stepping into Program Objects 363
Using F22(Step Into) 363
Using the Step Into Debug Command 363

Contents v

Displaying Variables 363
Using F11(Display Variable) 364
Display logical variable example 364
Display character variable examples 365
Display decimal variable example 365
Displaying Variables as Hexadecimal Values . . 365

Changing the Value of Variables 366
Change logical variable examples. 366
Change character variable examples 367
Change decimal variable examples 367

Attributes of a Variable Examples 367
Equating a Name with a Variable, Expression, or
Command 368
Source Debug National Language Support for ILE
CL 368

Working with *SOURCE View 369
Using COPY, SAVE, RESTORE, CRTDUPOBJ,
and CHKOBJITG while Debugging 369

Appendix A. Debugging OPM
Programs 371
Debug Mode 371

Adding Programs to Debug Mode 372
Preventing Updates to Database Files in
Production Libraries 372

The Call Stack 373
Program Activations 373

Handling Unmonitored Messages 374
Breakpoints 375

Adding Breakpoints to Programs 375
Conditional Breakpoints 378
Removing Breakpoints from Programs 379

Traces 379
Adding Traces to Programs. 379
Instruction Stepping 382
Using Breakpoints within Traces 382
Removing Trace Information from the System 382
Removing Traces from Programs 382

Display Functions 383
Displaying the Values of Variables 383
Changing the Values of Variables 384
Using a Job to Debug Another Job 385

Debugging Batch Jobs Submitted to a Job Queue 385
Debugging Batch Jobs Not Started from Job
Queues 386
Debugging a Running Job 386
Debugging Another Interactive Job 387
Considerations When Debugging One Job from
Another Job 387

Debugging at the Machine Interface Level 388
Security Considerations 388

Using COPY, SAVE, RESTORE, CRTDUPOBJ,
and CHKOBJITG while Debugging 388

Appendix B. TFRCTL Command . . . 391
Using the TFRCTL Command 391
Passing Parameters 392

Appendix C. Job Log Output Files 395
Directing a Job Log 395
Model for the Primary Job Log 395

Appendix D. IBM-Supplied Libraries in
Licensed Programs (LP). 405
IBM-Supplied Libraries for the OS/400 Licensed
Program 405

IBM-Supplied Libraries for Other iSeries
Licensed Programs 407

Appendix E. Abbreviations of CL
Commands and Keywords. 413
CL Command Verb Abbreviations 413
CL Command Abbreviations 415
CL Command Keyword Abbreviations 426

Appendix F. Notices 445
Programming Interface Information 446
Trademarks 447

Bibliography. 449

Index 451

vi CL Programming V5R1

Figures

1. Example of Accessing a Remote Data Queue 82
2. Example of Call PGM. 163
3. Example of an Application Using the

LODRUN Command 179
4. Example of runtime call stack 216
5. Example of TOPGMQ(*PRV *) 217
6. Example of using a simple name 219
7. Example of using a complex name 220
8. Example 1 of using *PGMBDY 222
9. Example 2 of using *PGMBDY 223

10. Example 3 of using *PGMBDY 224
11. Example of runtime call stack 226
12. Example of using *CTLBDY. 227
13. Simple List Example 304
14. REXX Simple List Example 305

15. Command Relationships for CL and HLL 337
16. Command Relationships for REXX 339
17. Adding an ILE Program Object to a Debug

Session. 351
18. Adding an ILE Program Object to a Debug

Session. 352
19. Removing an ILE Program Object from a

Debug Session 353
20. Removing an ILE Program Object from a

Debug Session 353
21. Display a Module View 355
22. Changing a View of a Module Object 356
23. Setting a Conditional Breakpoint 358
24. Displaying a Variable using F11 (Display

variable) 364

© Copyright IBM Corp. 1997, 2001 vii

viii CL Programming V5R1

About CL Programming (SC41-5721)

This book provides a wide-range discussion of OS/400 programming topics,
including:
v Control language programming.
v OS/400 programming concepts.
v Objects and libraries.
v Message handling.
v User-defined commands.
v User-defined menus.
v Testing functions.

Who should read this book
This book is intended for the OS/400 programmer or application programmer,
including non-CL programmers. While CL Programming is discussed in detail,
much of the material in this book applies to the system in general and may be
used by programmers of all high-level languages supported by the iSeries servers.

Prerequisite and related information
Use the iSeries Information Center as your starting point for looking up iSeries and
AS/400e technical information. You can access the Information Center two ways:
v From the following Web site:

http://www.ibm.com/eserver/iseries/infocenter

v From CD-ROMs that ship with your Operating System/400 order:
iSeries Information Center, SK3T-4091-00. This package also includes the PDF
versions of iSeries manuals, iSeries Information Center: Supplemental Manuals,
SK3T-4092-00, which replaces the Softcopy Library CD-ROM.

The iSeries Information Center contains advisors and important topics such as CL
commands, system application programming interfaces (APIs), logical partitions,
clustering, Java™, TCP/IP, Web serving, and secured networks. It also includes
links to related IBM® Redbooks and Internet links to other IBM Web sites such as
the Technical Studio and the IBM home page.

With every new hardware order, you receive the following CD-ROM information:
v iSeries 400 Installation and Service Library, SK3T-4096-00. This CD-ROM contains

PDF manuals needed for installation and system maintenance of an IBM ~
iSeries 400 server.

v iSeries 400 Setup and Operations CD-ROM, SK3T-4098-00. This CD-ROM contains
IBM iSeries Client Access Express for Windows and the EZ-Setup wizard. Client
Access™ Express offers a powerful set of client and server capabilities for
connecting PCs to iSeries servers. The EZ-Setup wizard automates many of the
iSeries setup tasks.

For related information, see the “Bibliography” on page 449.

© Copyright IBM Corp. 1997, 2001 ix

Operations Navigator
IBM iSeries Operations Navigator is a powerful graphical interface for managing
your iSeries and AS/400e servers. Operations Navigator functionality includes
system navigation, configuration, planning capabilities, and online help to guide
you through your tasks. Operations Navigator makes operation and administration
of the server easier and more productive and is the only user interface to the new,
advanced features of the OS/400 operating system. It also includes Management
Central for managing multiple servers from a central server.

For more information on Operations Navigator, see the iSeries Information Center.

How to send your comments
Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any other
iSeries documentation, fill out the readers’ comment form at the back of this book.
v If you prefer to send comments by mail, use the readers’ comment form with the

address that is printed on the back. If you are mailing a readers’ comment form
from a country other than the United States, you can give the form to the local
IBM branch office or IBM representative for postage-paid mailing.

v If you prefer to send comments by FAX, use either of the following numbers:
– United States, Canada, and Puerto Rico: 1-800-937-3430
– Other countries: 1-507-253-5192

v If you prefer to send comments electronically, use one of these e-mail addresses:
– Comments on books:

RCHCLERK@us.ibm.com
– Comments on the iSeries Information Center:

RCHINFOC@us.ibm.com

Be sure to include the following:
v The name of the book or iSeries Information Center topic.
v The publication number of a book.
v The page number or topic of a book to which your comment applies.

x CL Programming V5R1

Chapter 1. Introduction

This introduction describes several major concepts of Operating System/400*
(OS/400*). These concepts are discussed in more detail in the following chapters.

System operation is controlled by the following:
v CL commands. CL commands are used singly in batch and interactive jobs,

(such as from the Command Entry display) and in CL programs and procedures.
v Menu options. System operation can be controlled by selecting menu options.

Interactive users can use the iSeries server menus to perform many system tasks.
v System messages. System messages are used to communicate between programs

and procedures and to communicate between programs and procedures and
users. Messages can report both status information and error conditions.

Control Language
Control language (CL) is the primary interface to the operating system and can be
used at the same time by users at different work stations. A single control language
statement is called a command. Commands can be entered in the following ways:
v Individually from a work station.
v As part of batch jobs.
v As source statements to create a CL program or procedure.

Commands can be entered individually from any command line or the Command
Entry display.

To simplify the use of CL, all the commands use a consistent syntax. In addition,
the operating system provides prompting support for all commands, default values
for most command parameters, and validity checking to ensure that a command is
entered correctly before the function is performed. Thus, CL provides a single,
flexible interface to many different system functions that can be used by different
system users.

Procedure
A procedure is a set of self-contained high-level language statements that performs
a particular task and then returns to the caller.

In CL, a procedure usually begins with a PGM statement and ends with an
ENDPGM statement.

Module
Module is the object that results from compiling source. A module must be bound
into a program to run.

A CL module consists of two parts: A user-written procedure, and a program entry
procedure that is generated by the CL compiler. In other HLL (for example, C), a
single module may contain multiple user-written procedures.

© Copyright IBM Corp. 1997, 2001 1

Program
An ILE Program is an OS/400 object that combines one or more modules. Modules
cannot be run until they are bound into programs. A program must have a
program entry procedure. The CL compiler generates a program entry procedure
in each module it creates. An OPM CL program is the object that results from
compiling source using the CRTCLPGM command.

Service Program
Service program is an OS/400 object that combines one or more modules. You can
run programs that are not bound to service programs if they do not require any
procedures from the service program. However, you cannot run any procedures
from a service program unless that service program is bound to a program. In
order to call procedures in a service program, you must export the procedure
name.

While a program has only one entry point, a service program can have multiple
entry points. You cannot call service programs directly. You can call procedures in
a service program from other procedures in programs and service programs.

Command Syntax
A command name and parameters make up each command. A command name
usually consists of a verb, or action, followed by a noun or phrase that identifies
the receiver of the action. Abbreviated words, usually to three letters, make up the
command name. This reduces the amount of typing that is required to enter the
command. For example, one of the CL commands is the Send Message command.
You would use the command that is named SNDMSG to send a message from a
user to a message queue.

The parameters used in CL commands are keyword parameters. The keyword,
usually abbreviated the same way as commands, identifies the purpose of the
parameter. However, when commands are entered, some keywords may be
omitted by specifying the parameters in a certain order (positional specification).

CL Procedures
CL programs and procedures are made up of CL commands. The commands are
compiled into an OPM program or a module that can be bound into programs
made up of modules written in CL or other languages. Advantages of using CL
programs and procedures include:
v Using CL programs and procedures is faster than entering and running the

commands individually.
v CL programs and procedures provide consistent processing of the same set of

commands and logic.
v Some functions require CL commands that cannot be entered individually and

must be part of a CL program or procedure.
v CL programs and procedures can be tested and debugged like other high-level

language (HLL) programs and procedures.
v Parameters can be passed to CL programs and procedures to adapt the

operations performed by the program or procedure to the particular
requirements of that use.

v You can bind CL modules with other ILE* high-level language modules into a
program.

2 CL Programming V5R1

CL programs and procedures can be used for many kinds of applications. For
example, CL procedures can be used to:
v Provide an interface to the user of an interactive application through which the

user can request application functions without an understanding of the
commands used in the program or procedure. This makes the work station
user’s job easier and reduces the chances of errors occurring when commands
are entered.

v Control the operation of an application by establishing variables used in the
application (such as date, time, and external indicators) and specifying the
library list used by the application. This ensures that these operations are
performed whenever the application is run.

v Provide predefined routines for the system operator, such as procedures to start
a subsystem, to provide backup copies of files, or to perform other operating
functions. The use of CL programs and procedures reduces the number of
commands the operator uses regularly, and ensures that system operations are
performed consistently.

Most of the CL commands provided by the system can be used in CL programs
and procedures. Some commands are specifically designed for use in CL programs
and procedures and are not available when commands are entered individually.
These commands include:
v Logic control commands that can be used to control which operations are

performed by the program or procedure according to conditions that exist when
the program or procedure is run. For example, if a certain condition exists, then
do certain processing, else do some other operation. These logic operations
provide both conditional and unconditional branching within the CL program or
procedure.

v Data operations that provide a way for the program or procedure to
communicate with a work station user. Data operations let the program or
procedure send formatted data to and receive data from the work station, and
allow limited access to the database.

v Commands that allow the program or procedure to send messages to the display
station user.

v Commands that receive messages sent by other programs and procedures. These
messages can provide normal communication between programs and
procedures, or indicate that errors or other exceptional conditions exist.

v The use of variables and parameters for passing information between commands
in the program or procedure and between programs and procedures.

v Calling other procedures (only programs can be called from the command line
or in the batch job stream).

Using CL programs and procedures, applications can be designed with a separate
program or procedure for each function, and with a CL program or procedure
controlling which programs or procedures are run within the application. The
application can consist of both CL and other HLL programs or procedures. In this
type of application, CL programs or procedures are used to:
v Determine which programs or procedures in the application are to be run.
v Provide system functions that are not available through other HLL languages.
v Provide interaction with the application user.

CL programs and procedures provide the flexibility needed to let the application
user select what operations to perform and run the necessary procedures.

Chapter 1. Introduction 3

Command Definition
Command definition allows system users to create additional commands to meet
specific application needs. These commands are similar to the system commands.

Each command on the system has a command definition object and a command
processing program (CPP). The command definition object defines the command,
including:
v The command name
v The CPP
v The parameters and values that are valid for the command
v Validity checking information the system can use to validate the command when

it is entered
v Prompt text to be displayed if a prompt is requested for the command.
v Online help information

The CPP is the program called when the command is entered. Because the system
performs validity checking when the command is entered, the CPP does not
always have to check the parameters passed to it.

The command definition functions can be used to:
v Create unique commands needed by system users while keeping a consistent

interface for CL command users.
v Define alternative versions of CL commands to meet the requirements of system

users. This function might include having different defaults for parameter
values, or simplifying the commands so that some parameters would not need
to be entered. Constant values can be defined for those parameters. The
IBM*-supplied commands should not be changed.

See Chapter 9. Defining Commands, for a detailed discussion of command
definition.

Menus
The system provides a large number of menus that allow users to perform many
functions just by selecting menu options. The advantages of using menus to
perform system tasks include:
v Users do not need to understand CL commands and command syntax.
v The amount of typing and the chance of errors are greatly reduced.

Information about creating menus that can be used like the system-supplied menus

is described in the Application Display Programming book.

Objects and Libraries
An object is a named storage space that consists of a set of characteristics that
describe itself and, in some cases, data. An object is anything that exists in and
occupies space in storage and on which operations can be performed. The
attributes of an object include its name, type, size, the date it was created, and a
description provided by the user who created the object. The value of an object is
the collection of information stored in the object. The value of a program, for
example, is the code that makes up the program. The value of a file is the
collection of records that makes up the file. The concept of an object simply

4 CL Programming V5R1

c4157150.pdf

provides a term that can be used to refer to a number of different items that can be
stored in the system, regardless of what the items are.

Objects
The functions performed by most of the CL commands are applied to objects.
Some commands can be used on any type of object and others apply only to a
specific type of object.

The system supports various unique types of objects. Some types identify objects
common to many data processing systems, such as:
v Files
v Programs
v Commands
v Libraries
v Queues
v Modules
v Service programs

Other object types are less familiar, such as:
v User profiles
v Job descriptions
v Subsystem descriptions
v Device descriptions

Different object types have different operational characteristics. These differences
make each object type unique. For example, because a file is an object that contains
data, its operational characteristics differ from those of a program, which contains
instructions.

Each object has a name. The object name and the object type are used to identify
an object. The object name is assigned by the user creating the object. The object
type is determined by the command used to create the object. For example, if a
program was created and given the name OEUPDT (for order entry update), the
program could always be referred to by that name. The system uses the object
name (OEUPDT) and object type (program) to locate the object and perform
operations on it. Several objects can have the same name, but they must either be
different object types or be stored in different libraries.

The system maintains integrity by preventing the misuse of certain functions,
depending on the object type. For example, the command CALL causes a program
object to run. If you specified CALL and named a file, the command would fail
unless there happened to be a program with the same name.

Libraries
A library is an object that is used to group related objects, and to find objects by
name when they are used. Thus, a library is a directory to a group of objects. You
can use libraries to group the objects into any meaningful collection. For example,
you can group objects according to security requirements, backup requirements, or
processing requirements. The amount of available storage limits the number of
objects that a library can contain, and the number of libraries on the system.

Chapter 1. Introduction 5

The object grouping performed by libraries is a logical grouping. When a library is
created, you can specify into which user auxiliary storage pool (ASP) the library
should be created. All objects created into the library are created into the same ASP
as the library. Objects in a library are not necessarily physically adjacent to each
other. The size of a library, or of any other object, is not restricted by the amount of
adjacent space available in storage. The system finds the necessary storage for
objects as they are stored in the system.

Most types of objects are placed in a library when they are created. The AUT
parameter on CRTLIB defines the public authority of the library. The CRTAUT
parameter specifies the default authority for objects that are created into the
library. If the command creating the object specifies *LIBCRTAUT for the AUT
parameter, the object’s public authority is the create authority that was specified
for the library. You can move most object types from one library to another, but a
single object cannot be in more than one library at the same time. When you move
an object to a different library, the object is not moved in storage. You now locate
the object through the new library. You can also rename and copy most object
types from one library into another.

A library name can be used to provide another level of identification to the name
of an object. As described earlier, an object is identified by its name and its type.
The name of the library further qualifies the object name. The combination of an
object name and the library name is called the qualified name of the object. The
qualified name tells the system the name of the object and the library it is in.

The following diagram shows two libraries and the qualified names of the objects
in them:

Two objects with the same name and type can exist in different libraries. Two
different objects with the same name cannot exist in the same library unless their
object types differ. This design allows a program that refers to objects by name to
work with different objects (objects with the same name but stored in different
libraries) in successive runs of the program without changing the program itself.
Also, a work station user who is creating a new object does not need to be
concerned about names used for objects in other libraries. For example, in the
following diagram, a new file named MONTHUPD (monthly update) could be
added to the library OELIB, but not to the library ACCTLIB. The creation of the
file into ACCTLIB would fail because another object named MONTHUPD and of

6 CL Programming V5R1

type file already exists in library ACCTLIB.

An object is identified within a library by the object name and type. Many CL
commands apply only to a single object type, so the object type does not have to
be explicitly identified. For those commands that apply to many object types, the
object type must be explicitly identified.

See “Using Libraries” on page 108 for detail on how to use libraries to find objects.

Messages
A message is a communication sent from one user, program, or procedure to
another. Most data processing systems provide communications between the
system and the operator to handle errors and other conditions that occur during
processing. OS/400 also provides message handling functions that support
two-way communications between programs and system users, between programs,
between procedures within a program, and between system users. Two types of
messages are supported:
v Immediate messages, which are created by the program or system user when

they are sent and are not permanently stored in the system.
v Predefined messages, which are created before they are used. These messages

are placed in a message file when they are created, and retrieved from that file
when they are used.

Because messages can be used to provide communications between programs,
between procedures in a program, and between programs and users, using the
OS/400 message handling functions should be considered when developing
applications. The following concepts of message handling are important to
application development:
v Messages can be defined in messages files, which are outside the programs that

use them, and variable information can be provided in the message text when a
message is sent. Because messages are defined outside the programs, the
programs do not have to be changed when the messages are changed. This
approach also allows the same program to be used with message files containing
translations of the messages into different languages.

v Messages are sent to and received from message queues, which are separate
objects on the system. A message sent to a queue can remain on the queue until
it is explicitly received by a program or work station user.

Chapter 1. Introduction 7

v A program can send messages to a user who requested the program regardless
of what work station that user has signed on to. Messages do not have to be
sent to a specific device; one program can be used from different work stations
without change.

See the Globalization topic in the System overview, planning, and installation
category of the iSeries Information Center for information on Coded Character Set
Identifier (CCSID) for menus, messages, and message descriptions.

Message Descriptions
A message description defines a message to OS/400. The message description
contains the text of the message and information about replacement variables, and
can include variable data that is provided by the message sender when the
message is sent.

Message descriptions are stored in message files. Each description must have an
identifier that is unique within the file. When a message is sent, the message file
and the message identifier tell the system which message description is to be used.

Message Queues
When a message is sent to a procedure, a program, or a system user, it is placed
on a message queue associated with that procedure, program, or user. The
procedure, program, or user sees the message by receiving it from the queue.

OS/400 provides message queues for:
v Each work station on the system
v Each user enrolled on the system
v The system operator
v The system history log

Additional message queues can be created to meet any special application
requirements. Messages sent to message queues are kept, so the receiver of the
message does not need to process the message immediately.

Testing Functions
The system includes functions that let a programmer observe operations performed
as a program runs. These functions can be used to locate operations that are not
performing as intended. Testing functions can be used in either batch or interactive
jobs from a work station. In either case, the program being observed must be in
the testing environment, called debug mode.

The testing functions narrow the search for errors that are difficult to find in the
procedure’s source statements. Often, an error is apparent only because the output
produced is not what is expected. To find those errors, you need to be able to stop
the program at a given point (called a breakpoint) and examine variable information
in the program to see if it is correct. You might want to make changes to those
variables before letting the program continue running.

You do not need to know machine language instructions, nor is there a need to
include special instructions in the program to use the testing functions. The
OS/400 testing functions lets you:
v Stop a running program at any named point in the program’s source statements.

8 CL Programming V5R1

v Display information about procedure variables at any point where the program
can be stopped. You can also change the variable information before continuing
procedure processing.

See either “Chapter 10. Debugging ILE Programs” on page 347, for more
information on debugging Integrated Language Environment® (ILE) programs or
“Appendix A. Debugging OPM Programs” on page 371 for more information on
debugging OPM programs.

See the appropriate ILE guide for debugging information with other ILE
languages.

Chapter 1. Introduction 9

10 CL Programming V5R1

Chapter 2. CL Programming

The focus of this chapter is ILE rather than OPM. For this reason, ‘procedure’ is
used rather than ‘program’ for this chapter. However, when the discussion is about
CL commands in general, the word ‘program’ may still be used.

A CL procedure is a group of CL commands that tells the system where to get
input, how to process it, and where to place the results. The procedure is assigned
a name by which it can then be called by other procedures or bound into a
program and called. As with other kinds of procedures, you must enter CL
procedure source statements, compile, and bind them before you can run the
procedure.

When you enter CL commands individually (from the Command Entry display, for
instance, or as individual commands in an input stream), each command is
separately processed. When you enter CL commands as source statements for a CL
procedure, the source remains for later modification if you choose, and the
commands are compiled into a module. This module remains as a permanent
system object that can be bound into other programs and run. Thus, CL is actually
a high-level programming language for system functions. CL procedures ensure
consistent processing of groups of commands. You can perform functions with a
CL procedure that you cannot perform by entering commands individually, and
the CL program or procedure provides better performance at run time than the
processing of several separate commands.

CL procedures can be used in batch or interactive processing. Certain commands
or functions are restricted to either batch or interactive jobs.

CL source statements consist of CL commands. You cannot use all CL commands
as CL source statements, and you can use some of them only in CL procedures or
OPM programs. You can determine what restrictions you want placed on the use
of CL commands. You can do this by checking the box in the upper right-hand
corner of the syntax diagram of a command. An example that uses the Program
(PGM) command is shown below:

Pgm: B,I

�� PGM

�

(2)

.
(1)

PARM(&CL-variable-name)

��

Notes:

1 A maximum of 40 repetitions

2 All parameters preceding this point can be specified positionally.
You can find the syntax diagrams in the CL and APIs section of the Programming
category in the iSeries Information Center.

© Copyright IBM Corp. 1997, 2001 11

The Pgm: B,I in the syntax diagram for the PGM command shows that this
command can be used in either batch or interactive jobs, but can be used only
within a CL program or procedure.

The commands that you can use only as source statements in CL programs and
procedures will have Pgm: in the box. If the box does not contain this indicator,
you cannot use the command as source for a CL program or procedure. IBM has
online information about how to read a syntax diagram. Refer to the CL and APIs
section of the Programming category in the iSeries Information Center.

CL source statements can be entered in a database source member either
interactively from a work station or in a batch job input stream from a device. To
create a program using CL source statements, you must enter the source statements
into a database source member. You can then create an ILE program by compiling
the source member into a module and binding the module into a program object.

CL procedures can be written for many purposes, including:
v To control the sequence of processing and calling of other programs or

procedures.
v To display a menu and run commands based on options selected from that

menu. This makes the work station user’s job easier and reduces errors.
v To read a database file.
v To handle error conditions issued from commands, programs or procedures, by

monitoring for specific messages.
v To control the operation of an application by establishing variables used in the

application, such as date, time, and external indicators.
v To provide predefined functions for the system operator, such as starting a

subsystem or saving files. This reduces the number of commands the operator
uses regularly, and it ensures that system operations are performed consistently.

There are many advantages in using CL procedures for an application. For
example:
v Because the commands are stored in a form that can be processed when the

program is created, using programs is faster than entering and running the
commands individually.

v CL procedures are flexible. Parameters can be passed to CL procedures to adapt
the operations performed by the procedure to the requirements of a particular
use.

v CL procedures can be tested and debugged like other high-level language
programs and procedures.

v CL procedures and programs can incorporate conditional logic and special
functions not available when commands are entered individually.

v CL procedures can be bound with procedures of other languages.

You cannot use CL procedures to:
v Add or update records in database files.
v Use printer or ICF files.
v Use subfiles within display files.
v Use program-described display files.

12 CL Programming V5R1

Creating a CL Program
All programs are created in steps:
1. Source creation. CL procedures consist of CL commands. In most cases, source

statements are entered into a database file in the logical sequence determined
by your application design.

2. Module creation. Using the Create Control Language Module (CRTCLMOD)
command, this source is used to create a system object. The created CL module
can be bound into programs. A CL module contains one CL procedure. Other
HLL languages may contain multiple procedures for each module.

3. Program creation. Using the Create Program (CRTPGM) command, this module
(along with other modules and service programs) is used to create a program.

Note: If you want to create a program consisting of only one CL module, you can
use the Create Bound CL Program (CRTBNDCL) command, which combines
steps 2 and 3.

Interactive Entry
The iSeries server provides many menus and displays to assist the programmer,
including the Programmer Menu, the Command Entry display, command prompt
displays, and the Programming Development Manager (PDM) Menu. If your

server uses the security functions described in Security - Reference , your
ability to use these displays is controlled by the authority given to you in your
user profile. User profiles are generally created and maintained by a system
security officer.

The most frequently used source entry method is the source entry utility (SEU),
which is part of the WebSphere Development Studio.

Batch Entry
You can create CL source, a CL module, and a program in one batch input stream
from diskette. The following example shows the basic parts of the input stream
from a diskette unit. The input is submitted to a job queue using the Submit
Diskette Job (SBMDKTJOB) command. The input stream should follow this format:
// BCHJOB
CRTBNDCL PGM(QGPL/EDUPGM) SRCFILE(PERLIST)
// DATA FILE(PERLIST) FILETYPE(*SRC)

.

. (CL Procedure Source)

.
//
/*
// ENDINP

This stream creates a program from on-line source. If you want to keep the source
on-line, a Copy File (CPYF) command could be used to copy the source into a
database file. The program could then be created using the database file.

You can also create a CL module directly from CL source on external media, such
as diskette, using an IBM-supplied device file. The IBM-supplied diskette source
file is QDKTSRC (use QTAPSRC for tape). Assume, for instance, that the CL source
statements are in a source file on diskette named PGMA.

Chapter 2. CL Programming 13

c4153025.pdf

The first step is to identify the location of the source on diskette by using the
following override command with LABEL attribute override:
OVRDKTF FILE(QDKTSRC) LABEL(PGMA)

Now you can consider the QDKTSRC file as the source file on the Create CL
Module (CRTCLMOD) command. To create the CL module based on the source
input from the diskette, enter the following command:
CRTCLMOD MODULE(QGPL/PGMA) SRCFILE(QDKTSRC)

When the CRTCLMOD command is processed, it treats the QDKTSRC source file
like any database source file. Using the override, the source is located on diskette.
PGMA is created in QGPL, and the source for that module remains on diskette.

Parts of a CL Procedure
While each source statement entered as part of a CL procedure is actually a CL
command, the source can be divided into the following basic parts used in many
typical CL procedures.

PGM command
PGM PARM(&A)

Optional PGM command beginning the procedure and identifying any
parameters received.

Declare commands
(DCL, DCLF)

Mandatory declaration of procedure variables when variables are used. The
declare commands must precede all other commands except the PGM
command.

CL processing commands
CHGVAR, SNDPGMMSG, OVRDBF, DLTF, ...

CL commands used as source statements to manipulate constants or
variables (this is a partial list).

Logic control commands
IF, THEN, ELSE, DO, ENDDO, GOTO

Commands used to control processing within the CL procedure.

Built-in functions
%SUBSTRING (%SST), %SWITCH, and %BINARY (%BIN)

Built-in functions and operators used in arithmetic, relational or logical
expressions.

Program control commands
CALL, RETURN

CL commands used to pass control to other programs.

Procedure control commands
CALLPRC, RETURN

CL commands used to pass control to other procedures.

ENDPGM command
ENDPGM

Optional End Program command.

14 CL Programming V5R1

The sequence, combination, and extent of these components are determined by the
logic and design of your application.

A CL procedure may refer to other objects that must exist when the procedure is
created, when the command is processed, or both. This distinction is discussed in
“Accessing Objects in CL Programs” on page 143, and in the sections discussing
various objects. In some circumstances, for your procedure to run successfully, you
may need:
v A display file. Use display files to format information on a device display. If

your procedure uses a display, you must enter and create the display file and
record format by using the Create Display File (CRTDSPF) command before
creating the module. You must declare it to the procedure in the DCL section by
using the Declare File (DCLF) command. See “Working with Files in CL
Procedures” on page 146 for more information.

v A database file. Records in a database file may be read by a CL procedure. If
your procedure uses a database file, the file must be created using the Create
Physical File (CRTPF) command or the Create Logical File (CRTLF) command
before the module is created. You can use Data Description Specifications (DDS),
Structured Query Language (SQL), or interactive data definition utility (IDDU)
to define the format of the records in the file. The file must also be declared to
the procedure in the DCL section using the Declare File (DCLF) command. See
“Working with Files in CL Procedures” on page 146 for more information.

v Other programs. If you use a CALL command, the called program must exist
before running the CALL command. It does not have to exist when compiling
the calling module. See “Accessing Objects in CL Programs” on page 143 and
Chapter 3 for more information.

v Other procedures. If you use the CALLPRC command, the called procedure
must exist at the time CRTPGM is run. It does not have to exist when
CRTCLMOD is run.

Example of a Simple CL Program
A CL program can be as simple or as complex as you want. To consolidate several
activities normally done by the system operator at the beginning of the day (to call
programs A, B, and C, for example), you can create a CL procedure STARTUP with
the following code:
PGM /* STARTUP */
CALL PGM(A)
CALL PGM(B)
CALL PGM(C)
ENDPGM

In this example, the Programmer Menu is used to create the program. You could
also use the programming development manager (PDM), which is part of the
WebSphere Development Studio.

Chapter 2. CL Programming 15

To enter, create, and use this program, follow these steps:

To enter CL source:
v Select option 8 (Edit source) on the Programmer Menu and specify STARTUP in

the Parm field. (This option creates a source member named STARTUP that will
also be the name of the program.)

v Specify CLLE in the Type field and press the Enter key.
v On the SEU display, use the I (insert) line command to enter the CL commands

(CALL is a CL command).

Columns........: 1 71 Edit QGPL/QCLSRC
Find......: ___ STARTUP
FMT A*A*. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

************** Beginning of data ***********************************
.......
.......
.......
.......
.......
.......

When you have finished entering the source statements:
v Press F3 to exit from SEU.
v Accept the default on the exit display (option 2, Exit and update member) and

press the Enter key to return to the Programmer Menu.
v Select option 3 (Create object) to create a program from the source statements

you entered. You do not have to change any other information on the display.

Note: The referenced programs (A, B, and C) do not have to exist when the
program STARTUP is created.

When the program is created, you can call it from the Programmer Menu by
selecting option 4 (Call program) and specifying STARTUP in the Parm field. If

16 CL Programming V5R1

you attempt to run this sample program, however, the referenced programs must
exist by the time the CALL commands are run.

Commands Used in CL Procedures
A CL procedure can contain only CL commands. These can be IBM-supplied or
commands defined by you. You cannot use some IBM-supplied commands in CL
procedures. IBM has online information concerning the individual command
descriptions and their applicability in CL procedures. Refer to the CL and APIs
section of the Programming category in the iSeries Information Center.

Commands Entered on the RQSDTA and CMD Parameters
Certain CL commands, such as Transfer Job (TFRJOB) and Submit Job (SBMJOB)
have RQSDTA or CMD parameters that can use another CL command as the
parameter value. Commands that can only be used within CL procedures cannot
be used as values on the RQSDTA or CMD parameter.

CL Commands
The following is a list of commands that are frequently used in CL procedures. You
can use this list to select the appropriate command for the function you want. IBM
provides online information on how to determine the command you might need.
Refer to the CL and APIs section of the Programming category in the iSeries
Information Center for this information. Familiarity with the function of these
commands will help you to understand subsequent topics in this chapter.
Superscript 1 indicates the commands that you can use only in CL programs and
procedures.

System Function Command Command Function
Change Procedure
Control

CALL (Call) Calls a program

CALLPRC (Call Procedure) 1 Calls a procedure.
RETURN (Return) Returns to the command following the command that

caused a program or procedure to be run
CL Procedure
Limits

PGM (Program) 1 Indicates the start of CL procedure source

ENDPGM (End Program) 1 Indicates the end of CL procedure source
CL Procedure
Logic

IF (If) 1 Processes commands based on the value of a logical
expression

ELSE (Else) 1 Defines the action to be taken for the else (false)
condition of an IF command

DO (Do) 1 Indicates the start of a Do group
ENDDO (End Do) 1 Indicates the end of a Do group
GOTO (Go To) 1 Branches to another command

CL Procedure
Variables

CHGVAR (Change Variable)1 Changes the value of a CL variable

DCL (Declare) 1 Declares a variable
Conversion CHGVAR (Change Variable)1 Changes the value of a CL variable

CVTDAT (Convert Date) 1 Changes the format of a date
Data Areas CHGDTAARA (Change Data Area) Changes a data area

CRTDTAARA (Create Data Area) Creates a data area
DLTDTAARA (Delete Data Area) Deletes a data area
DSPDTAARA (Display Data Area) Displays a data area
RTVDTAARA (Retrieve Data Area) Copies the content of a data area to a CL variable

Files ENDRCV (End Receive) 1 Cancels a request for input previously issued by a
RCVF, SNDF, or SNDRCVF command to a display file

Chapter 2. CL Programming 17

System Function Command Command Function
DCLF (Declare File) 1 Declares a display or database file
RCVF (Receive File) 1 Reads a record from a display or database file
RTVMBRD (Retrieve Member
Description) 1

Retrieves a description of a specific member of a
database file

SNDF (Send File) 1 Writes a record to a display file
SNDRCVF (Send/Receive File) 1 Writes a record to a display file and reads that record

after the user has replied
WAIT (Wait) 1 Waits for data to be received from an SNDF, RCVF, or

SNDRCVF command issued to a display file
Messages MONMSG (Monitor Message) 1 Monitors for escape, status, and notify messages sent to

a program’s message queue
RCVMSG (Receive Message) 1 Copies a message from a message queue into CL

variables in a CL procedure
RMVMSG (Remove Message) 1 Removes a specified message from a specified message

queue
RTVMSG (Retrieve Message) 1 Copies a predefined message from a message file into

CL procedure variables
SNDPGMMSG (Send Program
Message) 1

Sends a program message to a message queue

SNDRPY (Send Reply) 1 Sends a reply message to the sender of an inquiry
message

SNDUSRMSG (Send User Message) Sends an informational or inquiry message to a display
station or system operator

Miscellaneous
Commands

CHKOBJ (Check Object) Checks for the existence of an object and, optionally, the
necessary authority to use the object

PRTCMDUSG (Print Command
Usage)

Produces a cross-reference listing for a specified group
of commands used in a specified group of CL
procedures

RTVCFGSRC (Retrieve Configuration
Source)

Generates CL command source for creating existing
configuration objects and places the source in a source
file member

RTVCFGSTS (Retrieve Configuration
Status) 1

Gives applications the capability to retrieve
configuration status from three configuration objects:
line, controller, and device.

RTVJOBA (Retrieve Job Attributes) 1 Retrieves the value of one or more job attributes and
places the values in a CL variable

RTVSYSVAL (Retrieve System Value)
1

Retrieves a system value and places it into a CL variable

RTVUSRPRF (Retrieve User Profile) 1 Retrieves user profile attributes and places them into CL
variables

Program Creation
Commands

CRTCLMOD (Create CL Module) Creates a CL module

DLTMOD (Delete Module) Deletes a module
DLTPGM (Delete Program) Deletes a program
CRTBNDCL (Create Bound Control
Language Program)

Creates a bound CL program.

CRTCLPGM (Create CL Program) Creates an OPM CL program.
CRTPGM (Create Program) Creates a program from one or more modules.
CRTSRVPGM (Create Service
Program)

Creates a service program from one or more modules.

Using CL Procedures
CL programming is a flexible tool allowing you to perform a variety of operations.
Each of the following uses is described in greater detail in individual sections later
in this chapter. In general, you can:

18 CL Programming V5R1

v Use variables, logic control commands, expressions, and built-in functions to
manipulate and process data within a CL procedure:
PGM
DCL &C *LGL
DCL &A *DEC VALUE(22)
DCL &B *CHAR VALUE(ABCDE)
v
v
v
CHGVAR &A (&A + 30)
v
v
v
IF (&A < 50) THEN(CHGVAR &C '1')
v
DSPLIB ('Q' || &B)
v
IF (%SST(&B 5 1)=E) THEN(CHGVAR &A 12)
v
v
v
ENDPGM

v Use a system value as a variable in a CL procedure.

v Use a job attribute as a variable in a CL procedure.

Chapter 2. CL Programming 19

v Send and receive data to and from a display file with a CL procedure.

v Create a CL procedure to monitor error messages for a job, and take corrective
action if necessary.

PGM

MONMSG MSGID(CPF0001) EXEC(GOTO ERROR)
CALL PROGA
CALL PROGB
RETURN

ERROR: SNDPGMMSG MSG('A CALL command failed') MSGTYPE(*ESCAPE)
ENDPGM

v Control processing among procedures and programs and pass parameters from a
CL procedure to other procedures or programs to override files.

20 CL Programming V5R1

Used as a controlling procedure, a CL procedure can call procedures written in
other languages. The following illustration shows how control can be passed
between a CL procedure and RPG IV* and ILE COBOL procedures in an
application. To use the application, a work station user would request program A,
which controls the entire application. The illustration shows: The preceding
example shows a single bound program (PGMA) that is called using the CALL
command with PGMA. PGMA consists of:
v A CL procedure (PGMA) calling an RPG IV procedure (PGMB)
v An RPG IV procedure (PGMB) calling another RPG IV procedure (PGMC)
v An RPG IV procedure (PGMB) calling a CL procedure (PGMD)
v A CL procedure (PGMA) calling an ILE COBOL procedure (PGME)
v An ILE COBOL program (PGME) calling a CL procedure (PGMF)

Chapter 2. CL Programming 21

The procedures can be created as indicated in the following example. You can enter
source for procedures in separate source members.

CRTCLMOD PGMA
CRTRPGMOD PGMB
CRTRPGMOD PGMC
CRTCLMOD PGMD
CRTCBLMOD PGME
CRTCLMOD PGMF
CRTPGM PGM(PGMA) +

MODULE(PGMA PGMB PGMC PGMD PGME PGMF) +
ENTMOD(*FIRST)

Working with Variables
CL procedures consist of CL commands, and the commands themselves consist of
the command statement, parameters, and parameter values. IBM provides online
information that explains the syntax rules for writing commands. Refer to the CL
and APIs section of the Programming category in the iSeries Information Center for
the explanation.

Parameter values may be expressed as variables, constants, or expressions. A
variable is a named changeable value that can be accessed or changed by referring
to its name. Variables can be used as substitutes for most parameter values on CL
commands. When a CL variable is specified as a parameter value and the
command containing it is run, the value of the variable is used as the parameter
value. Every time the command is run, a different value can be substituted for the
variable. Variables and expressions can be used as parameter values only in CL
procedures and programs.

Variables are not stored in libraries; they are not objects; and their values are
destroyed when the procedure that contains them is no longer active. The use of

22 CL Programming V5R1

variables as values gives CL programming a special flexibility, because this allows
high-level manipulation of objects whose content may change by specific
applications. You might, for instance, write a CL procedure to direct the processing
of other programs or the operation of several work stations without specifying
which programs or work stations are to be controlled. The system identifies these
as variables in the CL procedure. You can define (specify) the value of the variables
when running the CL procedure.

All variables must be declared (defined) to the CL procedure before they can be
used by the procedure:
v Declare variable. Defining it is accomplished using the Declare CL Variable

(DCL) command and consists of defining the attributes of the variable. The
attributes are type, length, and initial value.
DCL VAR(&AREA) TYPE(*CHAR) LEN(4) VALUE(BOOK)

v Declare file. If your CL procedure uses a file, you must specify the name of the
file in the FILE parameter on the Declare File (DCLF) command. The file
contains a description (format) of the records in the file and the fields in the
records. During compilation, the DCLF command implicitly declares CL
variables for the fields and indicators defined in the file.
For example, if the DDS for the file has one record in it with two fields (F1 and
F2), then two variables, &F1 and &F2, are automatically declared in the
program.
DCLF FILE(MCGANN/GUIDE)

If the file is a physical file which was created without DDS, one variable is
declared for the entire record. The variable has the same name as the file, and its
length is the same as the record length of the file.

The declare commands must precede all other commands in the procedure (except
the PGM command), but they can be intermixed in any order.

In addition to the uses discussed in this section, variables can be used to:
v Pass information between procedures and jobs. See “Chapter 3. Controlling Flow

and Communicating between Programs and Procedures” on page 65.
v Pass information between procedures and device displays. See “Working with

Multiple Device Display Files” on page 155.
v Conditionally process commands. See “Controlling Processing within a CL

Procedure” on page 30.
v Create objects. A variable can be used in place of an object name or library

name, or both. The following example shows the Create Physical File (CRTPF)
command used with a specified library in the first line, and with a variable
replacing the library name in the second line:
CRTPF FILE(DSTPRODLB/&FILE)
CRTPF FILE(&LIB/&FILE)

Variables cannot be used to change a command name or keyword or to specify a
procedure name for the CALLPRC command. Command parameters, however, can
be changed during the processing of a CL procedure through the use of the
prompting function. See “Allowing User Changes to CL Commands at Run Time”
on page 167 for more information.

Chapter 2. CL Programming 23

It is also possible to assemble the keywords and parameters for a command and
process it using the QCAPCMD API or QCMDEXC API. See “Using the
QCAPCMD Program” on page 161 and “Using the QCMDEXC Program” on
page 161 for more information.

Declaring a Variable
In its simplest form, the Declare CL Variable (DCL) command has the following
parameters:

When you use a DCL command, you must use the following rules:
v The CL variable name must begin with an ampersand (&) followed by as many

as 10 characters. The first character following the & must be alphabetic and the
remaining characters alphanumeric. For example, &PART

v The CL variable value must be one of the following:
– A character string as long as 5000 characters.
– A packed decimal value totaling up to 15 digits with as many as 9 decimal

positions.
– A logical value ’0’ or ’1’, where ’0’ can mean off, false, or no, and ’1’ can

mean on, true, or yes. A logical variable must be either ’0’ or ’1’.
v If you do not specify an initial value, the following is assumed:

– 0 for decimal variables
– Blanks for character variables
– ’0’ for logical variables.

For decimal and character types, if you specify an initial value and do not
specify the LEN parameter, the default length is the same as the length of the
initial value. For type *CHAR, if you do not specify the LEN parameter, the
string can be as long as 5000.

v Declare the parameters as variables in the program DCL statements.

Using Variables to Specify a List or Qualified Name
The value on a parameter may be a list. For example, the Change Library List
(CHGLIBL) command requires a list of libraries on the LIBL parameter, each
separated by blanks. The elements in this list can be variables:
CHGLIBL LIBL(&LIB1 &LIB2 &LIB3)

When variables are used to specify elements in a list, each element must be
declared separately:
DCL VAR(&LIB1) TYPE(*CHAR) LEN(10) VALUE(QTEMP)
DCL VAR(&LIB2) TYPE(*CHAR) LEN(10) VALUE(QGPL)
DCL VAR(&LIB3) TYPE(*CHAR) LEN(10) VALUE(DISTLIB)
CHGLIBL LIBL(&LIB1 &LIB2 &LIB3)

Variable elements cannot be specified in a list as a character string:

Incorrect:

RV2W271-1

24 CL Programming V5R1

DCL VAR(&LIBS) TYPE(*CHAR) LEN(20) +
VALUE('QTEMP QGPL DISTLIB')

CHGLIBL LIBL(&LIBS)

When presented as a single character string, the system does not view the list as a
list of separate elements, and an error will occur.

You can also use variables to specify a qualified name, if each qualifier is declared
as a separate variable:
DCL VAR(&PGM) TYPE(*CHAR) LEN(10)
DCL VAR(&LIB) TYPE(*CHAR) LEN(10)
CHGVAR VAR(&PGM) VALUE(MYPGM)
CHGVAR VAR(&LIB) VALUE(MYLIB)
.
.
.
DLTPGM PGM(&LIB/&PGM)
ENDPGM

In this example, the program and library name are declared separately. The
program and library name cannot be specified in one variable, as in the following
example:

Incorrect:
DCL VAR(&PGM) TYPE(*CHAR) LEN(11)
CHGVAR VAR(&PGM) VALUE('MYLIB/MYPGM')
DLTPGM PGM(&PGM)

Here again the value is viewed by the system as a single character string, not as
two objects (a library and an object). If a qualified name must be handled as a
single variable with a character string value, you can use the built-in function
%SUBSTRING and the *TCAT concatenation function to assign object and library
names to separate variables. See “Using the %SUBSTRING Built-In Function” on
page 43 and Chapter 9 for examples using the %SUBSTRING function.

Lowercase Characters in Variables
Reserved values, such as *LIBL, that can be used as variables must always be
expressed in uppercase letters, especially if they are presented as character strings
enclosed in apostrophes. For instance, if you wanted to substitute a variable for a
library name on a command, the correct code is as follows:
DCL VAR(&LIB) TYPE(*CHAR) LEN(10) VALUE('*LIBL')
DLTPGM &LIB/MYPROG;

However, it would be incorrect to specify the VALUE parameter this way:
DCL VAR(&LIB) TYPE(*CHAR) LEN(10) VALUE('*libl')

Note that if this VALUE parameter had not been enclosed in apostrophes, it would
have been correct, because without the apostrophes it would be translated to
uppercase automatically. This error frequently occurs when the parameter is passed
as input to a procedure or program from a display as a character string, and the
display entry is made in lowercase.

Note: The above paragraph does not take into account the fact that translation to
uppercase is language dependent. REMEMBER: Relying on the system to
translate values to uppercase may produce unexpected results.

Chapter 2. CL Programming 25

Variables Replacing Reserved or Numeric Parameter Values
Some CL commands allow both numeric or predefined (reserved) values on certain
parameters. Where this is true, you can also use character variables to represent the
value on the command parameter.

Each parameter on a command can accept only certain types of values. The
parameter may allow an integer, a character string, a reserved value, a variable of
a specified type, or some mixture of these, as values. Some types of values are
required for parameters. If the parameter allows numeric values (if the value is
defined in the command as *INT2, *INT4, *UINT2, *UINT4, or *DEC) and also
allows reserved values (a character string preceded by an asterisk), you can use a
variable as the value for the parameter. The variable must be declared as
TYPE(*CHAR) if you intend to use a reserved value.

For example, the Change Output Queue (CHGOUTQ) command has a job
separator (JOBSEP) parameter that can have a value of either a number (0 through
9) or the predefined default, *SAME. Because both the number and the predefined
value are acceptable, you can also write a CL procedure that substitutes a character
variable for the JOBSEP value:

PGM
DCL &NRESP *CHAR LEN(6)
DCL &SEP *CHAR LEN(4)
DCL &FILNAM *CHAR LEN(10)
DCL &FILLIB *CHAR LEN(10)
DCLF.....
.
.
.

LOOP: SNDRCVF.....
IF (&SEP *EQ IGNR) GOTO END
ELSE IF (&SEP *EQ NONE) CHGVAR &NRESP '0'
ELSE IF (&SEP *EQ NORM) CHGVAR &NRESP '1'
ELSE IF (&SEP *EQ SAME) CHGVAR &NRESP '*SAME'
CHGOUTQ OUTQ(&FILLIB/&FILNAM) JOBSEP(&NRESP)
GOTO LOOP

END: RETURN
ENDPGM

In the preceding example, the display station user enters information on a display
describing the number of job separators desired for a specified output queue. The
variable &NRESP is a character variable manipulating numeric and predefined
values (note the use of apostrophes). The JOBSEP parameter on the CHGOUTQ
command will recognize these values as if they had been entered as numeric or
predefined values. The DDS for the display file used in this program should use
the VALUES keyword to restrict the user responses to IGNR, NONE, NORM, or
SAME.

If the parameter allows a numeric type of value (*INT2, *INT4, *UINT2, UINT4, or
*DEC) and you do not intend to enter any reserved values (such as *SAME), then
you can use a decimal variable in that parameter.

You can find information about the types of values that are allowed by command
parameters in Chapter 9 of this manual. The CL and APIs section of the
Programming category in the iSeries Information Center contains additional
information.

Another alternative for this function is to use the prompter within CL procedures.

26 CL Programming V5R1

Changing the Value of a Variable
You can change the value of a CL variable using the Change Variable (CHGVAR)
command. The value can be changed:
v To a constant:

CHGVAR VAR(&INVCMPLT) VALUE(0)

or
CHGVAR &INVCMPLT 0

&INVCMPLT is set to 0.
v To the value of another variable:

CHGVAR VAR(&A) VALUE(&B)

or
CHGVAR &A &B

&A is set to the value of the variable &B
v To the value of an expression after it is evaluated:

CHGVAR VAR(&A) VALUE(&A + 1)

or
CHGVAR &A (&A + 1)

The value of &A is increased by 1.
v To the value produced by the built-in function %SST (see “Using the

%SUBSTRING Built-In Function” on page 43 for more information):
CHGVAR VAR(&A) VALUE(%SST(&B 1 5))

&A is set to the first five characters of the value of the variable &B
v To the value produced by the built-in function %SWITCH (see “Using the

%SWITCH Built-In Function” on page 45 for more information):
CHGVAR VAR(&A) VALUE(%SWITCH(0XX111X0))

&A is set to 1 if job switches 1 and 8 are 0 and job switches 4, 5 and 6 are 1;
otherwise, &A is set to 0.

v To the value produced by the built-in function %BIN (see “Using the %BINARY
Built-In Function” on page 41 for more information):
CHGVAR VAR(&A) VALUE(%BIN((%B 1 4))

The first four characters of variable &B are converted to the decimal equivalent
and stored in decimal variable &A

The CHGVAR command can be used to retrieve and to change the local data area
also. For example, the following commands blank out 10 bytes of the local data
area and retrieve part of the local data area:
CHGVAR %SST(*LDA 1 10) ' '

CHGVAR &A %SST(*LDA 1 10)

For a logical variable, the value to which the variable is to be changed must be a
logical value. For decimal variables, a decimal or character value can be used. For
character variables, either character or decimal values are accepted.

Chapter 2. CL Programming 27

When specifying a decimal value for a character variable, remember the following:
v The value of the character variable is right-justified and, if necessary, padded

with leading zeros.
v The character variable must be long enough to contain a decimal point and a

minus (-) sign, when necessary.
v When used, a minus (-) sign is placed in the leftmost position of the value.

For example, &A is a character variable to be changed to the value of the decimal
variable &B The length of &A is 6. The length and decimal positions of &B are 5
and 2, respectively. The current value of &B is 123. The resulting value of &A is
123.00.

When specifying a character value for a decimal variable, remember the following:
v The decimal point is determined by the placement of a decimal point in the

character value. If the character value does not contain a decimal point, the
decimal point is placed in the rightmost position of the value.

v The character value can contain a minus (-) sign or plus (+) sign immediately to
the left of the value; no intervening blanks are allowed. If the character value
has no sign, the value is assumed to be positive.

v If the character value contains more characters to the right of the decimal point
than can be contained in the decimal variable, the characters are truncated.
However, if the excess characters are to the left of the decimal point, they are not
truncated and an error occurs.
For example, &C is a decimal variable to be changed to the value of the
character variable &D The length of &C is 5 with 2 decimal positions. The
length of &D is 10 and its current value is +123.1bbbb (where b=blank). The
resulting value of &C is 123.10.

Trailing Blanks on Command Parameters
Some command parameters are defined with the parameter value of VARY(*YES).
This parameter value causes the length of the value passed to be the number of
characters between the apostrophes. When a CL variable is used to specify the
value for a parameter defined in this way, the system removes trailing blanks
before determining the length of the variable to be passed to the command
processor program. If the trailing blanks are present and are significant for the
parameter, you must take special actions to ensure that the length passed includes
them. Most command parameters are defined and used in ways which do not
cause this condition to occur. An example of a parameter defined where this
condition is likely to occur is the key value element of the POSITION parameter on
the OVRDBF command.

When this condition could occur, the desired result can be attained for these
parameters by constructing a command string that delimits the parameter value
with apostrophes and passing the string to QCMDEXC or QCAPCMD for
processing.

The following is an example of a program that can be used to run the OVRDBF
command so that the trailing blanks are included as part of the key value. This
same technique can be used for other commands that have parameters defined
using the parameter VARY(*YES); trailing blanks must be passed with the
parameter.

28 CL Programming V5R1

Note: If you use VARY(*YES) and RTNVAL(*YES) and are passing a CL variable,
the length of the variable is passed rather than the length of the data in the
CL variable.

Writing Comments in CL Procedures
When you want to write comments in your CL procedures or add comments to
commands in your procedures, use the character pairs /* and */. The comment is
written between these symbols.

The starting comment delimiter, /*, requires three characters unless the /*
characters appear in the first two positions of the command string. In the latter
situation, /* can be used without a following blank before a command.

You can enter the three-character starting comment delimiters in any of the
following ways (b represents a blank):

/*b
b/*
/**

Therefore, the starting comment delimiter can be entered four ways. The starting
comment delimiter, /*, can:
v Begin in the first position of the command string

PGM PARM(&KEYVAL &LEN)
/* PROGRAM TO SHOW HOW TO SPECIFY A KEY VALUE WITH TRAILING */
/* BLANKS AS PART OF THE POSITION PARAMETER ON THE OVRDBF */
/* COMMAND IN A CL PROGRAM. */
/* THE KEY VALUE ELEMENT OF THE POSITION PARAMETER OF THE OVRDBF */
/* COMMAND IS DEFINED USING THE VARY(*YES) PARAMETER. */
/* THE DESCRIPTION OF THIS PARAMETER ON THE ELEM COMMAND */
/* DEFINITION STATEMENT SPECIFIES THAT IF A PARAMETER */
/* DEFINED IN THIS WAY IS SPECIFIED AS A CL VARIABLE THE */
/* LENGTH IS PASSED AS THE VARIABLE WITH TRAILING BLANKS */
/* REMOVED. A CALL TO QCMDEXC USING APOSTROPHES TO DELIMIT */
/* THE LENGTH OF THE KEY VALUE CAN BE USED TO CIRCUMVENT */
/* THIS ACTION. */
/* PARAMETERS-- */

DCL VAR(&KEYVAL) TYPE(*CHAR) LEN(32) /* THE VALUE +
OF THE REQUESTED KEY. NOTE IT IS DEFINED AS +
32 CHAR. */

DCL VAR(&LEN) TYPE(*DEC) LEN(15 5) /* THE LENGTH +
OF THE KEY VALUE TO BE USED. ANY VALUE OF +
1 TO 32 CAN BE USED */

/* THE STRING TO BE FINISHED FOR THE OVERRIDE COMMAND TO BE */
/* PASSED TO QCMDEXC (NOTE 2 APOSTROPHES TO GET ONE). */

DCL VAR(&STRING) TYPE(*CHAR) LEN(100) +
VALUE('OVRDBF FILE(X3) POSITION(*KEY 1 FMT1 '' ')

/* POSITION MARKER 123456789 123456789 123456789 123456789 */
DCL VAR(&END) TYPE(*DEC) LEN(15 5) /* A VARIABLE +

TO CALCULATE THE END OF THE KEY IN &STRING */

CHGVAR VAR(%SST(&STRING 40 &LEN)) VALUE(&KEYVAL) /* +
PUT THE KEY VALUE INTO COMMAND STRING FOR +
QCMDEXC IMMEDIATELY AFTER THE APOSTROPHE. */

CHGVAR VAR(&END) VALUE(&LEN + 40) /* POSITION AFTER +
LAST CHARACTER OF KEY VALUE */

CHGVAR VAR(%SST(&STRING &END 2)) VALUE('')') /* PUT +
A CLOSING APOSTROPHE & PAREN TO END +
PARAMETER */

CALL PGM(QCMDEXC) PARM(&STRING 100) /* CALL TO +
PROCESS THE COMMAND */

ENDPGM

Chapter 2. CL Programming 29

v Be preceded by a blank
v Be followed by a blank
v Be followed by an asterisk (/**).

For example, in the following procedure, comments are written to describe possible
user responses to a set of menu options:

Controlling Processing within a CL Procedure
Commands in a CL procedure are processed in consecutive sequence. Each
command is processed, one after another, in the sequence in which it is
encountered. You can alter this consecutive processing using commands that
change the flow of logic in the procedure. These commands can be conditional (IF)
or unconditional (GOTO).

Unconditional branching means that you can instruct processing to branch to
commands or sets of commands located anywhere in the procedure without regard
to what conditions exist at the time the branch instruction is processed. You can do
this with the GOTO command.

Conditional branching means that under certain specified conditions, processing
may branch to sections or commands that are not consecutive within the
procedure. The branching may be to any statement in the procedure. This is called
conditional processing because the branching only occurs when the specified
condition is true. Conditional processing is usually associated with the IF
command. With the ELSE command, you can specify alternative processing if the
condition is not true.

The DO command allows you to create groups of commands that are always
processed together, as a group, under specified conditions.

Using the GOTO Command and Labels
The GOTO command processes an unconditional branch. With the GOTO
command, processing is directed to another part (identified by a label) of the

PGM /* ORD040C Order dept general menu */
DCLF FILE(ORD040CD)

START: SNDRCVF RCDFMT(MENU)
IF (&RESP=1) THEN(CALL CUS210)
/*Customer inquiry */
ELSE +

IF (&RESP=2) THEN(CALL ITM210)
/**Item inquiry */
ELSE +

IF (&RESP=3) THEN(CALL CUS210)
/* Customer name search */
ELSE +

IF (&RESP=4) THEN(CALL ORD215)
/** Orders by cust */
ELSE +

IF (&RESP=5) THEN(CALL ORD220)
/* Existing order */
ELSE +

IF (&RESP=6) THEN(CALL ORD410C)
/** Order entry */
ELSE +

IF (&RESP=7) THEN(RETURN)
GOTO START
ENDPGM

30 CL Programming V5R1

procedure whenever the GOTO command is encountered. This branching does not
depend on the evaluation of an expression. After the branch to the labeled
statement, processing begins at that statement and continues in consecutive
sequence; it does not return to the GOTO command unless specifically directed
back by another instruction. You can branch forward or backward. You cannot use
GOTO to go to a label outside the procedure. The GOTO command has one
parameter, which contains the label of the statement branched to:
GOTO CMDLBL(label)

A label identifies the statement in the procedure to which processing is directed by
the GOTO command. To use a GOTO command, the command you are branching
to must have a label.

PGM
.
.
.

START: SNDRCVF RCDFMT(MENU)
IF (&RESP=1) THEN(CALL CUS210)
.
.
.
GOTO START
.
.
.
ENDPGM

The label in this example is START. A label can have as many as 10 characters and
must be immediately followed by a colon, but blanks can occur between the label
and the command name.

Using the IF Command
The IF command is used to state a condition that, if true, specifies some statement
or group of statements in the procedure to be run. The ELSE command can be
used with the IF command to specify a statement or group of statements to be run
if the condition expressed by the IF command is false.

The command includes an expression, which is tested (true or false), and a THEN
parameter that specifies the action to be taken if the expression is true. The IF
command is formatted as follows:
IF COND(logical-expression) THEN(CL-command)

The logical expression on the COND parameter may be a single logical variable or
constant, or it must describe a relationship between two or more operands; the
expression is then evaluated as true or false. See “Using the *AND, *OR, and *NOT
Operators” on page 37 for more detailed information on the construction of logical
expressions.

If the condition described by the logical expression is evaluated as true, the
procedure processes the CL command on the THEN parameter. This may be a
single command, or a group of commands (see “Using the DO Command and DO
Groups” on page 33). If the condition is not true, the procedure runs the next
sequential command.

Both COND and THEN are keywords on the command, and they can be omitted
for positional entry. The following are syntactically correct uses of this command:

Chapter 2. CL Programming 31

IF COND(&RESP=1) THEN(CALL CUS210)
IF (&A *EQ &B) THEN(GOTO LABEL)
IF (&A=&B) GOTO LABEL

Blanks are required between the command name (IF) and the keyword (COND) or
value (&A). No blanks are permitted between the keyword, if specified, and the
left parenthesis enclosing the value.

The following is an example of conditional processing with an IF command.
Processing branches in different ways depending on the evaluation of the logical
expression in the IF commands. Assume, for instance, that at the start of the
following code, the value of &A is 2 and the value of &C is 4.

IF (&A=2) THEN(GOTO FINAL)
IF (&A=3) THEN(CHGVAR &C 5)
.
.
.

FINAL: IF (&C=5) CALL PROGA
ENDPGM

In this case, the procedure processes the first IF command before branching to
FINAL, skipping the intermediate code. It does not return to the second IF
command. At FINAL, because the test for &C=5 fails, PROGA is not called. The
procedure then processes the next command, ENDPGM, which signals the end of
the procedure, and returns control to the calling procedure.

Processing logic would be different if, using the same code, the initial values of the
variables were different. For instance, if at the beginning of this code the value of
&A is 3 and the value of &C is 4, the first IF statement is evaluated as false.
Instead of processing the GOTO FINAL command, the procedure ignores the first
IF statement and moves on to the next one. The second IF statement is evaluated
as true, and the value of &C is changed to 5. Subsequent statements, not shown
here, are also processed consecutively. When processing reaches the last IF
statement, the condition &C=5 is evaluated as true, and PROGA is called.

A series of consecutive IF statements are run independently. For instance:

If, in this example, &A is not equal to &B, the next statement is run. If &C is equal
to &D, PGMA is called. When PGMA returns, the third IF statement is considered,
and so on. Note the difference in logic and processing between these simple
sequential IF statements and the use of IF with ELSE or the use of embedded IF
commands described later in the chapter (see “Using the ELSE Command” on
page 34 and “Using Embedded IF Commands” on page 36).

PGM /* IFFY */
DCL &A..
DCL &B..
DCL &C..
DCL &D..
DCL &AREA *CHAR LEN(5) VALUE(YESNO)
DCL &RESP..
IF (&A=&B) THEN(GOTO END) /* IF #1 */
IF (&C=&D) THEN(CALL PGMA) /* IF #2 */
IF (&RESP=1) THEN(CHGVAR &C 2) /* IF #3 */
IF (%SUBSTRING(&AREA 1 3) *EQ YES) THEN(CALL PGMB) /* IF #4 */
CHGVAR &B &C
.
.
.

END: ENDPGM

32 CL Programming V5R1

An embedded command is a command that is completely enclosed in the
parameter of another command. In the following examples, the CHGVAR
command and the DO command are embedded:
IF (&A *EQ &B) THEN(CHGVAR &A (&A+1))

IF (&B *EQ &C) THEN(DO)
.
.
.
ENDDO

Using the DO Command and DO Groups
The DO command lets you process a group of commands together. The group is
defined as all those commands between the DO command and the next ENDDO
command.

Processing of the group is usually conditioned on the evaluation of an associated
command. Do groups are most frequently associated with the IF, ELSE, or
MONMSG commands. For instance:

If the logical expression (&A=&B) is true, then the Do group is processed. If the
expression is not true, then processing starts after the ENDDO command; the Do
group is skipped.

In the following procedure, if &A is not equal to &B, the system calls PROCB.
PROCA is not called, nor are any other commands in the Do group processed.
Do groups can be nested within other Do groups, up to a maximum of 10 levels of

nesting.

There are three levels of nesting in the following example. Note how each Do
group is completed by an ENDDO command.

Do Group

RV2W272-0

Do Group

RV3W198-0

Chapter 2. CL Programming 33

In this example, if &A in the first nest does not equal 5, PGMC is called. If &A
does equal 5, the statements in the second Do group are processed. If &AREA in
the second Do group does not equal YES, procedure ACCTSPAY is called, because
processing moves to the next command after the Do group.

The CL compiler does not indicate the beginning or ending of Do groups. If the CL
compiler notes any unbalanced conditions, it is not easy to detect the actual errors.

Using the ELSE Command
The ELSE command is a way of specifying alternative processing if the condition
on the associated IF command is false.

The IF command can be used without the ELSE command:
IF (&A=&B) THEN(CALLPRC PROCA)
CALLPRC PROCB

In this case, PROCA is called only if &A=&B, but PROCB is always called.

If you use an ELSE command in this procedure, however, the processing logic
changes. In the following example, if &A=&B, PROCA is called, and PROCB is not
called. If the expression &A=&B is not true, PROCB is called.
IF (&A=&B) THEN(CALLPRC PROCA)
ELSE CMD(CALLPRC PROCB)
CHGVAR &C 8

The ELSE command must be used when a false evaluation of an IF expression
leads to a distinct branch (that is, an exclusive either/or branch).

The real usefulness of the ELSE command is best demonstrated when combined
with Do groups. In the following example, the Do group may not be run,
depending on the evaluation of the IF expression, but the remaining commands are
always processed.

Third Nest

First Nest Second
Nest

RV3W199-0

34 CL Programming V5R1

With the ELSE command you can specify that a command or set of commands be
processed only if the expression is not true, thus completing the logical
alternatives:

Each ELSE command must have an associated IF command preceding it. If nested
levels of IF commands are present, each ELSE command is matched with the
innermost IF command that has not already been matched with another ELSE
command.
IF ... THEN ...
IF ...THEN(DO)

IF ...THEN(DO)
.
.
.

ENDDO
ELSE DO

IF ...THEN(DO)
.
.
.
ENDDO

ELSE DO
.
.
.
ENDDO

ENDDO
ELSE IF ... THEN ...
IF ... THEN ...
IF ... THEN ...

In reviewing your procedure for matched ELSE commands, always start with the
innermost set.

Conditioned-Run Only if True

Unconditioned-Run Whether or Not
Expression Is True

RSLF157-0

Chapter 2. CL Programming 35

The ELSE command can be used to test a series of mutually exclusive options. In
the following example, after the first successful IF test, the embedded command is
processed and the procedure processes the RCLRSC command:
IF COND(&OPTION=1) THEN(CALLPRC PRC(ADDREC))
ELSE CMD(IF COND(&OPTION=2) THEN(CALLPRC PRC(DSPFILE)))
ELSE CMD(IF COND(&OPTION=3) THEN(CALLPRC PRC(PRINTFILE)))

ELSE CMD(IF COND(&OPTION=4) THEN(CALLPRC PRC(DUMP)))
RCLRSC
RETURN

Using Embedded IF Commands
An IF command can be embedded in another IF command. This would occur
when the command to be processed under a true evaluation (the CL command
placed on the THEN parameter) is itself another IF command:
IF (&A=&B) THEN(IF (&C=&D) THEN(GOTO END))
GOTO START

This can be useful when several conditions must be satisfied before a certain
command or group of commands is run. In the preceding example, if the first
expression is true, the system then reads the first THEN parameter; within that, if
the &C=&D expression is evaluated as true, the system processes the command in the
second THEN parameter, GOTO END. Both expressions must be true to process
the GOTO END command. If one or the other is false, the GOTO START command
is run. Note the use of parentheses to organize expressions and commands.

Up to 10 levels of such embedding are permitted in CL programming.

As the levels of embedding increase and logic grows more complex, you may wish
to enter the code in free-form design to clarify relationships:
PGM
DCL &A *DEC 1
DCL &B *CHAR 2
DCL &RESP *DEC 1
IF (&RESP=1) +

IF (&A=5) +
IF (&B=NO) THEN(DO)

.

.

.
ENDDO

CHGVAR &A VALUE(8)
CALL PGM(DAILY)
ENDPGM

The preceding IF series is handled as one embedded command. Whenever any one
of the IF conditions fails, processing branches to the remainder of the code
(CHGVAR and subsequent commands). If the purpose of this code is to
accumulate a series of conditions, all of which must be true for the Do group to
process, it could be more easily coded using *AND with several expressions in one
command. See “Using the *AND, *OR, and *NOT Operators” on page 37.

In some cases, however, the branch must be different depending on which
condition fails. You can accomplish this by adding an ELSE command for each
embedded IF command:
PGM
DCL &A ...
DCL &B ...
DCL &RESP ...
IF (&RESP=1) +

36 CL Programming V5R1

IF (&A=5) +
IF (&B=NO) THEN(DO)

.

.

.
SNDPGMMSG ...
.
.
.

ENDDO
ELSE CALLPRC PROCA

ELSE CALLPRC PROCB
CHGVAR &A 8
CALLPRC PROC(DAILY)
ENDPGM

Here, if all conditions are true, the SNDPGMMSG command is processed, followed
by the CHGVAR command. If the first and second conditions (&RESP=1 and &A=5)
are true, but the third (&B=NO) is false, PROCA is called; when PROCA returns, the
CHGVAR command is processed. If the second conditions fails, PROCB is called
(&B=NO is not tested), followed by the CHGVAR command. Finally, if &RESP does
not equal 1, the CHGVAR command is immediately processed. The ELSE
command has been used to provide a different branch for each test.

Note: The following three examples are correct syntactical equivalents to the
embedded IF command in the preceding example:

IF (&RESP=1) THEN(IF (&A=5) THEN(IF (&B=NO) THEN(DO)))

IF (&RESP=1) THEN +
(IF (&A=5) THEN +

(IF (&B=NO) THEN(DO)))

IF (&RESP=1) +
(IF (&A=5) +

(IF (&B=NO) THEN(DO)))

Using the *AND, *OR, and *NOT Operators
*AND and *OR are the reserved values for logical operators used to specify the
relationship between operands in a logical expression. The ampersand symbol (&)
can replace the reserved value *AND, and the vertical bar (|) can replace *OR. The
reserved values must be preceded and followed by blanks. The operands in a
logical expression consist of relational expressions or logical variables or constants
separated by logical operators. The *AND operator indicates that both operands
(on either side of the operator) have to be true to produce a true result. The *OR
operator indicates that one or the other of its operands must be true to produce a
true result.

Note: Using the ampersand symbol or the vertical bar can cause problems because
the symbols are not at the same code point for all code pages. To avoid this,
use *AND and *OR instead of the symbols.

Use operators, other than logical operators, in expressions to indicate the actions to
perform on the operands in the expression or the relationship between the
operands. There are three kinds of operators other than logical operators:
v Arithmetic (+, -, *, /)
v Character (*CAT, ||, *BCAT, |>, *TCAT, |<)
v Relational (*EQ, =, *GT, >, *LT, <, *GE, >=, *LE, <=, *NE, ¬=, *NG, ¬>, *NL, ¬<)

Chapter 2. CL Programming 37

You can find information about these operators in the CL and APIs section of the
Programming category in the iSeries Information Center.

The following are examples of logical expressions:
((&C *LT 1) *AND (&TIME *GT 1430))
(&C *LT 1 *AND &TIME *GT 1430)
((&C < 1) & (&TIME>1430))
((&C< 1) & (&TIME>1430))

In each of these cases, the logical expression consists of three parts: two operands
and one operator (*AND or *OR, or their symbols). It is the type of operator
(*AND or *OR) that characterizes the expression as logical, not the type of
operand. Operands in logical expressions can be logical variables or other
expressions, such as relational expressions. (Relational expressions are
characterized by >, <, or = symbols or corresponding reserved values.) For
instance, in the example:
((&C *LT 1) *AND (&TIME *GT 1430))

the entire logical expression is enclosed in parentheses, and both operands are
relational expressions, also enclosed separately in parentheses. As you can see from
the second example of logical expressions, the operands need not be enclosed in
separate parentheses, but it is recommended for clarity. Parentheses are not needed
because *AND and *OR have different priorities. *AND is always considered
before *OR. For operators of the same priority, parentheses can be used to control
the order in which operations are performed.

A simple relational expression can be written as the condition in a command:
IF (&A=&B) THEN(DO)

.

.

.
ENDDO

The operands in this relational expression could also be constants.

If you wish to specify more than one condition, you can use a logical expression
with relational expressions as operands:
IF ((&A=&B) *AND (&C=&D)) THEN(DO)

.

.

.
ENDDO

The series of dependent IF commands cited as an example in “Using Embedded IF
Commands” on page 36 could be coded:
PGM
DCL &RESP *DEC 1
DCL &A *DEC 1
DCL &B *CHAR 2
IF ((&RESP=1) *AND (&A=5) *AND (&B=NO)) THEN(DO)

.

.

.
ENDDO

CHGVAR &A VALUE(8)
CALLPRC PROC(DAILY)
ENDPGM

Here the logical operators are again used between relational expressions.

38 CL Programming V5R1

Because a logical expression can also have other logical expressions as operands,
quite complex logic is possible:
IF (((&A=&B) *OR (&A=&C)) *AND ((&C=1) *OR (&D='0'))) THEN(DO)

In this case, &D is defined as a logical variable.

The result of the evaluation of any relational or logical expression is a ’1’ or ’0’
(true or false). The dependent command is processed only if the complete
expression is evaluated as true (’1’). The following command is interpreted in these
terms:
IF ((&A = &B) *AND (&C = &D)) THEN(DO)

((true'1') *AND (not true'0'))
(not true '0')

The expression is finally evaluated as not true (’0’), and, therefore, the DO is not
processed. For an explanation of how this evaluation was reached, see the matrices
later in this section.

This same process is used to evaluate a logical expression using logical variables,
as in this example:
PGM
DCL &A *LGL
DCL &B *LGL
IF (&A *OR &B) THEN(CALL PGM(PGMA))
.
.
.
ENDPGM

Here the conditional expression is evaluated to see if the value of &A or of &B is
equal to ’1’ (true). If either is true, the whole expression is true, and PGMA is
called.

The final evaluation arrived at for all these examples of logical expressions is based
on standard matrices comparing two values (referred to here as &A and &B) under
an *OR or *AND operator.

Use the following matrix when using *OR with logical variables or constants:

If &A is:
’0’ ’0’ ’1’ ’1’

and &B is:
’0’ ’1’ ’0’ ’1’

the OR expression is:
’0’ ’1’ ’1’ ’1’

In short, for multiple OR operators with logical variables or constants, the
expression is false (’0’) if all values are false. The expression is true (’1’) if any
values are true.
PGM
DCL &A *LGL VALUE('0')
DCL &B *LGL VALUE('1')
DCL &C *LGL VALUE('1')
IF (&A *OR &B *OR &C) THEN(CALL PGMA)

Chapter 2. CL Programming 39

.

.

.
ENDPGM

Here the values are not all false; therefore, the expression is true, and PGMA is
called.

Use the following matrix when evaluating a logical expression with *AND with
logical variables or constants:

If &A is:
’0’ ’0’ ’1’ ’1’

and &B is:
’0’ ’1’ ’0’ ’1’

the ANDed expression is:
’0’ ’0’ ’0’ ’1’

For multiple AND operators with logical variables or constants, the expression is
false (’0’) when any value is false, and true when they are all true.
PGM
DCL &A *LGL VALUE('0')
DCL &B *LGL VALUE('1')
DCL &C *LGL VALUE('1')
IF (&A *AND &B *AND &C) THEN(CALL PGMA)
.
.
.
ENDPGM

Here the values are not all true; therefore, the expression is false, and PGMA is not
called.

These logical operators can only be used within an expression when the operands
represent a logical value, as in the preceding examples. It is incorrect to attempt to
use OR or AND for variables that are not logical. For instance:
PGM
DCL &A *CHAR 3
DCL &B *CHAR 3
DCL &C *CHAR 3

Incorrect: IF (&A *OR &B *OR &C = YES) THEN...

The correct coding for this would be:
IF ((&A=YES) *OR (&B=YES) *OR (&C=YES)) THEN...

In this case, the ORing occurs between relational expressions.

The logical operator *NOT (or ¬) is used to negate logical variables or constants.
Any *NOT operators must be evaluated before the *AND or *OR operators are
evaluated. Any values that follow *NOT operators must be evaluated before the
logical relationship between the operands is evaluated.
PGM
DCL &A *LGL '1'
DCL &B *LGL '0'
IF (&A *AND *NOT &B) THEN(CALL PGMA)

40 CL Programming V5R1

In this example, the values are all true; therefore, the expression is true, and
PGMA is called.
PGM
DCL &A *LGL
DCL &B *CHAR 3 VALUE('ABC')
DCL &C *CHAR 3 VALUE('XYZ')
CHGVAR &A VALUE(&B *EQ &C)
IF (&A) THEN(CALLPRC PROCA)

In this example, the value is false, therefore, PROCA is not called.

For more information about logical and relational expressions, see the CL and APIs
section of the Programming category in the iSeries Information Center.

Using the %BINARY Built-In Function
The binary built-in function (%BINARY or %BIN) interprets the contents of a
specified CL character variable as a signed binary integer. The starting position
begins at the position specified and continues for a length of 2 or 4 characters.

The syntax of the binary built-in function is:
%BINARY(character-variable-name starting-position length)

or
%BIN(character-variable-name starting-position length)

The starting position and length are optional. However, if the starting position and
length are not specified, a starting position of 1 and length of the character variable
that is specified are used. In that case, you must declare the length of the character
variable as either 2 or 4.

If the starting position is specified, you must also specify a constant length of 2 or 4.
The starting position must be a positive number equal to or greater than 1. If the
sum of the starting position and the length is greater than the length of the
character variable, an error occurs. (A CL decimal variable may also be used for
the starting position.)

You can use the binary built-in function with both the IF and CHGVAR
commands. It can be used by itself or as part of an arithmetic or logical expression.
You can also use the binary built-in function on any command parameter that is
defined as numeric (TYPE of *DEC, *INT2, *INT4, *UINT2, or *UINT4) with
EXPR(*YES).

When the binary built-in function is used with the condition (COND) parameter on
the IF command or with the VALUE parameter on the Change Variable (CHGVAR)
command, the contents of the character variable is interpreted as a
binary-to-decimal conversion.

When the binary built-in function is used with the VAR parameter on the
CHGVAR command, the decimal value in the VALUE parameter is converted to a
2-byte or 4-byte signed binary integer and the result stored in the character
variable at the starting position specified. Decimal fractions are truncated.

The system uses the binary built-in function on the RTNVAL parameter of the
CALLPRC command to indicate that the calling procedure expects the called
procedure to return a signed binary integer.

Chapter 2. CL Programming 41

A 2-byte character variable can hold signed binary integer values from -32 768
through 32 767. A 4-byte character variable can hold signed binary integer values
from -2 147 483 648 through 2 147 483 647.

The following are examples of the binary built-in function:
v DCL VAR(&B2) TYPE(*CHAR) LEN(2) VALUE(X'001C')

DCL VAR(&N) TYPE(*DEC) LEN(3 0)
CHGVAR &N %BINARY(&B2)

The contents of variable &B2 is treated as a 2-byte signed binary integer and
converted to its decimal equivalent of 28. It is then assigned to the decimal
variable &N

v DCL VAR(&N) TYPE(*DEC) LEN(5 0) VALUE(107)
DCL VAR(&B4) TYPE(*CHAR) LEN(4)
CHGVAR %BIN(&B4) &N

The value of the decimal variable &N is converted to a 4-byte signed binary
number and is placed in character variable &B4 Variable &B4 will have the
value of X'0000006B'.

v DCL VAR(&P) TYPE(*CHAR) LEN(100)
DCL VAR(&L) TYPE(*DEC) LEN(5 0)
CHGVAR &L VALUE(%BIN(&P 1 2) * 5)

The first two characters of variable &P is treated as a signed binary integer,
converted to its decimal equivalent, and multiplied by 5. The product is
assigned to the decimal variable &L.

v DCL VAR(&X) TYPE(*CHAR) LEN(50)
CHGVAR %BINARY(&X 15 2) VALUE(122.56)

The number 122.56 is truncated to the whole number 122 and is then converted
to a 2-byte signed binary integer and is placed at positions 15 and 16 of the
character variable &X. Positions 15 and 16 of variable &X will contain the
hexadecimal equivalent of X'007A'.

v DCL VAR(&B4) TYPE(*CHAR) LEN(4)
CHGVAR %BIN(&B4) VALUE(-57)

The value -57 is converted to a 4-byte signed binary integer and assigned to the
character variable &B4. The variable &B4 will then contain the value
X'FFFFFFC7'.

v DCL VAR(&B2) TYPE(*CHAR) LEN(2) VALUE(X'FF1B')
DCL VAR(&C5) TYPE(*CHAR) LEN(5)
CHGVAR &C5 %BINARY(&B2)

The contents of variable &B2 is treated as a 2-byte signed binary integer and
converted to its decimal equivalent of -229. The number is converted to character
form and stored in the variable character &C5. The character variable &C5 will
then contain the value ‘-0229&csq.

v DCL VAR(&C5) TYPE(*CHAR) LEN(5) VALUE(' 1253')
DCL VAR(&B2) TYPE(*CHAR) LEN(2)
CHGVAR %BINARY(&B2) VALUE(&C5)

The character number 1253 in character variable &C5 is converted to a decimal
number. The decimal number 1253 is then converted to a 2-byte signed binary
integer and stored in the variable &B2. The variable &B2 will then have the
value X'04E5'.

v DCL VAR(&S) TYPE(*CHAR) LEN(100)
IF (%BIN(&S 1 2) > 10)

THEN(SNDPGMMSG MSG('Too many in list.'))

42 CL Programming V5R1

The first 2 bytes of the character variable &S are treated as a signed binary
integer when compared to the number 10. If the binary number has a value
larger than 10, then the SNDPGMMSG (Send Program Message) command is
run.

v DCL VAR(&RTNV) TYPE(*CHAR) LEN(4)
CALLPRC PRC(PROCA) RTNVAL(%BIN(&RTNV 1 4))

Procedure PROCA returns a 4-byte integer which is stored in variable &RTNV.

Using the %SUBSTRING Built-In Function
The substring built-in function (%SUBSTRING or%SST) produces a character string
that is a subset of an existing character string and can only be used within a CL
procedure. In a CHGVAR command, the %SST function can be specified in place of
the variable (VAR parameter) to be changed or the value (VALUE parameter) to
which the variable is to be changed. In an IF command, the %SST function can be
specified in the expression.

The format of the substring built-in function is:
%SUBSTRING(character-variable-name starting-position length)

or
%SST(character-variable-name starting-position length)

You can code *LDA in place of the character variable name to indicate that the
substring function is performed on the contents of the local data area.

The substring function produces a substring from the contents of the specified CL
character variable or the local data area. The substring begins at the specified
starting position (which can be a variable name) and continues for the length
specified (which can also be a variable name). Neither the starting position nor the
length can be 0 or negative. If the sum of the starting position and the length of
the substring are greater than the length of the entire variable or the local data
area, an error occurs. The length of the local data area is 1024.

The following are examples of the substring built-in function:
v If the first two positions in the character variable &NAME are IN, the program

INV210 is called. The entire value of &NAME is passed to INV210 and the value
of &ERRCODE is unchanged. Otherwise, the value of &ERRCODE is set to 99.
DCL &NAME *CHAR VALUE(INVOICE)
DCL &ERRCODE *DEC (2 0)
IF (%SST(&NAME 1 2) *EQ 'IN') +
THEN(CALL INV210 &NAME)
ELSE CHGVAR &ERRCODE 99

v If the first two positions of &A match the first two positions of &B, the program
CUS210 is called.
DCL &A *CHAR VALUE(ABC)
DCL &B *CHAR VALUE(DEF)
IF (%SST(&A 1 2) *EQ %SUBSTRING(&B 1 2)) +
CALL CUS210

v Position and length can also be variables: This example changes the value of &X
beginning at position &Y for the length &Z to 123.
CHGVAR %SST(&X &Y &Z) '123'

v If &A is ABCDEFG before this CHGVAR command is run, &A is
CHGVAR %SST(&A 2 3) '123'

Chapter 2. CL Programming 43

A123EFG after the command runs.
v In this example, the length of the substring, 5, exceeds the length of the operand

YES to which it is compared. The operand is padded with blanks so that the
comparison is between YESNO and YESbb (where b is a blank). The condition is
false.
DCL VAR(&NAME) TYPE(*CHAR) LEN(5) VALUE(YESNO)
.
.
.
IF (%SST (&NAME 1 5) *EQ YES) +

THEN(CALL PROGA)

If the length of the substring is shorter than the operand, the substring is
padded with blanks for the comparison. For example:
DCL VAR(&NAME) TYPE(*CHAR) LEN(5) VALUE(YESNO)
.
.
.
IF (%SST(&NAME 1 3) *EQ YESNO) THEN(CALL PROG)

This condition is false because YESbb (where bb is two blanks) does not equal
YESNO.

v The value of the variable &A is placed into positions 1 through 10 of the local
data area.
CHGVAR %SST(*LDA 1 10) &A

v If the concatenation of positions 1 through 3 of the local data area plus the
constant ’XYZ’ is equal to variable &A, then PROCA is called. For example, if
positions 1 through 3 of the local data area contain ’ABC’ and variable &A has a
value of ABCXYZ, the test is true and PROCA is called.
IF (((%SST*LDA 1 3) *CAT 'XYZ') *EQ &A) THEN(CALLPRC PROCA)

v This procedure scans the character variable &NUMBER and changes any leading
zeros to blanks. This can be used for simple editing of a field before displaying
in a message.

DCL &NUMBER *CHAR LEN(5)
DCL &X *DEC LEN(3 0) VALUE(1)
.
.

LOOP:IF (%SST(&NUMBER &X 1) *EQ '0') DO
CHGVAR (%SST(&NUMBER &X 1)) ' ' /* Blank out */
CHGVAR &X (&X + 1) /* Increment */
IF (&X *NE 4) GOTO LOOP
ENDDO

The following procedure uses the substring built-in function to find the first
sentence in a 50-character field &INPUT and to place any remaining text in a field
&REMAINDER It assumes that a sentence must have at least 2 characters, and no
embedded periods.

PGM (&INPUT &REMAINDER) /* SEARCH */
DCL &INPUT *CHAR LEN(50)
DCL &REMAINDER *CHAR LEN(50)
DCL &X *DEC LEN(2 0) VALUE(03)
DCL &L *DEC LEN(2 0) /* REMAINING LENGTH */

SCAN: IF (%SST(&INPUT &X 1) *EQ '.') THEN(DO)
CHGVAR VAR(&L) VALUE(50-&X)
CHGVAR VAR(&X) VALUE(&X+1)
CHGVAR VAR(&REMAINDER) VALUE(%SST(&INPUT &X &L))
RETURN
ENDDO

44 CL Programming V5R1

IF (&X *EQ 49) THEN(RETURN)
CHGVAR &X (&X+1)
GOTO SCAN
ENDPGM

The procedure starts by checking the third position for a period. Note that the
substring function checks &INPUT from position 3 to a length of 1, which is
position 3 only (length cannot be zero). If position 3 is a period, the remaining
length of &INPUT is calculated. The value of &X is advanced to the beginning of
the remainder, and the remaining portion of &INPUT is moved to &REMAINDER.

If position 3 is not a period, the procedure checks to see if it is at position 49. If so,
it assumes that position 50 is a period and returns. If it is not at position 49, the
procedure advances &X to position 4 and repeats the process.

Using the %SWITCH Built-In Function
The switch built-in function (%SWITCH) compares one or more of eight switches
with the eight switch settings already established for the job and returns a logical
value of ’0’ or ’1’. The initial values of the switches for the job are determined first
by the Create Job Description (CRTJOBD) command; the default value is 00000000.
You can change this if necessary using the SWS parameter on the SBMJOB,
CHGJOB, or JOB command; the default for these is the job description setting.
Other high-level languages may also set job switches.

If, in the comparison of your %SWITCH values against the job values, every switch
is the same, a logical value of ’1’ (true) is returned. If any switch tested does not
have the value indicated, the result is a ’0’ (false).

The syntax of the %SWITCH built-in function is:
%SWITCH(8-character-mask)

The 8-character mask is used to indicate which job switches are to be tested, and
what value each switch is to be tested for. Each position in the mask corresponds
with one of the eight job switches in a job. Position 1 corresponds with job switch
1, position 2 with switch 2, and so on. Each position in the mask can be specified
as one of three values: 0, 1, or X.

0 The corresponding job switch is to be tested for a 0 (off).

1 The corresponding job switch is to be tested for a 1 (on).

X The corresponding job switch is not to be tested. The value in the switch
does not affect the result of %SWITCH.

If %SWITCH(0X111XX0) is specified, job switches 1 and 8 are tested for 0s; switches 3,
4, and 5 are tested for 1s; and switches 2, 6, and 7 are not tested. If each job switch
contains the value (1 or 0 only) shown in the mask, the result of %SWITCH is true
’1’.

Switches can be tested in a CL procedure to control the flow of the procedure. This
function is used in CL procedures with the IF and CHGVAR commands. Switches
can be changed in a CL procedure by the Change Job (CHGJOB) command. For CL
procedures, these changes take effect immediately.

%SWITCH with the IF Command
On the IF command, %SWITCH can be specified on the COND parameter as the
logical expression to be tested. In the following example, 0X111XX0 is compared to
the predetermined job switch setting:

Chapter 2. CL Programming 45

IF COND(%SWITCH(0X111XX0)) THEN(GOTO C)

If job switches 1, 3, 4, 5, and 8 contain 0, 1, 1, 1, and 0, respectively, the result is
true and the procedure branches to the command having the label C. If one or
more of the switches tested do not have the values indicated in the mask, the
result is false, and the branch does not occur.

In the following example, switches control conditional processing in two
procedures.
SBMJOB JOB(APP502) JOBD(PAYROLL) CMD(CALL APP502)

SWS(11000000)

PGM /* CONTROL */
IF (%SWITCH(11XXXXXX)) CALLPRC PROCA
IF (%SWITCH(10XXXXXX)) CALLPRC PROCB
IF (%SWITCH(01XXXXXX)) CALLPRC PROCC
IF (%SWITCH(00XXXXXX)) CALLPRC PROCD
ENDPGM

PGM /* PROCA */
CALLPRC TRANS
IF (%SWITCH(1XXXXXXX)) CALLPRC CUS520
ELSE CALLPRC CUS521
ENDPGM

%SWITCH with the CHGVAR Command
On the CHGVAR command, you can specify %SWITCH to change the value of a
logical variable. The value of the logical variable is determined by the results of
comparing your %SWITCH settings with the job switch settings. If the result of the
comparison is true, the logical variable is set to ’1’. If the result is false, the
variable is set to ’0’. For instance, if the job switch is set to 10000001 and this
procedure is processed:
PGM
DCL &A *LGL
CHGVAR VAR(&A) VALUE(%SWITCH(10000001))
.
.
.
ENDPGM

then the variable &A has a value of ’1’.

Using the Monitor Message (MONMSG) Command
Escape messages are sent to CL procedures by the commands in the CL procedures
and by the programs and procedures they call. These escape messages are sent to
tell the procedures that errors were detected and requested functions were not
performed. CL procedures can monitor for the arrival of escape messages, and you
can specify through commands how to handle the messages. For example, if a CL
procedure tries to move a data area that has been deleted, an object-not-found
escape message is sent to the procedure by the Move Object (MOVOBJ) command.

Using the Monitor Message (MONMSG) command, you can direct a procedure to
take predetermined action if specific errors occur during the processing of the
immediately preceding command. The MONMSG command is used to monitor for
escape, notify, or status messages sent to the call stack of the procedure in which
the MONMSG command is used. The MONMSG command has the following
parameters:
MONMSG MSGID(message-identifier) CMPDTA(comparison-data) +

EXEC(CL-command)

46 CL Programming V5R1

Each message that is sent for a specific error has a unique identifier. You can enter
as many as 50 message identifiers on the MSGID parameter. (See the online help
for messages and identifiers). The CMPDTA parameter allows even greater
specification of error messages because you can check for a specific character string
in the MSGDTA portion of the message. On the EXEC parameter, you can specify a
CL command (such as a Call Program (CALL), Do (DO), or a Go To (GOTO)),
which directs the procedure to perform error recovery.

In the following example, the MONMSG command follows the Receive File
(RCVF) command and, therefore, is only monitoring for messages sent by the
RCVF command:
READLOOP: RCVF /* Read a file record */

MONMSG MSGID(CPF0864) EXEC(GOTO CMDLBL(EOF))
/* Process the file record */
GOTO CMDLBL(READLOOP) /* Get another record */

EOF: /* End of file processing */

The escape message, CPF0864, is sent to the procedure’s invocation queue when
there are no more records in the file to read. Because the example specifies
MSGID(CPF0864), the MONMSG monitors for this condition. When it receives the
message, the GOTO CMDLBL(EOF) command is run.

You can also use the MONMSG command to monitor for messages sent by any
command in a CL procedure. The following example includes two MONMSG
commands. The first MONMSG command monitors for the messages CPF0001 and
CPF1999; these messages might be sent by any command run later in the
procedure. When either message is received from any of the commands running in
the procedure, control branches to the command identified by the label EXIT2.

The second MONMSG command monitors for the messages CPF2105 and
MCH1211. Because no command is coded for the EXEC parameter, these messages
are ignored.
PGM
DCL
MONMSG MSGID(CPF0001 CPF1999) EXEC(GOTO EXIT2)
MONMSG MSGID(CPF2105 MCH1211)
.
.
.
ENDPGM

Message CPF0001 states that an error was found in the command that is identified
in the message itself. Message CPF1999, which can be sent by many of the
debugging commands, such as Change Program Variable (CHGPGMVAR), states
that errors occurred on the command, but it does not identify the command in the
message.

All error conditions monitored for by the MONMSG command with the EXEC
parameter specified (CPF0001 or CPF1999) are handled in the same way at EXIT2,
and it is not possible to return to the next sequential statement after the error. You
can avoid this by monitoring for specific conditions after each command and
branching to specific error correction procedures.

All error conditions monitored for by the MONMSG command without the EXEC
parameter specified (CPF2105 or MCH1211) are ignored, and procedure processing
continues with the next command.

Chapter 2. CL Programming 47

If the error occurs when evaluating the expression on an IF command, the
condition is considered false. In the following example, MCH1211 (divide by zero)
could occur on the IF command. The condition would be considered false, and
PROCA would be called.
IF(&A / &B *EQ 5) THEN(DLTF ABC)
ELSE CALLPRC PROCA

If you code the MONMSG command at the beginning of your CL procedure, the
messages you specify are monitored throughout the program, regardless of which
command produces these messages. If the EXEC parameter is used, only the
GOTO command can be specified.

You can specify the same message identifier on a procedure-level or a
command-level MONMSG command. The command-level MONMSG commands
take precedence over the procedure-level MONMSG commands. In the following
example, if message CPF0001 is received on CMDB, CMDC is run. If message
CPF0001 is received on any other command in the procedure, the procedure
branches to EXIT2. If message CPF1999 is received on any command, including
CMDB, the procedure branches to EXIT2.
PGM
MONMSG MSGID(CPF0001 CPF1999) EXEC(GOTO EXIT2)
CMDA
CMDB
MONMSG MSGID(CPF0001) EXEC(CMDC)
CMDD
EXIT2: ENDPGM

Because many escape messages can be sent to a procedure, you must decide which
ones you want to monitor for and handle. Most of these messages are sent to a
procedure only if there is an error in the procedure. Others are sent because of
conditions outside the procedure. Generally, a CL procedure should monitor for
those messages that pertain to its basic function and that it can handle
appropriately. For all other messages, OS/400 assumes an error has occurred and
takes appropriate default action.

For more information about handling messages in CL procedures, see Chapter 7
and Chapter 8.

Values That Can Be Used as Variables

Retrieving System Values
A system value contains control information for the operation of certain parts of
the system. IBM supplies several types of system values. For example, QDATE and
QTIME are date and time system values, which you set when OS/400 is started.

You can bring system values into your procedure and manipulate them as
variables using the Retrieve System Value (RTVSYSVAL) command:
RTVSYSVAL SYSVAL(system-value-name) RTNVAR(CL-variable-name)

The RTNVAR parameter specifies the name of the variable in your CL procedure
that is to receive the value of the system value.

The type of the variable must match the type of the system value. For character
and logical system values, the length of the CL variable must equal the length of
the value. For decimal values, the length of the variable must be greater than or

48 CL Programming V5R1

equal to the length of the system value. System value attributes are defined in the
iSeries Information Center under the Systems Management category of
information.

System Value QTIME
In the following example, QTIME is received and moved to a variable, which is
then compared with another variable.

PGM
DCL VAR(&PWRDNTME) TYPE(*CHAR) LEN(6) VALUE('162500')
DCL VAR(&TIME) TYPE(*CHAR) LEN(6)
RTVSYSVAL SYSVAL(QTIME) RTNVAR(&TIME)
IF (&TIME *GT &PWRDNTME) THEN(DO)
SNDBRKMSG('Powering down in 5 minutes. Please sign off.')
PWRDWNSYS OPTION(*CNTRLD) DELAY(300) RESTART(*NO) +

IPLSRC(*PANEL)

ENDDO
ENDPGM

See the Systems Management category of information in the iSeries Information
Center for a list of system values and how you can change and display them.

System Value QDATE
In many applications, you may want to use the current date in your procedure by
retrieving the system value QDATE and placing it in a variable. You may also
want to change the format of that date for use in your procedure. To convert the
format of a date in a CL procedure, use the Convert Date (CVTDAT) command.

The format for the system date is the system value QDATFMT, which is initially
MDY (monthdayyear). For example, 062488 is the MDY format for June 24 1988.
You can change this format to the YMD, DMY, or the JUL (Julian) format. For
Julian, the QDAY value is a 3-character value from 001 to 366. It is used to
determine the number of days between two dates. You can also delete the date
separators or change the character used as a date separator with the CVTDAT
command.

Note: The shipped value of QDATFMT varies according to country.

The format for the CVTDAT command is:
CVTDAT DATE(date-to-be-converted) TOVAR(CL-variable) +

FROMFMT(old-format) TOFMT(new-format) +
TOSEP(new-separators)

The DATE parameter can specify a constant or a variable to be converted. Once the
date has been converted, it is placed in the variable named on the TOVAR
parameter. In the following example, the date in variable &DATE, which is
formatted as MDY, is changed to the DMY format and placed in the variable
&CVTDAT.
CVTDAT DATE(&DATE) TOVAR(&CVTDAT) FROMFMT(*MDY) TOFMT(*DMY)

TOSEP(*SYSVAL)

The date separator remains as specified in the system value QDATSEP.

The CVTDAT command can be useful when creating objects or adding a member
that uses a date as part of its name. For example, assume that a member must be
added to a file using the current system date. Also, assume that the current date is
in the MDY format and is to be converted to the Julian format.

Chapter 2. CL Programming 49

PGM
DCL &DATE6 *CHAR LEN(6)
DCL &DATE5 *CHAR LEN(5)
RTVSYSVAL QDATE RTNVAR(&DATE6)
CVTDAT DATE(&DATE6) TOVAR(&DATE5) TOFMT(*JUL) TOSEP(*NONE)
ADDPFM LIB1/FILEX MBR('MBR' *CAT &DATE5)
.
.
.
ENDPGM

If the current date is 5 January 1988, the added member would be named
MBR88005.

Remember the following when converting dates:
v The length of the value in the DATE parameter and the length of the variable on

the TOVAR parameter must be compatible with the date format. The length of
the variable on the TOVAR parameter must be at least:

v
1. For Non-Julian Dates possessing 2 digit years

a. Use 6 characters when using no separators.
July 28, 1978 would be written as 072878.

b. Use 8 characters when using separators.
July 28, 1978 would be written as 07-28-78.

2. For Non-Julian Dates with 4–digit years
a. Use 8 characters when using no separators.

July 28, 1978 would be written as 07281978.

b. Use 10 characters when using separators.
July 28, 1978 would be written as 07-28-1978.

3. For Julian dates with 2–digit years
a. Use 5 characters when using no separators.

December 31, 1996 would be written as 96365.

b. Use 6 characters when using separators.
December 31, 1996 would be written as 96-365.

4. For Julian dates with 4–digit years,
a. 7 characters are required when no separators are used.

February 4, 1997 would be written as 1997035.

b. 8 characters are required when separators are used.
February 4, 1997 would be written as 1997-035.

Error messages are sent for converted characters that do not fit in the variable. If
the converted date is shorter than the variable, it is padded on the right with
blanks.

v In every date format except Julian, the month and day are 2-byte fields no
matter what value they contain. The year may be either 2-byte or 4-byte fields.
All converted values are right-justified and, when necessary, padded with
leading zeros.

v In the Julian format, day is a 3-byte field, and year is a 2-byte or 4-byte field. All
converted values are right-justified and, when necessary, padded with leading
zeros.

50 CL Programming V5R1

The following is an alternative program that uses the ILE bindable API, Get
Current Local Time (CEELOCT), to convert a date to Julian format. To create this
program, you must use the CRTBNDCL command alone or the CRTCLMOD
command and the CRTPGM command together.
PGM
DCL &LILDATE *CHAR LEN(4)
DCL &PICTSTR *CHAR LEN(5) VALUE(YYDDD)
DCL &JULDATE *CHAR LEN(5)
DCL &SECONDS *CHAR 8 /* Seconds from CEELOCT */
DCL &GREG *CHAR 23 /* Gregorian date from CEELOCT */

/* */
CALLPRC PRC(CEELOCT) /* Get current date and time */ +

PARMS (&LILDATE) /* Date in Lilian format */ +
&SECONDS /* Seconds field will not be used */
&GREG /* Gregorian field will not be used */
OMIT / Omit feedback parameter so exceptions +

are signalled */

CALLPRC PRC(CEEDATE) +
PARMS (&LILDATE) /* Today's date */ +

&PICTSTR /* How to format */ +
&JULDATE /* Julian date */ +
*OMIT

ADDPGM LIB1/FILEX MBR('MBR' *CAT &JULDATE')

ENDPGM

See the Programming category of information in the iSeries Information Center for
more information on ILE API’s.

Retrieving Configuration Source
Using the Retrieve Configuration Source (RTVCFGSRC) command, you can
generate CL command source for creating existing configuration objects and place
the source in a source file member. The CL command source generated can be used
for the following:
v Moving configurations from system to system
v Maintaining on-site configurations
v Saving configurations (without using SAVSYS)

Retrieving Configuration Status
Using the Retrieve Configuration Status (RTVCFGSTS) command, you can give
applications the capability to retrieve configuration status from three configuration
objects: line, controller, and device. The RTVCFGSTS command can be used in a
CL procedure to check the status of a configuration description.

Retrieving Network Attributes
Using the Retrieve Network Attributes (RTVNETA) command, you can retrieve the
network attributes of the system. These attributes can be changed using the
Change Network Attributes (CHGNETA) command and displayed using the
Display Network Attributes (DSPNETA) command. See the Systems Management
category of information in the iSeries Information Center for more information
about network attributes.

Chapter 2. CL Programming 51

RTVNETA Example
In the following example, the default network output queue and the library that
contains it are retrieved, changed to QGPL/QPRINT, and later changed back to the
previous value.
PGM
DCL VAR(&OUTQNAME) TYPE(*CHAR) LEN(10)
DCL VAR(&OUTQLIB) TYPE(*CHAR) LEN(10)
RTVNETA OUTQ(&OUTQNAME) OUTQLIB(&OUTQLIB)
CHGNETA OUTQ(QGPL/QPRINT)
.
.
.
CHGNETA OUTQ(&OUTQLIB/&OUTQNAME)
ENDPGM

Retrieving Job Attributes
You can retrieve the job attributes and place their values in a CL variable to control
your applications.

Job attributes are retrieved using the Retrieve Job Attribute (RTVJOBA) command.
You can retrieve all job attributes, or any combination of them, with the RTVJOBA
command.

In the following CL procedure, a RTVJOBA command retrieves the name of the
user who called the procedure.

PGM
/* ORD410C Order entry program */
DCL &CLKNAM TYPE(*CHAR) LEN(10)
DCL &NXTPGM TYPE(*CHAR) LEN(3)
.
.
.
RTVJOBA USER(&CLKNAM)

BEGIN: CALL ORD410S2 PARM(&NXTPGM &CLKNAM)
/* Customer prompt */
IF (&NXTPGM *EQ 'END') THEN(RETURN)
.
.
.

The variable &CLKNAM, in which the user name is to be passed, is first declared
using a DCL command. The RTVJOBA command follows the declare commands.
When the program ORD410S2 is called, two variables, &NXTPGM and
&CLKNAM, are passed to it. &NXTPGM is passed as blanks but could be changed
by ORD410S2.

RTVJOBA Example
Assume in the following CL procedure, an interactive job submits a program
including the CL procedure to batch. A Retrieve Job Attributes (RTVJOBA)
command retrieves the name of the message queue to which the job’s completion
message is sent, and uses that message queue to communicate with the user who
submitted the job.
PGM
DCL &MSGQ *CHAR 10
DCL &MSGQLIB *CHAR 10
DCL &MSGKEY *CHAR 4
DCL &REPLY *CHAR 1
DCL &ACCTNO *CHAR 6
.
.

52 CL Programming V5R1

.
RTVJOBA SBMMSGQ(&MSGQ) SBMMSGQLIB(&MSGQLIB)
IF (&MSGQ *EQ '*NONE') THEN(DO)

CHGVAR &MSGQ 'QSYSOPR'
CHGVAR &MSGQLIB 'QSYS'

ENDDO
.
.
.
IF (. . .) THEN(DO)
SNDMSG:SNDPGMMSG MSG('Account number ' *CAT &ACCTNO *CAT 'is +

not valid. Do you want to cancel the update +
(Y or N)?') TOMSGQ(&MSGQLIB/&MSGQ) MSGTYPE(*INQ) +
KEYVAR(&MSGKEY)

RCVMSG MSGQ(*PGMQ) MSGTYPE(*RPY) MSGKEY(&MSGKEY) +
MSG(&REPLY) WAIT(*MAX)

IF (&REPLY *EQ 'Y') THEN(RETURN)
ELSE IF (&REPLY *NE 'N') THEN(GOTO SNDMSG)
ENDDO
.
.
.

Two variables, &MSGQ and &MSGQLIB, are declared to receive the name and
library of the message queue to be used. The RTVJOBA command is used to
retrieve the message queue name and library name. Because it is possible that a
message queue is not specified for the job, the message queue name is compared
to the value *NONE. If the comparison is equal, no message queue is specified,
and the variables are changed so that message queue QSYSOPR in library QSYS is
used. Later in the procedure, when an error condition is detected, an inquiry
message is sent to the specified message queue and the reply is received and
processed. Some of the other possible uses of the RTVJOBA command are:
v Retrieve one or more of the job attributes (such as output queue, library list) so

that they can be changed temporarily and later restored to their original values.
v Retrieve one or more of the job attributes for use in the SBMJOB command, so

that the submitted job will have the same attributes as the submitting job.

Retrieving Object Descriptions
You can also use the Retrieve Object Description (RTVOBJD) command to return
the descriptions of a specific object to a CL procedure. Variables are used to return
the descriptions. You can use these descriptions to help you detect unused objects.
For more information about retrieving object descriptions, see “Retrieving Object
Descriptions” on page 120.

You can also use the Retrieve Object Description (QUSROBJD) application
programming interface (API) to return the description of a specific object to a
procedure. The system uses a variable to return the descriptions. For more
information, see the CL and APIs section of the Programming category for the
iSeries Information Center.

Retrieving User Profile Attributes
Using the Retrieve User Profile Attributes (RTVUSRPRF) command, you can
retrieve the attributes of a user profile (except for the password) and place their
values in CL variables to control your applications. On this command, you can
specify either the 10-character user profile name or *CURRENT.

Chapter 2. CL Programming 53

You can also monitor for escape messages after running the RTVUSRPRF
command. See the CL and APIs section of the Programming category in the iSeries
Information Center for more information.

RTVUSRPRF Example
In the following CL procedure, a RTVUSRPRF command retrieves the name of the
user who called the procedure and the name of a message queue to which to send
messages for that user:
DCL &USR *CHAR 10
DCL &USRMSGQ *CHAR 10
DCL &USRMSGQLIB *CHAR 10
.
.
.
RTVUSRPRF USRPRF(*CURRENT) RTNUSRPRF(&USR) +

MGSQ(&USRMSGQ) MSGQLIB(&USRMSGQLIB)

The following information is returned to the procedure:
v &USR contains the user profile name of the user who called the program.
v &USRMSGQ contains the name of the message queue specified in the user

profile.
v &USRMSGQLIB contains the name of the library containing the message queue

associated with the user profile.

Retrieving Member Description Information
Using the Retrieve Member Description (RTVMBRD) command, you can retrieve
information about a member of a database file for use in your applications.

RTVMBRD Example
In the following CL procedure, a RTVMBRD command retrieves the description of
a specific member. Assume a database file called MFILE exists in the current
library (MYLIB) and contains 3 members (AMEMBER, BMEMBER, and
CMEMBER).
DCL &LIB TYPE(*CHAR) LEN(10)
DCL &MBR TYPE(*CHAR) LEN(10)
DCL &SYS TYPE(*CHAR) LEN(4)
DCL &MTYPE TYPE(*CHAR) LEN(5)
DCL &CRTDATE TYPE(*CHAR) LEN(13)
DCL &CHGDATE TYPE(*CHAR) LEN(13)
DCL &TEXT TYPE(*CHAR) LEN(50)
DCL &NBRRCD TYPE(*DEC) LEN(10 0)
DCL &SIZE TYPE(*DEC) LEN(10 0)
DCL &USEDATE TYPE(*CHAR) LEN(13)
DCL &USECNT TYPE(*DEC) LEN(5 0)
DCL &RESET TYPE(*CHAR) LEN(13)
.
.
.
RTVMBRD FILE(*CWeb siteIB/MYFILE) MBR(AMEMBER *NEXT) +

RTNLIB(&LIB) RTNSYSTEM(&SYS) RTNMBR(&MBR) +
FILEATR(&MTYPE) CRTDATE(&CRTDATE) TEXT(&TEXT) +
NBRCURRCD(&NBRRCD) DTASPCSIZ(&SIZE) USEDATE(&USEDATE) +
USECOUNT(&USECNT) RESETDATE(&RESET)

The following information is returned to the procedure:
v The current library name (MYLIB) is placed into the CL variable name &LIB
v The system that MYFILE was found on is placed into the CL variable name

&SYS (*LCL means the file was found on the local system, and *RMT means the
file was found on a remote system.)

54 CL Programming V5R1

v The member name (BMEMBER), since BMEMBER is the member immediately
after AMEMBER in a name ordered member list (*NEXT), is placed into the CL
variable named &MBR

v The file attribute of MYFILE is placed into the CL variable named &MTYPE
(*DATA means the member is a data member, and *SRC means the file is a
source member.)

v The creation date of BMEMBER is placed into the CL variable called &CRTDATE
v The text used to describe BMEMBER is placed into the CL variable called

&TEXT
v The current number of records in BMEMBER is placed into the CL variable

called &NBRRCD
v The size of BMEMBER’s data space (in bytes) is placed into the CL variable

called &SIZE
v The date that BMEMBER was last used is placed into the CL variable called

&USEDATE
v The number of days that BMEMBER has been used is placed into the CL

variable called &USECNT The start date of this count is the value placed into
the CL variable called &RESET

Working with CL Procedures
A CL source procedure must be compiled into a module and bound into a
program before it can be run.

To create a CL program in one step, you can use the CRTBNDCL command and
create a bound program with one module.

You can also create a module with the CRTCLMOD command. The module must
then be bound into a program or service program using the Create Program
(CRTPGM) or Create Service Program (CRTSRVPGM) command.

The following CRTCLMOD command creates the module ORD040C and places it
in library DSTPRODLB:
CRTCLMOD MODULE(DSTPRODLB/ORD040C) SRCFILE(QCLSRC)

TEXT('Order dept general menu program')

The source commands for ORD040C are in the source file QCLSRC, and the source
member name is ORD040C. By default, a compiler listing is created.

On the CRTBNDCL command, you can specify listing options and whether the
program should operate under the program owner’s user profile.

A program can run using either the owner’s user profile or the user’s user profile.

CL procedures and programs are created using options on the Programming
Development Manager (PDM) menu or the Programmer Menu so the CRTCLMOD
or CRTBNDCL does not have to be directly entered.

Logging CL Procedure Commands
You can specify that most CL commands run in a CL procedure be written
(logged) to the job log by specifying one of the following values on the LOG
parameter on the CRTCLMOD or CRTBNDCL command when the procedure is
compiled:

Chapter 2. CL Programming 55

*JOB This default value indicates that logging is to occur when the job’s logging
option is on. The option is initially set for no logging, but it can be
changed by the LOGCLPGM parameter on the CHGJOB command.
Therefore, if you create the module or program with this value, you can
alter the logging option for each job or several times within a job.

*YES This value indicates that logging is to occur each time the CL procedure is
run. It cannot be changed by the CHGJOB command.

*NO This value indicates that no logging is to occur. It cannot be changed by
the CHGJOB command.

Because these values are part of the CRTCLMOD and CRTBNDCL commands, you
must recompile the module or program to change them.

When you specify logging, you should use the Remove Message (RMVMSG)
command with care in order not to remove any logged commands from the job
log. If you specify CLEAR(*ALL) on the RMVMSG command, any commands
logged prior to running the RMVMSG command do not appear in the job log. This
affects only the CL procedure containing the RMVMSG command and does not
affect any logged commands for the preceding or following recursion levels.

Not all commands are logged to the job log. Following is a list of commands that
are not logged:

CHGVAR DO GOTO
DCL ELSE IF
DCLF ENDDO MONMSG
PGM ENDPGM CALLPRC

If the logging option is on, logging messages are sent to the CL procedure’s
message queue. If the CL procedure is running interactively, and the message level
on the job’s LOG parameter is set to 4, you can press F10 (Display detail messages)
to view the logging of all commands. You can print the log if the message level is
4 and you specify *PRINT when you sign off.

The log includes the time, program and procedure names, message texts, and
command names. Command names are qualified as they are on the original source
statement. Command parameters are also logged; if the parameter information is a
CL variable, the contents of the variable are printed (except for the RTNVAL
parameter).

Logging of commands affects performance.

CL Module Compiler Listings
When you create a CL module, you can create various types of listings using the
OPTION and OUTPUT parameters on the CRTCLMOD command.

The OPTION parameter values and their meanings are:
v *GEN or *NOGEN

Whether a module is to be created (*GEN is the default).
v *XREF or *NOXREF

Whether a listing of cross-references to variables and data references in the
source input is to be produced (*XREF is the default).

56 CL Programming V5R1

The OUTPUT parameter values and their meanings are:
v *PRINT - print listing
v *NONE - no compiler listing

The listing created by specifying the OUTPUT parameter is called a compiler listing.
The following shows a sample compiler listing. The callout numbers refer to
descriptions following the listing.

�1�
�2�

�3�
5763SS1 V3R1M0 940909 Control Language MYLIB/DUMPERR 05/06/94 11:12:55 Page 1
Program : DUMPERR
Library : MYLIB

Source file : QCLSRC
Library : MYLIB

Source member name : DUMPERR 05/06/94 10:42:26 �4�
Source printing options : *XREF *NOSECLVL *NOEVENTF
User profile : *USER
Program logging : *JOB
Default activation group : *YES
Replace program : *YES
Target release : V3R1M0
Authority : *LIBCRTAUT
Sort sequence : *HEX
Language identifier : *JOBRUN
Text . : Test program
Optimization : *NONE
Debugging view : *STMT
Compiler : IBM AS/400 Control Language Compiler �5�

�6� Control Language Source
SEQNBR *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+. DATE �8�

100- PGM 05/06/94
200- DCL &ABC *CHAR 10 VALUE('THIS') 05/06/94
300- DCL &XYZ *CHAR 10 VALUE('THAT') �7� 05/06/94
400- DCL &MNO *CHAR 10 VALUE('OTHER') 05/06/94
500- CRTLIB LB(LARRY) 05/06/94

* CPD0043 30 Keyword LB not valid for this command. �9�
600- DLTLIB LIB(MOE 05/06/94

* CPD0013 30 A matching parenthesis not found.
700- MONMSG CPF0000 EXEC(GOTO ERR) 05/06/94
800- ERROR: 05/06/94
900- CHGVAR &ABC 'ONE' 05/06/94
1000- CHGVAR &XYZ 'TWO' 05/06/94
1100- CHGVAR &MNO 'THREE' 05/06/94
1200- DMPCLPGM 05/06/94
1300- ENDPGM 05/06/94

* * * * * E N D O F S O U R C E * * * * *
5763SS1 V3R1M0 940909 Control Language MYLIB/DUMPERR 05/06/94 11:12:55 Page 2

Cross Reference
Declared Variables
Name Defined Type Length References
&ABC 200 *CHAR 10 900
&MNO 400 *CHAR 10 1100
�10�
&XYZ 300 *CHAR 10 1000
Defined Labels
Label Defined References �11�
ERR ****** 700
* CPD0715 30 Label 'ERR ' does not exist.
ERROR 800

* * * * * E N D O F C R O S S R E F E R E N C E * * * * *
5763SS1 V3R1M0 940909 Control Language MYLIB/DUMPERR 05/06/94 11:12:55 Page 3

Message Summary
Severity

Total 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 �12�
3 0 0 0 3 0 0 0 0 0 0

Program DUMPERR not created in library MYLIB. Maximum error severity 30. �13�
* * * * * E N D O F M E S S A G E S U M M A R Y * * * * *
* * * * * E N D O F C O M P I L A T I O N * * * * *

Title:

�1� The program number, release, modification level and date of OS/400.

�2� The date and time of the compiler run.

�3� The page number in the listing.

Prolog:

�4� The parameter values specified, (or defaults if not specified), on the
CRTBNDCL command. If the source is not in a database file, the member
name, date, and time are omitted.

�5� The name of the compiler.

Source:

�6� The sequence numbers of lines (records) in the source. A dash following a
sequence number indicates that a source statement begins at that sequence

Chapter 2. CL Programming 57

number. The absence of a dash indicates that a statement is the
continuation of the previous statement.

Comments between source statements are handled like any other source
statement and have sequence numbers.

�7� The source statements.

�8� The last date the source statement was changed or added. If the source is
not in a database file, or the dates have been reset using RGZPFM, the
date is omitted.

�9� If an error is found during compilation and can be traced to a specific
source statement, the error message is printed immediately following the
source statement. An asterisk (*) indicates the line contains an error
message. The line contains the message identifier, severity, and the text of
the message.

For more information about compilation errors, see “Errors Encountered
during Compilation”.

Cross-References:

�10� The symbolic variable table is a cross-reference listing of the variables
validly declared in the program. The table lists the variable, the sequence
number of the statement where the variable is declared, the variable’s
attributes, and the sequence numbers of statements that refer to the
variable.

�11� The label table is a cross-reference listing of the labels validly defined in
the program. The table lists the label, the sequence number of the
statement where the label is defined, and the sequence numbers of
statements that refer to the label.

Messages:

This section is not included in the sample listing because no general error
messages were issued for the sample module. If there were general error messages
for this module, this section would contain, for each message, the message
identifier, the severity, and the message.

Message Summary:

�12� A summary of the number of messages issued during compilation. The
total number is given along with totals by severity.

�13� A completion message is printed following the message summary.

The title, prologue, source, and message summary sections are always printed for
the *SOURCE option. The cross-reference section is printed if the *XREF option is
specified. The message section is printed only if general errors are found.

Errors Encountered during Compilation
In the compiler listing of a module, an error condition that relates directly to a
specific command is listed after that command. See “CL Module Compiler
Listings” on page 56 for an example of these inline messages. Messages that do not
relate to a specific command but are more general in nature are listed in a
messages section of the listing, not inline with source statements.

58 CL Programming V5R1

The types of errors that are detected at compile time include syntax errors,
references to variables and labels not defined, and missing statements. The
following types of errors stop the procedure from being created (severity codes are
ignored).
v Value errors
v Syntax errors
v Errors related to dependencies between parameters within a command
v Errors detected during validity checking.

Even after an error that stops the procedure from being created is encountered, the
compiler continues to check the source for errors. This lets you see and correct as
many errors as possible before you try to create the module or program again.

Obtaining a Procedure Dump
You can obtain a CL procedure dump during procedure processing. The CL
procedure dump consists of a listing of all messages on the procedure’s message
queue and the values of all variables declared in the procedure. This information
may be useful in determining the cause of a problem affecting procedure
processing.

To obtain a CL procedure dump, do one of the following:
v Run the Dump CL Program (DMPCLPGM) command. This command can only

be used in a CL procedure and does not end the CL procedure.
v Enter D in response to inquiry message CPA0701 or CPA0702. The system sends

this message whenever it receives an unmonitored escape message from a CL
procedure. If the program is running in an interactive job, the system sends the
message to the job’s external message queue. If the program is running as a
batch job, the system sends the message to the system operator message queue,
QSYSOPR.

v Specify INQMSGRPG(*SYSRPYL) for the job. See the Systems Management
category of information in the iSeries Information Center for a description of this
job attribute. The IBM-supplied system reply list specifies a reply of D for
message CPA0702 or CPA0701. The system will print a dump if it receives one
of the inquiry messages.

v Change the default reply for message CPA0701 or CPA0702 from C (cancel
program) to D (dump procedure). This prints a procedure dump whenever a
function check occurs in a CL procedure. To change the default, enter the
following command:
CHGMSGD MSGID(CPA0702) MSGF(QCPFMSG) DFT(D)

Note: The security officer, or another user with update authority to the
QCPFMSG file, must enter the CHGMSGD command.

Changing the message default causes a dump to be printed under any of the
following conditions:
v The system operator message queue is in default mode and the message is sent

from a batch job.
v The display station user presses the Enter key without typing a response,

causing the message default to be used.
v INQMSGRPY(*DFT) is specified for the job.

�1�
5763SS1 V3R1M0 940909 CL Program Dump 5/24/94 11:05:03�2� Page 1

Job name : DSP04�3� User name : SMITH �3� Job number : 01329 �3�
Program name : DUMP�4� Library : MYLIB�4� Statement : 1200 �5�

Chapter 2. CL Programming 59

Module name : DUMP Procedure name . . . : DUMP

Messages

Message �6� Message From To
Time ID Sev Type Text Program Inst Program Inst
110503 CPC2102 00 COMP Library LARRY created. QLICRLIB *N DUMP *N
110503 CPF2110 40 ESC Library MOE not found. QLICLLIB *N DUMP *N

Variables �7�

Variable Type Length Value Value in Hexadecimal
*...+....1....+....2....+ * . . . + 1 + 2 +

&ABC *CHAR 10 'ONE ' D6D5C540404040404040
&XYZ *CHAR 10 'TWO ' E3E6D640404040404040

* * * * * E N D O F D U M P * * * * *

�1� The program number, release, modification level and date of OS/400.

�2� The date and time the dump was printed.

�3� The fully qualified name of the job in which the procedure was running.

�4� The name and library of the program.

�5� The number of the statement running when the dump was taken. If the
command is a nested command, the statement number is that of the outer
command.

�6� Each message on the call message queue, including the time the message
was sent, message ID, severity, type, text, sending program and instruction
number, and receiving program and instruction number.

�7� All variables declared in the procedure, including variable name, type,
length, value, and hexadecimal value.

If a decimal variable contains decimal data that is not valid, the character
and hexadecimal values are printed as *CHAR variables.

If the value for the variable cannot be located, *NOT ADDRESSABLE is
printed. This can occur if the CL procedure is used in a command
processing program for a command that has a parameter with either
TYPE(*NULL) or PASSVAL(*NULL) specified, or if RTNVAL(*YES) was
specified for the parameter and a return variable is not coded on the
command.

If a variable is declared as TYPE(*LGL), it is shown on the dump as
*CHAR with a length of 1.

Displaying Module Attributes
You can use the Display Module (DSPMOD) command to display the attributes of
a module. The information displayed or printed can be used to determine the
options specified on the command used to create the module.

For more information on this command, see the CL and APIs section of the
Programming category in the iSeries Information Center.

Displaying Program Attributes
You can use the Display Program (DSPPGM) command to display the attributes of
a program. The information displayed or printed can be used to determine the
options specified on the command used to create the program.

For more information on this command, see the CL and APIs section of the
Programming category in the iSeries Information Center.

60 CL Programming V5R1

Return Code Summary
The return code (RTNCDE) parameter on the RTVJOBA command is a 5-digit
decimal value with no decimal positions (12345. for example). The decimal value
indicates the status of called programs. CL programs do not set the return code.
However, you can retrieve the current value of the return code as set by another
program in a CL program. You can do this by using the RTNCDE parameter of the
RTVJOBA command.

The following list summarizes the return codes used by languages supported on
OS/400:
v RPG IV programs

The return codes sent by the RPG IV compiler are:

0 When the program is created

2 When the program is not created

The return codes sent by running RPG IV programs are:

0 When a program is started, or by the CALL operation before a program
is called

1 When a program ends with LR set on

2 When a program ends with an error (response of C, D, F, or S to an
inquiry message)

3 When a program ends because of a halt indicator (H1-H9)

RPG IV return codes are tested only after a CALL:
– 0 or 1 indicate no error
– 3 gives an RPG IV status code of 231
– Any other value gives an RPG IV status code 202 (call ended in error)

The return code cannot be tested directly by the user in the RPG IV program.
v ILE COBOL/400® programs

The return codes sent by running COBOL/400 programs are:

0 By each CALL statement before a program is called

2 When a program receives a function check (CPF9999) or the generic I/O
exception handler gets control and there is no applicable USE procedure

COBOL/400 programs cannot retrieve these return codes. A return code value of
2 sends message CBE9001 and runs a Reclaim Resources (RCLRSC) command
with the *ABNORMAL option.

v BASIC programs
Compiled or interpreted BASIC programs can set the return code to any value
between -32768 and 32767 by coding an expression on the END or STOP
statements. If no expression is coded, the return codes are set to:

0 For normal completion

1 For programs ending because of an error

BASIC return code values can be retrieved using the CODE intrinsic function.
v PL/I programs

The return codes sent by PL/I programs are:

Chapter 2. CL Programming 61

0 For normal completion, set at the beginning of the run unit

2 When set by a STOP statement or a call to PLIDUMP with the S option

3 When an ERROR condition is raised

4 When PL/I detects an error that did not allow the ERROR condition to
be raised

If any other value is found, it is set up by the PLIRETC built-in function or by a
called procedure. PLIRETC passes a return code from the PL/I program to the
program that called it, changing the current return code value.

PL/I programs can retrieve the return code using the PLIRETV built-in function.
v Pascal programs

The Pascal compiler sets the following return codes:

0 For successful compilation

2 When the program object is not produced

Pascal does not explicitly set the return code at run time. The user can use the
ONERROR exception handling routine to monitor for particular exceptions, then
set the return code using the RETCODE procedure.

Pascal return codes can be retrieved using the RETVALUE parameter of the
Pascal SYSTEM procedure. The return code is set to 0 before the SYSTEM call
and will contain the updated return code when returned.

v C/400* programs
The current value of the integer return code returned by the last C/400® return
statement in a C/400 program.

Compiling Source Programs for a Previous Release
The Create Control Language Program (CRTCLPGM) command allows you to
compile CL source programs to use on a previous release by using the target
release (TGTRLS) parameter. The TGTRLS parameter specifies on which release of
the OS/400® licensed program the CL program object created intends to run. You
can specify *CURRENT, *PRV, or a specific release level.

A CL program compiled with TGTRLS(*CURRENT) runs only on the current
release or later releases of the operating system. A CL program compiled with a
specified TGTRLS value other than *CURRENT can run on the specified release
value and on later releases.

Previous-Release (*PRV) Libraries
The CL compiler retrieves information about previous-release commands and files
from CL previous-release (*PRV) libraries. Two types of libraries contain
previous-release support: system libraries and user libraries. The libraries have the
names QSYSVxRxMx and QUSRVxRxMx. (VxRxMx represents the version, release,
and modification level of the supported previous release). For example, the
QUSRV4R5M0 library supports a system that runs Version 4 Release 5 Modification
level 0 of the OS/400 licensed program.

When the CL compiler compiles for a supported previous release, it first checks for
commands and files in the previous-release libraries. When failing to find the

62 CL Programming V5R1

command or file in the previous-release libraries, the system performs a search of
the library list (*LIBL) or the qualified library.

QSYSVxRxMx Libraries: The QSYSVxRxMx libraries install at the same time as the
CL compiler support for a previous release installs. The QSYSVxRxMx libraries
include the command definition objects and output files (*OUTFILE) that are found
in library QSYS for that particular previous release.

QUSRVxRxMx Libraries: You can create your own QUSRVxRxMx libraries to hold
copies of your commands and files as they existed in the supported previous
release. This is especially important if the commands or files have changed on the
current release.

When the compiler looks for previous-release commands and files, it checks the
QUSRVxRxMx library (if it exists) before checking the QSYSVxRxMx library.

Note: Use the QUSRVxRxMx libraries to hold previous-release user commands
and files, instead of the QSYSVxRxMx libraries. When installing future
releases of the CL compiler, support for previous releases install as well.
Once the previous-release support is installed, the QUSRVxRxMx libraries
for releases that are no longer supported can be deleted.

Do not add previous-release libraries to the library list (*LIBL). They contain
commands and files that support earlier releases and cannot run on the current
system. Only the CL compiler refers to and uses the commands and files in the
previous-release libraries. The system commands that are supplied for a previous
release are in the primary language for the system. There are no secondary
national language versions available.

See the appropriate CL Reference command, (Save Object (SAVOBJ), Save Changed
Object (SAVCHGOBJ), or Save Library (SAVLIB)), for how to save objects on a
different release.

Note: CL programs that are compiled in the System/38™ environment cannot be
saved for a previous release.

Installing CL Compiler Support for a Previous Release
To install the *PRV CL compiler support and QSYSVxRxMx libraries:
1. Enter:

GO LICPGM

To view the Licensed Program Menu.
2. Select option 11 (Install licensed programs).
3. Select the option that is named 5769SS1 IBM Operating System/400® Version 3

(OS/400) – *PRV CL Compiler Support. This causes the QSYSVxRxMx libraries
to install.
If you are not using the CL compiler support for a previous release, you can
remove this support by entering:
DLTLICPGM LICPGM(5769SS1) OPTION(9)

Chapter 2. CL Programming 63

When the CL compiler support is removed, the QSYSVxRxMx libraries get
removed from the system, but the QUSRVxRxMx libraries do not. If no need
exists for the QUSRVxRxMx libraries, you must explicitly delete them using the
Delete Library (DLTLIB) command.

64 CL Programming V5R1

Chapter 3. Controlling Flow and Communicating between
Programs and Procedures

You can use the CALL, CALLPRC, and RETURN commands to pass control back
and forth between programs and procedures. Each command has slightly different
characteristics. Information may be passed to called programs and procedures as
parameters when control is passed.

Special attention should be given to programs created with USRPRF(*OWNER)
that run CALL or CALLPRC commands. Security characteristics of these
commands differ when they are processed in programs running under an owner’s

user profile. See the Security - Reference book for more information about
user profiles.

This chapter includes General-Use Programming Interfaces (GUPI), made available
by IBM for use in customer-written programs.

CALL Command
The CALL command calls a program named on the command, and passes control
to it. The CALL command has the following format:
CALL PGM(library-name/program-name) PARM(parameter-values)

The program name or library name may be a variable. If the called program is in a
library that is not on the library list, you must specify the qualified name of the
program on the PGM parameter. The PARM parameter is discussed under “Passing
Parameters between Programs and Procedures” on page 68. When the called
program finishes running, control returns to the next command in the calling
program.

© Copyright IBM Corp. 1997, 2001 65

c4153025.pdf

The sequence of CALL commands in a set of programs calling each other is the
call stack. For example, in this series:

the call stack is:

When PROGC finishes processing, control returns to PROGB at the command after
the call to PROGC. Control is thus returned up the call stack. This occurs whether
or not PROGC ends with a RETURN or an ENDPGM command.

A CL program can call itself.

CALLPRC Command

The CALLPRC command calls a procedure named on the command, and passes
control to it. The CALLPRC command has the following format:
CALLPRC Procedure(procedure-name) PARM(parameter-values) RTNVAL(return-value-variable)

The procedure name may not be a variable. The PARM parameter is discussed
under “Passing Parameters between Programs and Procedures” on page 68. When
the called procedure finishes running, control returns to the next command in the

66 CL Programming V5R1

calling procedure.

The sequence of CALLPRC commands in a set of procedures calling each other is
the call stack. For example, in this series:

the call stack is:

When PROGC finishes processing, control returns to PROGB at the command after
the call to PROGC. Control is thus returned up the call stack. This occurs whether
or not PROGC ends with a RETURN or an ENDPGM command.

A CL procedure can call itself.

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 67

RETURN Command
The RETURN command in a CL procedure or OPM program removes that
procedure or OPM program from the call stack.

If the procedure containing the RETURN command was called by a CALLPRC
command, control is returned to the next sequential statement after that CALLPRC
command in the calling program.

If a MONMSG command specifies an action that ends with a RETURN command,
control is returned to the next sequential statement after the statement that called
the procedure or program containing the MONMSG command.

The RETURN command has no parameters.

Note: If you have a RETURN command in an initial program, the command entry
display is shown. You may wish to avoid this for security reasons.

Passing Parameters between Programs and Procedures
When you pass control to another program or procedure, you can also pass
information to it for modification or use within the receiving program or
procedure. See the discussion of this under “Using the CALL Command” on
page 71. You can specify the information to be passed on the PARM parameter on
the CALL command or the CALLPRC command. The characteristics and
requirements for these commands are slightly different.

For instance, if PROGA contains the following command:
CALL PROGB PARM(&AREA)

then it calls PROGB and passes the value of &AREA to it. PROGB must start with
the PGM command, which also must specify the parameter it is to receive:
PGM PARM(&AREA) /* PROGB */

For the CALL command or the CALLPRC command, you must specify the
parameters passed on the PARM parameter, and you must specify them on the
PARM parameter of the PGM command in the receiving program or procedure.
Because parameters are passed by position, not name, the position of the value
passed in the CALL command or the CALLPRC command must be the same as its
position on the receiving PGM command. For example, if PROGA contains the
following command:
CALL PROGB PARM(&A &B &C ABC)

it passes three variables and a character string, and if PROGB starts with:
PGM PARM(&C &B &A &D) /*PROGB*/

then the value of &A in PROGA is used for &C in PROGB, and so on; &D in
PROGB is ABC. The order of the DCL statements in PROGB is unimportant. Only
the order in which the parameters are specified on the PGM statement determines
what variables are passed.

In addition to the position of the parameters, you must pay careful attention to
their length and type. Parameters listed in the receiving procedure or program
must be declared as the same length and type as they are in the calling procedure
or program. Decimal constants are always passed with a length of (15 5).

68 CL Programming V5R1

When you use the CALLPRC command and pass character string constants, you
must specify the exact number of bytes, and pass exactly that number. The called
procedure can use the information in the operational descriptor to determine the
exact number of bytes passed. You can use the API CEEDOD to access the
operational descriptor. See the CL and APIs section of the Programming category for
the iSeries Information Center for information on the API CEEDOD.

When you use the CALL command, character string constants of 32 bytes or less
are always passed with a length of 32 bytes. If the string is longer than 32, you
must specify the exact number of bytes, and pass exactly that number.

The following is an example of a procedure or program that receives the value
&VAR1:
PGM PARM(&VAR1) /*PGMA*/
DCL VAR1 *CHAR LEN(36)
.
.
.
ENDPGM

The CALL command or CALLPRC command must specify 36 characters:
CALLPRC PGMA(ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJ)

The following example specifies the default lengths:
PGM PARM(&P1 &P2)
DCL VAR(&P1) TYPE(*CHAR) LEN(32)
DCL VAR(&P2) TYPE(*DEC) LEN(15 5)
IF (&P1 *EQ DATA) THEN(CALL MYPROG &P2)
ENDPGM

To call this program, you could specify:
CALL PROG (DATA 136)

The character string DATA is passed to &P1; the decimal value 136 is passed to
&P2

Referring to locally defined variables incurs less overhead than referring to passed
variables. Therefore, if the called procedure or program frequently refers to passed
variables, performance can be improved by copying the passed values into a local
variable and referring to the locally defined value rather than the passed value.

When calling an OPM CL program, the number of parameters that are passed to it
must exactly match the number that is expected by the program. The number that
is expected is determined at the time the program is created. (The operating
system prevents you from calling a program with more or fewer parameters than
the program expects). When calling an ILE program or procedure, the operating
system does not check the number of parameters that are passed on the call. In
addition, the space where the operating system stores the parameters is not
reinitialized between procedure calls. Calling a procedure that expects ″n″
parameters with ″n-1″ parameters makes the system use whatever is in the
parameter space to access the ″nth″ parameter. The results of this action are very
unpredictable. This also applies to procedures written in other ILE languages that
call CL procedures or are called by CL procedures.

This also gives you more flexibility when you write ILE CL procedures, because
you can write procedures that have variable length parameter lists. For example,
based on the value of one parameter, a parameter that is specified later in the list

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 69

may not be required. If the controlling parameter indicated an unspecified optional
parameter, the called procedure should not attempt to refer to the optional
parameter.

You can also specify the special value *OMIT for any parameter that you want to
omit from the parameter list. If you specify *OMIT for a parameter, the calling
procedure passes a null pointer. The procedure that is called has to be prepared to
handle a null pointer if it refers to a parameter that is omitted. In control language
(CL), you can check for a null pointer by monitoring for MCH3601 on the first
reference to the omittable parameter. The procedure must take appopriate action if
it receives a MCH3601.

The following example has two CL procedures. The first procedure expects one
parameter; if that parameter remains unspecified, results will be unpredictable. The
first procedure calls another procedure, PROC1. PROC1 expects one or two
parameters. If the value of the first parameter is ’1’, it expects the second
parameter as specified. If the value of the second parameter is ’0’, it assumes that
the second parameter remained unspecified and used a default value instead.
PROC1 also uses the CEEDOD API to determine the actual length that is passed
for the second parameter.

70 CL Programming V5R1

Using the CALL Command
When the CALL command is issued by a CL procedure, each parameter value
passed to the called program can be a character string constant, a numeric
constant, a logical constant, or a CL variable. A maximum of 40 parameters can be
passed to the called program. The values of the parameters are passed in the order
in which they appear on the CALL command, and this must match the order in
which they appear in the parameter list of the called program. The names of the
variables passed do not have to be the same as the names on the receiving
parameter list. The names of the variables receiving the values in the called
program must be declared to the called program, but the order of the declare
commands is not important.

MAIN: PGM PARM(&TEXT)/* &TEXT must be specified. Results will be +
unpredictable if it is omitted.*/

DCL VAR(&TEXT) TYPE(*CHAR) LEN(10)
CALLPRC PRC(PROC1) PARM('0')
CALLPRC PRC(PROC1) PARM('1' &TEXT)
CALLPRC PRC(PROC1) PARM('1' 'Goodbye')
ENDPGM

PROC1: PGM PARM(&P1 &P2) /* PROC1 - Procedure with optional +
parameter &P2 */

DCL VAR(&P1) TYPE(*LGL) /*Flag which indicates +
whether or not &P2 will be specified. If +
value is '1', then &P2 is specified */

DCL VAR(&P2) TYPE(*CHAR) LEN(10)
DCL VAR(&MSG) TYPE(*CHAR) LEN(10)
DCL VAR(&PARMPOS) TYPE(*CHAR) LEN(4) /* +

Parameter position for CEEDOD*/
DCL VAR(&PARMDESC) TYPE(*CHAR) LEN(4) /* +

Parameter description for CEEDOD*/
DCL VAR(&PARMTYPE) TYPE(*CHAR) LEN(4) /* +

Parameter datatype from CEEDOD*/
DCL VAR(&PARMINFO1) TYPE(*CHAR) LEN(4) /* +

Parameter information from CEEDOD */
DCL VAR(&PARMINFO2) TYPE(*CHAR) LEN(4) /* +

Parameter information from CEEDOD */
DCL VAR(&PARMLEN) TYPE(*CHAR) LEN(4) /* +

Parameter length from CEEDOD*/
DCL VAR(&PARMLEND) TYPE(*DEC) LEN(3 0) /* +

Decimal form of parameter length*/
IF COND(&P1) THEN(DO) /* Parm 2 is+

specified, so use the parm value for the +
message text*/

CHGVAR VAR(%BIN(&PARMPOS 1 4)) VALUE(2) /* Tell +
CEEDOD that we want the operational +
descriptor for the second parameter*/

CALLPRC PRC(CEEDOD) PARM(&PARMPOS &PARMDESC +
&PARMTYPE &PARMINFO1 &PARMINFO2 &PARMLEN) +
/* Call CEEDOD to get the length of data +
specified for &P2*/

CHGVAR VAR(&PARMLEND) VALUE(%BIN(&PARMLEN 1 4)) /* +
Convert the length returned by CEEDOD to +
decimal format*/

CHGVAR VAR(&MSG) VALUE(%SST(&P2 1 &PARMLEND)) /* +
Copy the data passed in to a local variable*/

ENDO
ELSE CMD(CHGVAR VAR(%MSG) VALUE('Hello')) /* Use +

"Hello" for the message text*/
SNDPGMMSG MSG(&MSG)
ENDPGM

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 71

No association exists between the storage in the called program and the variables
it receives. Instead, when the calling program passes a variable, the storage for the
variable is in the program in which it was originally declared. The system passes
variables by address. When passing a constant, the calling program makes a copy
of the constant, and passes the address of that copy to the called program.

The result is that when a variable is passed, the called program can change the
value of the variable, and the change is reflected in the calling program. The new
value does not have to be returned to the calling program for later use; it is
already there. Thus no special coding is needed for a variable that is to be returned
to the calling program. When a constant is passed, and its value is changed by the
called program, the changed value is not known to the calling program. Therefore,
if the calling program calls the same program again, it reinitializes the values of
constants, but not of variables.

An exception to the previous description is when the CALL command calls an ILE
C program. When using the CALL command to call an ILE C program and pass
character or logical constants, the system adds a null character (x’00’) after the last
non-blank character. If the constant is a character string that is enclosed in
apostrophes or a hexadecimal constant, the null character is added after the last
character that was specified. This preserves the trailing blanks (x ’40’ characters).
Numeric values are not null-terminated.

If a CL program might be called using a CALL command that has not been
compiled (an interactive CALL command or through the SBMJOB command), the
decimal parameters (*DEC) should be declared with LEN(15 5), and the character
parameters (*CHAR) should be declared LEN(32) or less in the receiving program.

A CALL command that is not in a CL procedure or program cannot pass variables
as arguments. Be careful when specifying the CALL command as a command
parameter that is defined as TYPE(*CMDSTR). This converts the contents of any
variables that are specified on the PARM parameter to constants. The command
(CMD) parameters on the Submit Job (SBMJOB) command, Add Job Schedule
Entry (ADDJOBSCDE) command, or Change Job Schedule Entry (CHGJOBSCDE)
command are examples. IBM has provided online information on how to pass
parameters when using an interactive CALL command. Refer to the description of
the CALL command in the CL and APIs section of the Programming category in the
iSeries Information Center.

Parameters can be passed and received as follows:
v Character string constants of 32 bytes or less are always passed with a length of

32 bytes (padded on the right with blanks). If a character constant is longer than
32 bytes, the entire length of the constant is passed. If the parameter is defined
to contain more than 32 bytes, the CALL command must pass a constant
containing exactly that number of bytes. Constants longer than 32 characters are
not padded to the length expected by the receiving program.
The receiving program can receive less than the number of bytes passed. For
example, if a program specifies that 4 characters are to be received and ABCDEF is
passed (padded with blanks in 26 positions), only ABCD are accepted and used by
the program.
If the receiving program receives more than the number of bytes passed, the
results may be unexpected. Numeric values passed as characters must be
enclosed in apostrophes.

v Decimal constants are passed in packed form and with a length of LEN(15 5),
where the value is 15 digits long, of which 5 digits are decimal positions. Thus,

72 CL Programming V5R1

if a parameter of 12345 is passed, the receiving program must declare the
decimal field with a length of LEN(15 5); the parameter is received as
12345.00000.
If you need to pass a numeric constant to a program and the program is
expecting a value with a length and precision other than 15 5, the constant can
be coded in hexadecimal format. The following CALL command shows how to
pass the value 25.5 to a program variable that is declared as LEN(5 2):
CALL PGMA PARM(X'02550F')

v Logical constants are passed with a length of 32 bytes. The logical value 0 or 1 is
in the first byte, and the remaining bytes are blank. If a value other than 0 or 1
is passed to a program that expects a logical value, the results may be
unexpected.

v A floating point literal or floating point special value (*NAN, *INF, or *NEGINF)
is passed as a double precision value, which occupies 8 bytes. Although a CL
program cannot process floating point numbers, it can receive a floating point
value into a character variable and pass that variable to an HLL program that
can process floating point values.

v The system can pass a variable if the call is made from a CL procedure or
program. In this case the receiving program should declare the field to match
the variable that is defined in the calling CL procedure or program. For example,
assume that a CL procedure or program defines a decimal variable that is
named &CHKNUM as LEN(5 0). Then the receiving program should declare the
field as packed with 5 digits total, with no decimal positions. When running a
CALL command in batch mode by using the SBMJOB command in a CL
procedure or program, the system treats any variables that are passed as
arguments like constants.

v If either a decimal constant or a program variable can be passed to the called
program, the parameter should be defined as LEN(15 5), and any calling
program must adhere to that definition. If the type, number, order, and length of
the parameters do not match between the calling and receiving programs (other
than the length exception noted previously for character constants), results
cannot be predicted.

v The value *N cannot be used to specify a null value because a null value cannot
be passed to another program.

In the following example, program A passes six parameters: one logical constant,
three variables, one character constant, and one numeric constant.
PGM /* PROGRAM A */
DCL VAR(&B) TYPE(*CHAR)
DCL VAR(&C) TYPE(*DEC) LEN(15 5) VALUE(13.529)
DCL VAR(&D) TYPE(*CHAR) VALUE('1234.56')
CHGVAR VAR(&B) VALUE(ABCDEF)
CALL PGM(B) PARM('1' &B &C &D XYZ 2) /* Note blanks between parms */
.
.
.
ENDPGM

PGM PARM(&A &B &C &W &V &U) /* PROGRAM B */
DCL VAR(&A) TYPE(*LGL)
DCL VAR(&B) TYPE(*CHAR) LEN(4)
DCL VAR(&C) TYPE(*DEC)

/* Default length (15 5) matches DCL LEN in program A */
DCL VAR(&W) TYPE(*CHAR)
DCL VAR(&V) TYPE(*CHAR)

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 73

DCL VAR(&U) TYPE(*DEC)
.
.
. ENDPGM

Note: If the fifth parameter passed to PGMB was 456 instead of XYZ and was
intended as alphanumeric data, the value would have been specified as
'456' in the parameter.

The logical constant ’1’ does not have to be declared in the calling program. It is
declared as type logical and named &A in program B.

Because no length is specified on the DCL command for &B, the default length,
which is 32 characters, is passed. Only 6 characters of &B are specified (ABCDEF).
Because &B is declared with only 4 characters in program B, only those 4
characters are received. If they are changed in program B, those 4 positions for &B
will also be changed in program A for the remainder of this call.

The length (LEN) parameter must be specified for &C in program A. If it were not
specified, the length would default to the specified value’s length, which would be
incompatible with the default length expected in program B. &C has a value of
13.52900.

&W in program B (&D in program A) is received as a character because it is
declared as a character. Apostrophes are not necessary to indicate a string if TYPE
is *CHAR. In program A, the length defaults to the value’s length of 7 (the decimal
point is considered a position in a character string). Program B expects a length of
32. The first 7 characters are passed, but the contents past the position 7 cannot be
predicted.

The variable &V is a character string XYZ, padded with blanks on the right. The
variable &U is numeric data, 2.00000.

IBM has provided online information on the default lengths in the DCL
commands. Refer to the DCL command in the CL and APIs section of the
Programming category in the iSeries Information Center.

Common Errors When Calling Programs and Procedures
The following sections describe the errors encountered most frequently in passing
values on a CALL command or a CALLPRC command. Some of these errors can
be very difficult to debug, and some have serious consequences for program
functions.

Date Type Errors Using the CALL Command
The total length of the command string includes the command name, spaces,
parameter names, parentheses, contents of variables and apostrophes used. For
most commands, the command string initiates the command processing program
as expected. However, for some commands some variables may not be passed as
expected. For more information on the topic of variables, see “Working with
Variables” on page 22.

When the CALL command is used with the CMD parameter on the SBMJOB
command, unexpected results may occur. Syntactically, the CALL command
appears the same when used with the CMD parameter as it does when used as the
compiler directive for the CALL command. When used with the CMD parameter,
the CALL command is converted to a command string that is run at a later time

74 CL Programming V5R1

when the batch subsystem initiates it. When the CALL command is used by itself,
the CL compiler generates code to perform the call.

Common problems with decimal constants and character variables often occur. In
the following cases, the command string is not constructed as needed:
v When decimal numbers are converted to decimal constants.

When the command string is run, the decimal constant is passed in a packed
form with a length of LEN(15 5). It is not passed in the form specified by the CL
variable.

v When a character variable is declared longer than 32 characters.

The contents of the character variable is passed as described previously, usually as
a quoted character constant with the trailing blanks removed. As a result, the
called program may not be passed enough data.

The following methods can be used to correct errors in constructing command
strings:
v Create the CALL command string to be submitted by concatenating the various

portions of the command together into one CL variable. Submit the command
string using the request data (RQSDTA) parameter of the SBMJOB command.

v For CL character variables larger than 32 characters where trailing blanks are
significant, create a variable that is one character larger than needed and
substring a non-blank character into the last position. This prevents the
significant blanks from being truncated. The called program should ignore the
extra character because it is beyond the length expected.

v Create a command that will initiate the program to be called. Submit the new
command instead of using the CALL command. The command definition
ensures the parameters are passed to the command processing program as
expected.

Data Type Errors
When passing a value, the data type (TYPE parameter) must be the same (*CHAR,
*DEC, or *LGL) in the calling procedure or program and in the called procedure or
program. Errors frequently occur in this area when you attempt to pass a numeric
constant. If the numeric constant is enclosed in apostrophes, it is passed as a
character string. However, if the constant is not enclosed in apostrophes, it is
passed as a packed numeric field with LEN(15 5).

In the following example, a quoted numeric value is passed to a program that
expects a decimal value. A decimal data error (escape message MCH1202) occurs
when variable &A is referred to in the called program (PGMA):
CALL PGMA PARM('123') /* CALLING PROGRAM */
PGM PARM(&A) /* PGMA */
DCL &A *DEC LEN(15 5) /* DEFAULT LENGTH */
.
.
.
IF (&A *GT 0) THEN(...) /* MCH1202 OCCURS HERE */

In the following example, a decimal value is passed to a program defining a
character variable. Generally, this error does not cause run-time failures, but
incorrect results are common:
CALL PGMB PARM(12345678) /* CALLING PROG */

PGM PARM(&A) /* PGMB */
DCL &A *CHAR 8

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 75

.

.

.
ENDPGM

Variable &A in PGMB has a value of hex 001234567800000F.

Generally, data can be passed from a logical (*LGL) variable to a character
(*CHAR) variable, and vice versa, without error, so long as the value is expressed
as ’0’ or ’1’.

Decimal Length and Precision Errors
If a decimal value is passed with an incorrect decimal length and precision (either
too long or too short), a decimal data error (MCH1202) occurs when the variable is
referred to. In the following examples, the numeric constant is passed as LEN(15
5), but is declared in the called procedure or program as LEN(5 2). Numeric
constants are always passed as packed decimal (15 5).
CALL PGMA PARM(123) /* CALLING PROG */

PGM PARM(&A) /* PGMA */
DCL &A *DEC (5 2)
.
.
.
IF (&A *GT 0) THEN(...) /* MCH1202 OCCURS HERE */

If a decimal variable had been declared with LEN(5 2) in the calling program or
procedure and the value had been passed as a variable instead of as a constant, no
error would occur.

If you need to pass a numeric constant to a procedure or program and the
procedure or program is expecting a value with a length and precision other than
15 5, the constant can be coded in hexadecimal format. The following CALL
command shows how to pass the value 25.5 to a program variable that is declared
as LEN(5 2):
CALL PGMA PARM(X'02550F')

If a decimal value is passed with the correct length but with the wrong precision
(number of decimal positions), the receiving procedure or program interprets the
value incorrectly. In the following example, the numeric constant value (with
length (15 5)) passed to the procedure is handled as 25124.00.
CALL PGMA PARM(25.124) /* CALLING PGM */

PGM PARM(&A) /* PGMA */
DCL &A *DEC (15 2) /* LEN SHOULD BE 15 5*/
.
.
.
ENDPGM

These errors occur when the variable is first referred to, not when it is passed or
declared. In the next example, the called program does not refer to the variable,
but instead simply places a value (of the detected wrong length) in the variable
returned to the calling program. The error is not detected until the variable is
returned to the calling program and first referred to. This kind of error can be
especially difficult to detect.
PGM /* PGMA */
DCL &A *DEC (7 2)
CALL PGMB PARM(&A) /* (7 2) PASSED TO PGMB */

76 CL Programming V5R1

IF (&A *NE 0) THEN(...) /* *MCH1202 OCCURS HERE */
.
.
.
ENDPGM

PGM PARM(&A) /* PGMB */
DCL &A *DEC (5 2) /* WRONG LENGTH */
.
.
.
CHGVAR &A (&B-&C) /* VALUE PLACED in &A */
RETURN
When control returns to program PGMA and &A is referred to, the error occurs.

Character Length Errors
If you pass a character value longer than the declared character length of the
receiving variable, the receiving procedure or program cannot access the excess
length. In the following example, PGMB changes the variable that is passed to it to
blanks. Because the variable is declared with LEN(5), only 5 characters are changed
to blanks in PGMB, but the remaining characters are still part of the value when
referred to in PGMA.
PGM /* PGMA */
DCL &A *CHAR 10
CHGVAR &A 'ABCDEFGHIJ'
CALL PGMB PARM(&A) /* PASS to PGMB */
.
.
.
IF (&A *EQ ' ') THEN(...) /* THIS TEST FAILS */
ENDPGM

PGM PARM(&A) /* PGMB */
DCL &A *CHAR 5 /* THIS LEN ERROR*/
CHGVAR &A ' ' /* 5 POSITIONS ONLY; OTHERS UNAFFECTED */
RETURN

While this kind of error does not cause an escape message, variables handled this
way may function differently than expected.

If the value passed to a procedure or program is shorter than its declared length in
the receiving procedure or program, there may be more serious consequences. In
this case, the value of the variable in the called procedure or program consists of
its values as originally passed, and whatever follows that value in storage, up to
the length declared in the called procedure or program. The content of this
adopted storage cannot be predicted. If the passed value is a variable, it could be
followed by other variables or by internal control structures for the procedure or
program. If the passed value is a constant, it could be followed in storage by other
constants passed on the CALL or CALLPRC command or by internal control
structures.

If the receiving procedure or program changes the value, it operates on the original
value and on the adopted storage. The immediate effect of this could be to change
other variables or constants, or to change internal structures in such a way that the
procedure or program fails. Changes to the adopted storage take effect
immediately.

In the following example, two 3-character constants are passed to the called
program. Character constants are passed with a minimum of 32 characters for the
CALL command. (Normally, the value is passed as 3 characters left-adjusted with
trailing blanks.) If the receiving program declares the receiving variable to be

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 77

longer than 32 positions the extra positions use adopted storage of unknown value.
For this example, assume that the two constants are adjacent in storage.
CALL PGMA ('ABC' 'DEF') /* PASSING PROG */

PGM PARM(&A &B) /* PGMA */
DCL &A *CHAR 50 /* VALUE:ABC+29' '+DEF+15' ' */
DCL &B *CHAR 10 /* VALUE:DEF+7' ' */
CHGVAR VAR(&A) (' ') /* THIS ALSO BLANKS &B */
.
.
.
ENDPGM

Values passed as variables behave in exactly the same way.

In the following example, two 3-character constants are passed to the called
procedure. Only the number of characters specified are passed for the CALLPRC
command. If the receiving program declares the receiving variable to be longer
than the length of the passed constant, the extra positions use adopted storage of
unknown value.

In the following example, assume the two constants are adjacent in storage.
CALLPRC PRCA ('ABC' 'DEF') /* PASSING PROG */

PGM PARM(&A &B) /* *PRCA */
DCL &A *CHAR 5 /* VALUE:'ABC' + 'DE' */
DCL &B *CHAR 3 /* VALUE:'DEF' */
CHGVAR &A ' ' /* This also blanks the first two bytes of &B */
.
.
.
ENDPGM

Using Data Queues to Communicate between Programs and
Procedures

Data queues are a type of system object that you can create, to which one HLL
procedure or program can send data, and from which another HLL procedure or
program can receive data. The receiving program can be already waiting for the
data, or can receive the data later.

The advantages of using data queues are:
v Using data queues frees a job from performing some work. If the job is an

interactive job, this can provide better response time and decrease the size of the
interactive program and its process access group (PAG). This, in turn, can help
overall system performance. For example, if several work station users enter a
transaction that involves updating and adding to several files, the system can
perform better if the interactive jobs submit the request for the transaction to a
single batch processing job.

v Data queues are the fastest means of asynchronous communication between two
jobs. Using a data queue to send and receive data requires less overhead than
using database files, message queues, or data areas to send and receive data.

v You can send to, receive from, and retrieve a description of a data queue in any
HLL procedure or program by calling the QSNDDTAQ, QRCVDTAQ,
QMHRDQM, QCLRDTAQ, and QMHQRDQD programs without exiting the
HLL procedure or program or calling a CL procedure or program to send,
receive, clear, or retrieve the description.

78 CL Programming V5R1

v When receiving data from a data queue, you can set a time out such that the job
waits until an entry arrives on the data queue. This differs from using the
EOFDLY parameter on the OVRDBF command, which causes the job to be
activated whenever the delay time ends.

v More than one job can receive data from the same data queue. This has an
advantage in certain applications where the number of entries to be processed is
greater than one job can handle within the desired performance restraints. For
example, if several printers are available to print orders, several interactive jobs
could send requests to a single data queue. A separate job for each printer could
receive from the data queue, either in first-in-first-out (FIFO), last-in-first-out
(LIFO), or in keyed-queue order.

v Data queues have the ability to attach a sender ID to each message being placed
on the queue. The sender ID, an attribute of the data queue which is established
when the queue is created, contains the qualified job name and current user
profile.

In addition to these advantages, you can journal your data queues. This allows you
to recover the object to a consistent state, even if the object was in the middle of
some change action when the abnormal initial program load (IPL) or crash
occurred. Journaling also provides for replication of the data queue journal to a
remote system (using remote journal for instance). This lets the system reproduce
the actions in a similar environment to replicate the application work. For more
information about journaling support on the iSeries server, see the Backup and

Recovery book.

The following is an example showing how data queues work. Several jobs place
entries on a data queue. The entries are handled by a server job. This might be
used to have jobs send processed orders to a single job that would do the printing.
Any number of jobs can send to the same queue.

Another example using data queues follows. A primary job gets the work requests
and sends the entries to a data queue (by calling the QSNDDTAQ program). The
server jobs receive the entries from the data queue (by calling the QRCVDTAQ
program) and process the data. The server jobs can report status back to the
primary job using another data queue.

Data queues allow the primary job to route the work to the server jobs. This frees
the primary job to receive the next work request. Any number of server jobs can

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 79

c4153045.pdf
c4153045.pdf

receive from the same data queue.

When no entries are on a data queue, server jobs have the following options:
v Wait until an entry is placed on the queue
v Wait for a specific period of time; if the entry still has not arrived, then continue

processing
v Do not wait, return immediately.

Data queues can also be used when a program needs to wait for input from
display files, ICF files, and data queues at the same time. When you specify the
DTAQ parameter for the following commands:
v Create Display File (CRTDSPF) command
v Change Display File (CHGDSPF) command
v Override Display File (OVRDSPF) command
v Create ICF File (CRTICFF) command
v Change ICF File (CHGICFF) command
v Override ICF File (OVRICFF) command

you can indicate a data queue that will have entries placed on it when any of the
following happens:
v An enabled command key or Enter key is pressed from an invited display

device
v Data becomes available from an invited ICF session

Support is available to optionally associate a data queue to an output queue by
using the Create Output Queue (CRTOUTQ) or Change Output Queue
(CHGOUTQ) command. The system logs entries in the data queue when spooled
files are in ready (RDY) status on the output queue. A user program can determine
when a spooled file is available on an output queue by using the Receive Data
Queue (QRCVDTAQ) API to receive information from a data queue. See the CL and
APIs section of the Programming category of the iSeries Information Center for
details about the Create Output Queue (CRTOUTQ) command. For more
information about data queues on output queues see the Printer Device

Programming book.

80 CL Programming V5R1

c4157134.pdf
c4157134.pdf

Jobs running on the system can also place entries on the same data queue as the
one specified in the DTAQ parameter by using the QSNDDTAQ program.

An application calls the QRCVDTAQ program to receive each entry placed on the
data queue and then processes the entry based on whether it was placed there by a
display file, an ICF file, or the QSNDDTAQ program. For more information, see
“Example 2: Waiting for Input from a Display File and an ICF File” on page 84 and
“Example 3: Waiting for Input from a Display File and a Data Queue” on page 87.

Remote Data Queues
You can access remote data queues with Distributed Data Management (DDM)
files. DDM files make it possible for a program residing on one server to access a
data queue on a remote server to perform any of the following functions:
v send data to a data queue
v receive data from a data queue
v clear data from a data queue

An application program that currently uses a standard data queue can also access
a remote DDM data queue without changing or compiling the application again.
To ensure the correct data queue is accessed, you may need to do one of the
following:
v Delete the standard data queue and create a DDM data queue that has the same

name as the original standard data queue.
v Rename the standard data queue.

You can create a DDM data queue with the following command:
CRTDTAQ DTAQ(LOCALLIB/DDMDTAQ) TYPE(*DDM)

RMTDTAQ(REMOTELIB/REMOTEDTAQ) RMTLOCNAME(SYSTEMB)
TEXT('DDM data queue to access data queue on SYSTEMB')

You can also use an expansion of the previous example (″Master Job/Server Job″)
to create a DDM data queue to use with remote data queues. The master job
resides on SystemA; the data queues and server jobs are moved to SystemB. After
creating two DDM data queues (INPUT and STATUS), the master job continues to
communicate asynchronously with the server jobs that reside on SystemB. The
following example shows how to create a DDM data queue with remote data
queues:

CRTDTAQ DTAQ(LOCALLIB/INPUT) TYPE(*DDM)
RMTDTAQ(REMOTELIB/INPUT) RMTLOCNAME(SystemB)
TEXT('DDM data queue to access INPUT on SYSTEMB')

CRTDTAQ DTAQ(LOCALLIB/STATUS) TYPE(*DDM)
RMTDTAQ(REMOTELIB/STATUS) RMTLOCNAME(SystemB)
TEXT('DDM data queue to access STATUS on SYSTEMB')

The master job calls QSNDDTAQ, then passes the data queue name of
LOCALLIB/INPUT and sends the data to the remote data queue
(REMOTELIB/INPUT) on SystemB. To receive data from the remote data queue,
(REMOTELIB/STATUS), the master job passes the data queue name of
LOCALLIB/STATUS for the call to QRCVDTAQ.

See the CL and APIs section of the Programming category in the iSeries Information
Center for more information on DDM data queues.

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 81

Comparisons with Using Database Files as Queues
The following describes the differences between using data queues and database
files:
v Data queues have been improved to communicate between active procedures

and programs, not to store large volumes of data or large numbers of entries.
For these purposes, use database files as queues.

v Data queues should not be used for long-term storage of data. For this purpose,
you should use database files.

v When using data queues, you should include abnormal end routines in your
programs to recover any entries not yet completely processed before the system
is ended.

v It is good practice to periodically (such as once a day) delete and re-create a
data queue at a safe point. Performance can be affected if too many entries exist
without being removed. Re-creating the data queue periodically will return the
data queue to its optimal size.

Similarities to Message Queues
Data queues are similar to message queues, in that procedures and programs can
send data to the queue that is received later by another procedure or program.
However, more than one program can have a receive pending on a data queue at

Figure 1. Example of Accessing a Remote Data Queue

82 CL Programming V5R1

the same time, while only one program can have a receive pending on a message
queue at the same time. (Only one program receives an entry from a data queue,
even if more than one program is waiting.) Entries on a data queue are handled in
either first-in-first-out, last-in-first-out, or keyed-queue order. When an entry is
received, it is removed from the data queue.

Prerequisites for Using Data Queues
Before using a data queue, you must first create it using the Create Data Queue
(CRTDTAQ) command. The following is an example:
CRTDTAQ DTAQ(MYLIB/INPUT) MAXLEN(128)

TEXT('Sample data queue')

The required MAXLEN parameter specifies the maximum length (1 to 64,512
characters) of the entries that are sent to the data queue.

Managing the Storage Used by a Data Queue
Each entry receives a storage allocation when sent to a data queue. The storage
allocated will be the value that is specified for the maximum entry length of the
data queue that was specified on the Create Data Queue (CRTDTAQ) command.
When receiving an entry from a data queue, the data queue removes the entry, but
it does not free the auxiliary storage. The system uses the auxiliary storage again
when sending a new entry to the data queue. The queue grows larger when not
receiving entries that are sent to the queue. Performance is better by maintaining
the size of the queue to less than 100 entries. If a data queue has grown too large,
delete the data queue by using the Delete Data Queue (DLTDTAQ) command. On
completion of the data queue deletion, re-create the queue by using the Create
Data Queue (CRTDTAQ) command.

There is another way to manage the size of a data queue on Release V4R5M0 and
beyond. This consists of using the SIZE and AUTORCL keywords on the
CRTDTAQ command. You can use the SIZE keyword to specify the maximum
number of entries and the initial number of entries for the data queue. You can use
the AUTORCL keyword to indicate if the data queue should have storage
automatically reclaimed when the queue is empty. Specifying *YES for AUTORCL
and allocating additional storage to the queue allows for automatic storage
allocation when the queue is empty. The amount of storage allocated equals the
initial number of entries specified for the queue. If AUTORCL contains a value of
*NO, which is the default, the system does not automatically reclaim storage from
unused space. To reclaim the storage the data queue uses, you would need to
delete and re-create it as described in the preceding paragraph.

Allocating Data Queues
If your application requires that a data queue is not accessed by more than one job
at a time, it should be coded to include an Allocate Object (ALCOBJ) command
before using a data queue. The data queue should then be deallocated using the
Deallocate Object (DLCOBJ) command when the application is finished using it.

The ALCOBJ command does not, by itself, restrict another job from sending or
receiving data from a data queue or clearing a data queue. However, if all
applications are coded to include the ALCOBJ command before any use of a data
queue, the allocation of a data queue already allocated to another job will fail,
preventing the data queue from use by more than one job at a time.

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 83

When an allocation fails because the data queue is already allocated to another job,
the system issues an error message, CPF1002. The Monitor Message (MONMSG)
command can be used in the application procedure to monitor for this message
and respond to the error message. Possible responses include sending a message to
the user and attempting to allocate the data queue again. See “Monitoring for
Messages in a CL Program or Procedure” on page 236 for more information.

Examples Using a Data Queue
The following examples explain three methods to process data queue files.

Example 1: Waiting up to 2 Hours to Receive Data from Data
Queue
In the following example, program B specifies to wait up to 2 hours (7200 seconds)
to receive an entry from the data queue. Program A sends an entry to data queue
DTAQ1 in library QGPL. If program A sends an entry within 2 hours, program B
receives the entries from this data queue. Processing begins immediately. If 2 hours
elapse without procedure A sending an entry, program B processes the time-out
condition because the field length returned is 0. Program B continues receiving
entries until this time-out condition occurs. The programs are written in CL;
however, either program could be written in any high-level language.

The data queue is created with the following command:
CRTDTAQ DTAQ(QGPL/DTAQ1) MAXLEN(80)

In this example, all data queue entries are 80 bytes long.

In program A, the following statements relate to the data queue:
PGM
DCL &FLDLEN *DEC LEN(5 0) VALUE(80)
DCL &FIELD *CHAR LEN(80)
.
.(determine data to be sent to the queue)
.
CALL QSNDDTAQ PARM(DTAQ1 QGPL &FLDLEN &FIELD)
.
.
.

In program B, the following statements relate to the data queue:
PGM
DCL &FLDLEN *DEC LEN(5 0) VALUE(80)
DCL &FIELD *CHAR LEN(80)
DCL &WAIT *DEC LEN(5 0) VALUE(7200) /* 2 hours */
.
.
.

LOOP: CALL QRCVDTAQ PARM(DTAQ1 QGPL &FLDLEN &FIELD &WAIT)
IF (&FLDLEN *NE 0) DO /* Entry received */

.

. (process data from data queue)

.
GOTO LOOP /* Get next entry from data queue */

ENDDO
.
. (no entries received for 2 hours; process time-out condition)
.

Example 2: Waiting for Input from a Display File and an ICF File
The following example is different from the usual use of data queues because there
is only one job. The data queue serves as a communications object within the job

84 CL Programming V5R1

rather than between two jobs.

In this example, a program is waiting for input from a display file and an ICF file.
Instead of alternately waiting for one and then the other, a data queue is used to
allow the program to wait on one object (the data queue). The program calls
QRCVDTAQ and waits for an entry to be placed on the data queue that was
specified on the display file and the ICF file. Both files specify the same data
queue. Two types of entries are put on the queue by display data management and
ICF data management support when the data is available from either file. ICF file
entries start with *ICFF and display file entries start with *DSPF.

The display file or ICF file entry that is put on the data queue is 80 characters in
length and contains the field attributes described in the following list. Therefore,
the data queue that is specified using the CRTDSPF, CHGDSPF, OVRDSPF,
CRTICFF, CHGICFF, and OVRICFF commands must have a length of at least 80
characters.

Position (and Data Type)
Description

1 through 10 (character)
The type of file that placed the entry on the data queue. This field will
have one of two values:

*ICFF for ICF file
*DSPF for display file

If the job receiving the data from the data queue has only one display file
or one ICF file open, then this is the only field needed to determine what
type of entry has been received from the data queue.

11 through 12 (binary)
The unique identifier for the file. The value of the identifier is the same as
the value in the open feedback area for the file. This field should be used
by the program receiving the entry from the data queue only if there is
more than one file with the same name placing entries on the data queue.

13 through 22 (character)
The name of the display file or ICF file. This is the name of the file actually
opened, after all overrides have been processed, and is the same as the file
name found in the open feedback area for the file. This field should be
used by the program receiving the entry from the data queue only if there
is more than one display file or ICF file that is placing entries on the data
queue.

23 through 32 (character)
The library where the file is located. This is the name of the library, after
all overrides have been processed, and is the same as the library name
found in the open feedback area for the file. This field should be used by

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 85

the program receiving the entry from the data queue only if there is more
than one display file or ICF file that is placing entries on the data queue.

33 through 42 (character)
The program device name, after all overrides have been processed. This
name is the same as that found in the program device definition list of the
open feedback area. For file type *DSPF, this is the name of the display
device where the command or Enter key was pressed. For file type *ICFF,
this is the name of the program device where data is available. This field
should be used by the program receiving the entry from the data queue
only if the file that placed the entry on the data queue has more than one
device or session invited prior to receiving the data queue entry.

43 through 80 (character)
Reserved.

The following example shows coding logic that the program previously described
might use:

.

.

.

.
OPEN DSPFILE ... /* Open the Display file. DTAQ parameter specified on*/

/* CRTDSPF, CHGDSPF, or OVRDSPF for the file. */

OPEN ICFFILE ... /* Open the ICF file. DTAQ parameter specified on */
/* CRTICFF, CHGICFF, or OVRICFF for the file. */

.

.
DO

WRITE DSPFILE /* Write with Invite for the Display file */
WRITE ICFFILE /* Write with Invite for the ICF file */

CALL QRCVDTAQ /* Receive an entry from the data queue specified */
/* on the DTAQ parameters for the files. Entries */
/* are placed on the data queue when the data is */
/* available from any invited device or session */
/* on either file. */
/* After the entry is received, determine which file */
/* has data available, read the data, process it, */
/* invite the file again and return to process the */
/* next entry on the data queue. */

IF 'ENTRY TYPE' FIELD = '*DSPF ' THEN /* Entry is from display */
DO /* file. Since this entry*/

/* does not contain the */
/* data received, the data*/
/* must be read from the */
/* file before it can be */

READ DATA FROM DISPLAY FILE /* processed. */
PROCESS INPUT DATA FROM DISPLAY FILE
WRITE TO DISPLAY FILE /* Write with Invite */

END
ELSE /* Entry is from ICF */

/* file. Since this entry*/
/* does not contain the */
/* data received, the data*/
/* must be read from the */
/* file before it can be */
/* processed. */

READ DATA FROM ICF FILE
PROCESS INPUT DATA FROM ICF FILE
WRITE TO ICF FILE /* Write with Invite */

LOOP BACK TO RECEIVE ENTRY FROM DATA QUEUE

86 CL Programming V5R1

.

.

.
END

Example 3: Waiting for Input from a Display File and a Data
Queue
In the following example, the program in Job B is waiting for input from a display
file that it is using and for input to arrive on the data queue from Job A. Instead of
alternately waiting for the display file and then the data queue, the program waits
for one object, the data queue.

The program calls QRCVDTAQ and waits for the placement of an entry on the
data queue that was specified on the display file. Job A is also placing entries on
the same data queue. There are two types of entries that are put on this queue, the
display file entry, and the user-defined entry. Display data management places the
display file entry on the data queue when data is available from the display file.
Job A places the user-defined entry on the data queue.

The structure of the display file entry is described in the previous example.

The structure of the entry placed on the queue by Job A is defined by the
application programmer.

The following example shows coding logic that the application program in Job B
might use:

.

.

.

.
OPEN DSPFILE ... /* Open the Display file. DTAQ parameter specified on*/

/* CRTDSPF, CHGDSPF, or OVRDSPF for the file. */

.

.
DO

WRITE DSPFILE /* Write with Invite for the Display file */

CALL QRCVDTAQ /* Receive an entry from the data queue specified */
/* on the DTAQ parameter for the file. Entries */
/* are placed on the data queue either by Job A or */
/* by display data management when data is */
/* available from any invited device on the display */
/* file. */
/* After the entry is received, determine what type */
/* of entry it is, process it, and return to receive */
/* the next entry on the data queue. */

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 87

IF 'ENTRY TYPE' FIELD = '*DSPF ' THEN /* Entry is from display */
DO /* file. Since this entry*/

/* does not contain the */
/* data received, the data*/
/* must be read from the */
/* file before it can be */

READ DATA FROM DISPLAY FILE /* processed. */
PROCESS INPUT DATA FROM DISPLAY FILE
WRITE TO DISPLAY FILE /* Write with Invite */

END
ELSE /* Entry is from Job A. */

/* This entry contains */
/* the data from Job A, */
/* so no read is required*/
/* before processing the */
/* data. */

PROCESS DATA QUEUE ENTRY FROM JOB A
LOOP BACK TO RECEIVE ENTRY FROM DATA QUEUE

.

.

.
END

Creating Data Queues Associated with an Output Queue
You can associate a data queue with an output queue. When a spooled file on the
output queue goes to a READY status, the entry that is defined below is sent to
the data queue. Use the Create Data Queue (CRTDTAQ) command to create the
data queue. Specify the maximum message length (MAXLEN) parameter value as
at least 128. The sequence (SEQ) parameter value should be *FIFO or *LIFO.

Sample Data Queue Entry
Position and (data type)

Description

1 through 10 (character)
Function - Identifies the funtion that created the data queue entry. The
value for a spooled file is *SPOOL.

11 through 20 (character)
Record type - Identifies the record type within the function. Valid values
are:

01 The output queue received a spooled file that is in READY status.

21 through 38 (character)
Qualified job name - Identifies the qualified job name of the job that
created the spooled file that is placed on the output queue.

CHAR(10)
Job name

CHAR(10)
User name

CHAR(6)
Job number

39 through 48 (character)
Spooled file name - Identifies the name of the spooled file that is placed on
the output queue.

88 CL Programming V5R1

49 through 52 (binary)
Spooled file number - Identifies the number of the spooled file that is
placed on the output queue.

53 through 72 (character)
Qualified output queue name - Identifies the qualified name of the output
queue on which the spooled file was placed.

CHAR(10)
Output queue name

CHAR(10)
Library of the output queue

73 through 128 (character)
Reserved

Using Data Areas to Communicate between Procedures and Programs
A data area is an object used to hold data for access by any job running on the
system. A data area can be used whenever you need to store information of limited
size, independent of the existence of procedures or files. Typical uses of data areas
are:
v To provide an area (perhaps within each job’s QTEMP library) to pass

information within a job.
v To provide a field that is easily and frequently changed to control references

within a job, such as:
– Supplying the next order number to be assigned
– Supplying the next check number
– Supplying the next save/restore media volume to be used

v To provide a constant field for use in several jobs, such as a tax rate or
distribution list.

v To provide limited access to a larger process that requires the data area. A data
area can be locked to a single user, thus preventing other users from processing
at the same time.

To create a data area other than a local or group data area, use the Create Data
Area (CRTDTAARA) command. By doing this, you create a separate object in a
specific library, and you can initialize it to a value. To use the value in a CL
procedure or program, use a Retrieve Data Area (RTVDTAARA) command to bring
the current value into a variable in your procedure or program. If you change this
value in your CL procedure or program and want to return the new value to the
data area, use the Change Data Area (CHGDTAARA) command.

To display the current value, use the Display Data Area (DSPDTAARA) command.
You can delete a data area using the Delete Data Area (DLTDTAARA) command.

You can journal your data areas. This allows you to recover the object to a
consistent state, even if the object was in the middle of some change action when
the abnormal IPL or crash occurred. Journaling also provides for replication of the
data area journal to a remote system (using remote journal for instance). This lets
the system reproduce the actions in a similar environment to replicate the
application work. For more information about journaling support on iSeries

servers, see the Backup and Recovery book.

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 89

c4153045.pdf

Local Data Area
A local data area is created for each job in the system, including autostart jobs, jobs
started on the system by a reader, and subsystem monitor jobs.

The system creates a local data area, which is initially filled with blanks, with a
length of 1024 and type *CHAR. When you submit a job using the SBMJOB
command, the value of the submitting job’s local data area is copied into the
submitted job’s local data area. You can refer to your job’s local data area by
specifying *LDA for the DTAARA keyword on the CHGDTAARA, RTVDTAARA,
and DSPDTAARA commands or *LDA for the substring built-in function (%SST).

The following is true of a local data area:
v The local data area cannot be referred to from any other job.
v You cannot create, delete, or allocate a local data area.
v No library is associated with the local data area.
v You cannot change the local data area in a secondary thread.
v The ILE CL compiler generates code to ensure that a procedure running in a

secondary thread cannot access the local data area while a procedure running in
the initial thread is changing it.

The local data area contents exist across routing step boundaries. Therefore, using
a Transfer Job (TFRJOB), Transfer Batch Job (TFRBCHJOB), Reroute Job (RRTJOB),
or Return (RETURN) command does not affect the contents of the local data area.

You can use the local data area to:
v Pass information to a procedure or program without the use of a parameter list.
v Pass information to a submitted job by loading your information into the local

data area and submitting the job. Then, you can access the data from within
your submitted job.

v Improve performance over other types of data area accesses from a CL
procedure or program.

v Store information without the overhead of creating and deleting a data area
yourself.

Most high-level languages can also use the local data area. The SBMxxxJOB and
STRxxxRDR commands cause jobs to start with a local data area initialized to
blanks. Only the SBMJOB command allows the contents of the submitting job’s
local data area to be passed to the new job.

Group Data Area
The system creates a group data area when an interactive job becomes a group job
(using the Change Group Attributes [CHGGRPA] command). Only one group data
area can exist for a group. The group data area is deleted when the last job in the
group is ended (with the ENDJOB, SIGNOFF, or ENDGRPJOB command, or with
an abnormal end), or when the job is no longer part of the group job (using the
CHGGRPA command with GRPJOB(*NONE) specified).

A group data area, which is initially filled with blanks, has a length of 512 and
type *CHAR. You can use a group data area from within a group job by specifying
*GDA for the DTAARA parameter on the CHGDTAARA, RTVDTAARA, and
DSPDTAARA commands. A group data area is accessible to all of the jobs in the
group.

90 CL Programming V5R1

The following are true for a group data area:
v You cannot use the group data area as a substitute for a character variable on

the substring built-in function (%SUBSTRING or %SST). (You can, however,
move a 512-byte character variable used by the substring function into or out of
the group data area.)

v A group data area cannot be referred to by jobs outside the group.
v You cannot create, delete, or allocate a group data area.
v No library is associated with a group data area.

The contents of a group data area are unchanged by the Transfer to Group Job
(TFRGRPJOB) command.

In addition to using the group data area as you use other data areas, you can use
the group data area to communicate information between group jobs in the same
group. For example, after issuing the Change Group Job Attributes (CHGGRPA)
command, the following command can be used to set the value of the group data
area:
CHGDTAARA DTAARA(*GDA) VALUE('January1988')

This command can be run from a program or can be issued by the work station
user.

Any other CL procedure or program in the group can retrieve the value of the
group data area with the following CL command:
RTVDTAARA DTAARA(*GDA) RTNVAR(&GRPARA)

This command places the value of the group data area (January1988) into CL
variable &GRPARA.

Program Initialization Parameter (PIP) Data Area
A PIP data area (PDA) is created for each prestart job when the job is started. The
object sub-type of the PDA is different than a regular data area. The PDA can only
be referred to by the special value name *PDA. The size of the PDA is 2000 bytes
but the number of parameters contained in it is not restricted.

The RTVDTAARA, CHGDTAARA, and DSPDTAARA CL commands and the
RTVDTAARA and CHGDTAARA macro instructions support the special value
*PDA for the data area name parameter.

Remote Data Areas
You can access remote data areas by using Distributed Data Management (DDM).
You do not need to change or recompile an application program that resides on
one server when it retrieves data that resides on a remote server. To ensure that
you are accessing the correct data area, you may need to do one of the following:
v Delete the standard data area and create a DDM data area that has the same

name as the original standard data area
v Rename the standard data area

You can create a DDM data area by doing the following:
CRTDTAARA DTAARA(LOCALLIB/DDMDTAARA) TYPE(*DDM)

RMTDTAARA(REMOTELIB/RMTDTAARA) RMTLOCNAME(SYSTEMB)
TEXT('DDM data area to access data area on SYSTEMB')

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 91

To use a value from a data area on a remote server in a CL program, use the
Retrieve Data Area (RTVDTAARA) command. Specify the name of a DDM data
area to bring the current value into a variable in your program. If you change this
value in your CL program and want to return the new value to the remote data
area, use the Change Data Area (CHGDTAARA) command and specify the same
DDM data area.

If you specify the name of a DDM data area when using the Display Data Area
(DSPDTAARA) command, the value of the DDM data area is displayed, rather
than the value of the remote data area. You can delete a DDM data area using the
Delete Data Area (DLTDTAARA) command.

See the CL and APIs section of the Programming category in the iSeries Information
Center for more information on DDM data areas.

Creating a Data Area
Unlike variables, data areas are objects and must be created before they can be
used. A data area can be created as:
v A character string that can be as long as 2000 characters.
v A decimal value with different attributes, depending on whether it is used only

in a CL program or procedure or also with other high-level language programs
or procedures. For CL procedures and programs, the data area can have as many
as 15 digits to the left of the decimal point and as many as 9 digits to the right,
but only 15 digits total. For other languages, the data area can have as many as
15 digits to the left of the decimal point and as many as 9 to the right, for a total
of up to 24 digits.

v A logical value ’0’ or ’1’, where ’0’ can mean off, false, or no; and ’1’ can mean
on, true, or yes.

When you create a data area, you can also specify an initial value for the data area.
If you do not specify one, the following is assumed:
v 0 for decimal.
v Blanks for character.
v ’0’ for logical.

To create a data area, use the Create Data Area (CRTDTAARA) command. In the
following example, a data area is created to pass a customer number from one
program to another:
CRTDTAARA DTAARA(CUST) TYPE(*DEC) +

LEN(5 0) TEXT('Next customer number')

Data Area Locking and Allocation
The CHGDTAARA command uses a *SHRUPD (shared for update) lock on the
data area during command processing. The RTVDTAARA and DSPDTAARA
commands use a *SHRRD (shared for read) lock on the data area during command
processing. If you are performing more than one operation on a data area, you
may want to use the Allocate Object (ALCOBJ) command to prevent other users
from accessing the data area until your operations are completed. For example, if
the data area contains a value that is read and incremented by jobs running at the
same time, the ALCOBJ command can be used to protect the value in both the
read and update operations. See Chapter 4 for how to allocate objects.

92 CL Programming V5R1

For information on handling data areas in other (non-CL) languages, refer to the
appropriate HLL reference manual.

Displaying a Data Area
You can display the attributes (name, library, type, length, data area text
description), and the value of a data area. See the CL and APIs section of the
Programming category in the iSeries Information Center for a detailed description
of the Display Data Area (DSPDTAARA) command.

The display uses the 24-digit format with leading zeros suppressed.

Changing a Data Area
The Change Data Area (CHGDTAARA) command changes all or part of the value
of a specified data area. It does not change any other attributes of the data area.
The new value can be a constant or a CL variable. If the command is in a CL
procedure, the data area does not need to exist when the program is created.

Retrieving a Data Area
The Retrieve Data Area (RTVDTAARA) command retrieves all or part of a
specified data area and copies it into a CL variable. The data area does not need to
exist at compilation time, and the CL variable need not have the same name as the
data area. Note that this command retrieves, but does not alter, the contents of the
specified data area.

Retrieve Data Area Examples

Example 1
Assume that you are using a data area named ORDINFO to track the status of an
order file. This data area is designed so that:
v Position 1 contains an O (open), a P (processing), or a C (complete).
v Position 2 contains an I (in-stock) or an O (out-of-stock).
v Positions 3 through 5 contain the initials of the order clerk.

You would declare these fields in your procedure as follows:
DCL VAR(&ORDSTAT) TYPE(*CHAR) LEN(1)
DCL VAR(&STOCKC) TYPE(*CHAR) LEN(1)
DCL VAR(&CLERK) TYPE(*CHAR) LEN(3)

To retrieve the order status into &ORDSTAT, you would enter the following:
RTVDTAARA DTAARA(ORDINFO (1 1)) RTNVAR(&ORDSTAT)

To retrieve the stock condition into &STOCK, you would enter the following:
RTVDTAARA DTAARA(ORDINFO (2 1)) RTNVAR(&STOCKC)

To retrieve the clerk’s initials into &CLERK, you would enter the following:
RTVDTAARA DTAARA(ORDINFO (3 3)) RTNVAR(&CLERK)

Each use of the RTVDTAARA command requires the data area to be accessed. If
you are retrieving many subfields, it is more efficient to retrieve the entire data
area into a variable, then use the substring built-in function to extract the subfields.

Example 2
The following example of the RTVDTAARA command places the specified contents
of a 5-character data area into a 3-character variable. This example:

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 93

v Creates a 5-character data area named DA1 (in library MYLIB) with the initial
value of 'ABCDE'

v Declares a 3-character variable named &CLVAR1
v Copies the contents of the last three positions of DA1 into &CLVAR1

To do this, the following commands would be entered:
CRTDTAARA DTAARA(MYLIB/DA1) TYPE(*CHAR) LEN(5) VALUE(ABCDE)
.
.
.
DCL VAR(&CLVAR1) TYPE(*CHAR) LEN(3)
RTVDTAARA DTAARA(MYLIB/DA1 (3 3)) RTNVAR(&CLVAR1)

&CLVAR1 now contains 'CDE'.

Example 3
The following example of the RTVDTAARA command places the contents of a
5-digit decimal data area into a 5-digit decimal digit variable. This example:
v Creates a 5-digit data area named DA2 (in library MYLIB) with two decimal

positions and the initial value of 12.39
v Declares a 5-digit variable named &CLVAR2 with one decimal position
v Copies the contents of DA2 into &CLVAR2

To do this, the following commands would be entered:
CRTDTAARA DTAARA(MYLIB/DA2) TYPE(*DEC) LEN(5 2) VALUE(12.39)
.
.
.
DCL VAR(&CLVAR2) TYPE(*DEC) LEN(5 1)
RTVDTAARA DTAARA(MYLIB/DA2) RTNVAR(&CLVAR2)

&CLVAR2 now contains 0012.3 (fractional truncation occurred).

Changing and Retrieving a Data Area Example
The following is an example of using the CHGDTAARA and RTVDTAARA
commands for character substring operations.

This example:
v Creates a 10-character data area named DA1 (in library MYLIB) with initial

value ABCD5678IJ

v Declares a 5-character variable named &CLVAR1
v Changes the contents of data area DA1 (starting at position 5 for length 4) to the

value EFG padding after the G with 1 blank)
v Retrieves the contents of data area DA1 (starting at position 5 for length 5) into

the CL variable &CLVAR1

To do this, the following commands would be entered:
DCL VAR(&CLVAR1) TYPE(*CHAR) LEN(5)
.
CRTDTAARA DTAARA(MYLIB/DA1) TYPE(*CHAR) LEN(10) +

VALUE('ABCD5678IJ')
.
.
.
CHGDTAARA DTAARA((MYLIB/DA1) (5 4)) VALUE('EFG')
RTVDTAARA DTAARA((MYLIB/DA1) (5 5)) RTNVAR(&CLVAR1)

94 CL Programming V5R1

The variable &CLVAR1 now contains 'EFG I'.

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 95

96 CL Programming V5R1

Chapter 4. Objects and Libraries

Objects are the basic units on which commands perform operations. For example,
programs and files are objects. Through objects you can find, maintain, and process
your data on the iSeries server. You need only know what object and what
function (command) you want to use; you do not need to know the storage
address of your data to use it.

Note: Objects can reside in both libraries and directories. (Previously, an object
could reside only in a library.) This chapter contains information only about
objects residing in libraries. See the Integrated File System topics in the
Database and File Systems category of information of the iSeries
Information Center for information on directories.

This chapter includes General-Use Programming Interface and Associated
Guidance Information.

Object Types and Common Attributes
Each type of object on the server has a unique purpose within the system and has
an associated set of commands which process that type of object. IBM provides
online information that contains a complete list of the types of objects, the
abbreviations used as parameter values for object type parameters, and the
definition of the object belonging to that type. Refer to the CL and APIs section of
the Programming category in the iSeries Information Center.

Each object type has a set of common attributes that describes the object. These
common attributes are listed in Table 2 on page 118. The online help information
for the Display Object Description (DSPOBJD) display describes these attributes.

Functions Performed on Objects
Many functions can be performed on objects. Some functions the system performs
automatically and others you request through commands.

Functions the System Performs Automatically
The functions performed automatically ensure that objects are processed in a
consistent, secure, and proper way. These functions are:
v Object type verification. The system checks the type of object and the type of

function being performed on the object to verify that function can be performed
on that type of object. For example, if the object specified in a CALL command
is not a program, the call function cannot be performed.

v Object authority verification. The system checks the object, the function, and the
user to verify that user can perform that function on that object. For example, if
USERA is not authorized to use OBJB in any way, he cannot request that any
functions be performed on it.

v Object lock enforcement. The system ensures that the integrity of objects is
preserved when two or more users try to use an object at the same time.
Simultaneous changes to an object are locked out; users cannot use an object
while it is being changed.

© Copyright IBM Corp. 1997, 2001 97

v Object damage detection and notification. The system monitors for errors during
the processing of objects and communicates to you unplanned failures that result
from the unrecognizable contents of objects. These failures are communicated to
you through standard messages that indicate object damage. The system is
designed so that these failures are rare, and monitoring and communicating
these failures provide integrity.

Functions You Can Perform Using Commands
The functions you can request through commands are of two types:
v Specific functions for each object type. For example, create, change, and display

are specific functions. The specific functions are described in other sections of
this manual that describe the object type.

v Some common functions that apply to objects in general are explained in this
guide:

Table 1. Common Functions for Objects

Function Page

Searching for multiple objects or a single object in a library 108

Specifying authority for objects in a library 109

Placing objects in libraries 113

Describing objects 117

Displaying object descriptions 117

Retrieving object descriptions 120

Detecting unused objects on the system 123

Moving objects between libraries 129

Creating duplicate objects 131

Renaming objects 133

Deleting objects 136

Allocating and deallocating objects 137

Displaying the lock states on objects 140

Checking for object existence 145

Libraries
On the iSeries server, objects are grouped in special objects called libraries. Objects
are found using libraries. To access an object in a library, you must be authorized
to the library and to the object. See “Security Considerations for Objects” on
page 111 and “Specifying Authority for Libraries” on page 109 for more
information.

If you specify a library name in the same parameter as the object name, the object
name is called a qualified name. If you are entering a command in which you must
specify a qualified name, for example, the object name could be:
DISTLIB/ORD040C

The order entry program ORD040C is in the library DISTLIB.

If you are using prompting during command entry and you are prompted for a
qualified name, you receive prompts for both the object name and the library

98 CL Programming V5R1

name. On most commands, you can specify a particular library name, specify
*CURLIB (the current library for the job), or use a library list. Library lists are
described in the following section.

Library Lists
For commands in which a qualified name can be specified, you can omit specifying
the library name. If you do so, either of the following happens:
v For a create command, the object is created and placed in the user’s current

library, *CURLIB, or in a system library, depending on the object type. For
example, programs are created and placed in *CURLIB; authorization lists are
created and placed in the system library, QSYS.

v For commands other than a create command, the system normally uses a library
list to find the object.

Library lists used by OS/400 consist of the following four parts.

System part
The system part of the library list contains objects needed by the system.

Product libraries
Two product libraries may be included in the library list. The system uses
product libraries to support languages and utilities that are dependent on
libraries other than QSYS to process their commands.

User commands and menus can also specify a product library on the
PRDLIB parameter on the Create Command (CRTCMD) and Create Menu
(CRTMNU) commands to ensure that dependent objects can be found.

The product libraries are managed by the system, which automatically
places product libraries (such as QRPG) into the reserved product library
position in the library list when needed. A product library may be a
duplicate of the current library or of a library in the user part of the library
list.

For example, assume that there is a product library in the library list when
a command or menu that has a product library starts. The system will
replace the product library in the library list with the new product library
until the new command ends or the user leaves the new menu.

Current library
The current library can be, but does not have to be, a duplicate of any
library in the library list. The value *CURLIB (current library) may be used
on most commands as a library name to represent whatever library has
been specified as the current library for the job. If no current library exists
in the library list and *CURLIB is specified as the library, QGPL is used.
You can change the current library for a job by using the Change Current
Library (CHGCURLIB) or Change Library List (CHGLIBL) command.

User part
The user part of the library list contains those libraries referred to by the
system’s users and applications. The user part, and the product and
current libraries, may be different for each job on the system. There is a
limit of 250 libraries.

For a list of the libraries shipped with the system or optionally installable on the
system, see “Appendix D. IBM-Supplied Libraries in Licensed Programs (LP)” on
page 405.

Chapter 4. Objects and Libraries 99

The following diagram shows an example of the structure of the library list:

Note: The system places library QPDA in product library 1 when the source entry
utility (SEU) is used. When SEU is being used to syntax check source code,
a second product library can be added to product library 2. For example, if
you are syntax checking RPG source, then QPDA is product library 1 and
QRPG is product library 2. In most other system functions, product library 2
is not used.

Using a library list simplifies finding objects on the system. Each job has a library
list associated with it. When a library list is used to find an object, each library in
the list is searched in the order of its occurrence in the list until an object of the
specified name and type is found. If two or more objects of the same type and
name exist in the list, you get the object from the library that appears first in the
library list. The following diagram shows the searches made for an object both
when the library list (*LIBL) is used and when a library name is specified:

Note: Alternatively, use *NLVLIBL instead of *LIBL to qualify any command. Enter
the command from a CL program, on a command line, or anywhere you
normally enter a command. The system uses *NLVLIBL to determine which
libraries to search for the *CMD object. You search only the national

100 CL Programming V5R1

language support libraries in the library list by specifying *NLVLIBL.

The following diagram shows what happens when two objects of the same name
but different types are in the library list. The system will search for CUSTINQ
*FILE in the library list by specifying:
DSPOBJD OBJ(*LIBL/CUSTINQ) OBJTYPE(*FILE)

Chapter 4. Objects and Libraries 101

Generally, a library list is more flexible and easier to use than qualified names.
More important than the advantage of not entering the library name, is the
advantage of performing functions in an application on different data simply by
using a different library list without having to change the application. For example,
a CL program PGMA updates a data area CHKNBR. If the library name is not
specified, the program can update the data area named CHKNBR in different
libraries depending on the use of the library list. For example, assume that JOBA

102 CL Programming V5R1

and JOBB both call PGMA as shown in the following illustration:

However, the use of a qualified name is advantageous in any of the following
situations:
v When the object you are using is not in the library list for the job
v When there is more than one object of the same name in the library list and you

want one in a specific library
v When you want to ensure that a specific library is used for security reasons.

If, however, you call a program using a qualified name and the program attempts
to open files whose names are not qualified, the files are not opened if they are not

Chapter 4. Objects and Libraries 103

in the library list, as shown in the following example:

The call to PGMA is successful because the program name is qualified on the
CALL command. However, when the program attempts to open file ORDENTP, the
open operation fails because the file is not in one of the libraries in the library list,
and its name is not qualified. If library DISTLIB2 was added to the library list or a
qualified file name was used, the program could open the file. Some high-level
languages do not allow a qualified file name to be specified. By using an Override
(OVRxxx) command, a qualified name can be specified.

A Job’s Library List
Each job’s library list consists of up to four parts: a system part, a user part, and
the current and product libraries. Only the system part will always be included in
the library list.

When the system is shipped, the system value QSYSLIBL contains the names of the
libraries to become the system part of the library list. The shipped values are

104 CL Programming V5R1

QSYS, QSYS2, QHLPSYS, and QUSRSYS. The system value QUSRLIBL contains the
names of the libraries to become the user part of the library list.

QSYSLIBL can contain 15 library names, and QUSRLIBL can contain 25 library
names. To change the system portion of a job’s library list, use the Change System
Library List (CHGSYSLIBL) command. To change the value of either QSYSLIBL or
QUSRLIBL, use the Change System Value (CHGSYSVAL) command. A change to
these system values takes effect on new jobs that are started after the system
values are changed.

Changing the Library List
For a running job, you can add entries to or remove entries from the library list by
using the Add Library List Entry (ADDLIBLE) command or the Remove Library
List Entry (RMVLIBLE) command, or you can change the libraries in the library
list by using the CHGLIBL command or the EDTLIBL command. These commands
change the user part of the library list, not the system part.

The current library may be added or changed using the Change Current Library
(CHGCURLIB) or CHGLIBL command. The current library can also be changed in
the user’s user profile, at sign-on, or on the Submit Job (SBMJOB) command. The
product libraries cannot be added using a CL command; these libraries are added
by the system when a command or menu using them is run. The product libraries
cannot be changed with a CL command; however, they can be changed with the
Change Library List (QLICHGLL) API.

When you use these commands, the change to the library list affects only the job in
which the command is run, and the change is effective only as long as the job is
running, or until you change the job’s library list again. When the library list is
changed through the use of these commands, the libraries must exist when the
command is run. A library cannot be deleted if it exists on an active user’s library
list.

When a job is started, the user portion of the library list is determined by the
values contained in the job description or by values specified on the SBMJOB
command. A value of *SYSVAL can be specified, which causes the libraries
specified by the system value QUSRLIBL to become the user portion of the library
list. If you have specified library names in both the job description and the Batch
Job (BCHJOB) or SBMJOB command, the library names specified in the BCHJOB or
SBMJOB command override both the libraries specified in the job description and
the system value QUSRLIBL.

The following shows the order in which the user part of the library list specified in
QUSRLIBL is overridden by commands for individual jobs:
v A library list can be specified in the job description that, when the job is run,

overrides the library list specified in QUSRLIBL. (See the Work Management topic
of the Systems Management category in the iSeries Information Center for more
information on job descriptions.)

v When a job is submitted either through a BCHJOB command or a SBMJOB
command, a library list can be specified on the command. This list overrides the
library list specified in the job description or in the system value QUSRLIBL.

v When a job is submitted using the SBMJOB command, *CURRENT (the default)
can be specified for the library list. *CURRENT indicates that the library list of
the job issuing the SBMJOB command is used.

v Within a job, an ADDLIBLE, RMVLIBLE, or CHGLIBL command can be used.
These commands override any previous library list specifications.

Chapter 4. Objects and Libraries 105

v The current library for the job can be changed using the CHGCURLIB or
CHGLIBL command.

Instead of entering the CHGLIBL command each time you want to change the
library list, you can place the command in a CL program:
PGM /* SETLIBL - Set library list */
CHGLIBL LIBL(APPDEVLIB QGPL QTEMP)
ENDPGM

If you normally work with this library list, you could set up an initial program to
establish the library list instead of calling the program each time:
PGM /* Initial program for QPGMR */
CHGLIBL LIBL(APPDEVLIB QGPL QTEMP)
TFRCTL PGM(QPGMMENU)
ENDPGM

This program must be created and the user profile to which it will apply changed
to specify the new initial program. Control then transfers from this program to the
QPGMMENU program, which displays the Programmer Menu.

If you occasionally need to add a library to the library list specified in your initial
program, you can use the ADDLIBLE command to add that library to the library
list. For example, the following command adds the library JONES to the end of the
library list:
ADDLIBLE LIB(JONES) POSITION(*LAST)

If part of your job requires a different library list, you can write a CL program that
saves the current library list and later restores it, such as the following program.

PGM
DCL &LIBL *CHAR 2750
DCL &CMD *CHAR 2760

(1) RTVJOBA USRLIBL(&LIBL)
(2) CHGLIBL (QGPL QTEMP)

.

.

.
(3) CHGVAR &CMD ('CHGLIBL (' *CAT &LIBL *TCAT ')')
(4) CALL QCMDEXC (&CMD 2760)

.

.

.
ENDPGM

(1) Command to save the library list. The library list is stored into variable
&LIBL. Each library name occupies 10 bytes (padded on the right with
blanks if necessary), and one blank is between each library name.

(2) This command changes the library list as required by the following
function.

(3) The Change Variable (CHGVAR) command builds a CHGLIBL command
in variable &CMD.

(4) QCMDEXC is called to process the command string in variable &CMD.
The CHGVAR command is required before the call to QCMDEXC because
concatenation cannot be done on the CALL command.

Considerations for Setting Up a Library List
You should consider the following when setting up a library list and using it:

106 CL Programming V5R1

v The libraries in a library list must exist on the system. The system values
QSYSLIBL and QUSRLIBL are accessed when OS/400 is started. If a library in
either of these values does not exist on the system, a message is sent to the
system operator’s message queue (QSYSOPR), the library is ignored, and
OS/400 is started without the library. Once OS/400 is started, no libraries in the
library list of any active job can be deleted. If any library in the library list
specified in the job description or in a Batch Job (BCHJOB) or Submit Job
(SBMJOB) command does not exist or is not available, the job is not started.

v The libraries in a library list must be authorized to all users who need to use
them. To initialize a library list (for example, in a Submit Job [SBMJOB], Job
[JOB], or Create Job Description [CRTJOBD] command), a user must have object
operational authority for the libraries or the job is not started. A user must also
have *USE authority to libraries added to the library list using the Add Library
List Entry (ADDLIBLE) or Change Library List (CHGLIBL) command.

v When a program running under an adopted user profile adds a library to the
library list that the current user is not authorized to and does not remove the
library from the library list before ending the program, the user keeps (*USE
authority) access to the library after the program exits. This only occurs when
*LIBL is specified to access the objects.

v System performance is better when the library list is kept as short as possible.

Displaying a Library List
You can use the Display Library List (DSPLIBL) command to display the library
list for a job currently running. The display contains a list of all the libraries in the
library list in the same order that they appear in the library list.

You can also display the library list for an active job using the Display Job
(DSPJOB) command and selecting option 13 from the Display Job menu.

Using Generic Object Names
Sometimes you may want to search for more than one object (even though only
one might be found) when the object names start with the same characters. This
type of search is called a generic search and can be used on several commands.

To use a generic search, specify a generic name in place of the object name on the
command. A generic name consists of a set of characters common to all the object
names that identifies a group of objects and ends with an * (asterisk). All objects
whose names begin with the specified characters and to which you are authorized
have the requested function performed on them. For example, if you entered the
Display Object Description (DSPOBJD) command using the generic name ORD*,
object descriptions for the objects beginning with ORD are shown.

A generic search can be limited by the following library qualifiers on the generic
name (the library name parameter value is given in parentheses, if applicable):
v A specified library. The operation you requested is performed on the generically

named objects in the specified library only.
v The library list for the job (*LIBL). The libraries are searched in the order they

are listed in the library list. The operation you requested is performed on the
generically named objects in the libraries specified in the library list for the job.

v The current library for the job (*CURLIB). The current library for the job is
searched. If no current library exists, QGPL is used.

v All libraries in the user part of the library list for the job (*USRLIBL). The
libraries are searched in the order they are listed in the library list, including the

Chapter 4. Objects and Libraries 107

current library (*CURLIB). The operation you requested is performed on the
generically named objects in the libraries specified in the user portion of the
library list for the job.

v All user libraries for which you are authorized (*ALLUSR) and the following
libraries that begin with the letter Q are searched:
QDSNX QUSER38 QUSRPOSGS
QGPL QUSRADSM QUSRPOSSA
QGPL38 QUSRBRM QUSRPYMSVR
QMPGDATA QUSRDIRCL QUSRRDARS
QMQMDATA QUSRDIRDB QUSRSYS
QMQMPROC QUSRIJS QUSRVI
QPFRDATA QUSRINFSKR QUSRVxRxMx
QRCL QUSRNOTES
QS36F QUSROND

Note: VxRxMx is version, release, and modification level of the library.

The libraries are searched in alphanumeric order. The following S/36
environment libraries that begin with # are not searched with *ALLUSR
specified: #CGULIB, #COBLIB, #DFULIB, #DSULIB, #RPGLIB, #SDALIB, and
#SEULIB. The operation you requested is performed on the generically named
objects in all the user libraries for which you are authorized.

v All libraries on the system for which you are authorized (*ALL). The libraries
are searched in alphanumeric order. The operation you requested is performed
on the generically named objects in all the libraries on the system for which you
are authorized.

IBM provides information on operations that use generic functions. Refer to the CL
and APIs section of the Programming category in the iSeries Information Center.

Searching for Multiple Objects or a Single Object
In all commands for which you can specify a generic name, you can specify an
object name (no asterisk is specified) and you can search for multiple objects. If
you specify an object name and *ALL or *ALLUSR for the library name, the system
searches for multiple objects, and the search returns objects of the indicated name
and type for which you are authorized. If you specify a generic name, or if you
specify *ALL, *ALLUSR, or a library with an object name, you can specify all
supported object types (or *ALL object types).

Using Libraries
A library is an object used to group related objects and to find objects by name.
Thus, a library is a directory to a group of objects.

You can use libraries to:
v Group certain objects for individual users. This helps you manage the objects on

your system. For example, you might place all the files that a user JOE can use
in a library JOELIB.

v Group all objects used for an individual application. For example, you might
place all your order entry files and programs into an order entry library
DISTLIB. You need only add one library to the library list to ensure that all your
order entry files and programs are in the list. This is advantageous if you do not
want to specify a library name every time you use an order entry file or
program.

v Ensure security. For example, you can specify which users have authority to use
the library and what they are allowed to do with the library.

108 CL Programming V5R1

v Simplify security by having automatic authorization list and public authority
assignment for newly created objects based on the CRTAUT parameter value of
the library. Auditing attributes for newly created objects can be set based on the
Create Object Auditing (CRTOBJAUD) parameter value.

v Simplify save/restore operations by grouping objects that are saved and restored
at the same time into the same library. You can use a Save Library (SAVLIB)
command instead of saving objects individually using the Save Object (SAVOBJ)
command.

v Use multiple libraries for testing. Refer to Appendix A for more information.
v Use multiple production libraries. For example, you can use one production

library for source files and for the creation of objects, one for the application
programs and files, one for objects that are infrequently saved, and one for
objects that are frequently saved.

Multiple libraries make it easier to use objects. For example, you can have two files
with the same name but in different libraries so that one can be used for testing
and the other for normal processing. As long as you do not specify the library
name in your program, the file name in the program does not have to be changed
for testing or normal processing. You control which library is used by using the
library list. (Objects of the same type can have the same names only if they are in
different libraries.)

The two types of libraries are production and test. A production library is for
normal processing. In debug mode, you can protect database files in production
libraries from being updated. While in debug mode, any files in test libraries can
be updated without any unique specifications. (See Appendix A for more
information on using test libraries.)

Creating a Library
To create a library, use the Create Library (CRTLIB) command. For example, the
following CRTLIB command creates a library to be used to contain order entry files
and programs. The library is named DISTLIB and is a production library. The
default authority given to the public prevents a user from accessing the library.
Any object created into the library is given the default public authority of
*CHANGE based on the CRTAUT value.
CRTLIB LIB(DISTLIB) TYPE(*PROD) CRTAUT(*CHANGE) CRTOBJAUD(*USRPRF) +

AUT(*EXCLUDE) TEXT('Distribution library')

You should not create a library with a name that begins with the letter Q. During a
generic search, the system assumes that most libraries with names that begin with
the letter Q (such as QRPG or QPDA) are system libraries. See “Using Generic
Object Names” on page 107 for more information.

Specifying Authority for Libraries
The following describes each of the authorities that can be given to users for

libraries. See the Security - Reference book for more information.

Object Authority
Object operational authority for a library gives the user authority to display the
description of a library.

Object management authority for a library includes authority to:

Chapter 4. Objects and Libraries 109

c4153025.pdf

v Grant and revoke authority. You can only grant and revoke authorities that you
have. Only the object owner or a user with *ALLOBJ authority can grant object
management authority for a library.

v Rename the library.

Object existence authority and use authority gives the user authority to delete a
library.

Object existence authority and object operational authority gives the user
authority to transfer ownership of the library.

Data Authority
Add authority and read authority for a library allows a user to create a new object
in the library or to move an object into the library.

Update authority and execute authority for a library allow a user to change the
name of an object in the library, provided the user is also authorized to the object.

Delete authority allows the user to remove entries from an object. Delete authority
for a library does not allow a user to delete objects in the library. Authority for the
object in the library is used to determine if the object can be deleted.

Execute authority allows the user to search the library for an object.

Combined Authority
*USE authority for a library (consisting of object operational authority, read
authority, and execute authority) includes authority to:
v Use a library to find an object
v Display library contents
v Place a library in the library list
v Save a library (if sufficient authority to the object)
v Delete objects from the library (if the user is authorized to the object in the

library)

*CHANGE authority for a library (consisting of object operational authority and
all data authorities to the library) includes authority to:
v Use a library to find an object
v Display library contents
v Place a library in the library list
v Save a library (if sufficient authority to the object)
v Delete objects from the library (if the user is authorized to the object in the

library)
v Add objects to the library.

*ALL authority provides all object authorities and data authorities. The user can
delete the library, specify the security for the library, change the library, and
display the library’s description and contents.

*EXCLUDE authority prevents users from accessing an object.

To display the authority associated with your library, you may use the Display
Object Authority (DSPOBJAUT) command.

110 CL Programming V5R1

Security Considerations for Objects
When the system accesses an object that you refer to, it checks to determine if you
are authorized to use the object and to use it in the way you are requesting.
Generally, you must be authorized at two levels:
v You must be authorized to use the object on which you have requested a

function to be performed.
v You must be authorized to the library containing the object. If a library list is

used, you must be authorized to the libraries in the list.

Object authority is controlled by the system’s security functions, which include the
following:
v An object owner and users with *ALLOBJ special authority have all authority for

an object, and can grant and revoke authority to and from other users.
v Users have public authority when private authority has not been granted to

them for the object.

The Security - Reference book explains in detail the types of authority that can
be granted for an object and what authority a user needs to perform a function on
that object. Authority that can be granted for libraries is discussed under
“Specifying Authority for Libraries” on page 109.

Special considerations apply when writing a program that must be secure (for
example, a program that adopts the security officer’s user profile). See the Security

- Reference book for information about writing these programs.

Display Audit Journal Entries (DSPAUDJRNE) Command
The Display Audit Journal Entries (DSPAUDJRNE) command allows you to
generate security journal audit reports. The reports are based on the audit entry
types and the user profile that are specified on the command. You can limit reports
to specific time frames, and you can search detached journal receivers. You can
direct these reports to the active display or an output queue.

RESTRICTIONS: You must have *ALLOBJ and *AUDIT authorities to use this
command.

Refer to online help to see the parameter and value descriptions for this command.

Default Public Authority for Newly Created Objects
When objects are created in a library, the public authority for the object will, by
default, be set by using the CRTAUT value of the library.

By specifying:
CRTLIB LIB(TESTLIB) CRTAUT(*USE) AUT(*LIBCRTAUT)

The library TESTLIB is created. All objects created into library TESTLIB will, by
default, have public authority of *USE. The public authority for library TESTLIB is
determined by the CRTAUT value of library QSYS.

By specifying:

Chapter 4. Objects and Libraries 111

c4153025.pdf
c4153025.pdf
c4153025.pdf

CRTDTAARA DTAARA(TESTLIB/DTA1) TYPE(*CHAR) +
AUT(*LIBCRTAUT)

CRTDTAARA DTAARA(TESTLIB/DTA2) TYPE(*CHAR) +
AUT(*EXCLUDE)

Data area DTA1 is created into library TESTLIB. The public authority of DTA1 is
*USE based on the CRTAUT value of library TESTLIB.

Data area DTA2 is created into library TESTLIB. The public authority of DTA2 is
*EXCLUDE. *EXCLUDE was specified on the AUT parameter of the Create Data
Area (CRTDTAARA) command.

An authorization list can also be used to secure an object when it is created into a
library.

By specifying:
CRTAUTL AUTL(PAYROLL)
CRTLIB LIB(PAYLIB) CRTAUT(PAYROLL) +

AUT(*EXCLUDE)

An authorization list called PAYROLL is created. Library PAYLIB is created with
the public authority of *EXCLUDE. By default, an object created into library
PAYLIB is secured by authorization list PAYROLL.

By specifying:
CRTPF FILE(PAYLIB/PAYFILE) +

AUT(*LIBCRTAUT)

CRTPF FILE(PAYLIB/PAYACC) +
AUT(*CHANGE)

File PAYFILE is created into library PAYLIB. File PAYFILE is secured by
authorization list PAYROLL. The public authority of file PAYFILE is set to *AUTL
as part of the Create Physical File (CRTPF) command. *AUTL indicates that the
public authority for file PAYFILE is taken from the authorization list securing file
PAYFILE, which is authorization list PAYROLL.

File PAYACC is created into library PAYLIB. The public authority for file PAYACC
is *CHANGE since it was specified on the AUT parameter of the CRTPF command.

Note: The *LIBCRTAUT value of the AUT parameter that exists on most CRT
commands indicates that the public authority for the object is set to the
CRTAUT value of the library that the object is being created into.

The CRTAUT value on the library specifies the default authority for public use of
the objects created into the library. These possible values are:

*SYSVAL
The public authority for the object being created is the value specified in
system value QCRTAUT

*ALL All public authorities

*CHANGE
Change authority

*USE Use authority

112 CL Programming V5R1

*EXCLUDE
Exclude authority

authorization list name
The authorization list secures the object

Default Auditing Attribute for Newly Created Objects
When objects are created in a library, the auditing attribute of the object will, by
default, be set by using the CRTOBJAUD value of the library.

By specifying:
CRTLIB LIB(PAYROLL) AUT(*EXCLUDE) CRTAUT(*EXCLUDE) CRTOBJAUD(*ALL)

all objects created into the payroll library are audited for both read and change

access. See the Security - Reference book for details on auditing.

Placing Objects in Libraries
When you create an object, it is placed in a library. If you do not specify a library,
the object is placed in the current library for the job (*CURLIB) or, if there is no
current library for the job, in QGPL. When a library is created, you can specify the
public authority for objects created in the library by using the CRTAUT parameter
on the Create Library (CRTLIB) command. All objects placed in that library will
assume the specified public authority on the CRTAUT value of the library. To
specify a library, you specify a qualified name; that is, a library name and an object
name. For example, the following Create Physical File (CRTPF) command creates
an order entry physical file ORDHDRP to be placed in DISTLIB.
CRTPF FILE(DISTLIB/ORDHDRP)

To place an object in a library, you must have read and add authorities for the
library.

More than one object of the same type cannot have the same name and be in the
same library. For example, two files with the name ORDHDRP cannot both be in
the library DISTLIB. If you try to place into a library an object of the same name
and type as an object already in the library, the system rejects the request and
sends you a message indicating the reason.

Note: Use the QSYS library for system objects only. Do not restore other licensed
programs to the QSYS library because changes are lost when installing a
new release of OS/400.

Deleting and Clearing Libraries
When you delete a library with the Delete Library (DLTLIB) command, you delete
the objects in the library as well as the library itself. When you clear a library with
the Clear Library (CLRLIB) command, you delete objects in the library without
deleting the library. To delete or clear a library, all you need to specify is the
library name. For example:
DLTLIB LIB(DISTLIB)

or:
CLRLIB LIB(DISTLIB)

Chapter 4. Objects and Libraries 113

c4153025.pdf

To delete a library, you must have object existence authority for both the library
and the objects within the library, and use authority for the library. If you try to
delete a library but do not have object existence authority for all the objects in the
library, the library and all objects for which you do not have authority are not
deleted. All objects for which you have authority are deleted. If you try to delete a
library but do not have object existence authority for the library, not only is the
library not deleted, but none of the objects in the library are deleted. If you want
to delete a specific object (for which you have object existence authority), you can
use a delete command for that type of object, such as the Delete Program
(DLTPGM) command.

You cannot delete a library in an active job’s library list. You must wait until the
end of the job before the deletion of the library is allowed. Because of this, you
must delete the library before the next routing step begins. When you delete a
library, you must be sure no one else needs the library or the objects within the
library.

If a library is part of the initial library list defined by the system values QSYSLIBL
and QUSRLIBL, the following steps should be followed to delete the library:
1. Use the Change System Value (CHGSYSVAL) command to remove the library

from the system value it is contained in. (The changed system value does not
affect the library list of any jobs running.)

2. Use the Change Library List (CHGLIBL) command to change the job’s library
list.
The Change System Library List (CHGSYSLIBL), Add Library List Entry
(ADDLIBLE), Edit Library List (EDTLIBL), and Remove Library List Entry
(RMVLIBLE) commands are also used to change the library list.

3. Use the DLTLIB command to delete the library and the objects in the library.

Note: You cannot delete the library QSYS and should not delete any objects in it.
You may cause the system to end because the system needs objects that are
in QSYS to operate properly. You should not delete the library QGPL
because it also contains some objects that are necessary for the system to be
able to perform effectively. You should not use the library QRECOVERY
because it is intended for system use only. The library QRECOVERY
contains objects that the system needs to operate properly.

For concerns about deleting objects other than libraries, see “Deleting Objects” on
page 136.

To clear a library, you must have object existence authority for the objects within
the library and use authority for the library. If you try to clear a library but do not
have object existence authority for all the objects in the library, the objects you do
not have authority for are not deleted from the library. If an object is allocated to
someone else, it is not deleted.

Displaying Library Names and Contents
You can use the Display Library (DSPLIB) or Work with Libraries (WRKLIB)
command to display or print all the libraries you have authority to and find basic
information on each object within the libraries.

The object information includes:
v The name and type of the object
v The attributes of the object

114 CL Programming V5R1

v The size of the object
v The description entered for the object when it was created

On the DSPLIB command, you can also specify a specific library name or names,
in which case you bypass the library selection display. In this list, the objects are
grouped by library; within each library, they are grouped by object type; within
each type, they are listed in alphanumeric order. The order of the libraries is one of
the following:
v If libraries are specified on the DSPLIB command, the libraries are displayed in

the order they are specified in the display command.
v If *LIBL or *USRLIBL is specified on the DSPLIB command, the order of the

libraries matches the order of the libraries in the library list for the job.
v If *ALL or *ALLUSR is specified on the DSPLIB command, the order of the

libraries is in alphanumeric order. The user must have read authority for the
library to be displayed.

For example, the following DSPLIB command displays a list of the objects
contained in DISTLIB:
DSPLIB LIB(DISTLIB) OUTPUT(*)

The asterisk (*) for the OUTPUT parameter means that the libraries are to be
shown at the display station if in interactive processing and printed if in batch
processing. To print a list when in interactive processing, specify *PRINT instead of
taking the default *.

See the CL and APIs section of the Programming category in the iSeries
Information Center for more information and sample displays for the DSPLIB
command.

Displaying and Retrieving Library Descriptions
You can use the Display Library Description (DSPLIBD) and Retrieve Library
Description (RTVLIBD) commands to display and retrieve the description of
libraries.

The library description information includes:
v Type of library (either PROD or TEST)
v Auxiliary storage pool of the library
v Create authority of the library
v Create object auditing of the library
v Text description of the library

OS/400 Globalization
The OS/400 licensed program supports different national languages on the same
system. This allows information in one national language to be presented to one
user while information in a different national language is presented to another
user.

The language used for user-readable information (displays, messages, printed
output, and online help information) is controlled by the library list for the job. By
adding a national language library to the system portion of the library list,
different national language versions of information can be presented. For the

Chapter 4. Objects and Libraries 115

primary language, a national language version is the running code and textual
data for each licensed program entered. For the secondary language, it is the
textual data for all licensed programs.

The language information for the primary language of the system is stored in the
same libraries as the programs for IBM licensed programs. For example, if the
primary national language of the system is English, then libraries such as QSYS,
QHLPSYS, and QSSP contain information in English. Libraries QSYS and
QHLPSYS are on the system portion of the library list. Libraries for other licensed
programs (such as QRPGLE for ILE RPG for OS/400*) are added to the library list
by the system when they are needed.

National language versions other than the system primary language are installed
in secondary national language libraries. Each secondary language library contains
a single national language version of the displays, messages, commands prompts,
and help for all IBM licensed programs. The name of a secondary language library
is in the form QSYSnnnn, where nnnn is a language feature code. For example, the
feature code for French is 2928, so the secondary national language library name
for French is QSYS2928.

If a user wants information presented in the primary national language of the
system, no special action is required. To present information in a national language
different from the primary national language of the system, the user must change
the library list so that the desired national language library is positioned before all
other libraries in the library list that contains national language information. You
can use any of the following options to position the desired national language
library first:
v You can use the SYSLIBLE parameter on the CRTSBSD or CHGSBSD to present

displays, messages, and so on for a specific language. For example:
CRTSBSD SBSD(QSBSD 2928) POOLS((1 *NOTSG)) SYSLIBLE(QSYS2928)

v You can use the LIB parameter on the CHGSYSLIBL command to specify the
desired national language library at the top of the library list. For example:
CHGSYSLIBL LIB(QSYS2928)

v You can set up an initial program in the user profile to specify the desired
national library at the top of the library list for an interactive job. This is a good
option if the user does not want to run the CHGSYSLIBL command at every
sign-on. The initial program uses the Change System Library List (CHGSYSLIBL)
command to add the desired national language library to the top of the library
list.

Note: The authority shipped with the CHGSYSLIBL command does not allow
all users to run the command.

To enable a user to run the CHGSYSLIBL command without granting the user
rights to the command, you can write a CL program containing the CHGSYSLIBL
command. The program is owned by the security officer, and adopts the security
officer’s authority when created. Any user with authority to run the program can
use it to change the system part of the library list in the user’s job. The following is
an example of a program to set the library list for a French user.
PGM

CHGSYSLIBL LIB(QSYS2928) /* Use French information */
ENDPGM

116 CL Programming V5R1

Describing Objects
Whenever you use a create command to create an object, you can describe the
object in a 50-character field on the TEXT parameter of the create command. Some
commands allow a default of *SRCMBRTXT which indicates the text for the object
being created is to be taken from the text of the source member from which the
object is being created. This is valid only for objects created from source in
database source files.

If the source input for the create command is a device or inline file, or if source is
not used, the default value is blank. This text becomes part of the object
description and can be displayed using the Display Object Description (DSPOBJD)
or Display Library (DSPLIB) command. The text can be changed using the Change
Object Description (CHGOBJD) command or many of the Change (CHGxxx)
commands that are specific to each object type.

Displaying Object Descriptions
You can use the Display Object Description (DSPOBJD) or Work with Objects
(WRKOBJ) command to display descriptions of objects. These descriptions are
helpful for determining if objects exist on the system but are not being used. If you
are using batch processing, the descriptions can be printed or written to a database
file. If you are using interactive processing, the descriptions can be displayed,
printed, or written to a database file.

You can display basic, full, or service attributes for object descriptions. These object
descriptions are found in the following table:

Chapter 4. Objects and Libraries 117

Table 2. Attributes Displayed for Object Descriptions

Basic Attributes Full Attributes
Service Attributes (see
Notes)

v Object name

v Library name

v Object type

v Extended attribute

v Object size

v Text description (partial)

v Object name

v Library name

v Object type

v Owner

v Primary Group

v Extended attribute

v User-defined attribute

v Text description

v Creation date and time

v User who created object

v System object created on

v Object domain

v Change date and time

v Whether or not usage data
collected

v Last used date

v Days used count

v Days used count reset date

v Allow change by program

v Object auditing value

v Digitally signed

v Object size

v Offline size

v Freed status

v Compression status

v Auxiliary storage pool

v Object overflowed

v Journaling status

v Current or last journal

v Journal images

v Journal entries omitted

v Journal start date and time

v Save operation date and time

v Restore operation date and time

v Save command

v Device type

v Object name

v Library name

v Object type

v Source file and
library

v Member name

v Extended attribute

v User-defined
attribute

v Freed status

v Object size

v Creation date and
time

v Date and time
member in source
file was last updated

v System level

v Compiler

v Object control level

v Changed by
program

v Whether or not
changed by user

v Licensed program

v PTF number

v APAR ID

v Text description of
object or object
status conditions

Notes:

1. The service information is used by programming support personnel to
determine the level of the system on which an object was created and whether
or not the object has been changed since it was shipped. Some of this
information may be helpful to you because it indicates the source member used
to create an object and the last date of change to that source from which the
object was created.

118 CL Programming V5R1

2. Library objects contain only the names of the objects included in the library. If
DSPOBJD for object type *LIB is used, the object size information refers to the
size of the library object only, not the total size of the objects included in the
library.
You can use either the Retrieve Library Description API (QLIRLIBD) or the
command DSPLIB OUTPUT(*PRINT) to find the total size of the library.

Using the DSPOBJD or WRKOBJ command, you can list the objects in a library for
which you are authorized by:
v Name
v Generic name
v Type
v Name or generic name within object type

The objects are listed by library; within a library, they are listed by type. Within
object type, the objects are listed in alphanumeric order.

You may want to use the DSPOBJD command in a batch job if you want to display
many objects with the *FULL or *SERVICE option. The output can go to a spooled
printer file and be printed instead of being shown at the display station, or the
output can go to a database file. If you direct the output to a database file, all the
attributes of the object are written to the file. Use the Display File Field Description
(DSPFFD) command for file QADSPOBJ, in library QSYS, to view the record
format for this file.

The following command displays the descriptions of the order entry files (that is,
the files in DISTLIB) whose names begin with ORD. ORD* is the generic name.
DSPOBJD OBJ(DISTLIB/ORD*) OBJTYPE(*FILE) +

DETAIL(*BASIC) OUTPUT(*)

The resulting basic display is:

Display Object Description - Basic
Library 1 of 1

Library: DISTLIB

Type options, press Enter.
5=Display full attributes 8=Display service attributes

Opt Object Type Attribute Size Text
_ ORDDTLP *FILE PF 8192 Order detail
_ ORDHDRP *FILE PF 8192 Order header

Bottom
F3=Exit F12=Cancel F17=Top F18=Bottom

If you specify *FULL instead of *BASIC or if you enter a 5 in front of ORDDTLP
on the basic display, the resulting full display is:

Chapter 4. Objects and Libraries 119

Display Object Description - Full
Library 1 of 1

Object : ORDDTLP Attribute : PF
Library : DISTLIB Owner : QSECOFR

Type : *FILE Primary group : *NONE
User-defined information:

Attribute :
Text :

Creation information:
Creation date and time : 06/08/89 10:17:03
Created by user : QSECOFR
System created on : SYSTEM01
Object domain : *SYSTEM

Change/Usage information:
Change date/time : 05/11/90 10:03:02
Usage data collected : YES
Last used date : 05/11/90
Days used count : 20
Reset date : 03/10/90
Allow change by program : YES

Auditing information:
Object auditing value : *NONE
Digitally signed : NO

Press Enter to continue.
F3=Exit F12=Cancel (C) COPYRIGHT IBM CORP. 1980, 1993.

Display Object Description - Full
Library 1 of 1

Object : ORDDTLP Attribute : PF
Library : DISTLIB Owner : QSECOFR

Type : *FILE

Storage information:
Size : 8192
Offline size : 0
Freed : NO
Compressed : NO
Auxiliary storage pool : 1

Object overflowed : NO
Journaling information:

Currently journaled : NO
Save/Restore information:

Save date/time :
Restore date/time :
Save command :
Device type :

Bottom
Press Enter to continue.

F3=Exit F12=Cancel
(C) COPYRIGHT IBM CORP. 1980, 1993.

Retrieving Object Descriptions
You can use the Retrieve Object Description (RTVOBJD) command to return the
descriptions of a specific object to a CL procedure. Variables are used to return the
descriptions. You can use these descriptions to help you detect unused objects on
the system.

The command can return the following descriptions as variables for an object:
v The name of the library that contains the object
v Any extended attribute of an object (such as program or file type)
v User-defined attribute
v Text description of the object

120 CL Programming V5R1

v Name of the object owner’s user profile
v Name of the primary group for the object
v Auxiliary storage pool ID
v Indication of whether or not the object overflowed the ASP in which it resides
v Date and time the object was created
v Date and time the object was last changed
v Date and time the object was last saved
v Date and time the object was last saved during a SAVACT (*LIB, *SYSDFN, or

*YES) save operation
v Date and time the object was last restored
v Name of the object creator’s user profile
v System the object was created on
v Object domain
v Whether or not usage data was collected
v Date the object was last used
v Count (number) of days the object was used
v Date the use count was last reset
v Storage status of the object data
v Compression status of the object
v Size of the object in bytes
v Size of the object in bytes of storage at the time of the last save
v Command used to save the object
v Tape sequence number generated when the object was saved on tape
v Tape or diskette volumes used for saving the object
v Type of the device the object was last saved to
v Name of the save file if the object was saved to a save file
v Name of the library that contains the save file if the object was saved to a save

file
v File label used when the object was saved
v Name of the source file that was used to create the object
v Name of the library that contains the source file that was used to create the

object
v Name of the member in the source file
v Date and time the member in the source file was last updated
v Level of the operating system when the object was created
v Licensed program identifier, release level, and modification level of the compiler
v Object control level for the created object
v Information about whether or not the object can be changed by the Change

Object Description (QLICOBJDD) API
v Indication of whether or not the object has been modified with the Change

Object Description (QLICOBJD) API
v Information about whether or not the program was changed by the user
v Name, release level, and modification level of the licensed program if the

retrieved object is part of a licensed program
v Program Temporary Fix (PTF) number that resulted in the creation of the

retrieved object

Chapter 4. Objects and Libraries 121

v Authorized Program Analysis Report (APAR) identification
v Type of auditing for the object
v Whether or not the object is digitally signed
v Current journal status for the object
v Current or last journal
v Journal image information
v Journal entries to be omitted information
v The date and time that journaling was last started

RTVOBJD Example
In the following CL procedure, a RTVOBJD command retrieves the description of a
specific object. Assume an object called MOBJ exists in the current library (MYLIB).
DCL &LIB TYPE(*CHAR) LEN(10)
DCL &CRTDATE TYPE(*CHAR) LEN(13)
DCL &USEDATE TYPE(*CHAR) LEN(13)
DCL &USECNT TYPE(*DEC) LEN(5 0)
DCL &RESET TYPE(*CHAR) LEN(13)
.
.
.
RTVOBJD OBJ(MYLIB/MOBJ) OBJTYPE(*FILE) RTNLIB(&LIB)

CRTDATE(&CRTDATE) USEDATE(&USEDATE)
USECOUNT(&USECNT) RESETDATE(&RESET)

The following information is returned to the program:
v The current library name (MYLIB) is placed into the CL variable name &LIB.
v The creation date of MOBJ is placed into the CL variable called &CRTDATE.
v The date that MOBJ was last used is placed into the CL variable called

&USEDATE.
v The number of days that MOBJ has been used is placed into the CL variable

called &USECNT. The start date of this count is the value placed into the CL
variable called &RESET.

Creation Information for Objects
The following information is provided in the object description and is set when the
object is created. It is useful for object management and maintenance.
v Creator of the object

– The creator of the object is the user profile that is performing the create
operation. This is true even if the user profile has a group profile and the
group profile owns the object.

– The creator of the object does not change when the ownership changes.
– The creator is the creator of the object on the media when an object is

restored.
– The creator of the object is the user running the command when an object is

duplicated using the Create Duplicate Object (CRTDUPOBJ) command.
– The creator is *IBM for IBM-supplied objects.
– The creator of the object is blank for user objects that already existed on the

system before Version 1, Release 3.0.
v System on which the object was created

– When an object is restored, the system created on is the system the object on
the media was created on.

122 CL Programming V5R1

– For IBM-supplied objects, the system created on is 00000000.

– For objects that already existed on the system before Version 1, Release 3.0,
the system that is created is blank.

Detecting Unused Objects on the System
Information provided in the object description can help you detect and manage
unused objects on the system.

To detect an unused object, look at both the last-used date and the last-changed
date. Change commands do not update the last-used date unless the commands
cause the object to be deleted and created again, or the change operation causes
the object to be read as a part of the change.
v Date and time of last change

– When an object is created or changed, the system time stamps the object,
indicating the date and time the change occurred.

v Date of last use
– The date of last use is only updated once per day (the first time an object is

used in a day). The system date is used.
– An unsuccessful attempt to use an object does not update the last used date.

For example, if a user tries to use an object for which the user is not
authorized, the date of last use does not change.

– The date of last use is blank for new objects.
– When an object that already exists on the system is restored, the date of last

use comes from the object on the system. If it does not already exist when
restored, the date is blank.

– Objects that are deleted and re-created during the restore operation lose the
date of last use.

– The last used date for a database file is not updated when the number of
members in the file is zero. For example, if you use the CRTDUPOBJ to copy
objects and there are no members in the database file, the last used date is not
updated.

– The last used date for a database file is the last used date of the file member
with the most current last used date.

– For logical files, the last used date is the last time a logical member (or
cursor) was used.

– For physical files, the last used date is the last time the data in the data space
was used through a physical or logical access.

Table 3 contains additional information about operations that cause the last-used
date to be updated for various object types.

Table 3. Updating Usage Information

Type of Object Commands and Operations

All object types Create Duplicate Object (CRTDUPOBJ) command and
other commands, such as the Copy Library (CPYLIB)
command, that use CRTDUPOBJ to copy objects.

Grant Object Authority (GRTOBJAUT) command (for
referenced objects)

Chapter 4. Objects and Libraries 123

Table 3. Updating Usage Information (continued)

Type of Object Commands and Operations

AS/400® Advanced 36® Machine CHGM36 command, change S/36* machine

Actual running of a S/36 machine (each day it runs,
the use count is updated)

AS/400 Advanced 36 Machine
Configuration

CRTM36CFG (when FROMM36CFG is specified),
CHGM36CFG, DSPM36CFG, STRM36

Binding directory When bound with another module or binding directory
to create a bound program (CRTPGM command) or
bound service program (CRTSRVPGM command).
When updated on the Update Program UPDPGM
command or Update Service Program (UPDSRVPGM
command).

Change Request Description Change Command Change Request Activity
(CHGCMDCRQA)

Chart format Display Chart (DSPCHT) command

C locale description Retrieve C Locale Description Source (RTVCLDSRC)
command or when referred to in a C program

Class When used to start a job

Command When run

When compiled in a CL program

When prompted during entry of source entry utility
(SEU) source

When calling the system in check mode
Note: Prompting from the command line and then
pressing F3 is not counted as a use of a command.

Communications side information
(CSI)

When the CPI-Communications Initialize Conversation
(CMINIT) call is used to initialize values for various
conversation characteristics from the side information
object.

Connection list When the connection list goes beyond status of vary on
pending

Cross system product map When referred to in a CSP application

Cross system product table When referred to in a CSP application

Controller description When the controller goes beyond status of vary on
pending

Device description When the device goes beyond status of vary on
pending

Data area Retrieve Data Area (RTVDTAARA) command

Display Data Area (DSPDTAARA) command

124 CL Programming V5R1

Table 3. Updating Usage Information (continued)

Type of Object Commands and Operations

Data queue Usage information for the following APIs is updated
only once per job (the first time one of the APIs is
initiated).

Send Data Queue (QSNDDTAQ) API

Receive Data Queue (QRCVDTAQ) API

Retrieve Data Queue (QMHQRDQD) API

Read Data Queue (QMHRDQM) API

File (database file only unless
specified otherwise)

When closed (other files, such as device and save files,
also updated when closed)

When cleared

When initialized

When reorganized

Commands:

v Apply Journaled Changes (APYJRNCHG) command

v Remove Journaled Changes (RMVJRNCHG)
command

Font resource When referred to during a print operation

Form definition When referred to during a print operation

Graphics symbol set When referred to by a GDDM* or PGR graphics
application program

When loaded internally or using GSLSS

Job description When used to establish a job

Job schedule When the system submits a job for a job schedule entry

Job queue When an entry is placed on or removed from the
queue

Line description When the line goes beyond status of vary on pending

Locale Retrieve locale API QLGRTVLC

When a job starts if the user profile LOCALE value
contains a path name to a valid *LOCALE object.

Management collection Only updated by commands and operations that affect
all object types.

Media definition The SAVLIB, SAVOBJ, RSTLIB, RSTOBJ, SAVCHGOBJ
commands; as well as, the BRMS and QSRSAVO API.

Menu When a menu is displayed using the GO command

Chapter 4. Objects and Libraries 125

Table 3. Updating Usage Information (continued)

Type of Object Commands and Operations

Message files When a message is retrieved from a message file other
than QCPFMSG, ##MSG1, ##MSG2, or QSSPMSG (such
as when a job log is built, a message queue is
displayed, help is requested on a message in the QHST
log, or a program receives a message other than a mark
message)

Merge Message File (MRGMSGF) command except
when the message file is QCPFMSG, ##MSG1, ##MSG2,
or QSSPMSG

Message queue When a message is sent to, received from, or listed
message queue other than QSYSOPR and QHST

Module When bound with another module or binding directory
to create a bound program (CRTPGM command) or
bound service program (CRTSRVPGM command).
When updated on the Update Program UPDPGM
command or Update Service Program (UPDSRVPGM
command).

Network interface description When the network interface description goes beyond
status of vary on pending

Node List Only updated by commands and operations that affect
all object types

Output queue When an entry is placed on or removed from the
queue

Overlay When referred to during a print operation

Page definition When referred to during a print operation

Page segment When referred to during a print operation

Panel group When the Help key is used to request help information
for a specific prompt or panel, the date of usage is
updated

When a panel is displayed or printed from a panel
group

Print descriptor group When referred to during a print operation

Product Availability Only updated by commands and operations that affect
all object types

Product Load Only updated by commands and operations that affect
all object types

Program Retrieve CL Source (RTVCLSRC) command

When run and not a system program

PSF Configuration When referred to during a print operation

Query definition When used to generate a report

When extracted or exported

Query manager form When used to generate a report

When extracted or exported

Query manager query When used to generate a report

When extracted or exported

126 CL Programming V5R1

Table 3. Updating Usage Information (continued)

Type of Object Commands and Operations

Search index When the F11 key is used through the online help
information

When the Start Search Index (STRSCHIDX) command
is used

Server storage Vary Configuration (VRYCFG) is run against a network
server description object

Service program When a bound service program is activated

SQL Package Only updated by commands and operations that affect
all object types

Subsystem description When subsystem is started

Spelling aid dictionary When used to create another dictionary

When retrieved

When a word is found in the dictionary during a spell
check and the dictionary is not an IBM-supplied
spelling aid dictionary

Table When used by a program for translation

User profile When a job is initiated for the profile

When the profile is a group profile and a job is started
using a member of the group

Grant User Authority (GRTUSRAUT) command (for
referenced profile)

Workstation User Customization Only updated by commands and operations that affect
all object types

When the user takes ’Option 10 = submit immediately’
from the WRKJOBSCDE panel

The following is additional object usage information provided in the object
description:
v Counter of number of days used

– The count is increased when the date of last use is updated.
– When an object that already exists on the system is restored, the number of

days used comes from the object on the system. If it does not already exist
when restored, the count is zero.

– Objects that are deleted and re-created during the restore operation lose the
days used count.

– The days used count is zero for new objects.

Note: The iSeries server cannot determine the difference between old and new
device files. If you restore a device file on to the system and a device
file of that same name already exists, delete the existing file if you
want the days used count to be reset to zero. If the file is not deleted,
the system will interpret this as a restore operation of an old object and
retain the days used count.

Chapter 4. Objects and Libraries 127

– The days used count for a database file is the sum of the days used counts for
all file members. If there is an overflow on the sum, the maximum value (of
the days used counts field) is shown.

v Date days used count was reset
– When the days used count is reset using the Change Object Description

(CHGOBJD) command or the Change Object Description (QLICOBJD) API,
the date is recorded. The user then knows how long the days used count has
been active.

– If the days used count is reset for a file, all of the members have their days
used count reset.

Common situations that can delete the days used count and the last used date are
as follows:
v Restoring damaged objects on the system.
v Restoring programs when the system is not in a restricted state.

The Display Object Description (DSPOBJD) command can be used to display a full
description of an object. You can use the same command to write the description to
an output file. To retrieve the descriptions, use the Retrieve Object Description
(RTVOBJD) command.

Note: The application programming interface (API), QSUROBJD, provides the
same information as the Retrieve Object Description command. For more
information, see the CL and APIs section of the Programming category for
the iSeries Information Center.

The Retrieve Member Description (RTVMBRD) command and Display File
Description (DSPFD) command provide similar information for members in a file.

Object usage information is not updated for the following object types:
v Alert table (*ALRTBL)
v Authorization list (*AUTL)
v Configuration list (*CFGL)
v Class-of-service description (*COSD)
v Data Dictionary (*DTADCT)
v Document (*DOC)
v Double-byte character set dictionary (*IGCDCT)
v Double-byte character set sort (*IGCSRT)
v Double-byte character set table (*IGCTBL)
v Edit description (*EDTD)
v Exit Registration (*EXITRG)
v Filter (*FTR)
v Forms control table (*FCT)
v Folder (*FLR)
v Internet Packet Exchange Description (*IPXD)
v Journal (*JRN)
v Journal receiver (*JRNRCV)
v Library (*LIB)
v Mode description (*MODD)
v Network Server Description (*NWSD)

128 CL Programming V5R1

v NetBIOS Description (*NTBD)
v Product definition (*PRDDFN)
v Reference code translation table (*RCT)
v Session description (*SSND)
v S/36 machine description (*S36)
v User-defined SQL type (SQLUDT)
v User queue (*USRQ)

Moving Objects from One Library to Another
You can use the Move Object (MOVOBJ) command to move objects between
libraries. Moving objects from one library to another is useful in that you make an
object temporarily unavailable and it lets you replace an out-of-date version of an
object with a new version. For example, a new primary file can be created to be
temporarily placed in a library other than the one containing the old primary file.
Because the data in the old primary file is normally copied to the new primary file,
the old primary file cannot be deleted until the new primary file has been created.
Then, the old primary file can be deleted and the new primary file can be moved
to the library that contained the old primary file.

You can only move an object if you have object management authority for the
object, delete and execute authority for the library the object is being moved from,
and add and read authority to the library the object is being moved to.

You can move an object out of the temporary library, QTEMP, but you cannot
move an object into QTEMP. Also, you cannot move an output queue unless it is
empty.

Moving journals and journal receivers is limited to moving these object types back
into the library in which they were originally created. If the journal objects have
been placed into QRCL by a Reclaim Storage (RCLSTG) command, they must be
moved back into their original library to be made operational.

The following is a list of objects that cannot be moved:
v Authorization lists (*AUTL)
v Class-of-service descriptions (*COSD)
v Cluster resource group (*CRG)
v Configuration lists (*CFGL)
v Connection lists (*CNNL)
v Controller descriptions (*CTLD)
v Data dictionaries (*DTADCT)
v Double-Byte Character Set (DBCS) font tables (*IGCTBL)
v Device descriptions (*DEVD)
v Display station message queues (*MSGQ)
v Documents (*DOC)
v Edit descriptions (*EDTD)
v Exit registration (*EXITRG)
v Folders (*FLR)
v Internet Packet Exchange Description (*IPXD)
v Job schedules (*JOBSCD)

Chapter 4. Objects and Libraries 129

v Libraries (*LIB)
v Line descriptions (*LIND)
v Mode descriptions (*MODD)
v NetBIOS description (*NTBD)
v Network interface descriptions (*NWID)
v Structured Query Language (SQL) packages (*SQLPKG)
v System/36™ machine descriptions (*S36)
v The system history log (QHST)
v The system operator message queue (QSYSOPR)
v User-defined SQL type (*SQLUDT)
v User profiles (*USRPRF)

In the following example, a file from QGPL (where it was placed when it was
created) is moved to the order entry library DISTLIB so that it is grouped with
other order entry files.

To move the object, you must specify the to-library (TOLIB) as well as the object
type (OBJTYPE):
MOVOBJ OBJ(QGPL/ORDFILL) OBJTYPE(*FILE) TOLIB(DISTLIB)

When you move objects, you should be careful not to move objects that other
objects depend on. For example, CL procedures may depend on the command
definitions of the commands used in the procedure to be in the same library at run
time as they were at module creation time. At compile time and at run time, the
command definitions are found either in the specified library or in a library in the
library list if *LIBL is specified. If a library name is specified, the command
definitions must be in the same library at run time as they were at compile time. If
*LIBL is specified, the command definitions can be moved between compile time
and program run time as long as they are moved to a library in the library list.
Similarly, any application program you write can depend on certain objects being
in specific libraries.

An object referring to another object may be dependent on the location of that
object (even though *LIBL can be specified for the location of the object). Therefore,
if you move an object, you should change any references to it in other objects. The
following lists examples of objects that refer to other objects:
v Subsystem descriptions refer to job queues, classes, message queues, and

programs.
v Command definitions refer to programs, message files, help panel groups, and

source files that are containing REXX procedures.
v Device files refer to output queues.
v Device descriptions refer to translation tables.
v Job descriptions refer to job queues and output queues.
v Database files refer to other database files.

130 CL Programming V5R1

v Logical files refer to physical files or format selections.
v User profiles refer to programs, menus, job descriptions, message queues, and

output queues.
v CL programs refer to display files, data areas, and other programs.
v Display files refer to database files.
v Printer files refer to output queues.

Note: You should be careful when moving objects from the system library QSYS.
These objects are necessary for the system to perform effectively and the
system must be able to find the objects. This is also true for some of the
objects in the general-purpose library QGPL, particularly for job and output
queues.

The MOVOBJ command moves only one object at a time.

Creating Duplicate Objects
You can use the Create Duplicate Object (CRTDUPOBJ) command to create a copy
of an existing object. The duplicate object has the same object type and
authorization as the original object and is created into the same auxiliary storage
pool (ASP) as the original object. The user who issues the command owns the
duplicate object.

Notes:

1. If you create a duplicate object of a journaled file, the duplicate object (file) will
not have journaling active. However, you can select this object for journaling
later. If you create a duplicate object and the object (file) has no members, the
last used date field is blank and the count for number of days used is zero.

You can duplicate an object if you have object management and use authority for
the object, use and add authority for the library in which the duplicate object is to
be placed, use authority for the library in which the original object exists, and add
authority for the process user profile.

To duplicate an authorization list, you must have authorization list management
authority for the object and both add and object operational authority for library
QSYS.

Only the definitions of job queues, message queues, output queues and data
queues are duplicated. Job queues and output queues cannot be duplicated into
the temporary library (QTEMP). For a physical file or a save file, you can specify
whether the data in the file is also to be duplicated.

The following objects cannot be duplicated:
v AS/400 Advanced 36* Machine
v Class-of-service descriptions (*COSD)
v Cluster resource group (*CRG)
v Configuration lists (*CFGL)
v Connection lists (*CNNL)
v Controller descriptions (*CTLD)
v Data dictionaries (*DTADCT)
v Device descriptions (*DEVD)
v Data queues (*DTAQ)

Chapter 4. Objects and Libraries 131

v Documents (*DOC)
v Edit descriptions (*EDTD)
v Exit registration (*EXITRG)
v Folders (*FLR)
v DBCS font tables (*IGCTBL)
v Internet Packet Exchange Description (*IPXD)
v Job schedules (*JOBSCD)
v Journals (*JRN)
v Journal receivers (*JRNRCV)
v Libraries (*LIB)
v Line descriptions (*LIND)
v Mode descriptions (*MODD)
v Network interface descriptions (*NWID)
v Network server descriptions (*NWSD)
v Reference code translation tables (*RCT)
v Server storage (*SVTSTG)
v Spelling aid dictionaries (*SPADCT)
v SQL packages (*SQLPKG)
v System/36 machine descriptions (*S36)
v System operator message queue (QSYSOPR)
v System history log (QHST)
v User-defined SQL type (*SQLUDT)
v User profiles (*USRPRF)
v User queues. (*USRQ)

In some cases, you may want to duplicate only some of the data in a file by
following the CRTDUPOBJ command with a CPYF command that specifies the
selection values.

The following command creates a duplicate copy of the order header physical file,
and duplicates the data in the file:
CRTDUPOBJ OBJ(ORDHDRP) FROMLIB(DSTPRODLIB) OBJTYPE(*FILE) +

TOLIB(DISTLIB2) NEWOBJ(*SAME) DATA(*YES)

When you create a duplicate object, you should consider the consequences of
creating a duplicate of an object that refers to another object. Many objects refer to
other objects by name, and many of these references are qualified by a specific
library name. Therefore, the duplicate object could contain a reference to an object
that exists in a library different from the one in which the duplicate object resides.
For all object types other than files, references to other objects are duplicated in the
duplicate object. For files, the duplicate objects share the formats of the original
file.

Any physical files which exist in the from-library, and on which a logical file is
based, must also exist in the to-library. The record format name and record level ID
of the physical files in the to- and from-libraries are compared; if the physical files
do not match, the logical file is not duplicated.

If a logical file uses a format selection that exists in the from-library, it is assumed
that the format selection also exists in the to-library.

132 CL Programming V5R1

Renaming Objects
You can use the Rename Object (RNMOBJ) command to rename objects. However,
you can rename an object only if you have object management authority for the
object and update and execute authority for the library containing the object.

To rename an authorization list, you must have authorization list management
authority, and both update and read authority for library QSYS.

The following objects cannot be renamed:
v Class-of-service descriptions (*COSD)
v Cluster resource group (*CRG)
v Data dictionaries (*DTADCT)
v DBCS font tables (*IGCTBL)
v Display station message queues (*MSGQ)
v Documents (*DOC)
v Exit Registration (*EXITRG)
v Folders (*FLR)
v Job schedules (*JOBSCD)
v Journals (*JRN)
v Journal receivers (*JRNRCV)
v Mode descriptions (*MODD)
v Network Server Description (*NWSD)
v SQL packages (*SQLPKG)
v System/36 machine descriptions (*S36)
v The system history log (QHST)
v The system library, QSYS, and the temporary library, QTEMP
v The system operator message queue (QSYSOPR)
v User-defined SQL type (*SQLUDT)
v User profiles (*USRPRF)

Also, you cannot rename an output queue unless it is empty. You should not
rename IBM-supplied commands because the licensed programs also use
IBM-supplied commands.

To rename an object, you must specify the current name of the object, the name to
which the object is to be renamed, and the object type.

The following RNMOBJ command renames the object ORDERL to ORDFILL:
RNMOBJ OBJ(QGPL/ORDERL) OBJTYPE(*FILE) NEWOBJ(ORDFILL)

You cannot specify a qualified name for the new object name because the object
remains in the same library. If the object you want to rename is in use when you
issue the RNMOBJ command, the command runs, but does not rename the object.
As a result, the system sends you a message.

When you rename objects, you should be careful not to rename objects that other
objects depend on. For example, CL programs depend on the command definitions
of the commands used in the program to be named the same at run time as they
were at compile time. Therefore, if the command definition is renamed in between

Chapter 4. Objects and Libraries 133

these two times, the program cannot be run because the commands will not be
found. Similarly, any application program you write depends on certain objects
being named the same at both times.

You cannot rename a library that contains a journal, journal receiver, data
dictionary, cluster resource group, or SQL package.

An object referring to another object may be dependent on the object and library
names (even though *LIBL can be specified for the library name). Therefore, if you
rename an object, you should change any references to it in other objects. See
“Moving Objects from One Library to Another” on page 129 for a list of objects
that refer to other objects.

If you rename a physical or logical file, the members in the file are not renamed.
However, you can use the Rename Member (RNMM) command to rename a
physical or logical file member.

Note: You should be careful when renaming objects in the system library QSYS.
These objects are necessary for the system to perform effectively and the
system must be able to find the objects. This is also true for some of the
objects in the general-purpose library QGPL.

Compressing or Decompressing Objects
You can use the Compress Object (CPROBJ) command to compress selected objects
in order to save disk space on the system or you can use the Decompress Object
(DCPOBJ) command to decompress objects that have been compressed. The object
types that are supported for compression and decompression are *PGM, *SRVPGM,
*MODULE, *PNLGRP, *MENU (only UIM menus), and *FILE (only display files or
print files). Database files are not allowed to be compressed. Customer objects, as
well as OS/400-supplied objects, may be compressed or decompressed. To see or
retrieve the compression status of an object, use the Display Object Description
(DSPOBJD) command (*FULL display), or the Retrieve Object Description
(RTVOBJD) command.

Compression of Objects
Object types, *PGM, *SRVPGM, *MODULE, *PNLGRP, *MENU, and *FILE (display
and print files only) can be compressed or decompressed using the CPROBJ or
DCPOBJ commands. Objects can be compressed only when both of the following
are true:
v If the system can obtain an exclusive lock on the object.
v When the compressed size saves disk space.

The following restrictions apply to the compression of objects:
v Programs created before Version 1 Release 3 of the operating system cannot be

compressed.
v Programs, service programs, or modules created before Version 3 Release 6 of

the operating system that have not been translated again cannot be compressed.
v Programs in IBM-supplied libraries QSYS and QSSP cannot be compressed

unless the paging pool value of the program is *BASE. Use the Display Program
(DSPPGM) command to see the paging pool value of a program. Programs in
libraries other than QSYS and QSSP can be compressed regardless of their
paging pool value.

v Only menus with the attribute UIM can be compressed.

134 CL Programming V5R1

v Only files with attributes DSPF and PRTF can be compressed.
v The system must be in restricted state (all subsystems ended) in order to

compress program objects in system libraries.
v The program must not be running in the system when it is compressed, or the

program will end abnormally.

Compression runs much faster if you use multiple jobs in nonrestricted state as
shown in the following table:

Table 4. Compressing Objects using Multiple Jobs

Object Type IBM-supplied User-supplied

*FILE Job 3: QSYS Job 7: USRLIB1

*MENU Job 2: QSYS Job 8: USRLIB1

*MODULE Not applicable Job 10: USRLIB1

*PGM Restricted State Only Job 5: USRLIB1

*PNLGRP Job 1: QSYS Job 4: QHLPSYS Job 6: USRLIB1

*SRVPGM Job 11: QSYS Job 9: USRLIB1

Temporarily Decompressed Objects
Compressed objects are temporarily decompressed automatically by the system
when used. A temporarily decompressed object will remain temporarily
decompressed until:
v An IPL of the system. This causes the temporarily decompressed object to be

deleted (the compressed object remains).
v A Reclaim Temporary Storage (RCLTMPSTG) command is used to reclaim

temporarily decompressed objects. This causes temporarily decompressed objects
to be deleted (the compressed objects remain) if the objects have not been used
for a specified number of days.

v The temporarily decompressed object is used more than 2 days or more than 5
times on the same IPL, in which case it is permanently decompressed.

v A DCPOBJ command is used to decompress the object, in which case it is
permanently decompressed.

v The system has an exclusive lock on the object.

Notes:

1. Objects of the type *PGM, *SRVPGM, or *MODULE cannot be temporarily
decompressed. If you call a compressed program or debug the program, it is
automatically permanently decompressed.

2. Compressed file objects, when opened, are automatically decompressed.
3. If the description of a compressed file is retrieved, the file is temporarily

decompressed. Two examples of retrieving a file are:
v Using the Display File Field Description (DSPFFD) command to display field

level information of a file.
v Using the Declare File (DCLF) command to declare a file.

Automatic Decompression of Objects
Compressed objects shipped in the OS/400 or other IBM licensed programs are
decompressed by the system after the licensed programs are installed. The
decompression occurs only when sufficient storage is available on the system.

Chapter 4. Objects and Libraries 135

System jobs called QDCPOBJx are automatically started by the system to
decompress objects.

The number of QDCPOBJ jobs is based on number of processors + 1. The jobs are
system jobs running at priority 60 which can’t be changed, ended or held by the
user. A QDCPOBJx job may be in one of the following statuses, which are from the
Work Active Job (WRKACTJOB) command:
v RUN (running): The job is actively decompressing objects.
v EVTW (event wait): The job is not actively decompressing objects. The job is

active in case more objects need to decompressed (i.e. additional licensed
programs are installed).

v DLYW (delay wait): The job is temporarily halted. The following situations could
cause the QDCPOBJx jobs to halt:
– The system is running in restricted state (i.e. ENDSYS or ENDSBS *ALL was

executed)
– A licensed program was just installed from the ″Work with Licensed

Programs″ display. The job is in a delay wait state for a maximum of 15
minutes prior to starting to decompress objects.

v LCKW (lock wait): The job is waiting for an internal lock. Typically, this occurs
when one QDCPOBJ job is in DLYW state.

The following storage requirements apply if the operating system was installed
over an existing operating system:
v The system must have greater than 250 megabytes of unused storage for the

QDCPOBJx jobs to start.
v On a system with available storage of greater than 750MB, the jobs are

submitted to decompress all system objects just installed.
v On a system with available storage of less than 250MB, jobs are not submitted,

and the objects are decompressed as they are used.
v On a system with available storage between 250MB and 750MB, only

frequently-used objects are automatically decompressed.

Frequently-used objects are objects that have been used at least five times and the
last use was within the last 14 days. The remaining low-use objects remain
compressed.

The system must have greater than 1000MB of unused storage if the operating
system is installed on a system that has been initialized using options 2, Install
Licensed Internal Code and Initialize the system, from the Install Licensed Internal
Code (LIC) display.

If QDCPOBJx jobs are active at the last system termination, the jobs are started
again at the time of the next IPL.

Deleting Objects
To delete an object, you can use a delete (DLTxxx) command for that type of object
or you can use the delete option on the Work with Objects display (shown from
the Work with Libraries (WRKLIB) display). To delete an object, you must have
object existence authority to the object and execute authority to the library. Only
the owner of an authorization list, or a user with *ALLOBJ special authority, can
delete the authorization list.

136 CL Programming V5R1

When you delete an object, you must be sure no one else needs the object or is
using the object. Generally, if someone is using an object, it cannot be deleted.
However, programs can be deleted unless you use the Allocate Object (ALCOBJ)
command to allocate the program before it is called.

Some create commands, such as commands that are used to create programs,
commands, and device files, have a REPLACE option. This option allows users to
continue using the old version of a previously replaced object. The system stores
the old versions of these re-created objects in library QRPLOBJ.

You should be careful of deleting objects that exist in the system libraries. These
objects are necessary for the system to perform properly.

On most delete commands, you can specify a generic name in place of an object
name. Before using a generic delete, you may want to specify the generic name by
using the DSPOBJD command to verify that the generic delete will delete only the
objects you want to delete. See “Using Generic Object Names” on page 107 for
more information on specifying objects generically.

For information about deleting libraries, see “Deleting and Clearing Libraries” on
page 113.

Allocating Resources
Objects are allocated on the system to guarantee integrity and to promote the
highest possible degree of concurrency. An object is protected even though several
operations may be performed on it at the same time. For example, an object is
allocated so that two users can read the object at the same time or one user can
only read the object while another can read and update the same object.

OS/400 allocates objects by the function being performed on the object. For
example:
v If a user is displaying or dumping an object, another user can read the object.
v If a user is changing, deleting, renaming, or moving an object, no one else can

use the object.
v If a user is saving an object, someone else can read the object, but not update or

delete it; if a user is restoring the object, no one else can read or update the
object.

v If a user is opening a database file for input, another user can read the file. If a
user is opening a database file for output, another user can update the file.

v If a user is opening a device file, another user can only read the file.

Generally, objects are allocated on demand; that is, when a job step needs an
object, it allocates the object, uses the object, and deallocates the object so another
job can use it. The first job that requests the object is allocated the object. In your
program, you can handle the exceptions that occur if an object cannot be allocated
by your request. (See Chapter 7 and Chapter 8 for more information on monitoring
for messages or your high-level language reference manual for information on
handling exceptions.)

Sometimes you want to allocate an object for a job before the job needs the object,
to ensure its availability so a function that has only partially completed would not
have to wait for an object. This is called preallocating an object. You can preallocate
objects using the Allocate Object (ALCOBJ) command.

Chapter 4. Objects and Libraries 137

Objects are allocated on the basis of their intended use (read or update) and
whether they can be shared (used by more than one job). The file and member are
always allocated *SHRRD and the file data is allocated with the level of lock
specified with the lock state. A lock state identifies the use of the object and
whether it is shared. The five lock states are (parameter values given in
parentheses):
v Exclusive (*EXCL). The object is reserved for the exclusive use of the requesting

job; no other jobs can use the object. However, if the object is already allocated
to another job, your job cannot get exclusive use of the object. This lock state is
appropriate when a user does not want any other user to have access to the
object until the function being performed is complete.

v Exclusive allow read (*EXCLRD). The object is allocated to the job that requested
it, but other jobs can read the object. This lock is appropriate when a user wants
to prevent other users from performing any operation other than a read.

v Shared for update (*SHRUPD). The object can be shared either for update or
read with another job. That is, another user can request either a shared-for-read
lock state or a shared-for-update lock state for the same object. This lock state is
appropriate when a user intends to change an object but wants to allow other
users to read or change the same object.

v Shared no update (*SHRNUP). The object can be shared with another job if the
job requests either a shared-no-update lock state, or a shared-for-read lock state.
This lock state is appropriate when a user does not intend to change an object
but wants to ensure that no other user changes the object.

v Shared for read (*SHRRD). The object can be shared with another job if the user
does not request exclusive use of the object. That is, another user can request an
exclusive-allow-read, shared-for-update, shared-for-read, or shared-no-update
lock state.

Note: The allocation of a library does not restrict the operations that can be
performed on the objects within the library. That is, if one job places an
exclusive-allow-read or shared-for-update lock state on a library, other jobs
can no longer place objects in or remove objects from the library; however,
the other jobs can still update objects within the library.

The following table shows the valid lock state combinations for an object:

Table 5. Valid Lock State Combinations

If One Job Obtains This Lock State: Another Job Can Obtain This Lock State:

*EXCL None

*EXCLRD *SHRRD

*SHRUPD *SHRUPD or *SHRRD

*SHRNUP *SHRNUP or *SHRRD

*SHRRD *EXCLRD, *SHRUPD, *SHRNUP, or *SHRRD

You can specify all five lock states (*EXCL, *EXCLRD, SHRUPD, SHRNUP, and
SHRRD) for most object types. this does not apply to all object types. Object types
that cannot have all five lock states specified are listed in the following table with
valid lock states for the object type:

138 CL Programming V5R1

Table 6. Valid Lock States for Specific Object Types

Object Type *EXCL *EXCLRD *SHRUPD *SHRNUP *SHRRD

Device
description

x

Library x x x x

Message queue x x

Panel group x x

Program x x x

Subsystem
description

x

To allocate an object, you must have object existence authority, object management
authority, or operational authority for the object. Allocated objects are
automatically deallocated at the end of a routing step. To deallocate an object at
any other time, use the Deallocate Object (DLCOBJ) command.

You can allocate a program before it is called to protect it from being deleted. To
prevent a program from running in different jobs at the same time, an exclusive
lock must be placed on the program in each job before the program is called in any
job. The following objects cannot be allocated with the ALCOBJ command:
v AS/400 Advanced 36 Machine
v AS/400 Advanced 36 Machine Configuration

You cannot use the ALCOBJ or DLCOBJ commands to allocate an APPC device
description.

The following example is a batch job that needs two files members for updating.
Members from either file can be read by another program while being updated,
but no other programs can update these members while this job is running. The
first member of each file is preallocated with an exclusive-allow-read lock state.
//JOB JOBD(ORDER)

ALCOBJ OBJ((FILEA *FILE *EXCLRD) (FILEB *FILE *EXCLRD))
CALL PROGX

//ENDJOB

Objects that are allocated to you should be deallocated as soon as you are finished
using them because other users may need those objects. However, allocated objects
are automatically deallocated at the end of the routing step.

If the first members of FILEA and FILEB had not been preallocated, the
exclusive-allow-read restriction would not have been in effect. When you are using
files, you may want to preallocate them so that you are assured they are not
changing while you are using them.

Note: If a single object has been allocated more than once (by more than one
allocate command), a single DLCOBJ command will not completely
deallocate that object. One deallocate command is required for each allocate
command.

It is not an error if the DLCOBJ command is issued against an object where you do
not have a lock or do not have the specific lock state requested to be allocated.

You can change the lock state of an object, as the following example shows:

Chapter 4. Objects and Libraries 139

PGM
ALCOBJ OBJ((FILEX *FILE *EXCL)) WAIT(0)
CALL PGMA
ALCOBJ OBJ((FILEX *FILE *EXCLRD))
DLCOBJ OBJ((FILEX *FILE *EXCL))
CALL PGMB
DLCOBJ OBJ((FILEX *FILE *EXCLRD))
ENDPGM

File FILEX is allocated exclusively for PGMA, but FILEX is allocated as
exclusive-allow-read for PGMB.

You can use record locks to allocate data records within a file. You can also use the
WAITFILE parameter on a Create File command to specify how long your program
is to wait for that file before a time-out occurs.

The WAITRCD parameter on a Create File command specifies how long to wait for
a record lock. The DFTWAIT parameter on the Create Class (CRTCLS) command
specifies how long to wait for other objects. For a discussion of the WAITRCD

parameter, see the Backup and Recovery book.

Displaying the Lock States for Objects
You can use the Work with Object Locks (WRKOBJLCK) command or the Work
with Job (WRKJOB) command to display the lock states for objects.

The WRKOBJLCK command displays all the lock state requests in the system for a
specified object. It displays both the held locks and the locks being waited for. For
a database file, the WRKOBJLCK command displays the locks at the file level (the
object level) but not at the record level. For example, if a database file is open for
update, the lock on the file is displayed, but the lock on any records within the file
is not. Locks on database file members can also be displayed using the
WRKOBJLCK command.

If you use the WRKJOB command, you can select the locks option on the Display
Job menu. This option displays all the lock state requests outstanding for the
specified active job, the locks being held by the job, and the locks for which the job
is waiting. However, if a job is waiting for a database record lock, this does not
appear on the object locks display.

The following command displays all the lock state requests in the system for the
logical file ORDFILL:
WRKOBJLCK OBJ(QGPL/ORDFILL) OBJTYPE(*FILE)

The resulting display is:

140 CL Programming V5R1

c4153045.pdf

Work with Object Locks
System: SYSTEM01

Object: ORDFILL Library: QGPL Type: *FILE-LGL

Type options, press Enter.
4=End job 5=Work with job 8=Work with job locks

Opt Job User Lock Status Scope Thread
_ WORKST04 QSECOFR *SHRRD HELD *JOB

*SHRRD HELD *JOB
*SHRRD HELD *JOB
*SHRRD HELD *JOB
*SHRRD HELD *JOB
*SHRRD HELD *JOB
*SHRRD HELD *JOB
*SHRRD HELD *JOB
*SHRRD HELD *JOB
*SHRRD HELD *JOB
*SHRRD HELD *JOB
*SHRRD HELD *JOB
*SHRRD HELD *JOB

More...
F3=Exit F5=Refresh F6=Work with member locks F12=Cancel

Chapter 4. Objects and Libraries 141

142 CL Programming V5R1

Chapter 5. Working with Objects in CL Procedures and
Programs

Accessing Objects in CL Programs
Rules that refer to objects in CL program commands and procedures are the same
as objects in commands that are processed individually (not within a program).
Object names can be either qualified or unqualified. Locate an unqualified object
name through a search of the library list.

Most objects referred to in CL procedures and programs are not accessed until the
command referring to them is run. To qualify the name (library/name)of an object, it
must be in the specified library when the command that refers to it runs. However,
the object does not have to be in that library at the creation of the program. This
means that most objects can be qualified in CL source statements that are simply
based only on their run–time location. “Exceptions: Accessing Command
Definitions, Files, and Procedures” on page 144 discusses the exceptions.

You can avoid this run–time consideration for all objects if you do not qualify
object names on CL source statements, but refer to the library list (*LIBL/name)
instead. If you refer to the library list at compile time, the object can be in any
library on the library list at command run time. This is possible providing you do
not have duplicate-name objects in different libraries. If you use the library list,
you can move the object to a different library between procedure creation and
command processing.

Objects do not need to exist until the command that refers to them runs. Because
of this, the CL program successfully compiles even though program PAYROLL
does not exist at compile time:

PGM /*TEST*/
DCL...
MONMSG...
.
.
.
CALL PGM(QGPL/PAYROLL)
.
.
.
ENDPGM

In fact, PAYROLL does not have to exist when activating the program TEST, but
only when running the CALL command. This creates the called program within
the calling program immediately prior to the CALL command:

PGM /*TEST*/
DCL...
.
.
.
MONMSG
.
.
.
CRTCLPGM PGM(QGPL/PAYROLL)
CALL PGM(QGPL/PAYROLL)

© Copyright IBM Corp. 1997, 2001 143

.

.

.
ENDPGM

Note that for create commands, such as (CRTCLPGM) or (CRTDTAARA), the
object that is accessed at compile or run time is the create command definition, not
the created object. If you are using a create command, the create command
definition must be in the library that is used to qualify the command at compile
time. (Alternately, it must be in a library on the library list if you used *LIBL.)

Exceptions: Accessing Command Definitions, Files, and
Procedures

Two requirements exist for creating a CL program from source statements that
refer to command definitions or files.
v The objects must exist at creation time of the program.
v The objects must exist when the command that refers to them runs.

This means that if you use the Declare File (DCLF) command, you must create the
file before creating a program that refers to the file.

Accessing Command Definitions
Access to the command definitions occurs during program creation time and at
command run time. To allow for syntax checking, the command must exist during
the creation of a program that uses it. If it is qualified at creation time, the
command needs to exist in the library referred to during creation, and in the same
library when processed. If it is not library-qualified, it must be in some library on
the library list during creation time and at run time.

The command name should be qualified in the program:
v When the command’s definition will not be accessible through the library list

while the program is running.
v When multiple command definitions exist with the same name if expecting a

specific instance of the command at run time.

The name of the command must be the same when the program runs as when the
system created it. An error occurs if the command name changes after creating a
program that refers to that command. This is because the program cannot find the
command when it runs. However, if a default changes for a parameter on a
command, the new default is used when that command runs. For more detail on
attributes that you may change on a command without having to re-create the
command, see the Change Command (CHGCMD) command description in the CL
and APIs topic of the Programming category in the iSeries Information Center.

Accessing Files
The compiler accesses files when compiling a program module that has a Declare
File (DCLF) command. The file must exist when compiling a CL module or OPM
program that uses it. The file does not have to exist when creating a program or
service program that uses the module.

Enter Data Description Specifications (DDS) into a source file before creating it.
The DDS describes the record formats and the fields within the records.
Additionally, the system compiles this information to create the file object through
the Create Display File (CRTDSPF) command.

144 CL Programming V5R1

Note: You can create other types of files from DDS, and each type has its own
command: Create Physical File (CRTPF) and Create Logical File (CRTLF) are
two that create files that you can use in CL programs and procedures.

The fields that are described in the DDS can be input or output fields (or both).
The system declares the fields in the CL program or procedure as variables when it
compiles a program or module. The program manipulates data from display
through these variables.

If you do not use DDS to create a physical file, the system declares a CL variable
to contain the entire record. This variable has the same name as the file, and its
length is the same as the record length of the file.

CL programs and procedures cannot manipulate data in any types of files other
than display files and database files, except with specific CL commands.

Deletion of the DDS after creating the file is possible but not recommended. You
can delete the file after the system compiles the CL program or module that refers
to the file. This is true provided the file exists when the command referring to it,
such as a Receive File (RCVF), is processed in the program.

The rules on qualified names that are described here for command definitions also
apply to files. For more details on files, see “Working with Files in CL Procedures”
on page 146.

Accessing Procedures
A procedure that is specified by Call Bound Procedure (CALLPRC), does not have
to exist at the time a module that refers to it is created. The system requires the
existence of the procedure in order to create a program or service program that
uses the procedure. The called procedure may be:
v In a module that is specified on the MODULE parameter on the Create Program

(CRTPGM) or CRTSRVPGM command.
v In a service program that is specified on the BNDSRVPGM parameter. The

service program must be available at run time.
v In a service program or module that is listed in a binding directory that is

specified on the BNDDIR parameter of the CRTPGM command or CRTSRVPGM
command. The binding directory and modules do not have to be available at
run time.

Checking for the Existence of an Object
Before attempting to use an object in a program, check to determine if the object
exists and if you have the authority to use it. This is useful when a function uses
more than one object at one time.

To check for the existence of an object, use the Check Object (CHKOBJ) command.
You can use this command at any place in a procedure or program. The CHKOBJ
command has the following format:
CHKOBJ OBJ(library-name/object-name) OBJTYPE(object-type)

Other optional parameters allow object authorization verification. If you are
checking for authorization and intend to open a file, you should check for both
operational and data authority.

When this command runs, the system sends messages to the program or procedure
to report the result of the object check. You can monitor for these messages and
handle them as you wish. For example:

Chapter 5. Working with Objects in CL Procedures and Programs 145

CHKOBJ OBJ(OELIB/PGMA) OBJTYPE(*PGM)
MONMSG MSGID(CPF9801) EXEC(GOTO NOTFOUND)
CALL OELIB/PGMA
.
.
.

NOTFOUND: CALL FIX001 /*PGMA Not Found Routine*/
ENDPGM

In this example, the MONMSG command checks only for the object-not-found
escape message. For a list of all the messages which the CHKOBJ command may
send see the online help information for the CHKOBJ command. “Using the
Monitor Message (MONMSG) Command” on page 46, Chapter 7, and Chapter 8
contain additional information about monitoring for messages.

The CHKOBJ command does not allocate an object. For many application uses the
check for existence is not an adequate function, the application should allocate the
object. The Allocate Object (ALCOBJ) command provides both an existence check
and allocation.

Use the Check Tape (CHKTAP) or Check Diskette (CHKDKT) command to ensure
that a specific tape or diskette is placed on the drive and ready. These commands
also provide an escape message that you can monitor for in your CL program.

Working with Files in CL Procedures
Two types of files are supported in CL procedures and programs, display files and
database files. You can send a display to a work station and receive input from the
work station for use in the procedure or program, or you can read data from a
database file for use in the procedure or program.

Note: Database files are made available for use within the CL procedure or
program through the DCLF and RCVF commands.

To use a file in a CL procedure or program, you must:
v Format the display or database record, identifying fields and conditions which

you enter as DDS source. The use of DDS is not required for a database file.
v Create the file using the Create Display File (CRTDSPF) command, Create

Physical File (CRTPF) command, or Create Logical File (CRTLF) command.
Subfiles (except for message subfiles) are not supported by CL procedures and
programs.

v For database files, add a member to the file using the Add Physical File Member
(ADDPFM) command or Add Logical File Member (ADDLFM) command. This
is not required if a member was added by the CRTPF or CRTLF commands. The
file must have a member when the procedure or program is processed, but does
not need to have a member when the procedure or program is created.

v Refer to the file in the CL procedure using the DCLF command, and refer to the
record format on the appropriate data manipulation CL commands in your CL
source.

v Create the CL module.
v Create the program or service program.

Only one display or database file can be referred to in a CL procedure. The
support for database files and display files is similar as the same commands are
used. However, there are a few differences, which are described here.

146 CL Programming V5R1

v The following statements apply only to database files used with CL procedures
and programs:
– Only database files with a single record format may be used by a CL

procedure or program.
– The file may be either a physical or logical file, and a logical file may be

defined over multiple physical file members.
– Only input operations, with the RCVF command, are allowed. The SNDF,

SNDRCVF, ENDRCV, WAIT and DEV parameters on the RCVF command are
not allowed for database files.

– DDS is not required to create a physical file which is referred to in a CL
procedure or program. If DDS is not used to create a physical file, the file has
a record format with the same name as the file, and there is one field in the
record format with the same name as the file, and with the same length as the
record length of the file (RCDLEN parameter of the CRTPF command).

– The file need not have a member when it is created for the module or
program. It must, however, have a member when the file is processed by the
program.

– The file is opened for input only when the first RCVF command is processed.
The file must exist and have a member at that time.

– The file remains open until the procedure or OPM program returns or when
the end of file is reached. When end of file is reached, message CPF0864 is
sent to the CL procedure or program, and additional operations are not
allowed for the file. The procedure or program should monitor for this
message and take appropriate action when end of file is reached.

v The following statements apply only to display files used with CL procedures
and programs:
– Display files may have up to 99 record formats.
– All data manipulation commands (SNDF, SNDRCVF, RCVF, ENDRCV and

WAIT) are allowed for display files.
– The display file must be defined with the DDS.
– The display file is opened for both input and output when the first SNDF,

SNDRCVF, or RCVF command is processed. The file remains open until the
procedure or OPM program returns.

Note: The open does not occur for both types of files until the first send or receive
occurs. Because of this, the file to be used can be created during the
procedure or program and an override can be performed before the first
send or receive.

The format for the display is identified as a record format in DDS. Each record
format may contain fields (input, output, and input/output), conditions/indicators,
and constants. Several record formats can be entered in one display file. The
display file name, record format name, and field names should be unique, because

Chapter 5. Working with Objects in CL Procedures and Programs 147

other HLLs may require it, even though CL procedures and programs do not.

You can use the methods discussed in the Application Display Programming
book or the Screen Design Aid (SDA) to enter DDS source for records and fields in
the display file. See the

A CL procedure or program can use several commands, called data manipulation
commands. These commands let you refer to a display file to send data to and
receive data from device displays. These commands also allows you to refer to a
database file to read records from a database file. These commands are:
v Declare File (DCLF). Defines a display or database file to be used in a procedure

or program. The fields in the file are automatically declared as variables for use
in the procedure or program.

v Send File (SNDF). Sends data to the display.
v Receive File (RCVF). Receives data from the display or database.
v Send/Receive File (SNDRCVF). Sends data to the display; then asks for input

and, optionally, receives data from the display.
v Override with Display File (OVRDSPF). Allows a run-time override of a file

used by a procedure or program with a display file.
v Override with Database File (OVRDBF). Allows a run-time override of a file

used by a procedure or program with a database file.

These commands let a running program communicate with a device display using
the display functions provided by DDS, and to read records from a database file.
DDS provides functions for writing menus and performing basic
application-oriented data requests that are characteristic of many CL applications.

148 CL Programming V5R1

c4157150.pdf

The fields on the display or in the record are identified in the DDS for the file. In
order for the CL procedure or program to use the fields, the file must be referred
to in the CL procedure or program by the DCLF command. This reference causes
the fields and indicators in the file to be declared automatically in your procedure
or program as variables. You can use these variables in any way in CL commands;
however, their primary purpose is to send information to and receive information
from a display. The DCLF command is not used at run time.

The format of the display and the options for the fields are specified in the device
file and controlled through the use of indicators. Up to 99 indicator values can be
used with DDS and CL support. Indicator variables are declared in your CL
procedure or program in the form of logical variables with names &IN01 through
&IN99 for each indicator that appears in the device file record formats referred to
on the DCLF command. Indicators let you display fields and control data
management display functions, and provide response information to your
procedure or program from the device display. Indicators are not used with
database files.

Referring to Files in a CL Procedure
Files are accessed during compiling of DCLF commands when CL modules and
programs are created so that variables can be declared for each field in the file.

If you have qualified the name of the file at compile time, the file must be in that
library at run time. If you have used the library list at compile time, the file must
be in a library on the library list at run time.

Opening and Closing Files in a CL Procedure
When you use CL support, you can refer to only one file in a procedure or OPM
program. The file referred to is implicitly opened when you do your first send,
receive, or send/receive operation. An opened display file remains open until the
procedure or OPM program in which it was opened returns or transfers control.
An opened database file is closed when end of file is reached, or when the
procedure or OPM program in which it was opened returns or transfers control.
Once a database file has been closed, it cannot be opened again during the same
call of the procedure or OPM program.

When a database file opens, the first member in the file will open, unless you
previously used an OVRDBF command to specify a different member (MBR
parameter). If a procedure or OPM program ends because of an error, the files
close. A file remains open until the procedure or OPM program in which that file
was opened ends. Because of this, you have an easy way to share open data paths
between running procedures and programs. You can open a file in one procedure
or program. Then the file can share its open data path with another procedure or
program under either of the following conditions:
v The file was created with or has been changed to have the SHARE(*YES)

attribute.
v An override for that file by specifying SHARE(*YES) is in effect.

You can share files in this way between any two procedures or programs. Use
online help for a detailed description of the function available when the system
shares open data paths. Additionally, IBM provides a description of the SHARE
parameter on the CRTDSPF, CRTPF, and CRTLF commands online. Refer to the CL
and APIs section of the Programming category in the iSeries Information Center. A

Chapter 5. Working with Objects in CL Procedures and Programs 149

display file opened in a CL procedure or OPM program always opens for both
input and output. A database file opened in a CL procedure or OPM program
opens for input only.

Do not specify LVL(*CALLER) on the Reclaim Resources (RCLRSC) command in
CL procedures and programs using files. If you specified LVL(*CALLER), all files
opened by the procedure or OPM program would be immediately closed, and any
attempt to access the file would end abnormally.

Declaring a File
The Declare File (DCLF) command is used to declare a display or database file to
your CL procedure or program. The DCLF command cannot be used to declare
files such as tape, diskette, printer, and mixed files. Only one DCLF command is
allowed in a CL procedure or OPM program. The DCLF command has the
following parameters:

DCLF FILE(library-name/file-name)
RCDFMT(record-format-names)

Note that the file must exist before the module or program is compiled.

If you are using a display file in your procedure or program, you may have to
specify input and output fields in your DDS. These fields are handled as variables
in the procedure or program. When processing a DCLF command, the CL compiler
declares CL variables for each field and option indicator in each record format in
the file. For a field, the CL variable name is the field name preceded by an
ampersand (&). For an option indicator, the CL variable name is the indicator that
is preceded by &IN.

For example, if a field named INPUT and indicator 10 are defined in DDS, the
DCLF command automatically declares them as &INPUT and &IN10. This
declaration is performed when the CL module or program is compiled. Up to 50
record format names can be specified on one command, but none can be variables.
Only one record format may be specified for a database file.

If the following DDS were used to create display file CNTRLDSP in library
MCGANN:

Three variables, &IN01, &TEXT, and &RESPONSE, would be available from the
display file. In a CL procedure referring to this display file, you would enter only
the DCLF source statement:

DCLF MCGANN/CNTRLDSP

The compiler will expand this statement to individually declare all display file
variables. The expanded declaration in the compiler list looks like this:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
A R MASTER
A CA01(01 'F1 RESPONSE')
A TEXT 300 2 4
A RESPONSE 15 1 8 4 BLINK
A
A

150 CL Programming V5R1

Sending and Receiving Data with a Display File
The only commands you can use with a display file to send or receive data in CL
procedures and programs are the SNDF, RCVF, and SNDRCVF commands.

The system formats the content of the variables associated with the output or
output/input fields in the record format when you run a SNDF command.
Additionally the system sends it to the display device. This is similar to when you
run a RCVF command. The values of the fields associated with input or
output/input fields in the record format on the display are placed in the
corresponding CL variables.

The SNDRCVF command sends the contents of the CL variables to the display. The
command then performs the equivalent of a RCVF command to obtain the updated
fields from the display. Note that CL does not support zoned decimal numbers.
Consequently, fields in the display file that are defined as zoned decimal, cause
*DEC fields to be defined in the CL procedure or program. *DEC fields are
internally supported as packed decimal, and the CL commands convert the packed
and zoned data types as required. Fields that overlap in the display file because of
coincident display positions result in separately defined CL variables that do not
overlap. You cannot use record formats that contain floating point data in a CL
procedure or program.

Note: If a SNDRCVF or RCVF command for a work station indicates WAIT(*NO),
then the system uses the WAIT command to receive data. The same is true if
a SNDF command is issued using a record format containing the INVITE
DDS keyword.

Except for message subfiles, any attempt to send or receive subfile records causes
run-time errors. Most other functions specified for display files in DDS are
available; some functions (such as using variable starting line numbers) are not.
For more information on messages and subfiles in CL procedures and programs,
see Chapter 8.

The following example shows the steps required to create a typical operator menu
and to send and receive data using the SNDRCVF command. The menu looks like
this:

v
v
v
500- DCLF MCGANN/CNTRLDSP

QUALIFIED FILE NAME 'MCGANN ' 'CNTRLDSP '

RECORD FORMAT NAME 'MASTER '

CL VARIABLE TYPE LENGTH PRECISION (IF *DEC)
&IN01 *LGL 1
&TEXT *CHAR 300
&RESPONSE *CHAR 15

v
v
v

Chapter 5. Working with Objects in CL Procedures and Programs 151

Operator Menu

1. Accounts Payable
2. Accounts Receivable
90. Signoff

Option:

First, enter the following DDS source. The record format is MENU, and OPTION is
an input-capable field. The OPTION field uses DSPATR(MDT). This causes the
system to check this field for valid values even if the operator does not enter
anything.

Enter the CRTDSPF command to create the display file. In CL programming, the
display file name (INTMENU) can be the same as the record format name
(MENU), though this is not true for some other languages, like RPG for OS/400.

The display file could also be created using the Screen Design Aid (SDA) utility.

Next, enter the CL source to run the menu.

The CL source for this menu is:
PGM /* OPERATOR MENU */
DCLF INTMENU

BEGIN: SNDRCVF RCDFMT(MENU)
IF COND(&OPTION *EQ 1) THEN(CALL ACTSPAYMNU)
IF COND(&OPTION *EQ 2) THEN(CALL ACTSRCVMNU)
IF COND(&OPTION *EQ 90) THEN(SIGNOFF)
GOTO BEGIN
ENDPGM

When this source is compiled, the DCLF command automatically declares the
input field OPTION in the procedure as a CL variable.

The SNDRCVF command defaults to WAIT(*YES); that is, the program waits until
input is received by the program.

Writing a CL Program to Control a Menu
The following example shows how a CL procedure can be written to display and

control a menu. See the Application Display Programming book for another
method of creating and controlling menus.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
A R MENU
A 1 2'Operator Menu'
A 3 4'1. Accounts Payable'
A 5 4'2. Accounts Receivable'
A 5 4'90. Signoff'
A 7 2'Option'
A OPTION 2Y 01 + 2VALUES(1 2 90) DSPATR(MDT)
A
A

152 CL Programming V5R1

c4157150.pdf

This example shows a CL procedure, ORD040C, that controls the displaying of the
order department general menu and determines which HLL procedure to call
based on the option selected from the menu. The procedure shows the menu at the
display station.

The order department general menu looks like this:

Order Dept General Menu

1 Inquire into customer file
2 Inquire into item file
3 Customer name search
4 Inquire into orders for a customer
5 Inquire into an existing order
6 Order entry
98 End of menu

Option:

The DDS for the display file ORD040C looks like this:

The source procedure for ORD040C looks like this:
PGM /* ORD040C Order Dept General Menu */
DCLF FILE(ORD040CD)

START: SNDRCVF RCDFMT(MENU)
IF (&RESP=1) THEN(CALLPRC CUS210)
/* Customer inquiry */
ELSE +

IF (&RESP=2) THEN(CALLPRC ITM210)
/*Item inquiry*/
ELSE +

IF (&RESP=3) THEN(CALLPRC CUS220)
/* Cust name search */
ELSE +

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
A* MENU ORDO4OCD ORDER DEPT GENERAL MENU
A
A R MENU TEXT('General Menu')
A 1 2'Order Dept General Menu'
A 3 3'1 Inquire into customer file'
A 4 3'2 Inquire into item file'
A 5 3'3 Customer name search'
A 6 3'4 Inquire into orders for a custom+
A er'
A 7 3'5 Inquire into existing order'
A 8 3'6 Order Entry'
A 9 2'98 End of menu'
A 11 2'Option'
A RESP 2Y001 11 10VALUES(1 2 3 4 5 6 98)
A DSPATR(MDT)
A
A

Chapter 5. Working with Objects in CL Procedures and Programs 153

IF (&RESP=4) THEN(CALLPRC ORD215)
/* Orders by cust */
ELSE +

IF (&RESP=5) THEN(CALLPRC ORD220)
/* Existing order */
ELSE +

IF (&RESP=6) THEN(CALLPRC ORD410C)
/* Order entry */
ELSE +

IF (&RESP=98) THEN(RETURN)
/* End of Menu */

GOTO START
ENDPGM

The DCLF command indicates which file contains the field attributes the system
needs to format the order department general menu when the SNDRCVF
command is processed. The system automatically declares a variable for each field
in the record format in the specified file if that record format is used in an SNDF,
RCVF, or SNDRCVF command. The variable name for each field automatically
declared is an ampersand (&) followed by the field name. For example, the
variable name of the response field RESP in ORD040C is &RESP.

Other notes on the operation of this menu:
The SNDRCVF command is used to send the menu to the display and to
receive the option selected from the display.
If the option selected from the menu is 98, ORD040C returns to the procedure
that called it.
The ELSE statements are necessary to process the responses as mutually
exclusive alternatives.

Note: This menu is run using the CALL command. See the Application Display

Programming book for a discussion of those menus run using the GO
command.

Overriding Display Files in a CL Procedure
You can use the Override with Display File (OVRDSPF) command to replace the
display file named in a CL procedure or program or to change certain parameters
of the existing display file. This may be especially useful for files that have been
renamed or moved since the module or program was compiled.

The initial parameters of the OVRDSPF command are:
OVRDSPF FILE(overridden-file-name) TOFILE(new-file-name)

DEV(device-name)

The OVRDSPF command is valid for a file referred to by a CL procedure or
program only if the file specified on the DCLF command was a display file when
the module or program was created. The file used when the program is run must
be of the same type as the file referred to when the module or program was
created.

You must run the OVRDSPF command before opening the file that is being
overridden. An open is caused by the first use of a send or receive command. The
system overrides the file on finding any of the following conditions:
v A procedure or program that contains the OVRDSPF command opens the file.
v The file opens in another procedure which transfers control by using the

CALLPRC command.

154 CL Programming V5R1

c4157150.pdf
c4157150.pdf

v The file opens in another program which transfers control by using the CALL
command.

When you override to a different file, only those record format names referred to
on the SNDF, RCVF, or SNDRCVF command need to be in the overriding file. In
the following illustration, display file FILEY does not need record format TWO or
THREE.

You should make sure that the record format referred to names of the original file
and the overriding files have the same field definitions and indicator names in the
same order. You may get unexpected results if you specify LVLCHK(*NO).

Another consideration has to do with the DEV parameter on the SNDF, RCVF, and
SNDRCVF commands when an OVRDSPF command is applied. If *FILE is
specified on the DEV parameter of the RCVF, SNDF, or SNDRCVF command, the
system automatically directs the operation to the correct device for the overridden
file. If a specific device is specified on the DEV keyword of the RCVF, SNDF, or
SNDRCVF command, one of the following may occur:
v If a single device display file is being used, an error will occur if the display file

is overridden to a device other than the one specified on the RCVF, SNDF, or
SNDRCVF command.

v If a multiple device display file is being used, an error will occur if the device
specified on the RCVF, SNDF, or SNDRCVF command is not among those
specified on the OVRDSPF command.

Working with Multiple Device Display Files
The normal mode of operation on a system is for the work station user to sign on
and become the requester for an interactive job. Many users can do this at the
same time, because each will use a logical copy of the procedure, including the
display file in the procedure. Each requester calls a separate job in this kind of use.
This is not considered to be multiple device display use.

A multiple device display configuration occurs when a single job called by one
requester communicates with multiple display stations through one display file.
While only one display file can be handled by a CL procedure, the display file, or

Chapter 5. Working with Objects in CL Procedures and Programs 155

different record formats within it, can be sent to several device displays.
Commands used primarily with multiple device display files are:
v End Receive (ENDRCV). This command cancels requests for input that have not

been satisfied.
v Wait (WAIT). Accepts input from any device display from which user data was

requested by one or more previous RCVF or SNDRCVF commands when
WAIT(*NO) was specified on the command, or by one or more previous SNDF
commands to a record format containing the INVITE DDS keyword.

If you use a multiple device display file, the device names must be specified on the
DEV parameter on the CRTDSPF command when the display file is created, on the
CHGDSPF command when the display file is changed, or on an override
command, and the number of devices must be less than or equal to the number
specified on the MAXDEV parameter on the CRTDSPF command.

Multiple device display configurations affect the SNDRCVF and the RCVF
commands and you may need to use the WAIT or ENDRCV commands. When an
RCVF or SNDRCVF command is used with multiple display devices, the default
value WAIT(*YES) prevents further processing until an input-capable field is
returned to the program from the device named on the DEV parameter. Because
the response may be delayed, it is sometimes useful to specify WAIT(*NO), thus
letting your procedure or program continue running other commands before the
receive operation is satisfied.

If you use an RCVF or SNDRCVF command and specify WAIT(*NO), the CL
procedure or program continues running until a WAIT command is processed.

Using a SNDF command with a record format which has the DDS INVITE
keyword is equivalent to using a SNDRCVF command with WAIT(*NO) specified.
The DDS INVITE keyword is ignored for SNDRCVF and RCVF commands.

The WAIT command must be issued to access a data record. If no data is available,
processing is suspended until data is received from a device display or until the
time limit specified in the WAITRCD parameter for the display file on the
CRTDSPF, CHGDSPF, or OVRDSPF commands has passed. If the time limit passes,
message CPF0889 is issued.

The WAIT will also be satisfied by the job being canceled with the controlled
option on the ENDJOB, ENDSYS, PWRDWNSYS, and ENDSBS commands. In this
case, message CPF0888 is issued and no data is returned. If a WAIT command is
issued without a preceding receive request (such as RCVF . . . WAIT(*NO)), a
processing error occurs.

156 CL Programming V5R1

A typical multiple device display configuration (with code) might look like this:

In the above example, the first two commands show a typical sequence in which
the default is taken; processing waits for the receive operation from WS2 to
complete. Because WS2 is specified on the DEV parameter, the RCVF command
does not run until WS2 responds, even if prior outstanding requests (not shown)
from other stations are satisfied.

The SNDRCVF command, however, has WAIT(*NO) specified and so does not wait
for a response from WS1. Instead, processing continues and PROGA is called.
Processing then stops at the WAIT command until an outstanding request is
satisfied by a work station, or until the function reaches time-out.

The WAIT command has the following format:
WAIT DEV(CL-variable-name)

If the DEV parameter is specified, the CL variable name is the name of the device
that responded. (The default is *NONE.) If there are several receive requests (such
as RCVF. . . WAIT(*NO)), this variable takes the name of the first device to
respond after the WAIT command is encountered and processing continues. The
data received is placed in the variable associated with the field in the device
display.

A RCVF command with WAIT(*YES) specified can be used to wait for data from a
specific device. The same record format name must be specified for both the
operation that started the receive request and the RCVF command.

In some cases, several receive requests are outstanding, but processing cannot
proceed further without a reply from a specific device display. In the following
example, three commands specify WAIT(*NO), but processing cannot continue at
label LOOP until WS3 replies:

PGM
.
.
.
SNDF DEV(WS1) RCDFMT(ONE)
SNDF DEV(WS2) RCDFMT(TWO)
SNDRCVF DEV(WS3) RCDFMT(THREE) WAIT(*NO)
RCVF DEV(WS2) RCDFMT(TWO) WAIT(*NO)
RCVF DEV(WS1) RCDFMT(ONE) WAIT(*NO)
CALL...

Chapter 5. Working with Objects in CL Procedures and Programs 157

CALL...
.
.
RCVF DEV(WS3) RCDFMT(THREE) WAIT(*YES)

LOOP: WAIT DEV(&WSNAME)
MONMSG CPF0882 EXEC(GOTO REPLY)
.
.
.
GOTO LOOP

REPLY: CALL...
.
.
.
ENDPGM

CL procedures and programs also support the ENDRCV command, which lets you
cancel a request for input that has not yet been satisfied. A SNDF or SNDRCVF
command will also cancel a request for input that has not yet been satisfied.
However, if the data was available at the time the SNDF or SNDRCVF command
was processed, message CPF0887 is sent. In this case the data must be received
with the WAIT command or RCVF command, or the request must be explicitly
canceled with a ENDRCV command before the SNDF or SNDRCVF command can
be processed.

Receiving Data from a Database File
The only command you can use to receive data from a database file is the RCVF
command.

When you run a RCVF command, the next record on the file’s access path is read,
and the values of the fields defined in the database record format are placed in the
corresponding CL variables. Note that CL does not support zoned decimal or
binary numbers. Consequently, fields in the database file defined as zoned decimal
or binary cause *DEC fields to be defined in the CL procedure or program. *DEC
fields are internally supported as packed decimal, and the RCVF command
performs the conversion from zoned decimal and binary to packed decimal as
required. Database files which contain floating point data cannot be used in a CL
procedure or program.

When the end of file is reached, message CPF0864 is sent to the procedure or OPM
program. The CL variables declared for the record format are not changed by the
processing of the RCVF command when this message is sent. You should monitor
for this message and perform the appropriate action for end of file. If you attempt
to run additional RCVF commands after end of file has been reached, message
CPF0864 is sent again.

Overriding Database Files in a CL Procedure or Program
You can use the Override with Database File (OVRDBF) command to replace the
database file named in a CL procedure or program or to change certain parameters
of the existing database file. This may be especially useful for files that have been
renamed or moved since the procedure or program was created. It can also be
used to access a file member other than the first member.

The initial parameters of the OVRDBF command are:
OVRDBF FILE(overridden-file-name) TOFILE(new-file-name)

MBR(member-name)

158 CL Programming V5R1

The OVRDBF command is valid for a file referred to by a CL procedure or
program only if the file specified in the DCLF command was a database file when
the module or program was created. The file used when the program was
processed must be of the same type as the file referred to when the module or
program was created.

The OVRDBF command must be processed before the file to be overridden is
opened for use (an open occurs by the first use of the RCVF command). The file is
overridden if it is opened in the procedure or OPM program containing the
OVRDBF command, or if it is opened in another program to which control is
transferred by the CALL command, or if it is opened in another procedure to
which control is transferred using the CALLPRC command.

When you override to a different file, the overriding file must have only one
record format. A logical file which has multiple record formats defined in DDS
may be used if it is defined over only one physical file member. A logical file
which has only one record format defined in the DDS may be defined over more
than one physical file member. The name of the format does not have to be the
same as the format name referred to when the program was created. You should
ensure that the format of the data in the overriding file is the same as in the
original file. You may get unexpected results if you specify LVLCHK(*NO).

Referring to Output Files from Display Commands
A number of the IBM display commands allow you to place the output from the
command into a database file (OUTFILE parameter). The data in this file can be
received directly into a CL procedure or program and processed.

The following CL procedure accepts two parameters, a user name and a library
name. The procedure determines the names of all programs, files, and data areas in
the library and grants normal authority to the specified users.

PGM PARM(&USER &LIB)
DCL &USER *CHAR 10
DCL &LIB *CHAR 10

(1) DCLF QSYS/QADSPOBJ
(2) DSPOBJD OBJ(&LIB/*ALL) OBJTYPE(*FILE *PGM *DTAARA) +

OUTPUT(*OUTFILE) OUTFILE(QTEMP/DSPOBJD)
(3) OVRDBF QADSPOBJ TOFILE(QTEMP/DSPOBJD)
(4) READ: RCVF
(5) MONMSG CPF0864 EXEC(RETURN) /* EXIT WHEN END OF FILE REACHED */
(6) GRTOBJAUT OBJ(&ODLBNM/&ODOBNM) OBJTYPE(&ODOBTP) +

USER(&USER) AUT(*CHANGE)
GOTO READ /*GO BACK FOR NEXT RECORD*/
ENDPGM

(1) The declared file, QADSPOBJ in QSYS, is the IBM-supplied file that is used
by the DSPOBJD command. This file is the primary file which is referred to
by the command when creating the output file. It is referred to by the CL
compiler to determine the format of the records and to declare variables
for the fields in the record format.

(2) The DSPOBJD command creates a file named DSPOBJD in library QTEMP.
This file has the same format as file QADSPOBJ.

(3) The OVRDBF command overrides the declare file (QADSPOBJ) to the file
created by the DSPOBJD command.

(4) The RCVF command reads a record from the DSPOBJD file. The values of
the fields in the record are copied into the corresponding CL variables,
which were implicitly declared by the DCLF command. Because the

Chapter 5. Working with Objects in CL Procedures and Programs 159

OVRDBF command was used, the file QTEMP/DSPOBJD is read instead of
QSYS/QADSPOBJ (the file QSYS/QADSPOBJ is not read).

(5) Message CPF0864 is monitored. This indicates that the end of file has been
reached, so the procedure returns control to the calling procedure.

(6) The GRTOBJAUT command is processed, using the variables for object
name, library name and object type, which were read by the RCVF
command.

160 CL Programming V5R1

Chapter 6. Advanced Programming Topics

This chapter introduces more advanced programming topics, including:
v Special functions that can be called from high-level language programs

(including CL programs)
v Using prompting and the Programmer Menu to enter program source

See the CL and APIs section of the Programming category of the iSeries
Information Center for information on advanced function command processing.

This chapter includes General Use Programming Interface (GUPI), which IBM
makes available for use in customer-written programs.

Several sample programs are included at the end of the chapter.

Using the QCAPCMD Program
The Process Commands (QCAPCMD) application program interface (API)
performs command analyzer processing on command strings. You can use this API
to do the following:
v Check the syntax of a command string prior to running it.
v Prompt the command and receive the changed command string.
v Use a command from a high-level language.
v Display the help for a command.

See the CL and APIs section of the Programming category of the iSeries
Information Center for information on the QCAPCMD API.

Using the QCMDEXC Program
Execute Command (QCMDEXC) is an IBM-supplied program that runs a single
command. This command is used to activate another command:
v From within a high-level language (HLL) program.
v From within a CL procedure.
v From a program where it is not known at compile time what command is to be

run or what parameters are to be used.

The QCMDEXC program is called from within the HLL or CL procedure or
program. The command that is to be run is passed as a parameter on the CALL

© Copyright IBM Corp. 1997, 2001 161

command.

After the command runs, control returns to your HLL or CL procedure or program.

The command runs as if it was not in a program. Therefore, variables cannot be
used on the command because values cannot be returned by the command to CL
variables. Additionally, commands that can only be used in CL procedures or
programs cannot be run by the QCMDEXC program. The format of the call to the
QCMDEXC program is the following:
CALL PGM(QCMDEXC) PARM(command command-length)

Enter the command you wish to run as a character string on the first parameter.
You must specify the command library.
CALL PGM(QCMDEXC) PARM('QSYS/CRTLIB LIB(TEST)' 22)

Remember that you must enclose the command in apostrophes if it contains
blanks. The maximum length of the character string is 6000 characters; never count
the delimiters (the apostrophes) as part of the string. The length that is specified
as the second value on the PARM parameter is the length of the character string
that is passed as the command. Length must be a packed decimal value of length
15 with 5 decimal positions.

Thus, to replace a library list, the call to the QCMDEXC program would look like
this:
CALL PGM(QCMDEXC) PARM('CHGLIBL LIBL(QGPL NEWLIB QTEMP)' 31)

It is possible to code this statement into the HLL or CL program to replace the
library list when the program runs. The QCMDEXC program does not provide
run-time flexibility when used this way.

Providing run-time flexibility is accomplished by:
1. Substituting variables for the constants in the parameter list, and
2. Specifying the values for the variables in the call to the HLL or CL program.

For instance:

162 CL Programming V5R1

The command length, passed to the QCMDEXC program on the second parameter,
is the maximum length of the passed command string. Should the command string
be passed as a quoted string, the command length is exactly the length of the
quoted string. Should the command string be passed in a variable, the command
length is the length of the CL variable. It is not necessary to reduce the command
length to the actual length of the command string in the variable, although it is
permissible to do so.

Not all commands can be run using the QCMDEXC program. The command
passed on a call to the QCMDEXC program must be valid within the current
environment (interactive or batch) in which the call is being made. The command
cannot be one of the following:
v An input stream control command (BCHJOB, ENDBCHJOB, and DATA)
v A command that can be used only in a CL program

IBM has provided online information to help you determine if you can pass a CL
command on a call to the QCMDEXC program. Refer to the command in the CL
and APIs section of the Programming category in the iSeries Information Center. To
find the environment in which you can run the command, look at the syntax
diagram for the command. The small box in the upper right corner of the diagram
indicates the environment in which you can run the command. For example, JOB:
I indicates that the command can be run interactively; JOB: B indicates that you
can run the command in a batch job; Exec indicates that you can run the command
with QCMDEXC.

You can precede the CL command with a question mark (?) to request prompting
or use selective prompting when you call QCMDEXC in an interactive job.

If an error is detected while a command is being processed through the
QCMDEXC program, an escape message is sent. You can monitor for this escape
message in your CL procedure or program using the Monitor Message (MONMSG)
command. For more information about monitoring for messages, see Chapter 7 and
Chapter 8.

If a syntax error is detected, message CPF0006 is sent. If an error is detected
during the processing of a command, any escape message sent by the command is
returned by the QCMDEXC program. You monitor for messages from commands

Figure 2. Example of Call PGM

Chapter 6. Advanced Programming Topics 163

run through the QCMDEXC program in the same way you monitor for messages
from commands contained in CL procedures and programs.

See the appropriate HLL reference for information on how HLL programs handle
errors on calls.

Using the QCMDEXC Program with DBCS Data
You can use QCMDEXC to request double-byte character set (DBCS) input data to
be entered with a command. The command format used for QCMDEXC to prompt
double-byte data is:
CALL QCMDEXC ('command' command-length IGC)

The third parameter of the QCMDEXC program, IGC, instructs the system to
accept double-byte data. For example, the following CL program asks a user to
provide double-byte text for a message. Then the system sends the following
message:
PGM

CALL QCMDEXC ('?SNDMSG' 7 IGC)
ENDPGM

An explanation of the system message follows:
v The ? character instructs the system to present the command prompt for the

Send Message (SNDMSG) command.
v The value 7 is the length of the SNDMSG command plus the question mark.
v The value IGC lets you request double-byte data.

The following display is shown after running the QCMDEXC program. You can
use double-byte conversion on this display:

SEND MESSAGE (SNDMSG)

TYPE CHOICES, PRESS ENTER.

MESSAGE TEXT _______________________________________

TO USER PROFILE __________ NAME, *SYSOPR, *ALLACT...

BOTTOM
F3=EXIT F4=PROMPT F5=REFRESH F10=ADDITIONAL PARAMETERS F12=CANCEL
F13=HOW TO USE THIS DISPLAY F24=MORE KEYS

164 CL Programming V5R1

Using the QCMDCHK Program
QCMDCHK is an IBM-supplied program that performs syntax checking for a
single command, and optionally prompts for the command. The command is not
run. If prompting is requested, the command string is returned to the calling
procedure or program with the updated values as entered through prompting. The
QCMDCHK program can be called from a CL procedure or program or an HLL
procedure or program.

Typical uses of QCMDCHK are:
v Prompt the user for a command and then store the command for later

processing.
v Determine the options the user specified.
v Log the processed command. First, prompt with QCMDCHK, run with

QCMDEXC, and then log the processed command.

The format of the call to QCMDCHK is:
CALL PGM(QCMDCHK) PARM(command command-length)

The first parameter passed to QCMDCHK is a character string containing the
command to be checked or prompted. If the first parameter is a variable and
prompting is requested, the command entered by the work station user is placed in
the variable.

The second parameter is the maximum length of the command string being
passed. If the command string is passed as a quoted string, the command length is
exactly the length of the quoted string. If the command string is passed in a
variable, the command length is the length of the CL variable. The second
parameter must be a packed decimal value of length 15 with 5 decimal positions.

The QCMDCHK program performs syntax checking on the command string which
is passed to it. It verifies that all required parameters are coded, and that all
parameters have allowable values. It does not check for the processing
environment. That is, a command can be checked whether it is allowed in batch
only, interactive only, or only in a batch or interactive CL program. QCMDCHK
does not allow checking of command definition statements.

If a syntax error is detected on the command, message CPF0006 is sent. You can
monitor for this message to determine if an error occurred on the command.
Message CPF0006 is preceded by one or more diagnostic messages that identify the
error. In the following example, control is passed to the label ERROR within the
program, because the value 123 is not valid for the PGM parameter of the
CRTCLPGM command.
CALL QCMDCHK ('CRTCLPGM PGM(QGPL/123)' 22)
MONMSG CPF0006 EXEC(GOTO ERROR)

You can request prompting for the command by either placing a question mark
before the command name or by placing selective prompt characters before one or
more keyword names in the command string.

If no errors are detected during checking and prompting for the command, the
updated command string is placed in the variable specified for the first parameter.
The prompt request characters are removed from the command string. This is
shown in the following example:

Chapter 6. Advanced Programming Topics 165

DCL &CMD *CHAR 2000
.
.
CHGVAR &CMD '?CRTCLPGM'
CALL QCMDCHK (&CMD 2000)

After the call to the QCMDCHK program is run, variable &CMD contains the
command string with all values entered through the prompter. This might be
something like:
CRTCLPGM PGM(PGMA) SRCFILE(TESTLIB/SOURCE) USRPRF(*OWNER)

Note that the question mark preceding the command name is removed.

When prompting is requested through the QCMDCHK program, the command
string should be passed in a CL variable. Otherwise, the updated command string
is not returned to your procedure or program. You must also be sure that the
variable for the command string is long enough to contain the updated command
string which is returned from the prompter. If it is not long enough, message
CPF0005 is sent, and the variable containing the command string is not changed.
Without selective prompting, the prompter only returns entries that were typed by
the user.

The length of the variable is determined by the value of the second parameter, and
not the actual length of the variable. In the following example, escape message
CPF0005 is sent because the specified length is too short to contain the updated
command, even though the variable was declared with an adequate length.
DCL &CMD *CHAR 2000
.
.
CHGVAR &CMD '?CRTCLPGM'
CALL QCMDCHK (&CMD 9)

If you press F3 or F12 to exit from the prompter while running QCMDCHK,
message CPF6801 is sent to the procedure or program that called QCMDCHK, and
the variable containing the command string is not changed.

If PASSATR(*YES) is specified on the PARM, ELEM, or QUAL command definition
statement, and the default value is changed using the CHGCMDDFT command,
the default value is highlighted as though this was a user-specified value and not a
default value. If a default value of a changed PARM, ELEM, or QUAL command
definition statement is changed back to its original default value, the default value
will no longer be highlighted.

Using Message Subfiles in a CL Program or Procedure
In CL procedures and programs, message subfiles are the only type of subfiles
supported. To use subfile message support, run a SNDF or SNDRCVF command
using the subfile message control record. In the DDS, supply SFLPGMQ data and
always have SFLINZ active.

When you use message subfiles in CL procedures and programs, you must name a
procedure or program. You cannot specify an * for the SFLPGMQ keyword in DDS.
When you specify a procedure or OPM program name, all messages sent to that
procedure’s or program’s message queue are taken from the invocation message
queue and placed in the message subfile. All messages associated with the current
request are taken from the CALL message queue and placed in the message
subfile.

166 CL Programming V5R1

Message subfiles let a controlling procedure or program display one or more error
messages.

Allowing User Changes to CL Commands at Run Time
With most CL procedures and programs, the work station user provides input to
the procedure or program by specifying parameter values passed to the procedure
or program or by typing into input-capable fields on a display prompt.

You can also prompt the work station user for input to a CL procedure or program
in the following ways:
v If you enter a ? before the CL command in the CL procedure or program source,

the system displays a prompt for the CL command. Parameter values you have
already specified in your procedure or program are filled in and cannot be
changed by the work station user. See “Using the Prompter within a CL
Procedure or Program” later in this section.

v If you call the QCMDEXC program and request selective prompting, the system
displays a prompt for a CL command, but you need not specify in the CL
program source which CL command is to be used at processing time. For more
information on the QCMDEXC program, see “Using the QCMDEXC Program”
on page 161.

Using the Prompter within a CL Procedure or Program

You can request prompting within the interactive processing of a CL procedure or
program. For example, the following procedure can be compiled and run:
PGM
.
.
.
?DSPLIB
.
.
.
ENDPGM

In this case, the prompt for the Display Library (DSPLIB) command appears on the
display during processing of the program. Processing of the DSPLIB command
waits until you have entered values for required parameters and pressed the Enter
key.

Any values specified in the source procedure cannot be changed directly by the
operator (or user). For example:
PGM
.
.
.
?SNDMSG TOMSGQ(WS01 WS02)
.
.
.
ENDPGM

When the procedure is called and the prompt for the Send Message (SNDMSG)
command appears, the operator (or user) can enter values on the MSG, MSGTYPE,
and RPYMSGQ parameters, but cannot alter the values on the TOMSGQ
parameter. For example, the operator (or user) cannot add WS03 or delete WS02.

Chapter 6. Advanced Programming Topics 167

See “QCMDEXC with Prompting in CL Procedures and Programs” on page 171 for
an exception to this restriction. The following restrictions apply to the use of the
prompter within a CL procedure at processing time:
v When the prompter is called from a CL procedure or program, you cannot enter

a variable name or an expression for a parameter value on the prompt.
v Prompting cannot be requested on a command embedded on an IF, ELSE, or

MONMSG command:
Correct Incorrect

IF (&A=5) THEN(DO) IF (&A=5) THEN(?SNDMSG)
?SNDMSG
ENDDO

v Prompting cannot be used for the following commands:
CALLPRC ELSE PGM
CALL ENDDO RCVF
CHGVAR ENDPGM RETURN
COPYRIGHT ENDRCV SNDF
DCL IF SNDRCVF
DCLF GOTO WAIT
DO MONMSG

v Prompting cannot be used in batch jobs.

When you enter a prompting request (?) on a command in a CL source file
member, you may receive a diagnostic message on the command and still have a
successful compilation. In this case, you must examine the messages carefully to
see that the errors can be corrected by values entered through the prompt display
when the procedure or program runs.

You can prompt for all commands you are authorized to in any mode while in an
interactive environment except for the previously listed commands, which cannot
be prompted for during processing of a CL procedure or program. This allows you
to prompt for any command while at a work station and reduces the need to refer
to the manuals that describe the various commands and their parameters.

If you press F3 or F12 to cancel the prompted command while running that
command, an escape message (CPF6801) is sent to the CL procedure or program.
You can monitor for this message using the MONMSG command in the CL
procedure or program.

When you prompt for a command, your procedure or program does not receive
the command string you entered. To achieve this, prompt using QCMDCHK, then
run the command using QCMDEXC. You can also use QCAPCMD to prompt and
run the command.

Selective Prompting for CL Commands
You can request to prompt for selected parameters within a command. This is
especially helpful when you are using some of the longer commands and do not
want to be prompted for certain parameters.

Selective prompting can be used during interactive prompting or entered as source
(in SEU) for use within a CL procedure or program. You can enter the source for
selective prompting with SEU but you cannot use selective prompting while
entering commands in SEU.

You can use selective prompting to:

168 CL Programming V5R1

v Select the parameters for which prompting is needed.
v Determine which parameters are protected.
v Omit parameters from the prompt.

The following restrictions apply to selective prompting:
v The command name or label must be preceded by a ? (question mark):

– When one or more of the selective prompt options is ?- (question mark,
minus).

– To avoid getting a CPF6805 message (a message that indicates a diagnostic
problem on the command although compilation is successful)

v Parameters can be specified by position but they cannot be preceded by selective
prompt characters.

v A parameter must be in keyword form to be selectively prompted for.
v Blanks cannot be entered between the selective prompt characters and the

keyword.
v Selective prompting is only applicable at a parameter level; that is, you cannot

specify particular keyword values within a list of values.
v ?- is not allowed in prompt override programs.
v If a parameter is required, the ?? selective prompt must be used.

You can tell that a parameter is required because the input slot is highlighted
when the command is prompted.

User-specified values are marked with a special symbol (>) in front of the values in
both selective and regular prompting. If a user-specified value on the parameter
prompt is not preceded by this symbol, the command default is passed to the
command processing program.

If PASSATR(*YES) is specified on the PARM, ELEM, or QUAL command definition
statement, and the default value is changed using the CHGCMDDFT command,
the default value is shown as a user-specified value (using the > symbol) and not a
default value. If a default value of a changed PARM, ELEM, or QUAL command
definition statement is changed back to its original default value, the > symbol is
removed.

You can press F5 while you are using selective prompting to again display those
values initially shown on the display.

If a CL variable is used to specify a value for a parameter which is to be displayed
through selective prompting, you can change the value on the prompt, and the
changed value is used when the command is run. The value of the variable in the
procedure or program is not changed. If a CL procedure contains the following:
OVRDBF ?*FILE(FILEA) ??TOFILE(&FILENAME) ??MBR(MBR1)

the three parameters, FILE, TOFILE, and MBR is shown on the prompt display.
The value specified for the FILE parameter cannot be changed by you, but the
values for the TOFILE and MBR parameters can be changed. Assume that the CL
variable &FILENAME has a value of FILE1, and you change it to FILE2. When the
command is run, the value of FILE2 is used, but the value of &FILENAME is not
changed in the procedure. The following tables list the various selective prompting
characters and the resulting action.

Chapter 6. Advanced Programming Topics 169

You Enter Value Displayed Protected

Value Passed to
CPP if Nothing
Specified

Marked with >
Symbol

??KEYWORD() Default No Default No

??KEYWORD(VALUE) Value No Value Yes

?*KEYWORD() Default Yes Default No

?*KEYWORD(VALUE) Value Yes Value Yes

?<KEYWORD() Default No Default No

?<KEYWORD(VALUE) Value No Default No

?/KEYWORD() Default Yes Default No

?/KEYWORD(VALUE) Value Yes Default No

?-KEYWORD() None N/A Default N/A

?-KEYWORD(VALUE) None N/A Value N/A

?&KEYWORD() Default No Default No

?&KEYWORD(VALUE) Value No Default No

?%KEYWORD() Default Yes Default No

?%KEYWORD(VALUE) Value Yes Default No

You Enter
Display Value When F5
Pressed or Blanked Out Description

??KEYWORD() Default Normal keyword prompt with
command default.

??KEYWORD(VALUE) Value Normal keyword prompt with
program specified default.

?*KEYWORD() Default Show protected prompt (as
information) where command
default is the only value used.

?*KEYWORD(VALUE) Value Show protected prompt (as
information) where program
specified value is the only
value used. For example,
when a value should be
shown as information but not
changed.

?<KEYWORD() Default Normal keyword prompt with
command default.

?<KEYWORD(VALUE) Value Normal keyword prompt with
program specified default.

?/KEYWORD() Default Reserved for IBM use.

?/KEYWORD(VALUE) Value Reserved for IBM use.

?&KEYWORD() Default Normal keyword prompt with
command default.

?&KEYWORD(VALUE) Value Normal keyword prompt with
program specified default.

?%KEYWORD() Default Show protected prompt (as
information) where command
default is the only value used.

170 CL Programming V5R1

You Enter
Display Value When F5
Pressed or Blanked Out Description

?%KEYWORD(VALUE) Value Show protected prompt (as
information) where program
specified value is the only
value used. For example,
when a value should be
shown as information but not
changed.

Selective prompting can be used with the QCMDEXC or QCMDCHK program. The
format of the call is:
CALL PGM(QCMDEXC or QCMDCHK) PARM(command command-length)

Following is a brief description of the selective prompting characters:

Selective Prompting Character Description

?? The parameter is displayed and input-capable.

?* The parameter is displayed but is not input-capable.
Any user-specified value is passed to the command
processing program.

?< The parameter is displayed and is input-capable, but
the command default is sent to the CPP unless the
value displayed on the parameter is changed.

?/ Reserved for IBM use.

?– The parameter is not displayed. The specified value
(or default) is passed to the CPP. Not allowed in
prompt override programs.

?& The parameter is not displayed until F9=All
parameters is pressed. Once displayed, it is
input-capable. The command default is sent to the
CPP unless the value displayed on the parameter is
changed.

?% The parameter is not displayed until F9=All
parameters is pressed. Once displayed, it is not
input-capable. The command default is sent to the
CPP.

For a further discussion of QCMDEXC or QCMDCHK refer to “Using the
QCMDEXC Program” on page 161 and “Using the QCMDCHK Program” on
page 165.

QCMDEXC with Prompting in CL Procedures and Programs
The QCMDEXC program may be used to call the prompter. This use of
QCMDEXC with prompting in CL procedures and programs allows you to alter all
values on the command except the command name itself. This is more flexible
than direct use of the prompter, where you can only enter values not specified in
the source (see previous section). If the prompter is called directly with a
command such as:
?OVRDBF FILE(FILEX)

Chapter 6. Advanced Programming Topics 171

you can specify a value for any parameter except FILE. However, if the command
is called during processing of a program using the QCMDEXC program, such as:
CALL QCMDEXC PARM('?OVRDBF FILE(FILEX)' 19)

you can specify a value for any parameter, including FILE. In this example, FILEX
is the default.

Prompting with modifiable specified values may also be accomplished using
selective prompting as described earlier in this chapter. However, each keyword
which is desired must be explicitly selected. The prompter is called directly with a
command such as:
OVRDBF ??FILE(FILEX) ??TOFILE(*N) ??MBR(*N)

Using the Programmer Menu
The programmer menu can be called directly by calling the QPGMMENU
program, or by using the Start Programmer Menu (STRPGMMNU) command. You
can use the command to specify in advance the defaults that you use with the
programmer menu. In addition, the STRPGMMNU command also supports other
options that can be used to tailor the use of the programmer menu.

For a description of the STRPGMMNU command and its parameters, see the CL
and APIs section of the Programming category in the iSeries Information Center.

Uses of the Start Programmer Menu (STRPGMMNU) Command
The Start Programmer Menu command can be used for the following:
v Performing the same function as a call to QPGMMENU
v Filling in the standard input fields

Four of the command parameters allow you to fill in the standard input fields at
the bottom of the menu. These parameters are the following:
– Source file
– Source library
– Object library
– Job description

The command may be used with one or more of the parameters that control the
initial values of the menu. You could design this as part of an initial program for
sign-on or for situations in which a user calls a specific user-written function. The
following example shows such a program, with a separate function for each
application area requiring different initial values.

PGM
CHGLIBL LIBL(PGMR1 QGPL QTEMP)

LOOP:
STRPGMMNU SRCLIB(PGMR1) OBJLIB(PGMR1) JOBD(PGMR1)
MONMSG MSGID(CPF2320) EXEC(GOTO END) /* F3 or F12 to leave menu */
GOTO LOOP

END: ENDPGM

v Controlling programmer menu options
The other parameters assist you in controlling the menu and its functions. For
example, you can specify ALWUSRCHG(*NO) to prevent a user from changing
the values that appear on the menu. This parameter should not be considered to
be a security feature because a user who is using the menu can call the
STRPGMMNU command and change the values in a separate call. (The user can
also start functions by using F10 to call the command entry display.) If the menu

172 CL Programming V5R1

is displayed by the STRPGMMNU command, you can prevent the user (by
authorization) from calling the QPGMMENU program directly, but you cannot
prevent the user from requesting another call of the STRPGMMNU command.

v Adapting the menu create option
The EXITPGM and DLTOPT parameters allow you to provide your own support
for the menu create option (option 3). The system may call a user program when
you request option 3. IBM provides online information that discusses the
parameters and the parameter list that are passed to the user program . Refer to
the CL and APIs section of the Programming category in the iSeries Information
Center. The following describes some typical uses of the EXITPGM parameter.

The EXITPGM Parameter
The EXITPGM parameter can be used for the following purposes:
v To change the defaults used on the create commands submitted by option 3.

For example, if F4 (Prompt) is not used, the EXITPGM parameter could change
one or more of the create commands to specify your own default requirements.
If F4 is used, the EXITPGM parameter could submit the command as entered by
the programmer (with no parameters changed).

v To change parameters regardless of the programmer’s use of F4.
This requires scanning the value of the &RQSDTA512 parameter (which is
passed to the exit program) to see if it had already been used and substituting
the required value.

v To change other parameters on the SBMJOB command.
For example, the user parameter of the SBMJOB command could be changed to
specify the value of the job description instead of the value of *CURRENT. It is
also possible to retrieve the values of one or more job attributes by using the
RTVJOBA command, entering the attributes as specific values.

v To enforce local programming conventions.
For example, if you have a naming standard that requires all physical files to be
named with 7 characters and end with a P, the exit program could reject any
attempt to use the CRTPF command with a name that did not follow this
standard.

Command Analyzer Exit Points
The exit program registration facility provides two exit points for the system.
v The QIBM_QCA_CHG_COMMAND exit point can register one and only one

exit point for a specific command. The program specified for this exit point is
called by the command analyzer before it passes control to the prompter.

v You can register up to ten exit programs for each command for the
QIBM_QCA_RTV_COMMAND exit point. The command analyzer calls these
exit programs after running the validity checking program (VCP) and before
running the command processing program (CPP) for the command.

See the CL and APIs section of the Programming category in the iSeries
Information Center for a complete description of these exit points.

Application Programming for DBCS Data
Special considerations must be made when designing application programs to
process double-byte data or converting alphanumeric application programs to
double-byte programs.

Chapter 6. Advanced Programming Topics 173

Designing DBCS Application Programs
Design your application programs for processing double-byte data in the same
way you design application programs for processing alphanumeric data, with the
following additional considerations:
v Identify double-byte data used in the database files, if any.
v Design display and printer formats that can be used with double-byte data.
v If needed, provide double-byte conversion as a means of entering data for

interactive applications. Use the DDS keyword for double-byte conversion
(IGCCNV) to specify DBCS conversion in display files.

v Write double-byte error messages to be displayed by the program.
v Specify extension character processing so that the system prints and displays all

double-byte data.
v Determine which double-byte characters, if any, must be defined. ADTS/400:

Character Generator Utility describes how to define double-byte characters
for DBCS-supported countries.

Converting Alphanumeric Programs to Process DBCS Data
If an alphanumeric application program uses externally-described display files, you
can change that application program to a double-byte application program by
changing only the files. To convert an application program, do the following:
1. Create a duplicate copy of the source statements for the alphanumeric file you

want to change.
2. Change alphanumeric constants and literals to double-byte constants and

literals.
3. Change fields in the file to one of the following data types to enter DBCS data:

v DBCS-open (O) data type
v DBCS-only (J) data type
v DBCS-either (E) data

You do not have to change the length of the fields.
4. Store the converted display file in a separate library. Give the file the same

name as its alphanumeric version.
5. To use the converted file in a job, change the library list, using the Change

Library List (CHGLIBL) command, for the job in which the file is used. The
library in which the double-byte display file is stored is then checked before the
library in which the alphanumeric version of the file is stored.

Using DBCS Data in a CL Program
The following program shows the use of different keyboard shifts within a CL
program. Note how the double-byte data is used only as text values in this
program; the commands themselves are in alphanumeric characters.

When run, this program shows you how the different keyboard shifts for DDS
display files are used.

174 CL Programming V5R1

c0917690.pdf
c0917690.pdf

Sample CL Programs
The following sample programs demonstrate the flexibility, simplicity, and
versatility of CL programs. The following programs are described by their function
and probable user.

Note: Code generated by the ILE CL compiler in V4R3 and later releases is
threadsafe. However, many commands are not threadsafe. Therefore, do not
consider a CL procedure as threadsafe unless all the commands the CL
procedure uses are threadsafe. You can use the Display Command
(DSPCMD) command to determine if a command is threadsafe. For
additional information on threads, please access the iSeries Information
Center and open the topics under the Programming category of information.

Initial Program for Setup (Programmer)
PGM
CHGLIBL LIBL(TESTLIB QGPL QTEMP)
CHGJOB OUTQ(WSPRTR)
TFRCTL QPGMMENU
ENDPGM

The test library is placed first on the library list, an output queue is selected for a
convenient printer, and the programmer menu is displayed.

RV3W197-0

Chapter 6. Advanced Programming Topics 175

Moving an Object from a Test Library to a Production Library
(Programmer)

PGM PARM(&OBJ &OBJTYPE &OPER)
DCL &OBJ *CHAR LEN(10)
DCL &OBJTYPE *CHAR LEN(7)
DCL &OPER *CHAR LEN(1) /* R=Replace M=Move */
IF ((&OPER *NE 'M') *AND (&OPER *NE 'R')) THEN(DO)

SNDPGMMSG MSG('Operation code must be "R" or "M" ')
RETURN
ENDDO

IF ((&OBJTYPE *NE *PGM) *AND (&OBJTYPE *NE *FILE) *AND (&OBJTYPE +
*NE *DTAARA)) THEN(DO)

SNDPGMMSG MSG('Object' *BCAT &OBJ *BCAT ' must be *PGM, +
*FILE, or *DTAARA')

RETURN
ENDDO

CHKOBJ BLDLIB/&OBJ OBJTYPE(&OBJTYPE)
MONMSG MSGID(CPF9801) EXEC(DO)

SNDPGMMSG MSG('Object or object type does not exist +
in BLDLIB')

RETURN
ENDDO

IF (&OPER *EQ 'M') THEN(DO)
MOVOBJ BLDLIB/&OBJ OBJTYPE(&OBJTYPE) TOLIB(PRODLIB)
MONMSG MSGID(CPF3208) EXEC(DO)

SNDPGMMSG MSG('Object' *BCAT &OBJ *BCAT ' +
already exists in PRODLIB')

RETURN
ENDDO

CHKOBJ PRODLIB/&OBJ OBJTYPE(&OBJTYPE)
MONMSG MSGID(CPF9801) EXEC(DO)
SNDPGMMSG MSG('Object or object type does not +

exist in PRODLIB')
RETURN
ENDDO

ENDDO
RETURN
ENDPGM

The object name, object type, and operation code are passed from another program
or procedure. Checks are performed to see that the operation code and object type
are correct, and that the object exists in the test library. The object is moved unless
it already exists in the production library. The move is then confirmed. More
commands can be added to grant additional authority to the object or to handle
additional exceptions and additional object types.

Saving Specific Objects in an Application (System Operator)

Example
PGM
SAVOBJ OBJ(FILE1 FILE2) LIB(LIBA) OBJTYPE(*FILE) DEV(TAP01) +

CLEAR(*YES)
SAVOBJ OBJ(DTAARA1) LIB(LIBA) OBJTYPE(*DTAARA) DEV(TAP01)
SNDPGMMSG MSG('Save of daily backup of LIBA completed') +

MSGTYPE(*COMP)
ENDPGM

This program ensures consistent command entry for regularly repeated procedures.

Additional Save Object (SAVOBJ) commands can, of course, be added. However,
this program relies on the operator selecting the correct diskette or tape for each
periodic backup of each application. This can be controlled by assigning unique

176 CL Programming V5R1

names to each diskette or tape set for each save operation. If you want to save
your payroll files separately each week for four weeks, for instance, you might
name each diskette or tape differently and write the program to compare the name
of the diskette or tape against the correct name for that week.

Recovery from Abnormal End (System Operator)

PGM
DCL &SWITCH *CHAR LEN(1)
RTVSYSVAL SYSVAL(QABNORMSW) RTNVAR(&SWITCH)
IF (&SWITCH *EQ '1') THEN(DO) /*CALL RECOVERY PROGRAMS*/

SNDPGMMSG MSG('Recovery programs in process. +
Do not start subsystems until notified') +
MSGTYPE(*INFO) TOMSGQ(QSYSOPR)

CALL PGMA
CALL PGMB
SNDPGMMSG MSG('Recovery programs complete. +

Startup subsystems') +
MSGTYPE(*INFO) TOMSGQ(QSYSOPR)

RETURN
ENDDO

ENDPGM

Submitting a Job (System Operator)
PGM /*DAILYAC*/
SBMJOB JOB(DAILYACCRC) JOBD(ACCRC2) +

CMD(CALL ACCRC305 PARM(DAILY))
SNDPGMMSG MSG('Daily Accounts Receivable job DAILYACCRC +

submitted to batch') MSGTYPE(*COMP)
ENDPGM

Instead of typing in all the parameters for submitting a job, the system operator
simply calls DAILYAC.

Timing Out While Waiting for Input from a Device Display
PGM
DCLF FILE(QGPL/MENU)

START: SNDRCVF DEV(*FILE) RCDFMT(MENUFMT) WAIT(*NO)
WAIT
MONMSG MSGID(CPF0889) EXEC(SIGNOFF)
CHGVAR VAR(&IN99) VALUE('0')
IF COND(&IN01) THEN(GOTO CMDLBL(START))

OPTION1: /* OPTION 1-ORDER ENTRY */
IF COND(&OPTION *EQ '1') THEN(DO)
CALL PGM(ORDENT)
GOTO CMDLBL(START)
ENDDO

OPTION2: /* OPTION 2-ORDER DISPLAY */
IF COND(&OPTION *EQ '2') THEN(DO)
CALL PGM(ORDDSP)
GOTO CMDLBL(START)
ENDDO

OPTION3: /* OPTION 3-ORDER CHANGE */
IF COND(&OPTION *EQ '3') THEN(DO)
CALL PGM(ORDCHG)
GOTO CMDLBL(START)
ENDDO

OPTION4: /* OPTION 4-ORDER PRINT */
IF COND(&OPTION *EQ '4') THEN(DO)
CALL PGM(ORDPRT)
GOTO CMDLBL(START)

Chapter 6. Advanced Programming Topics 177

ENDDO
OPTION9: /* OPTION 9-SIGNOFF */

IF COND(&OPTION *EQ '9') THEN(SIGNOFF)
OPTIONERR: /* OPTION SELECTED NOT VALID */

CHGVAR VAR(&IN99) VALUE('1')
GOTO CMDLBL(START)
ENDPGM

This program illustrates how to write a CL program using a display file that will
wait for a specified amount of time for the user to enter an option. If he does not,
the user is signed off.

The display file was created with the following command:
CRTDSPF FILE(MENU) SRCFILE(QGPL/QDDSSRC) SRCMBR(MENU) +

DEV(*REQUESTER) WAITRCD(60)

The display file will use the *REQUESTER device. When a WAIT command is
issued, it waits for the number of seconds (60) specified on the WAITRCD
keyword. The following is the DDS for the display file:
SEQNBR *... ... 1 2 3 4 5 6 7 8

0100 A PRINT CA01(01)
0200 A R MENUFMT BLINK
0300 A TEXT('Order Entry Menu')
0400 A 1 31'Order Entry Menu'
0500 A 2 2'Select one of the following: '
0600 A 3 4'1. Enter Order'
0700 A 4 4'2. Display Order'
0800 A 5 4'3. Change Order'
0900 A 6 4'4. Print Order'
1000 A 7 4'9. Sign Off'
1100 A 23 2'Option:'
1200 A OPTION 1 I 23 10
1300 A 99 ERRMSG('Invalid option selected.')

* * * * * * E N D O F S O U R C E * * * * *

The program performs a SNDRCVF WAIT(*NO) to display the menu and request
an option from the user. Then it issues a WAIT command to accept an option from
the user. If the user enters a 1 through 4, the appropriate program is called. If the
user enters a 9, the SIGNOFF command is issued. If the user enters an option that
is not valid, the menu is displayed with an ’OPTION SELECTED NOT VALID’
message. The user can then enter another valid option. If the user does not
respond within 60 seconds, the CPF0889 message is issued to the program and the
MONMSG command issues the SIGNOFF command.

A SNDF command using a record format containing the INVITE DDS keyword
could be used instead of the SNDRCVF WAIT(*NO). The function would be the
same.

Retrieving Program Attributes
You can use the Display Program (DSPPGM) command to display the attributes of
a program. To retrieve some of the attributes (such as program type, source
member, text, creation date) into CL variables, you can use the Display Object
Description (DSPOBJD) command to build an output file. The system can then
read a CL procedure or program that uses the Declare File (DCLF) and Receive File
(RCVF) commands. To access other attributes of the DSPPGM command (such as
USRPRF), you can use the Retrieve program information API (QCLRPGMI).

178 CL Programming V5R1

Loading and Running an Application from Tapes or Diskettes
The Load and Run Media Program (LODRUN) command allows the user to load
and run an application written by another user or a software vendor from tapes or
diskettes supplied by the other user.

When the LODRUN command is run:
v The media is searched for the user-written program, which must be named

QINSTAPP. If tape is used, the tape is rewound first.
v If a QINSTAPP program already exists in the QTEMP library on the user’s

system, it is deleted.
v The QINSTAPP program is restored to the QTEMP library using the RSTOBJ

command.
v Control of the system is passed to the QINSTAPP program. The QINSTAPP

program may be used, for example, to restore other applications to the user’s
system and run those applications.

Responsibilities of the Application Writer
The user supplying the QINSTAPP program is responsible for writing and
supporting it. The QINSTAPP program is not supplied by IBM*. The program can
be designed to accomplish many different tasks. For example, the program could:
v Restore and run other programs or applications
v Restore a library
v Delete another program or application
v Create specific environments
v Correct problems in existing applications

Figure 3 shows an example of a QINSTAPP program. The program is saved to a
tape or diskette by the program writer and loaded on the system using the
LODRUN command. The LODRUN command passes control of the system to the
program, which then performs the tasks written into the program.

PGM PARM(&DEV) /* "Device" is only Parm allowed */
DCL VAR(&DEV) TYPE(*CHAR) LEN(10)
DCL VAR(&MODEL) TYPE(*CHAR) LEN(4)

/* Can check for appropriate model number, release level, and so on */
RTVSYSVAL SYSVAL(QMODEL) RTNVAR(&MODEL)
IF (&MODEL *EQ 'xxxxx') THEN...

/* Install a library for new application (programs, data): */
RSTLIB SAVLIB(NEWAPP) DEV(&DEV) ENDOPT(*LEAVE) +

MBROPT(*ALL)
/* Install a command to start new application: */

RSTOBJ OBJ(NEWAPP) SAVLIB(QGPL) DEV(&DEV) +
MBROPT(*ALL)

END: ENDPGM

Figure 3. Example of an Application Using the LODRUN Command

Chapter 6. Advanced Programming Topics 179

180 CL Programming V5R1

Chapter 7. Defining Messages

On the iSeries server, communication between procedures or programs, between
jobs, between users, and between users and procedures or programs occurs
through messages. A message can be predefined or immediate:
v A predefined message is created and exists outside the program that uses it.

Predefined messages are stored in message files and have a message number. An
example of a system predefined message is:
CPF0006 Errors occurred in command.

v An immediate message is created by the sender at the time it is sent. An
immediate message is not stored in a message file. An example of an immediate
message received at a display station is:
From . . . : QSYSOPR 06/12/94 10:50:54
System going down at 11:00; please sign off

Your system comes with an extensive set of predefined messages that allow
communication between programs within the system and between the system and
its users. Each licensed program you order has a message file that is stored in the
same library as the licensed program it applies to. For example, system messages
are stored in the file QCPFMSG in the library QSYS.

The system uniquely identifies each predefined message in a message file by a
7-character code and defines it by a message description. The message description
contains information, such as message text and message help text, severity level,
valid and default reply values, and various other attributes. See the Add Message
Description (ADDMSGD) command description in online help, or in theCL and
APIs section of the Programming category in the iSeries Information Center.

All messages that are sent or received in the system are transmitted through a
message queue. Messages that are issued in response to a direct request, such as a
command, are automatically displayed on the display from which the request was
made. For all other messages, the user, program or procedure must receive the
message from the queue or display it. There are several IBM-supplied message
queues in the system; these message queues are described later in this chapter (see
“Types of Message Queues” on page 199).

The system also writes some of the messages that are issued to logs. A job log
contains information related to requests entered for a job, the history log contains
job, subsystem, and device status information. See “Message Logging” on page 265
for more information on logging.

You can create your own message files and message descriptions. By creating
predefined messages, you can use the same message in several procedures or
programs but define it only once. You can also change and translate predefined
messages into languages other than English (based on the user viewing the
messages) without affecting the procedures and programs that use them. If the
messages were defined in the procedure or program, the module or program
would have to be recompiled when you change the messages.

In addition to creating your own messages and message files, the system message
handling function allows you to:

© Copyright IBM Corp. 1997, 2001 181

v Create and change message queues (Create Message Queue [CRTMSGQ],
Change Message Queue [CHGMSGQ], and Work with Message Queues
[WRKMSGQ] commands)

v Create and change message files (Create Message File [CRTMSGF], Change
Message File [CHGMSGF] commands)

v Add message descriptions (Add Message Description [ADDMSGD] command)
v Change message descriptions (Change Message Description [CHGMSGD]

command)
v Remove message descriptions (Remove Message Description [RMVMSGD]

command)
v Send immediate messages (Send Message [SNDMSG], Send Break Message

[SNDBRKMSG], Send Program Message [SNDPGMMSG], and Send User
Message [SNDUSRMSG] commands)

v Display messages and message descriptions (Display Messages [DSPMSG],
Display Message Description [DSPMSGD], Work with Messages [WRKMSG],
and Work with Message Descriptions [WRKMSGD] commands)

v Use a CL procedure or program to:
– Send a message to a work station user or the system operator (Send User

Message [SNDUSRMSG] command)
– Send a message to a message queue (Send Program Message [SNDPGMMSG]

command)
– Receive a message from a message queue (Receive Message [RCVMSG]

command)
– Send a reply for a message to a message queue (Send Reply [SNDRPY]

command)
– Retrieve a message from a message file (Retrieve Message [RTVMSG]

command)
– Remove a message from a message queue (Remove Message [RMVMSG]

command)
– Monitor for escape, notify, and status messages that are sent to a call message

queue (Monitor Message [MONMSG] command)
v Use the system reply list to specify the replies for predefined inquiry messages

sent by a job (Add Reply List Entry [ADDRPYLE], Change Reply List Entry
[CHGRPYLE], Remove Reply List Entry [RMVRPYLE], and Work with Reply
List Entry [WRKRPYLE] commands)

When a message is sent, it is defined as one of the following types:
v Informational (*INFO). A message that conveys information about the condition

of a function.
v Inquiry (*INQ). A message that conveys information but also asks for a reply.
v Notify (*NOTIFY). A message that describes a condition for which a procedure

or program requires corrective action or a reply from its calling procedure or
program. A procedure or program can monitor for the arrival of notify messages
from the programs or procedures it calls.

v Reply (*RPY). A message that is a response to a received inquiry or notify
message.

v Sender’s copy (*COPY). A copy of an inquiry or notify message that is kept by
the sender.

v Request (*RQS). A message that requests a function from the receiving procedure
or program. (For example, a CL command is a request message.)

182 CL Programming V5R1

v Completion (*COMP). A message that conveys completion status of work.
v Diagnostic (*DIAG). A message about errors in the processing of a system

function, in an application program, or in input data.
v Status (*STATUS). A message that describes the status of the work done by a

procedure or program. A procedure or program can monitor for the arrival of
status messages from the program or procedure it calls. Status messages sent to
the external message queue (*EXT) are shown at the display station and can be
used to inform the display station user of an operation in progress.

v Escape (*ESCAPE). A message that describes a condition for which a procedure
or program must end abnormally. A procedure or program can monitor for the
arrival of escape messages from the program or procedure it calls or from the
machine. Control does not return to the sending program after an escape
message is sent.

This chapter describes:
v How to create your own message files
v How to add message descriptions to a message file
v Types of message queues
v How to create message queues

Creating a Message File
To create your own predefined messages, you must first create the message file
into which the messages are to be placed. Use the Create Message File (CRTMSGF)
command to create the message file. You then use the Add Message Description
(ADDMSGD) command to describe your messages and place them in the message
file.

On the CRTMSGF command, you can specify the maximum size in K bytes on the
SIZE parameter. The following formula can be used to determine the maximum:
S + (I x N)

where:

S Is the initial amount of storage

I Is the amount of storage to add each time

N Is the number of times to add storage

The defaults for S, I, and N are 10, 2, and *NOMAX, respectively.

For example, you specify S as 5, I as 1, and N as 2. When the file reaches the initial
storage amount of 5K, the system automatically adds another 1K to the initial
storage. The amount added (1K) can be added to the storage two times to make
the total maximum of 7K. If you specify *NOMAX as N, the maximum size of the
message file is 16M.

When you specify a maximum size for a message file and the message file
becomes full, you cannot change the size of the message file. You then need to
create another message file and re-create the messages in the new file. The Merge
Message File (MRGMSGF) command can be used to copy message descriptions
from one message file to another. Since you will want to avoid this step, it is
important to calculate the size needed for your message file when you create it, or
specify *NOMAX.

Chapter 7. Defining Messages 183

Determining the Size of a Message File
You can determine the size of a message by using the following formula. (The
ADDMSGD command parameters are given in parentheses.)
v Message index equals 42 bytes base plus the length of the message.
v Message text (MSG) equals 16 bytes base plus the length of the message.
v Message online help information (SECLVL), if any, equals 16 bytes base plus the

length of the message help.
v Formats (FMT), if any, equal 14 bytes plus (3 x number of FMTS).
v Type and length (TYPE and LEN) equal 48 bytes.
v Special value (SPCVAL) equals 2 plus (64 x number of SPCVALs).
v Values (VALUES) equal 32 x (number of VALUES).
v Range (RANGE) equals 64 bytes.
v Relation (REL) equals the length of the relation.
v Default (DFT) equals the length of the default reply.
v Default program, log problem, and dump list (DFTPBM, LOGPRB, DMPLST)

equal 35 plus (2 x number in DMPLST).
v ALROPT equals 12 bytes.

The smallest possible entry in a message file is 59 bytes and the largest possible
entry is 5764 bytes. The following table describes the largest possible entry:

Message index 42 bytes
Message text 148 bytes
Message help text 3016 bytes
99 formats 311 bytes
Type and length 48 bytes
20 special values 1282 bytes
20 values 640 bytes
Default reply value 32 bytes
Default program and dump list 233 bytes
Alert option 12 bytes

In the following example, the CRTMSGF command creates the message file
USRMSG:
CRTMSGF MSGF(QGPL/USRMSG) +

TEXT('Message file for user-created messages')

If you are creating a message file to be used with the DSPLY operation code in
RPG for OS/400, the message file must be named QUSERMSG.

Adding Messages to a File
You use the Add Message Description (ADDMSGD) command to describe your
predefined messages and to add them to the message file you created. On the
ADDMSGD command, you specify the message identifier, the name of the message
file into which the message is to be placed, and the message description. In the
message description, you can specify:
v Message text (required) with optional substitution variables
v Message help text with optional substitution variables
v Severity code
v Description of the format of the message data to be used for the substitution

variables

184 CL Programming V5R1

v Validity checking values for a reply
v Default value for a reply
v Default message handling action for escape messages
v Creation level
v Alert options
v Entry in the error log
v Coded Character Set ID (CCSID)

Each of the items that can be contained in the message description is described in
more detail on the following pages.

The following commands are also available for use with message descriptions:

Change Message Description (CHGMSGD)
Changes a message description.

Display Message Description (DSPMSGD)
Displays a message description. (A range of message identifiers can be
specified in this command.)

Remove Message Description (RMVMSGD)
Removes a message description from a message file.

Retrieve Message (RTVMSG)
Retrieves a message from a message file.

Merge Message File (MRGMSGF)
Merges messages from one message file into another message file.

Work with Message Descriptions (WRKMSGD)
Displays a list of messages in a file and allows you to add, change, or
delete message descriptions.

Assigning a Message Identifier
The message identifier you specify on the ADDMSGD command is used to refer to
the message and is the name of the message description. The message identifier
must be 7 characters:

pppmmnn

where ppp is the product or application code, mm is the numeric group code, and nn
is the numeric subtype code. The number specified as mmnn can be used to further
divide a set of product or application messages. Numeric group and subtype codes
consist of decimal numbers 0 through 9 and the characters A through F.

For example:
CPF1234

is message 1234 of CPF.

When you create your own messages, using the letter U as the first character in the
product code is a good way to distinguish your messages from system messages.
For example:

USR3567

The first character of the code must be alphabetic, the second and third characters
can be alphanumeric; the group code and the subtype code must consist of decimal

Chapter 7. Defining Messages 185

numbers 0 through 9 and the characters A through F. Note that although this range
can be called a set of hexadecimal numbers, any sorting of the message numerics
treats A through F as characters.

For example, when displaying a range of message descriptions, CPFA000 precedes
CPF1000.

You should use care in using a numeric subtype code of 00 in the message
identifier. If you use a numeric subtype code of 00 for a message that can be sent
as an escape, notify, or status message and that can, therefore, be monitored, a
subtype code of 00 in the Monitor Message (MONMSG) command causes all
messages in the numeric group to be monitored. See “Monitoring for Messages in
a CL Program or Procedure” on page 236 for more information.

Defining Messages and Message Help
You can define two levels of messages on the ADDMSGD command. The text of
the message is required and should identify the condition that caused the message
to be issued. Message help is optional and should explain the condition further or
explain the corrective action to be taken. To get message help, the display station
user must move the cursor to the message line and press the Help key when the
message is displayed. Message help can be formatted for the display station using
three format control characters. These characters may be used to make the message
help (usually online help information) more readable for the user.

Each of the three format control characters must be followed by a blank to separate
them from the message text.

&Nb (where b is a blank)
Forces the text to a new line (column 2). If the text is longer than one line,
the next lines are indented to column 4 until the end of the text or until
another format control character is found.

&Pb (where b is a blank)
Forces the text to a new line, indented to column 6. If the text is longer
than one line, the next lines start in column 4 until the end of the text or
until another format control character is found.

&Bb (where b is a blank)
Forces the text to a new line, starting in column 4. If the text is longer than
one line, the next lines are indented to column 6 until the end of the text
or until another format control character is found.

Assigning a Severity Code
The severity code you assign to a message on the ADDMSGD command indicates
how important the message is. The higher the severity code the more serious the
condition is. The following lists the severity codes you can use and their meanings.
(These severity codes and their meanings are consistent with the severity codes
assigned to IBM-predefined messages.)

00: Information. For information purposes only; no error was detected and no reply
is needed. The message could indicate that a function is in progress or that a
function has completed successfully.

10: Warning. A potential error condition exists. The procedure or program may
have taken a default, such as supplying missing input. The results of the operation
are assumed to be successful.

186 CL Programming V5R1

20: Error. An error has been detected, but it is one for which automatic recovery
procedures probably were applied; processing has continued. A default may have
been taken to replace erroneous input. The results of the operation may not be
valid. The function may have been only partially completed; for example, some
items in a list processed correctly while others failed.

30: Severe error. The error detected is too severe for automatic recovery, and no
defaults are possible. If the error was in source data, the entire input record was
skipped. If the error occurred during procedure or program processing, it leads to
an abnormal end of the procedure or program (severity 40). The results of the
operation are not valid.

40: Abnormal end of procedure or function. The operation has ended, possibly because
the procedure or program was unable to handle data that was not valid, or
possibly because the user has canceled it.

50: Abnormal end of job. The job was ended or was not started. A routing step may
have ended abnormally or failed to start, a job-level function may not have been
performed as required, or the job may have been canceled.

60: System status. Issued only to the system operator. It gives either the status of or
a warning about a device, a subsystem, or the system.

70: Device integrity. Issued only to the system operator. It indicates that a device is
malfunctioning or in some way is no longer operational. The user may be able to
recover from the failure, or the assistance of a service representative may be
required.

80: System alert. A message with a severity code of 80 is issued for immediate
messages. It also warns of a condition that, although not severe enough to stop the
system now, could become more severe unless preventive measures are taken.

90: System integrity. Issued only to the system operator. It describes a condition that
renders either a subsystem or the system inoperative.

99: Action. Some manual action is required, such as entering a reply, changing
printer forms, or replacing diskettes.

For a detailed discussion of the SEV parameter, see the CL and APIs section of the
Programming category in the iSeries Information Center.

Defining Substitution Variables
On the FMT parameter on the ADDMSGD command, you can specify substitution
variables for either first- or second-level messages. For example:
File &1 not found

contains the substitution variable &1. When the message is displayed or retrieved,
the variable &1 is replaced with the name of the file that could not be found. This
name is supplied by the sender of the message. For example:
File ORDHDRP not found

Compare this to:
File not found

Substitution variables can make your message more specific and more meaningful.

Chapter 7. Defining Messages 187

The substitution variable must begin with & (ampersand) and be followed by n,
where n is any number from 1 through 99. For example, for the message:
File &1 not found

the substitution variable is defined as:
FMT((*CHAR 10))

When you assign numbers to substitution variables, you must begin with the
number 1 and use the numbers consecutively. For example, &1, &2, &3, and so on.
However, you do not have to use all the substitution variables defined for a
message description in the message that is sent.

For example, the message:
File &3 not available

is valid even though &1 and &2 are not used in the messages. However, to do this,
you must define &1, &2, and &3 on the FMT parameter of the ADDMSGD
command. For the preceding message, the FMT parameter could be:
FMT((*CHAR 10) (*CHAR 2) (*CHAR 10))

where the first value describes &1, the second &2, and the third &3. The
description for &1 and &2 must be present if &3 is used. In addition, when this
message is sent, the MSGDTA parameter on the Send Program Message
(SNDPGMMSG) command should include all the data described on the FMT
parameter. To send the preceding message, the MSGDTA parameter should be at
least 22 characters long.

For the preceding message, you could also specify the FMT parameter as:
FMT((*CHAR 0) (*CHAR 0) (*CHAR 10))

Because &1 and &2 are not used in the message, they can be described with a
length of 0. Then no message data needs to be sent. (The MSGDTA parameter on
the SNDPGMMSG command needs to be only 10 characters long in this case.)

An example of using &3 in the message and including &1 and &2 in the FMT
parameter is when &1 and &2 are specified on the DMPLST parameter. (The
DMPLST parameter specifies that the data is to be dumped when this message is
sent as an escape message to a program that is not monitoring for it.)

The substitution variables do not have to be specified in the message in the same
order in which they are defined in the FMT parameter. For example, three values
can be defined in the FMT parameter as:
FMT((*CHAR 10) (*CHAR 10) (*CHAR 7))

The substitution variables can be used in the message as follows:
Object &1 of type &3 in library &2 is not available

If this message is sent in a CL procedure or program, you can concatenate the
values used for the message data such as:
SNDPGMMSGMSGDTA(&OBJ *CAT &LIB *CAT &OBJTYPE)

You must specify the format of the message data field for the substitution variable
by specifying data type and, optionally, length on the ADDMSGD command. The
valid data types for message data fields are:

188 CL Programming V5R1

v Quoted character string (*QTDCHAR). A string of character data to be enclosed
in apostrophes. Preceding and trailing blanks are not deleted. If length is not
specified in the message description, the sender determines the length of the
field.

v Character string (*CHAR). A string of character data not to be enclosed in
apostrophes. Trailing blanks are deleted. If length is not specified in the message
description, the sender determines the length of the field.

v Convertible character string (*CCHAR). A string of character data not to be
enclosed in apostrophes. Trailing blanks are deleted. The length is always
determined by the sender. If data of this type is sent to a message queue that
has a CCSID tag other then 65535 or 65534, the data is converted from the
CCSID of the message data to the CCSID of the message queue. Conversions can
also occur on data of this type when the data is obtained from the message
queue using a receive or display function. See the Globalization topic in the
System overview, planning, and installation category of the iSeries Information
Center for more information on the use of message handlers with CCSIDs.

v Hexadecimal (*HEX). A string to be preceded by the character X and enclosed in
apostrophes; each byte of the string is to be converted into two hexadecimal
characters (0 through 9 and A through F). If length is not specified in the
message description, the sender determines the length of the field.

v Binary (*BIN). A binary integer (either 2, 4, or 8 bytes long) formatted as a
signed decimal integer. Unless provided a specified length, the system will
assume that the binary integer is 2.

v Unsigned binary (*UBIN). An unsigned binary integer (either 2, 4 or 8 bytes
long) formatted as an unsigned decimal integer. Unless provided a specified
length, the system will assume that the binary integer is 2.

v Decimal (*DEC). A packed decimal number to be formatted as a signed decimal
number with a decimal point. Length must be specified; decimal positions
default to 0.

v System pointer (*SYP). A 16-byte pointer to a system object. In a message or
message help, the 10-character name of the object is formatted the same as the
*CHAR type data.

v Space pointer (*SPP). A 16-byte pointer to a program object. In a dump, the data
in the object is formatted the same as the *HEX type data. *SPP cannot be used
as substitution text in a message; it can only be used as part of the DMPLST
parameter on the ADDMSGD command.

The following data types are valid only in IBM-supplied message descriptions and
should not be used for other messages:
v Time interval (*ITV). An 8-byte time interval that contains the time to the nearest

whole second for various wait time out conditions.
v Date and time stamp (*DTS). An 8-byte system date and time stamp for which

the date is to be formatted as specified in the QDATFMT and QDATSEP system
values and the time is to be formatted as hh:mm:ss.

Specifying Validity Checking for Replies
On the ADDMSGD command, you can specify the type of reply that is valid for an
inquiry or notify message. You can specify (parameters are given in parentheses):
v Type of reply (TYPE)

– Decimal (*DEC)
– Character (*CHAR)
– Alphabetic (*ALPHA)

Chapter 7. Defining Messages 189

– Name (*NAME)
v Maximum length of reply (LEN)

– For decimal, 15 digits (9 decimal positions)
– For character and alphabetic, 32 characters
– For name, 10 characters

Note: If you do not specify any validity checking (VALUES, RANGE, REL,
SPCVAL, DFT), the maximum length of a reply is 132 characters for types
*CHAR and *ALPHA.

v Values that can be used for the reply
– A list of values (VALUES)
– A list of special values (SPCVAL)
– A range of values (RANGE)
– A simple relationship that the reply value must meet (REL)

Note: The special values are values that can be accepted but that do not satisfy
any other validity checking values.

When a display station user enters a reply to a message, the keyboard is in lower
shift which causes lowercase characters to be entered. If your program needs the
reply to be in uppercase characters, you can do one of the following:
v Use the SNDUSRMSG command which supports a translation table option

which defaults to converting lowercase to uppercase.
v Require the display station user to enter uppercase characters by specifying only

uppercase characters for the VALUES parameter.
v Specify the VALUES parameter as uppercase and use the SPCVAL parameter to

convert the corresponding lowercase characters to uppercase.
v Use TYPE(*NAME) if the characters to be entered are all letters (A-Z). The

characters are converted to uppercase before being checked.

Sending an Immediate Message and Handling a Reply
In this example, the procedure does the following:
v Sends an immediate inquiry message to QSYSOPR
v Requests a reply of yes or no (Y or N)
v Ensures that a valid reply has been entered
v Does a time-out if the operator does not reply within 120 seconds

PGM
DCL &MSGKEY *CHAR LEN(4)
DCL &MSGRPY *CHAR LEN(1)

SNDMSG: SNDPGMMSG MSG('.... Reply Y or N') TOMSGQ(QSYSOPR) +
MSGTYPE(*INQ) KEYVAR(&MSGKEY)

RCVMSG MSGTYPE(*RPY) MSGKEY(&MSGKEY) WAIT(120) +
MSG(&MSGRPY)

IF ((&MSGRPY *EQ 'Y') *OR (&MSGRPY *EQ 'y')) DO
.
.
GOTO END
ENDDO /* Reply of Y */
IF ((&MSGRPY *EQ 'N') *OR (&MSGRPY *EQ 'n')) DO
.
.
GOTO END
ENDDO /* Reply of N */
IF (&MSGRPY *NE ' ') DO

190 CL Programming V5R1

SNDPGMMSG MSG('Reply was not Y or N, try again') +
TOMSGQ(QSYSOPR)

GOTO SNDMSG
ENDDO /* Reply not valid */

/* Timeout occurred */
SNDPGMMSG MSG('No reply from the previous message +

was received in 120 seconds and a 'Y'' +
value was assumed') TOMSGQ(QSYSOPR)

.

.
END: ENDPGM

The SNDUSRMSG command cannot be used instead in this procedure because it
does not support a time-out option (SNDUSRMSG waits until it receives a reply or
until the job is canceled).

The SNDPGMMSG command sends the message and specifies the KEYVAR
parameter. This returns a message reference key, which uniquely identifies this
message so that the reply can be properly matched with the RCVMSG command.
The KEYVAR value must be defined as a character field length of 4.

The RCVMSG command specifies the message reference key value from the
SNDPGMMSG command for the MSGKEY parameter to receive the specific
message. The reply is passed back into the MSG parameter. The WAIT parameter
specifies how long to wait for a reply before timing out.

When the reply is received, the procedure logic checks for an upper or lower case
value of the Y or N. Normally the value is entered by the operator as a lower case
value. If the operator enters a non-blank value other than Y or N, the procedure
sends a different message and then repeats the inquiry message.

If the operator had entered a blank, no reply is sent to the procedure. If a blank is
returned to the procedure, the time out occurred (the operator did not reply). The
procedure sends a message to the system operator stating that a reply was not
received and the default was assumed (the ’Y’’ value is shown as ’Y’ in the
message queue). Because the assumed value of ’Y’ is not displayed as the reply,
you cannot determine when looking at a message queue whether the message
should be answered or has already timed out. The procedure does not remove a
message from the message queue once it has been sent. The second message
should minimize this concern and provides an audit trail for what has occurred.

If the time out has already occurred and the operator replies to the message, the
reply is ignored. The operator receives no indication that the reply has been
ignored.

Sending Immediate Messages with Double-Byte Characters
To send an immediate message with double-byte text, limit the text to 37
double-byte characters plus the shift control characters. The limited size of the
message ensures it is properly displayed.

Defining Default Values for Replies
The ADDMSGD command allows you to specify a default value for a reply to your
message. A default reply must meet the same validity checking values as the other
replies for the message or be specified as a special value in the message
description. A default value is used when a user has indicated (using the
CHGMSGQ command) that default replies should be issued for all inquiry
messages sent to the user’s message queue. Default replies are also sent when the

Chapter 7. Defining Messages 191

unanswered inquiry messages are deleted. For example, the work station user uses
the DSPMSG command to display messages, and removes unanswered inquiry
messages by pressing either F13 to delete all the messages or F11 to delete a
particular message.

Default replies are also used when the job attribute of INQMSGRPY is set to *DFT
and may be used if set to *SYSRPYL option. You can use the system reply list to
change the default reply.

Default replies are also used on the Display Program Messages screen (which
shows messages that are sent to *EXT). The sending of the default reply occurs
during either of the two following conditions:
v The Display Program Messages screen appears showing an unanswered inquiry

message and the user presses �Enter� (to continue) without keying-in any reply.
v The user pressed the �F3� key to exit the Display Program Messages screen.

.

Specifying Default Message Handling for Escape Messages
For each message you create that can be sent as an escape message, you can set up
a default message handling action to be used if the message, when sent, is not
handled any other way.

Default message handling actions can consist of:
v Default program name. A program to be called that takes default action to

handle a message. The following parameters are passed to the default program:
– Call message queue name. This parameter is a structure that consists of many

fields that identify where the system sent the message. IBM has provided
online information on default handling exit programs and details on the fields
in the parameter. Refer to the CL and APIs section of the Programming
category of the iSeries Information Center.

– Message reference key (4 characters). The message reference key of the escape
message on the call message queue.

v Dump list. A list of message data field numbers (the same numbers as the
substitution variables) that indicate which objects are to be dumped.
In addition, you can dump any of the following:
– The data areas for the job
– An internal machine data structure of a job
– A job

Specifying a dump list for a job is equivalent to specifying the Display Job
(DSPJOB) command with the parameters JOB(*) OUTPUT(*PRINT).

If you do not specify default actions in message descriptions, you will get a dump
of the job (as if DSPJOB JOB(*) OUTPUT(*PRINT) was specified).

The default action specified in a message is taken only after the message
percolation action is completed without the escape message being handled. See
“Default Handling” on page 240 for more information on handling defaults.

Example of a Default Program
The following program is a sample default program that could be used when a
diagnostic message is sent followed by an escape message. This program could be
an OPM CL program or an ILE program that has this single CL procedure.

192 CL Programming V5R1

PGM PARM(&MSGQ &MRK)
DCL VAR(&MRK) TYPE(*CHAR) LEN(4)
DCL VAR(&MSGQ) TYPE(*CHAR) LEN(6381)
DCL VAR(&QNAME) TYPE(*CHAR) LEN(4096)
DCL VAR(&MODNAME) TYPE(*CHAR) LEN(10)
DCL VAR(&BPGMNAME) TYPE(*CHAR) LEN(10)
DCL VAR(&BLANKMRK) TYPE(*CHAR) LEN(4) VALUE(' ')
DCL VAR(&DIAGMRK) TYPE(*CHAR) LEN(4) VALUE(' ')
DCL VAR(&SAVEMRK) TYPE(*CHAR) LEN(4)
DCL VAR(&MSGID) TYPE(*CHAR) LEN(7)
DCL VAR(&MSGDTA) TYPE(*CHAR) LEN(100)
DCL VAR(&MSGF) TYPE(*CHAR) LEN(10)
DCL VAR(&MSGLIB) TYPE(*CHAR) LEN(10)
DCL VAR(&OFFSET) TYPE(*DEC)
DCL VAR(&LENGTH) TYPE(*DEC)

/* Check for OPM program type */

IF (%SST(&MSGQ 277 1) *EQ '0') THEN(DO)
CHGVAR VAR(&QNAME) VALUE(%SST(&MSGQ 1 10))
CHGVAR VAR(&MODNAME) VALUE('*NONE')
CHGVAR VAR(&BPGMNAME) VALUE('*NONE')
ENDDO
ELSE DO
/* Not an OPM program; always use the long procedure name */

CHGVAR VAR(&OFFSET) VALUE(%BIN(&MSGQ 278 4))
CHGVAR VAR(&LENGTH) VALUE(%BIN(&MSGQ 282 4))
CHGVAR VAR(&QNAME) VALUE(%SST(&MSGQ &OFFSET &LENGTH))
CHGVAR VAR(&MODNAME) VALUE(%SST(&MSGQ 11 10))
CHGVAR VAR(&BPGMNAME) VALUE(%SST(&MSGQ 1 10))
ENDDO

GETNEXTMSG: CHGVAR VAR(&SAVEMRK) VALUE(&DIAGMRK)
RCVMSG PGMQ(*SAME (&QNAME &MODNAME &BPGMNAME)) +

MSGTYPE(*DIAG) RMV(*NO) KEYVAR(&DIAGMRK)
IF (&DIAGMRK *NE &BLANKMRK) THEN(GOTO GETNEXTMSG)
ELSE DO

RCVMSG PGMQ(*SAME (&QNAME &MODNAME &BPGMNAME)) +
MSGKEY(&SAVEMRK) RMV(*NO) MSGDTA(&MSGDTA) +
MSGID(&MSGID) MSGF(&MSGF) MSGFLIB(&MSGLIB)

SNDPGMMSG MSGID(&MSGID) MSGF(&MSGLIB/&MSGF) +
MSGDTA(&MSGDTA) TOPGMQ(*PRV (&QNAME +
&MODNAME &BPGMNAME))

ENDDO
ENDPGM

The program receives all the diagnostic messages in FIFO order. Then it sends the
last diagnostic message as an escape message to allow the previous program to
monitor for it.

Specifying the Alert Option
On the ADDMSGD command, you can specify an alert option to allow an alert to
be created for a message. A message, for which an alert can be created, can cause
an SNA alert to be created and sent to a problem management focal point. The
alert created for a message can be defined using the Add Alert Description
(ADDALRD) command. For more information about the OS/400 alerts support, see

the DSNX Support book.

Example of Describing a Message
In the following example, the ADDMSGD command creates a message to be used
in applications such as order entry. The message is issued when a customer
number entered on the display is not found. The message is:

Customer number &1 not found

Chapter 7. Defining Messages 193

c4154090.pdf

The ADDMSGD command for this message is:
ADDMSGD MSGID(USR4310) +

MSGF(QGPL/USRMSG) +
MSG('Customer number &1 not found') +
SECLVL('Change customer number') +
SEV(40) +
FMT((*CHAR 8))

The message is added to the USRMSG file in the library QGPL.

You can use the DSPMSGD or WRKMSGD command to print or display message
descriptions.

The SECLVL parameter provides very simple text. To make this appear on the
Additional Message Information display, you specify SECLVL('message text'). The
text you specify on this parameter appears on the Additional Message Information
display when you press the Help key after placing the cursor on this message.

Defining Double-Byte Messages
To define a message with double-byte text, write a CL procedure or program using
the ADDMSGD command. The defined message is put into a message file and
then sent normally. When writing the program, do the following:
1. Make sure the source file containing the program is a double-byte file. Specify

IGCDTA(*YES) on the Create Source Physical File (CRTSRCPF) command.
2. Use the source entry utility (SEU) to enter the program. CL commands using

double-byte characters can only be entered through SEU. For this reason,
double-byte messages must be created in a CL program.

3. Limit the length of the message to 37 double-byte characters, so the complete
message can be displayed or printed.
When using the MONMSG command, also limit the Comparison Data
(CMPDATA) parameter to 6 double-byte characters.

4. If the double-byte message file replaces an alphanumeric message file (such as
files of translated messages to be sent only to double-byte display stations),
enter a command similar to the following to override the alphanumeric
message file:
OVRMSGF MSGF(QCPFMSG) TOMSGF(DBCSLIB/QCPFMSG)

Double-byte messages can be displayed only at double-byte display stations.

System Message File Searches
The system uses the following two steps when searches are performed to retrieve a
message from a message file:
1. The system processes any overrides that are in effect for the message file name.

See “Overriding Message Files” on page 195 for more information.
2. If the message file name has not been overridden, the system searches for the

message file based on the message file name and library specified when the
message was used.
See “Searching for a Message File” on page 195 for more information.

194 CL Programming V5R1

Searching for a Message File
When a message file has not been overridden, the message file name and library
specified (at the time the message file was sent) are used to search for the message
file from which the message description is retrieved.

When a message file name is overridden but the message identifier is not
contained in the overridden file, the message file name and library specified are
also used to search for the message file.

The system search depends on whether you specify the message file library as
either *CURLIB or *LIBL. The following describes the search path for *CURLIB and
*LIBL:
v Specify as *CURLIB or explicitly specify the message file library

The system searches for the message file named in the specified library or the
job’s current library (*CURLIB).

v Specify the message file library as *LIBL
The system searches for the message file named in the job’s library list (*LIBL).
The search stops after finding the first message file with the specified name.

If the message file is found, but does not contain a description for the message
identifier, the message attributes and text of message CPF2457 in QCPFMSG are
used in place of the missing message description.

If the message file was not found, the system attempts to retrieve the message
from the message file that was used at the time the message was sent.

Note: A message file may be found but cannot be accessed due to damage or an
authorization problem.

Overriding Message Files
You can override message files used in a procedure or program. The creation
(Override Message File command), deletion (Delete Override command), and
display (Display Override command) of message file overrides is similar to other
types of overrides. Here, however, only the name of the message file, not the
attributes, is overridden, and the rules for applying the overrides are slightly
different.

To override a message file, use the Override Message File (OVRMSGF) command.
The file overridden is specified in the MSGF parameter; the file overriding it is
specified in the TOMSGF parameter.

For example, to override QCPFMSG with a user message file named USRMSGF,
the following command would be used:
OVRMSGF MSGF(QCPFMSG) TOMSGF(USRMSGF)

When a predefined message is retrieved or displayed, the overriding file is
searched for a message description. If the message description is not found in that
file, the overridden file is searched.

There are several basic reasons to override message files:
v To provide changed default replies or dump lists. A message file can be created

with message descriptions for messages with changed default replies or dump
lists because those in the original message descriptions are not satisfactory. You
can establish several operating environments, each with different default replies.

Chapter 7. Defining Messages 195

v To change severity levels of the messages.
v To provide a default program.
v To change the text of a message. If the text is blank, it appears to the user as if

no message was sent. For example, you may not want the status message sent
by the Copy File (CPYF) command to appear to the user.

v To provide translation of messages into national languages. Message files written
in English can be overridden by message files written in other languages. (If all
messages are changed, use the library list for the job to change the order of the
message files instead of overriding the message files.)

Another way you can select the message file from which messages are to be
retrieved is by changing the order of the files in the library list for the job.
However, if you use this approach, the search for the message stops on the first
message file found that has the specified name. If the message is not in that file,
the search stops.

For example, assume that a message file named USRMSG is in library USRLIB1,
and another message file named USRMSG is in library USRLIB2. To use the
message file in USRLIB1, USRLIB1 should precede USRLIB2 in the library list:

196 CL Programming V5R1

The system searches the first message file found with the correct name. If that file
does not contain the message, the search stops. However, if you use the OVRMSGF
command, the system searches the overriding file, and if the message is not there,
it searches the overridden file.

Example of Overriding a Message File
Assume that you want to change an IBM-supplied message for use in a job. For
example, suppose you want to change message CPC2191, which says:
Object XXX in YYY type *ZZZ deleted

to say:
Object XXX in YYY deleted

Specifics on how to describe the FMT parameter are provided by displaying the
detailed description of CPC2191.

First, you create a message file:
CRTMSGF MSGF(USRMSG/OVRCPF)

Then you use the message CPC2191 as a basis for your message and add it to the
message file:
ADDMSGD MSGID(CPC2191) MSGF(USRMSG/OVRCPF) +

MSG('Object &1 in &2 deleted') +
SEV(00) FMT((*CHAR 10) (*CHAR 10))

You then use the OVRMSGF command to override the message file when you run
the job:
OVRMSGF MSGF(QCPFMSG) TOMSGF(USRMSG/OVRCPF)

Chapter 7. Defining Messages 197

If you want to change this message for use in all your jobs, you can use the
Change Message Description (CHGMSGD) command to change the message. Then
you do not have to override the system message file.

If you use the CHGMSGD command to change an IBM-supplied message, the
message will need to be changed again when a new release of the system is
installed. To change the message again, you can place any changes in an input
stream or a program that can be run at any time.

You can also override overriding files. For example, you can specify the following
OVRMSGF commands during a job.
OVRMSGF MSGF(MSGFILE1) TOMSGF(MSGFILE2)
OVRMSGF MSGF(MSGFILE2) TOMSGF(MSGFILE3)

198 CL Programming V5R1

First, file MSGFILE1 was overridden with MSGFILE2. Second, MSGFILE2 was
overridden with MSGFILE3. When a message is sent, the files are searched in this
order:
1. MSGFILE3
2. MSGFILE2
3. MSGFILE1

You can prevent message files from being overridden. To do so, you must specify
the SECURE parameter on the OVRMSGF command.

Types of Message Queues
All messages on the system are sent to a message queue. The system user or
program associated with the message queue receives the message from the queue.
Similarly, a reply to a message is sent back to the message queue of the user or
program requesting the reply.

The following diagrams show the message queues supplied by IBM. A message
queue is supplied for each display station (where DSP01 and DSP02 are display
station names) and each user profile (where BOB and RAY are user profile names):

Job message queues are supplied for each job running on the system. Each job is
given an external message queue (*EXT) and each call of an OPM program or ILE
procedure within the job has its own call message queue.

Chapter 7. Defining Messages 199

Message queues are also supplied for the system history log (QHST) and the
system operator (QSYSOPR):

These message queues are used as follows:
v Work station message queues are used for sending and receiving messages

between work station users and between work station users and the system
operator. The name of the queue is the same as the name of the work station.
The queue is created by the system when the work station is described to the
system.

v User profile message queues can be used for communication between users.
User profile message queues are automatically created in library QUSRSYS when
the user profile is created.

v Job message queues are used for receiving requests to be processed (such as
commands) and for sending messages that result from processing the requests;
the messages are sent to the requester of the job. Job message queues exist for
each job and only exist for the life of the job. Job message queues consist of an
external message queue (*EXT) and a set of call stack entry message queues. See
“Job Message Queues” on page 203 for more information.

v System operator message queue (QSYSOPR) is used for receiving and replying
to messages from the system, display station users, and application programs.

v The history log message queue is used for sending information to the history log
(QHST) from any job in the system.

In addition to these message queues, you can create your own user message
queues for sending messages to system users and between application programs.

Creating or Changing a Message Queue
To create your own user message queues, you use the Create Message Queue
(CRTMSGQ) command. In addition, you also use the Change Message Queue
(CHGMSGQ) command to change the following attributes of your message queue.

The attributes of a message queue are:
v Whether changes to the message queue must be written immediately to the disk.

Writing the changes immediately to the disk ensures that no messages are lost in
cases like a system failure. Note that this will cause a decrease in system
performance.

v The method of delivery for messages arriving at a message queue. When a
message queue is created, the method of delivery is defined as hold delivery.
When a display station is signed on, the user’s message queue is set to the mode
specified in the user profile. The types of delivery you can specify on the
CHGMSGQ command are:
– Break delivery. A job is interrupted and a program is called to deliver the

message. If a user program is not specified on the CHGMSGQ command that
requests break delivery, or if *SAME is specified, the Display Message
(DSPMSG) command automatically displays the message. Break messages for
a job can be controlled with the BRKMSG parameter on the CHGJOB
command.

200 CL Programming V5R1

– Notify delivery. Adisplay station user is notified by means of the Attention
light or audible alarm (or by both) that a message is on the queue. The
display station user can view the message by using the DSPMSG command.

– Hold delivery. The message queue holds the messages until the display
station user requests them with the DSPMSG command.

– Default delivery. All messages are ignored, and any messages requiring a
reply are sent the default reply for the message.

v How to handle messages for break delivery.
– Automatically run the DSPMSG command. For an interactive job, the

messages are displayed at the display station if the severity code is high
enough. For a batch job, the messages are listed to a spooled printer file if the
severity code is high enough.

– Call a break-handling program to handle the messages. You must use the
CHGMSGQ command to specify the called program and to set the method of
delivery to break mode. You can specify whether other jobs can reply to
inquiry messages on the queue while it is in break mode with a
break-handling program.

v The severity code for filtering messages for break and notify delivery. Messages
with severity equal to or greater than the minimum severity code specified are
displayed. When the queue is created, the minimum severity code is set to 00.
To change the minimum severity code, you must use the CHGMSGQ command.
When the DSPMSG command is used to display messages on the message
queue, the severity code filter (SEV) parameter can be used to filter the messages
shown. This filter is used rather than the severity filter specified for the message
queue at creation time. To use this filter, specify DSPMSG SEV(*MSGQ). You can
use the DSPMSG command to determine the current severity code used for
filtering break and notify messages. The code is displayed on the heading line of
the message display.

v Coded character set identifier (CCSID) associated with the message queue.
Messages sent to this queue are converted to this CCSID. No conversions occur
if the message queue CCSID is 65534 or 65535. If the message queue CCSID is
65534, each message contains its own CCSID which is established by the sender.

v Allow alerts for standard message queues. Allow alerts specifies if the queue
being created allows alerts to be generated from alert messages that are sent to
it.

v Action to take when the message queue becomes full. You cannot change this
attribute for message queue QHST; QHST sends CPF2460 when it is full. IBM
ships QSYSOPR with this attribute that is originally set to wrap.
– Send CPF2460 (Message queue cannot be extended) to the program or user

that sends a message to the full queue.
– Wrap the queue. Wrapping will remove messages on the queue to make space

for a new message that is sent to the queue.

Note: When a work station device description is created, the system establishes a
message queue for the device to receive all action messages for the device.
For work station printers, tape drives, and APPC devices, the MSGQ
parameter can be used to specify a message queue when creating a device
description. If no message queue is specified for these devices, the default,
QSYSOPR, is used as the message queue. All other devices are assigned to
the QSYSOPR message queue when they are created.

Chapter 7. Defining Messages 201

The message queue defined in your user profile is known as a user message
queue. When you sign on the system using your profile, the user message queue is
put into the delivery mode specified in your user profile.

If your user message queue is in break or notify delivery mode while you are
signed on a display station and then you sign on another display station, the user
message queue will not change the delivery mode for the new sign on. User
message queues (along with work station message queues and the QSYSOPR
message queue) cannot have their delivery mode changed by a job when the
message queue is in break or notify delivery mode for a different job.

When you sign off the display station, or the job ends unexpectedly, the user
message queue delivery mode is changed to hold mode, if the delivery mode of
the user message queue is break or notify for this job. The user message queue
delivery mode is also changed from break or notify mode to hold mode when you
transfer to an alternative job. You can do this using the Transfer Secondary Job
(TFRSECJOB) command or by pressing the System Request key and specifying
option 1 on the System Request menu.

After transferring to an alternative job, you sign on using your user profile. Your
user message queue is put into the delivery mode specified in your user profile.
This allows the user message queue to transfer to the alternative job. You are then
able to transfer back and forth between these two jobs and have your user message
queue follow you.

However, if after transferring to an alternative job, you sign on using a user profile
other than your own, the user message queue for the job from which you
transferred is left in hold delivery mode. The user message queue for the user
profile you signed on with is put in the delivery mode specified in that user
profile. Because of this, your user message queue could be put into break or notify
delivery mode by another user. If another user still has your user message queue
in that delivery mode when you transfer back to the first job, your user message
queue delivery mode cannot be changed back to the original delivery mode.

The QSYSOPR message queue is the message queue for the system operator, unless
it has been changed. The above situation can occur for a system operator as well.

Break-Handling Program

A break-handling program is called whenever a message of equal or higher
severity than the severity code filter arrives on a message queue that is in break
delivery mode. To request a break-handling program, you must specify the name
of the program and break delivery on the same CHGMSGQ command. The
message handling program must receive the message with the Receive Message
(RCVMSG) command so the message is marked as handled and the program is not
called again. For more information on receiving messages and break handling
programs, see Chapter 8. Working with Messages.

Note: This program cannot open a display file if the interrupted program is
waiting for input data from the device display.

You can use the system reply list to specify that the system issue the reply to
specified predefined inquiry messages so that the display station user does not
need to reply. See “Using the System Reply List” on page 262 for more information.

202 CL Programming V5R1

Example of Changing the Delivery Mode
When the system is started, it puts the QSYSOPR message queue in break delivery
when the controlling subsystem is started. However, if the system operator signs
off, the message queue is put in hold delivery. When the system operator signs on
again, QSYSOPR is placed in the mode specified in the QSYSOPR user profile.

The following procedure in a CL initial program can be used to place the
QSYSOPR message queue in break mode. Initial programs can use similar
procedures to monitor message queues other than the one specified in a user’s own
user profile.
PGM /* Procedure to place a msg queue in break mode */
CHGMSGQ QSYSOPR DLVRY(*BREAK) SEV(50)
MONMSG MSGID(CPF0000) EXEC(SNDPGMMSG MSG('Unable to put QSYSOPR +

message queue in *BREAK mode') TOPGMQ(*EXT))
ENDPGM

The procedure attempts to set the QSYSOPR message queue to break delivery with
a severity level of 50. If this is unsuccessful, a message is sent to the external job
message queue (*EXT). When the program which contains this procedure ends, the
initial menu is displayed. A severity level of 50 is used to decrease the number of
break messages that interrupts the work station user. A common reason for failure
is when another user has QSYSOPR in break mode already.

Job Message Queues
Job message queues are created for each job on the system to handle all the
message requirements of the job. Job message queues for a single job consist of an
external message queue (*EXT) and a set of call message queues. A call message
queue is assigned to each ILE procedure and OPM program that is called within
the job. In addition, a job log is created for each job. A job log is a logical queue
which maintains all messages sent within a job in chronological order. You may
send messages to the *EXT queue or to a call message queue. You do not send
messages to the job log. Rather a message sent to either *EXT or a call message
queue is also logically added to the job log by the system.

The external message queue (*EXT) is used to communicate with the external
requester (such as a display station user) of the job. Messages (except status
messages) sent to the external message queue of a job are also placed on the job
log (see “Job Log” on page 266 for more information).

If an informational, inquiry, or notify message is sent to the external message
queue for an interactive job, the message is displayed on the Display Program
Messages display. Additionally, the procedure waits for a reply to inquiry or notify
messages from the display station user. Should the user not enter a reply and press
the Enter key or F3 (Exit), the default message reply is returned to the sender of
the message. If there is no default message reply, *N is sent. If you send an inquiry
or notify message to the external message queue for a batch job, the system sends
the default reply back to you. If there is no default message reply, *N is the reply.
The system reply list may override the displaying of inquiries or the sending of
default replies to inquiries to *EXT.

If a status message is sent to the external message queue of an interactive job, the
message is displayed on the message line of the display station. You can use status
messages like this to inform the display station user of the progress of a
long-running operation. For example, the system sends status messages when
running the CPYF command if you copy a file with several members.

Chapter 7. Defining Messages 203

Note: When your application completes the long-running operation, you must
send another message to clear the message line at the display. You can use
message CPI9801, which is a blank message, for this purpose. For example:

PGM
.
.
.
SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) MSGDTA('Status 1') +

TOPGMQ(*EXT) MSGTYPE(*STATUS)
.
.
.
SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) MSGDTA('Status 2') +

TOPGMQ(*EXT) MSGTYPE(*STATUS)
.
.
.
SNDPGMMSG MSGID(CPI9801) MSGF(QCPFMSG) TOPGMQ(*EXT) +

MSGTYPE(*STATUS)
.
.
.
ENDPGM

A call message queue is used to send messages between one program or procedure
and another program or procedure. As long as a program or procedure is on the
call stack (has not returned yet) its call message queue is active and messages can
be sent to that program or procedure. Once the program or procedure returns, its
call message queue no longer exists and messages can no longer be sent to it.
Message types which can be sent to a call message queue include informational,
request, completion, diagnostic, status, escape, and notify.

The call message queue for an OPM program or ILE procedure is created when
that program or procedure is called. The call message queue is exclusively
associated only with the call stack entry in which the program or procedure is
running. A call message queue is identified indirectly by identifying the call stack
entry. A call stack entry is identified by the name of the program or procedure that
is running in that call stack entry.

In the case of an OPM program, the associated call stack entry is identified by the
(up to) 10 character program name. In the case of an ILE procedure, the associated
call stack entry is identified by a three part name which consists of the (up to) 256
character procedure name, the (up to) 10 character module name, and the (up to)
10 character program name. The module name is the name of the module into
which the procedure was compiled. The ILE program name is the name of the ILE
program into which the module was bound.

When identifying the call stack entry for an ILE procedure, it is sufficient to specify
only the procedure name. If the procedure name by itself does not uniquely
identify the call stack entry, the module name or the ILE program name can also
be specified. If, at the time a message is sent, a program or procedure is on the call
stack more than once, the name specified will identify the most recently called
occurrence of that program or procedure.

There are other methods to identify a call stack entry. These methods are discussed
in detail in “Call Stack Entry Identification on SNDPGMMSG” on page 214.

If an OPM or ILE program is compiled and then replaced while it is on the call
stack, care must be taken when the program name is used to reference a call stack

204 CL Programming V5R1

entry. For call stack entries that are earlier on the stack than the point at which the
replace operation was done, the name reference will resolved to the replaced object
which now exists in QRPLOBJ. These name references are valid as long as the
replaced object continues to exist in the QRPLOBJ library. For entries on the stack
that are more recent then the point at which the replace operation was done, the
name reference is for the new version of the program. Because of the manner in
which the version to use is determined, you should not place a program directly in
the library QRPLOBJ. This library should be used exclusively for the replaced
version of a program. A name reference to a program that you place directly into
QRPLOBJ will fail.

If a program object is removed or renamed while an occurrence of it is on the call
stack, any name reference to the removed program or any name reference using
the old name will fail. For ILE procedures, if you are using only the procedure and
module name for a reference, renaming the program will not impact the name
reference. If you are also using the ILE program name, the name reference will fail.

A message queue for a call stack entry of a program or procedure is no longer
available when the program or procedure ends. A message that was on the
associated call message queue can only be referenced at that point by using the
message reference key of the message.

For example, assume that procedure A calls procedure B which calls procedure C.
Procedure C sends a message to procedure B and ends. The message is available to
procedure B. However, when procedure B ends, its call message queue is no longer
available. As a result, you cannot access procedure B by using procedure A, even
though the message appears in the job log. Procedure A cannot access messages
that are sent to Procedure B unless Procedure A has the message reference key to
that message.

If procedure A needs to delete specific messages, you could do the following:
v Have procedure C send specific messages to procedure A
v Have procedure B resend the messages to procedure A

The following figure shows the relationship of procedure calls, the job message
queue, and the call stack entry queues. A connecting line (-----) indicates which

Chapter 7. Defining Messages 205

message queue is associated with which call of a procedure.

In the preceding figure, procedure B has two call stack entry queues, one for each
call of the procedure. There are no message queues for procedure C because no
messages were sent to procedure C. When procedure C sends a message to
procedure B, the message goes to the call stack entry queue for the last call of
procedure B.

Note: When you are using the command entry display, you can display all the
messages sent to the job message queue by pressing F10 (Include detailed
messages). Once the messages are displayed, you can roll through them
using one of the roll keys.

You can also display the messages for a job by using the Display Job Log
(DSPJOBLOG) command.

206 CL Programming V5R1

Chapter 8. Working with Messages

This chapter discusses some of the ways that messages can be used to
communicate between users and programs. Messages can be sent:
v From one system user to another system user, even if the receiver of the

messages is not currently using the system
v From one OPM program or ILE procedure to another OPM program or ILE

procedure
v From a program or procedure to a system user, even if the receiver of the

messages is not currently using the system

Interactive system users can send only immediate messages and replies.

OPM programs or ILE procedures can send immediate messages or predefined
messages with user-defined data. In addition, programs or procedures can:
v Receive messages
v Retrieve a message description from a message file and place it into a program

variable
v Remove messages from a message queue
v Monitor for messages

Sending Messages to a System User
Several commands can be used to send messages to system users:
v Send Message (SNDMSG)
v Send Break Message (SNDBRKMSG)
v Send Program Message (SNDPGMMSG)
v Send User Message (SNDUSRMSG)

SNDPGMMSG and SNDUSRMSG can only be used in batch or interactive OPM
programs or ILE procedures. These commands cannot be entered on a command
line. The SNDMSG command sends an informational or inquiry message to the
system operator message queue (QSYSOPR), a display station message queue, or a
user message queue. You can send an informational message to more than one
message queue at a time. But you can send an inquiry message to only one
message queue at a time. The message is delivered by the delivery type specified
for the message queue. The message does not interrupt the user unless the
message queue is in break mode.

The following SNDMSG command is sent by a display station user to the system
operator:
SNDMSG MSG('Mount tape on device TAP1') TOUSR(*SYSOPR)

The SNDBRKMSG command sends an immediate message from a work station, a
program, or a job to one or more display stations to be delivered in the break
mode regardless of what delivery mode the receiver’s message queue is set to. This
command can be used to send a message only to display station message queues.
You should use the SNDBRKMSG command when sending any message that
requires the immediate attention of a display station user. You cannot ensure the

© Copyright IBM Corp. 1997, 2001 207

message will cause a break, because each job has control by using the BRKMSG
parameter on the Change Job (CHGJOB) command.

If you send an inquiry message, you can specify that the reply be sent to a
message queue other than that of your display station.

The following SNDBRKMSG command is sent by the system operator to all the
display station message queues:
SNDBRKMSG MSG('System going down in 15 minutes')

TOMSGQ(*ALLWS)

The disadvantage of sending this message is that it is sent to all users, not just
those users who are active at the time the message is sent.

Sending Messages from a CL Program
Use the Send Program Message (SNDPGMMSG) command or the Send User
Message (SNDUSRMSG) command to send a message from a CL procedure or
program.

Using the SNDPGMMSG command, you can send the following types of messages:
v Informational
v Inquiry
v Completion
v Diagnostic
v Request
v Escape
v Status
v Notify

You can send messages from a CL procedure or program to the following types of
queues:
v External message queue of the requester of the job (see “Job Message Queues”

on page 203)
v Call message queue of a program or procedure called by the job (see “Job

Message Queues” on page 203)
v System operator message queue
v Work station message queue
v User message queue

To send a message from a procedure or program, you can specify the following on
the SNDPGMMSG command:
v Message identifier or an immediate message. The message identifier is the name

of the message description for a predefined message.
v Message file. The name of the message file containing the message description

when a predefined message is sent.
v Message data fields. If a predefined message is sent, these fields contain the

values for the substitution variables in the message. The format of each field
must be described in the message description. If an immediate message is sent,
there are no message data fields.

v Message queue or user to receive the message.

208 CL Programming V5R1

v Message type. The following indicates which types of messages can be sent to
which types of queues (V = valid).

Table 7. Valid Message Types for Message Queue Types

Message
Type

Message Queue Type

External Call QSYSOPR Work
Station

User

Informational V V V V V

Inquiry V V V V

Completion V V V V V

Diagnostic V V V V V

Request V V

Escape V

Status V V

Notify V V

v Coded character set identifier (CCSID). Specifies the coded character set
identifier (CCSID) that the supplied message or message data is in.

v Reply message queue. The name of the message queue that receives the reply to
an inquiry message. By default, the reply is sent to the call message queue of the
procedure or program that sent the inquiry message.

v Key variable name. The name of the CL variable to contain the message
reference key for a message.

To send the message created in “Example of Describing a Message” on page 193,
you would use the following command:
SNDPGMMSG MSGID(USR4310) MSGF(QGPL/USRMSG) +

MSGDTA(&CUSNO) TOPGMQ(*EXT) +
MSGTYPE(*INFO)

The substitution variable for the message is the customer number. Because the
customer number varies, you cannot specify the exact customer number in the
message. Instead, declare a CL variable in the CL procedure or program for the
customer number (&CUSNO). Then specify this variable as the message data field.
When the message is sent, the current value of the variable is passed in the
message:
Customer number 35500 not found

In addition, you do not always know which display station is using the procedure
or program, so you cannot specify the exact display station message queue that the
message is to be sent to (TOPGMQ parameter); therefore, you specify the external
message queue *EXT.

Messages

Inquiry and Informational Messages
Using the SNDUSRMSG command, you can send an inquiry message or an
informational message to a display station user, the system operator, or a
user-defined message queue. If you use the SNDUSRMSG command to send an
inquiry message to the user, the procedure or program waits for a response from
the user. The message can be either an immediate message or a predefined
message. For an interactive job, the message is sent to the display station operator

Chapter 8. Working with Messages 209

by default. For a batch job, the message is sent to the system operator by default.
To send a message from a procedure or program using the SNDUSRMSG
command, you can specify the following on the SNDUSRMSG command:
v Message identifier or an immediate message. The message identifier is the name

of the message description for a predefined message.
v Message file. The name of the message file containing the message description

when a predefined message is sent.
v Message data fields. If a predefined message is sent, these fields contain the

value for the substitution variables in the message. The format of each field
must be described in the message description. If an immediate message is sent,
there are no message data fields.

v Valid replies to an inquiry message.
v Default reply value to an inquiry message.
v Message type.
v Message queue to which the message is to be sent.
v Message reply. A CL variable, if any, that is to contain the reply received in

response to an inquiry message.
v Translation table. The translation table to be used, if any, to translate the reply

value. This is normally used for translating lowercase to uppercase.
v Coded character set identifier (CCSID). Specifies the coded character set

identifier (CCSID) that the supplied message or message data is in.

Completion and Diagnostic Messages
Using the SNDPGMMSG command, you can send diagnostic and completion
messages. You can send these message types to any message queue from your CL
procedure or program. Diagnostic messages tell the calling program or procedure
about errors detected by the CL procedure or program. Completion messages tell
the results of work done by the CL procedure or program.

Normally, an escape message is sent to the message queue of the calling program
or procedure to tell the caller what the problem was or that diagnostic messages
were also sent. For a completion message, an escape message is usually not sent
because the requested function was performed.

For an example of sending a completion message, assume that the system operator
uses the system operator menu to call a CL program SAVPAY to save certain
objects. The CL program contains only the following procedure which saves the
objects and then issues the following completion message:
PGM
SAVOBJ OBJ(PAY1 PAY2) LIB(PAYROLL) CLEAR(*YES)
SNDPGMMSG MSG('Payroll objects have been saved') MSGTYPE(*COMP)
ENDPGM

If the SAVOBJ command fails, the CL procedure function checks and the system
operator has to display the detailed messages to locate the specific escape message
explaining the reason for the failure as described later in this chapter. If the
SAVOBJ command completes successfully, the completion message is sent to the
call message queue associated with the program that displays the system operator
menu.

One of the advantages of completion messages is their consistency with
IBM-supplied commands. Many IBM commands send completion messages
indicating successful completion. Seeing the type of message sent to the job log can
assist in problem analysis.

210 CL Programming V5R1

Status Messages
You can send status messages from your CL procedure or program, using the
SNDPGMMSG command, to a call message queue or to the external message
queue (*EXT) for the job. When a status message is sent to a call message queue,
the receiving program or procedure can monitor for the arrival of the status
message and can handle the condition it describes. If the receiving program or
procedure does not monitor for the message, control returns to the sender to
resume processing. See “Monitoring for Messages in a CL Program or Procedure”
on page 236.

Escape and Notify Messages
You can send escape messages from your CL procedure or program to the call
message queue of the calling program or procedure with the SNDPGMMSG
command. An escape message tells the caller that the procedure or program ended
abnormally and why. The caller can monitor for the arrival of the escape message
and handle the condition it describes. When the caller handles the condition,
control does not return to the sender of an escape message.

If the caller is another procedure within the same program, the program itself does
not end. The procedure to which the escape message was sent is allowed to
continue. If the escape message was sent to the caller of the program itself, then all
active procedures within the program are ended immediately. As a result, the
program cannot continue to run. If the caller does not monitor for an escape
message, default system action is taken.

You can send notify messages from a CL procedure or program to the message
queue of the calling program or procedure or to the external message queue. A
notify message tells the caller about a condition under which processing can
continue. The calling program or procedure can monitor for the arrival of the
notify message and handle the condition it describes. If the caller is an Integrated
Language Environment procedure, it can perform the following functions:
v It can handle the condition.
v It can send a reply back to the caller.
v It can allow the sending procedure to continue processing.

If the caller is an OPM program and is not monitoring for the message, the sender
receives a default reply. If the caller is an ILE procedure, then the message
percolates to the control boundary. When finding no monitor, the system returns a
default reply to the sender. The sender then resumes processing. See “Monitoring
for Messages in a CL Program or Procedure” on page 236.

Immediate messages are not allowed as escape and notify messages. The system
has defined the message CPF9898, which can be used for immediate escape and
notify messages in application programs. For example:
SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) MSGDTA('Error condition') +

MSGTYPE(*ESCAPE)

Examples of Sending Messages
Example 1: The following CL procedure allows the display station user to submit a
job by calling a CL program which contains this procedure instead of entering the
Submit Job (SBMJOB) command. The procedure sends a completion message when
the job has been submitted.
PGM
SBMJOB JOB(WKLYPAY) JOBD(USERA) RQSDTA('CALL WKLY PARM(PAY1)')
SNDPGMMSG MSG('WKLYPAY job submitted') MSGTYPE(*COMP)
ENDPGM

Chapter 8. Working with Messages 211

Example 2: The following CL procedure changes a message based on a parameter
received from a program that is called from within the this procedure. The
message is then sent by the CL procedure as a completion message. (The RCDCNT
field is defined as characters in PGMA.)
PGM
DCL &RCDCNT TYPE(*CHAR) LEN(3)
CALL PGMA PARM(&RCDCNT)
SNDPGMMSG MSG('PGMA completed' *BCAT &RCDCNT *BCAT +

'records processed') MSGTYPE(*COMP)
ENDPGM

Example 3: The following procedure sends a message requesting the system
operator to load a special form. The Receive Message (RCVMSG) command waits
for the reply. The system operator must enter at least 1 character as a reply to the
inquiry message, but the procedure does not use the reply value.
PGM
DCL &MSGKEY TYPE(*CHAR) LEN(4)
SNDPGMMSG MSG('Load special form') TOUSR(*SYSOPR) +

KEYVAR(&MSGKEY) MSGTYPE(*INQ)
RCVMSG MSGTYPE(*RPY) MSGKEY(&MSGKEY) WAIT(120)
.
.
.
ENDPGM

The WAIT parameter must be specified on the RCVMSG command so that the
procedure waits for the reply. If the WAIT parameter is not specified, the
procedure continues with the instruction following the RCVMSG command,
without receiving the reply. The MSGKEY parameter is used in the RCVMSG
command to allow the procedure to receive the reply to a specific message. The
variable &MSGKEY in the SNDPGMMSG command is returned to the procedure
for use in the RCVMSG command.

Example 4: The following procedure sends a message to the system operator when
it is run in batch mode or to the display station operator when it is run from a
display station. The procedure accepts either an uppercase or lowercase Y or N.
(The lowercase values are translated to uppercase by the translation table (TRNTBL
parameter) to make program logic easier.) If the value entered is not one of these
four, the operator is issued a message indicating the reply is not valid.
PGM
DCL &REPLY *CHAR LEN(1)
.
.
SNDUSRMSG MSG('Update YTD Information Y or N') VALUES(Y N) +

MSGRPY(&REPLY)
IF (&REPLY *EQ Y)
DO
.
.
.
ENDDO
ELSE
DO
.
.
ENDDO
.
.
.
ENDPGM

212 CL Programming V5R1

Example 5: The following procedure uses the message CPF9898 to send an escape
message. The text of the message is 'Procedure detected failure'. Immediate
messages are not allowed as escape messages so message CPF9898 can be used
with the message as message data.

PGM
.
.
.

SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) MSGTYPE(*ESCAPE)
MSGDTA('Procedure detected failure')

.

.
ENDPGM

Example 6: The following procedure allows the system operator to send a message
to several display stations. When the system operator calls the program, this
procedure, contained within the called program, displays a prompt which the
system operator can enter the type of message to be sent and the text for the
message. The procedure concatenates the date, time, and text of the message.

PGM
DCLF WSMSGD
DCL &MSG TYPE(*CHAR) LEN(150)
DCL &HOUR TYPE(*CHAR) LEN(2)
DCL &MINUTE TYPE(*CHAR) LEN(2)
DCL &MONTH TYPE(*CHAR) LEN(2)
DCL &DAY TYPE(*CHAR) LEN(2)
DCL &WORKHR TYPE(*DEC) LEN(2 0)
SNDRCVF RCDFMT(PROMPT)
IF &IN91 RETURN /* Request was ended */
RTVSYSVAL QMONTH RTNVAR(&MONTH)
RTVSYSVAL QDAY RTNVAR(&DAY)
RTVSYSVAL QHOUR RTNVAR(&HOUR)
IF (&HOUR *GT '12') DO
CHGVAR &WORKHR &HOUR
CHGVAR &WORKHR (&WORKHR - 12)
CHGVAR &HOUR &WORKHR /* Change from military time */
ENDDO
RTVSYSVAL QMINUTE RTNVAR(&MINUTE)
CHGVAR &MSG ('From Sys Opr ' *CAT &MONTH *CAT '/' +

*CAT &DAY +
*BCAT &HOUR *CAT ':' *CAT &MINUTE +
*BCAT &TEXT)

IF (&TYPE *EQ 'B') GOTO BREAK
NORMAL: SNDPGMMSG MSG(&MSG) TOMSGQ(WS1 WS2 WS3)

GOTO ENDMSG
BREAK: SNDBRKMSG MSG(&MSG) TOMSGQ(WS1 WS2 WS3)
ENDMSG: SNDPGMMSG MSG('Message sent to display stations') +

MSGTYPE(*COMP)
ENDPGM

The DDS for the display file, WSMSGD, used in this program follows:

Chapter 8. Working with Messages 213

If the system operator enters the following on the prompt:
B

Please sign off by 3:30 today

the following break message is sent:
From Sys Opr 10/30 02:00 Please sign off by 3:30 today

Call Stack Entry Identification on SNDPGMMSG
If the CL procedure is to send a message to an OPM program or another ILE
procedure, you must identify the call stack entry to which the message is sent. The
message is sent to the call message queue of the identified call stack entry.

The TOPGMQ parameter of the SNDPGMMSG command is used to identify the
call stack entry to which a message is sent. Identification of a call stack entry
consists of the following two parts:
v Specification of a base entry

The specification TOPGMQ(*PRV *) identifies the base entry as being the one in
which the procedure using the SNDPGMMSG command is running. The offset is
specified as being one entry previous to that base. This specification identifies
the caller of the procedure which is using the command.

v Offset specification of a base entry
The offset specification (element 1 of TOPGMQ) identifies if you send the
message to the base (*SAME) or if you send the message to the caller of the base
(*PRV).

To understand how to identify the base entry, element 2 of TOPGMQ, you also
need to understand the call stack when an ILE program is running. Two programs
are used to illustrate this. Program CLPGM1 is an OPM CL program and Program
CLPGM2 is an ILE program. Since program CLPGM2 is ILE, it can consist of
several procedures, such as: CLPROC1, CLPROC2, CLPROC3, and CLPROC4. At
runtime the following calls take place:
v CLPGM1 is called first.
v CLPGM1 calls CLPGM2.
v CLPGM2 calls CLPROC1.
v CLPROC1 calls CLPROC2.
v CLPROC2 calls CLPROC3 or CLPROC4.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
A DSPSIZ(24 80)
A R PROMPT TEXT('Prompt')
A BLINK
A CA03(91 'Return')
A 1 2'Send Messages To Work Stations'

DSPATR(HI)
A 3 2'TYPE'
A TYPE 1 1 +2VALUES('N' 'B')
A CHECK(ME)

DSPATR(MDT)
A +3'(N = No breaks B = Break)'
A 5 2'Text'
A TEXT 100 1 +2LOWER
A
A

214 CL Programming V5R1

See Figure 4 on page 216 to understand the structure of the call stack when
CLPROC2 calls CLPROC4. This figure illustrates the following considerations:
v There is a one-to-one correspondence between a call stack entry and an OPM

program; for each call of an OPM program, one new entry is added to the call
stack.

v An ILE program, as a unit, is not represented on the stack; instead, when an ILE
program is called, one entry is added to the stack for each procedure that is
called in the program. As a result, you send a message to an ILE procedure, not
to an ILE program.

Note: The first procedure to run when an ILE program is called is the Program
Entry Procedure (PEP) for the program. In CL, this procedure (_CL_PEP) is
generated by the system and calls the first procedure you provide. In this
example, the entry for the PEP is between the entry for the OPM program
CLPGM1 and the entry for the procedure CLPROC1.

Following are different ways of specifying the base call stack entry.

Procedure Using the Command as the Base

If the TOPGMQ parameter specifies either TOPGMQ(*SAME *) or
TOPGMQ(*PRV *), the entry for the procedure using the SNDPGMMSG command
is used as the base. If TOPGMQ(*SAME *) is specified, the procedure will send a
message to itself. If TOPGMQ(*PRV *) is specified, the procedure will send a
message to the caller.

Note: You should be aware of the following information when a procedure sends a
message to the caller by specifying TOPGMQ(*PRV *).
v When CLPROC4 and CLPROC2 send a message back to the callers, the

message does not leave the containing program. The message is sent
between procedures that are within the same program. If the objective is
to send a message to the caller of the program (CLPGM1 in this example),
specifying TOPGMQ(*PRV *) is not the right choice to use.

v When CLPROC1 sends its message back to the caller, the Program Entry
Procedure is skipped. The message is sent to CLPGM1 even though the
caller is the PEP. When TOPGMQ(*PRV *) is specified, the PEP entry is
not visible and not included in the send operation. If TOPGMQ is specified
in some other way, the PEP is visible to the sender.

Figure 5 on page 217 illustrates the results when CLPROC1, CLPROC2, and
CLPROC4 each send a message back to the caller of each procedure.

Chapter 8. Working with Messages 215

Figure 4. Example of runtime call stack

216 CL Programming V5R1

Identifying the Base Entry by Name

You can identify the base entry by providing the name of the OPM program or ILE
procedure running in that entry. The name provided is either a simple name (one
part) or a complex name (two or three parts). Following are descriptions of the
simple and complex names:
v Simple name

A simple name is used to identify an OPM program or an ILE procedure. If the
simple name you provide is 10 characters or less in length, it is determined by

Figure 5. Example of TOPGMQ(*PRV *)

Chapter 8. Working with Messages 217

the system that the name is either an OPM program or an ILE procedure. The
base is identified as the most recently called OPM program or ILE procedure by
that name.
If the name is longer than 10 characters in length, it is determined by the system
that the name is for an ILE procedure (OPM program names cannot be longer
than 10 characters). The base is identified as the entry for the most recently
called procedure by that name. Entries running OPM programs are not
considered.
See Figure 6 on page 219 for an example of sending a message using a simple
name. In this example, CLPROC4 is sending a message to CLPROC2 and
CLPROC2 is sending a message to CLPGM1.

v Complex name
A complex name consists of two or three parts. They are:
– module name

The module name is the name of the module into which the procedure was
compiled.

– program name
The program name is the name of the program into which the procedure was
bound.

– procedure name

When you want to uniquely identify the procedure to which you want to send
the message, a complex name can be used in one of the following combinations:
– procedure name, module name, program name
– procedure name and module name
– procedure name and program name

You must specify the module name as *NONE.

If you use a complex name, the base being identified cannot be running an OPM
program.

See Figure 7 on page 220 for an example of sending a message using a complex
name. In this example, CLPROC4 is sending a message to CLPROC1 using a two
part name consisting of (procedure name, program name).

Rather than using the full OPM program name or the full ILE procedure name,
you may use partial names. IBM provides online information concerning how to
specify partial call stack entry names. Refer to the CL and APIs section of the
Programming category in the iSeries Information Center for this information.

218 CL Programming V5R1

Figure 6. Example of using a simple name

Chapter 8. Working with Messages 219

Program Boundary as Base

The special value *PGMBDY is used by itself or with a program name to identify
the PEP of a CL program. The entry for the PEP of the identified CL program then
is the base entry. This option is useful when you want to send a message from
within a CL procedure outside the boundary of the program which contains the
procedure.

Refer to Figure 8 on page 222 for an example of sending a message using the
special value *PGMBDY. In this example, CLPROC4 is sending a message directly
to to CLPGM1 which is the caller of the containing program CLPGM2. CLPROC4
can do this without knowing which program called CLPGM2 or knowing the

Figure 7. Example of using a complex name

220 CL Programming V5R1

location of the PEP compared to the procedure sending the message. In this
example, *PGMBDY is used without an accompanying program name specified.
This means that the program whose boundary is to be identified is the program
which contains the procedure that is sending the message.

See Figure 9 on page 223 for an example of sending a message using the special
value *PGMBDY and a program name. The following programs and procedures are
used in Figure 9 on page 223:
v CLPGM1 and CLPGM2. These are defined as in the previous examples.
v CLPGM3. This is another ILE program
v CLPROCA in CLPGM3. A message is sent from CLPROCA to the caller of

CLPGM2.

A message is sent from CLPROCA to the caller of CLPGM2 by using the special
value *PGMBDY with program name CLPGM2.

In this example, if the TOPGMQ parameter is specified as TOPGMQ(*PRV
_CL_PEP), the message is sent to the caller of CLPGM3 rather than the caller of
CLPGM2. This occurs because the most recently called procedure by that name is
the PEP for CLPGM3.

Chapter 8. Working with Messages 221

Figure 8. Example 1 of using *PGMBDY

222 CL Programming V5R1

The special value *PGMBDY can also be used with an OPM program. If you
specify an OPM program name with *PGMBDY, you have the same results as

Figure 9. Example 2 of using *PGMBDY

Chapter 8. Working with Messages 223

when only the OPM program name is used. For example, TOPGMQ(*SAME
*PGMBDY *NONE opmname) sends the message to the same place as
TOPGMQ(*SAME opmname).

The exception to this is when a message is sent to an OPM program that called
itself recursively. TOPGMQ(*SAME pgmname) sends the message to the latest
recursion level. However, TOPGMQ(*SAME *PGMBDY *NONE pgmname) sends
the message to the first recursion level. Figure 10 shows how PGM1 is called and
proceeds to call itself recursively two more times. At the third recursion level
PGM1 calls PGM2. PGM2 then sends a message back to PGM1. If the program is
sent using only the name PGM1, the message goes to the third recursion level of
PGM1. If the program is sent using the name PGM1 in conjunction with the special
value *PGMBDY, the message goes to the first recursion level of PGM1.
Most Recently called Procedure as Base

Although you may not know the name of a procedure, you may want to send a
message back to the most recently called procedure of an ILE program. The special

Figure 10. Example 3 of using *PGMBDY

224 CL Programming V5R1

value *PGMNAME is used with a ILE program name to use the base entry name
as the name for the most recently called procedure of the identified program. The
programs in this example are:
v CLPGM1 is an ILE program with procedures PROCA and PROCB.
v CLPGM2 and CLPGM3 are both OPM programs.
v CLPGM3 is to send a message to CLPGM1 and does not know which procedure

is the most recently called.

The send is accomplished using the special value *PGMNAME and the program
name CLPGM1.

See Figure 11 on page 226. for an example of how to send a message using the
special value *PGMNAME.

The special value *PGMNAME is useful if you convert some CL programs, but not
all CL programs, to ILE programs. For example, CLPGM1 is an OPM CL program;
CLPGM3 sent messages to CLPGM1 and specifies TOPGMQ(*SAME CLPGM1). If
CLPGM1 is converted to ILE, only the SNDPGMMSG command in CLPGM3
(OPM) works. CLPGM1 does not work because there was no entry in the call stack
for CLPGM1. If you change the command to TOPGMQ(*SAME *PGMNAME
*NONE CLPGM1), CLPGM3 sends messages successfully to CLPGM1 regardless of
the names you may have used for procedure names.

The special value *PGMNAME can also be used in with an OPM program name.
In this case the effect is the same as if you just used the name. For example,
TOPGMQ(*SAME *PGMNAME *NONE opmpgm) sends the message to the same
place as TOPGMQ(*SAME opmpgm). The use of *PGMNAME should be
considered when you cannot determine whether the message is being sent to an
OPM program name or and ILE program name.

Using a Control Boundary as a Base

You can identify the base entry as the one at the nearest control boundary by using
the special value *CTLBDY. A control boundary exists between two call stack
entries if the two entries are running in two different activation groups. The one
identified by using this special value is running in the same activation group as
the entry that is sending the message.

See Figure 12 on page 227. for an example of sending a message using the special
value *CTLBDY. The three programs in this example (CLPGM1, CLPGM2, and
CLPGM3) are all ILE programs. CLPGM1 runs in activation group AG1 while both
CLPGM2 and CLPGM3 run in activation group AG2. In this example, PROC3A
sends a message back to the entry that immediately precedes the boundary for
AG2.

Chapter 8. Working with Messages 225

Figure 11. Example of runtime call stack

226 CL Programming V5R1

Considerations for Service Programs

Figure 12. Example of using *CTLBDY

Chapter 8. Working with Messages 227

Previous discussions apply to both ILE programs and ILE service programs. The
most important difference between an ILE program and an ILE service program is
related to message handling. The service program does not have a PEP.

The PEP is not necessary for any of the options used to identify a base entry. An
exception to this is when the name _CL_PEP is used explicitly. For example,
TOPGMQ(*PRV *PGMBDY) always sends a message to the caller of the ILE
program or service program. If it is an ILE program, the PEP is identified as the
base by the *PGMBDY value. If it is an ILE service program, the entry for the first
procedure called in the service program is identified by the *PGMBDY value.

Receiving Messages in a CL Procedure or Program
Use the Receive Message (RCVMSG) command to receive messages from a
message queue for your procedure or program. Messages can be received in the
following ways:
v By message type. You can specify that all types or that a specific type can be

received (MSGTYPE parameter). New messages (those that have not been
received in the procedure or program) are received in a first-in-first-out (FIFO)
order. However, ESCAPE type messages are received in last-in-first-out (LIFO)
order.

v By message reference key. You can do one of the following:
– Receive a message using its message reference key. The system assigns a

message reference key to each message on a message queue and passes the
key as variable data because it is unprintable. You must declare this variable
in your CL procedure or program (DCL command). You must specify on the
RCVMSG command the CL variable through which the key is to be passed
(MSGKEY parameter).

– Receive the next message on a message queue following the message with a
specified message reference key. In addition to specifying the MSGKEY
parameter, you must specify MSGTYPE(*NEXT).

– Receive the message on a message queue that is before a message with a
specified message reference key. In addition to specifying the MSGKEY
parameter, you must specify MSGTYPE(*PRV).

v By its location on the message queue. You must specify MSGTYPE(*FIRST) for
the first message on the message queue; specify MSGTYPE(*LAST) for the last.

v By both message type and message reference key (MSGTYPE and MSGKEY
parameters).

To receive a message, you can specify:
v Message queue. Where the message is to be received from.
v Message type. Either a specific message type can be specified or all types can be

specified.
v Whether to wait for the arrival of a message. After the wait is over and no

message is received, the CL variables requested to be returned are filled with
blanks (or zeros if numeric) and control returns to the procedure or program
running the RCVMSG command.

v Whether to remove the message from the message queue after it is received. If it
is not removed, it becomes an old message on the message queue and can only
be received again (by a procedure) through its message reference key. However,
if messages on the message queue are reset to new messages through the
CHGMSGQ command, you do not have to use the message reference key to
receive the message. Note that inquiry messages that have already been replied

228 CL Programming V5R1

to are not reset to a new status. (See “Removing Messages from a Message
Queue” on page 235 for more information.)

v CCSID to convert to. Specifies the CCSID that you want your message text
returned in.

v A group of CL variables into which the following information is placed (each
corresponds to one variable):
– Message reference key of the message in the message queue (character

variable, 4 characters)
– Message (character variable, length varies)
– Length of message, including length of substitution variable data (decimal

variable, 5 decimal positions)
– Message online help information (character variable, length varies)
– Length of message help, including length of substitution variable data

(decimal variable, 5 decimal positions)
– Message data for the substitution variables provided by the sender of the

message (character variable, length varies)
– Length of the message data (decimal variable, 5 decimal positions)
– Message identifier (character variable, 7 characters)
– Severity code (decimal variable, length of 2)
– Sender of the message (character variable, minimum of 80 characters)
– Type of message received (character variable, 2 characters long)
– Alert option of the message received (character variable, 9 characters)
– Message file that contains the predefined message (character variable, 10

characters)
– Message file library name that contains the message file used to receive the

message (character variable, 10 characters)
– Message file library name that contains the message file used to send the

message (character variable, 10 characters)
– Message data CCSID is the coded character set identifier associated with the

replacement data returned (decimal variable, 5 decimal positions)
– Text data CCSID is the coded character set identifier associated with the text

returned by the Message and the Message help parameters (decimal variable,
5 decimal positions)

RCVMSG MSGQ(QGPL/INVN) MSGTYPE(*ANY) MSG(&MSG)

The message received is placed in the variable &MSG. *ANY is the default value
on the MSGTYPE parameter.

When working with the call stack entry message queue of an ILE procedure
written in a language other than CL, it is possible to receive an exception message
(Escape or Notify) when the exception is not yet handled. The RCVMSG command
can be used to both receive a message and indicate to the system that the
exception has been handled.

This can be controlled by using the RMV keyword. If *NO is specified for this
keyword, the exception is handled and the message is left on the message queue as
an old message. If *KEEPEXCP is specified, the exception is not handled and the
message is left on the message queue as a new message. If *YES is specified, the
exception message is handled and the message is removed from the message
queue.

Chapter 8. Working with Messages 229

The RTNTYPE keyword can be used to determine if the message received is an
exception message, and if so, whether the exception has been handled.

Request Messages
Receiving request messages is a method for your CL procedure or program to
process CL commands. For example, your procedure or program can obtain input
from a display station and handle the messages that result from the analysis and
processing of the program. Usually, request messages are received from the
external message queue (*EXT) of the job. For batch jobs, the requests received are
those read from the input stream. For interactive jobs, the requests received are
those the display station user enters one at a time on the Command Entry display.
For example, CL commands are requests that are received by the IBM-supplied CL
processor.

Your procedure or program must define the syntax of the data in the request
message, interpret the request, and diagnose any errors. While the request is being
analyzed or the request function is being run, any number of errors can be
detected. As a result of these errors, messages are sent to the call message queue
for the procedure or program. The procedure or program handles these messages
and then receives the next request message. Thus, a request processing cycle is
defined; a request message is received, the request is analyzed and run by your
procedure or program with resulting messages displayed, and the next request
received. If there are no more request messages to be received in a batch job, an
escape message is sent to your procedure or program to indicate this.

More than one OPM program or ILE procedure of a job can receive request
messages for processing. The requests received by more recent program calls are
considered to be nested within those received by higher level program calls. The
request processing cycles at each nesting level are independent of each other.
Within an ILE program, one or more procedures within that program can be
receiving request messages. If more than one procedure is processing requests than
the nesting occurs within the same ILE program and the nesting levels remain
independent.

The following diagram shows how request messages are processed by QCMD:

Command Entry Display
Command request 1

Diagnostic message 1

Diagnostic message n
Escape message

. .

. .

. .

. .

*EXT

Command request 1
Diagnostic message 1

Diagnostic message n
Escape message

CPP

Job Message Queue

Job Log

Program Stack

Program QCMD

QCMD program message queue

RSLF166-1

RCVMSG MSGTYPE(*RQS)

CALL CPP

SNDPGMMSG TOPGMQ(*PRV)

SNDPGMMSG TOPGMQ(*PRV)

Program CPP

PGMQ(*EXT)

MSGTYPE(*DIAG)

MSGTYPE(*ESCAPE)

230 CL Programming V5R1

�1� The CL processor QCMD receives a request message from *EXT.

�2� If there is no request message on *EXT, the Command Entry display is
displayed. The display station user enters a command on the display.
When the command is entered, it is placed on *EXT as a request message.

�3� The command is then moved to the end of the QCMD call message queue
and is passed from there to QCMD.

�4� The command is analyzed and its command processing program (CPP) is
called.

�5� The command processing program sends diagnostic messages to the call
message queue for QCMD.

�6� Then the command processing program sends an escape message to the
call message queue for QCMD. The escape message notifies QCMD that
diagnostic messages are on the queue and that QCMD should end
processing of the CPP.

�7� QCMD is monitoring for the arrival of a request-check (CPF9901) or
function-check (CPF9999) escape message. QCMD then tries to receive the
next request message. If a request processor receives message CPF9901 or
CPF9999, it should run a Reclaim Resources (RCLRSC) command. The
request processor should also monitor for messages CPF1907 (end request)
and CPF2415 (which indicates that the user pressed F3 or F12 on the
Command Entry display).

�8� Because a request message was being processed, all the messages on the
call message queue for QCMD are written to the Command Entry display,
which then prompts the display station user for another command.

�9� The previous request message (command) and its associated messages are
contained in the job log according to the message logging level specified
for the job. For more information, see “Message Logging” on page 265.

Writing Request-Processing Procedures and Programs
Specifying a CL procedure as a request processor within a program has many
advantages. The following list specifies three advantages:
v Processes request messages as described in “Request Messages” on page 230.
v Allows the use of the End Request (ENDRQS) command, which can be used

from the System Request menu or as part of the disconnect job function.
v Allows filtering of messages to occur.

To become a request-processor procedure or program, your procedure or program
must include the Send Program Message (SNDPGMMSG) and Receive Message
(RCVMSG) commands. For example, the following commands would allow a
procedure or program to become a request processor:
SNDPGMMSG MSG('Request Message') TOPGMQ(*EXT) MSGTYPE(*RQS)
RCVMSG PGMQ(*EXT) MSGTYPE(*RQS) RMV(*NO)

The request message is received from PGMQ *EXT. When any request message is
received, it is moved (actually, it is removed and resent) to the call message queue
of the procedure or program that specified the RCVMSG command. Therefore, the
correct call message queue must be used when the message is removed.

If the request message is removed using the message reference key (MRK), you
should obtain the MRK from the KEYVAR keyword of the RCVMSG command
and not the SNDPGMMSG command. (The MRK changes when receiving a request

Chapter 8. Working with Messages 231

message.) You must specify RMV(*NO) on the RCVMSG command because the
procedure or program is not a request processor if the request message is removed
from the call message queue.

The procedure or program is identified as a request processor when the request
message is received. While the procedure or program is a request processor, other
called procedures or programs can be ended using option 2 (End request) on the
System Request menu. The request-processor procedure or program should include
a monitor for message CPF1907 (MONMSG command). This is necessary because
the end request function (from either option 2 on the System Request menu or the
End Request command) sends this message to the request processor.

The procedure or program remains a request processor until the procedure ends
(either normally or abnormally) or until a RMVMSG command is run to remove all
the request messages from the request-processor’s call message queue. For
example, the following command removes all request messages from the message
queue and, therefore, ends request processing:
RMVMSG CLEAR(*ALL)

Call the QCAPCMD API and specify the message retrieve key to have the OS/400
command analyzer to process a request message for an OS/400 command. You can
get the message retrieve key when you receive the request message. Process
Commands (QCAPCMD) will update the request message in the job log and add
any new value supplied. QCAPCMD also hides any parameter values, such as
passwords, that are to hidden in the job log. The system will not update the
request message in the job log when one of two conditions exists.
v Using the Execute Command (QCMDEXC or QCAEXEC) APIs.
v Failing to supply a message retrieve key to QCAPCMD.

Determining if a Request-Processor Exists
To determine if a job has a request processor, display the job’s call stack. Use either
option 11 on the Display Job (DSPJOB) or Work with Job (WRKJOB) command, or
select option 10 for the job listed on the WRKACTJOB display. If a number is
shown in the request level column on the display of the job’s call stack, the
program or ILE procedure associated with the number is a request-processor. In
the following example, both QCMD and QTEVIREF are request processors:

232 CL Programming V5R1

Display Call Stack
System: S0000000

Job: WS31 User: QSECOFR Number: 000173

Type options, press Enter.
5=Display details

Request Program or
Opt Level Procedure Library Statement Instruction

QCMD QSYS 01DC
1 QCMD QSYS 016B

QTECADTR QSYS 0001
2 QTEVIREF QSYS 02BA

Bottom

F3=Exit F10=Update stack F11=Display activation group F12=Cancel
F17=Top F18=Bottom

The following is an example of a request-processing procedure:
PGM

SNDPGMMSG MSG('Request Message') TOPGMQ(*EXT) MSGTYPE(*RQS)
RCVMSG PGMQ(*EXT) MSGTYPE(*RQS) RMV(*NO)

.

.

.
CALL PGM(PGMONE)
MONMSG MSGID(CPF1907)

.

.

.
RMVMSG CLEAR(*ALL)
CALL PGM(PGMTWO)

.

.

.
ENDPGM

The first two commands in the procedure make it a request processor. The
procedure remains a request processor until the RMVMSG command is run. A
Monitor Message command is placed after the call to program PGMONE because
an end request may be sent from PGMONE to the request-processor. If monitoring
is not used, a function check would occur for an end request. No message monitor
is specified after the call to PGMTWO because the RMVMSG command ends
request processing.

If an end request is attempted when no request-processing procedure or program
is called, an error message is issued and the end operation is not performed.

Note: In the sample programs, the RCVMSG command uses the minimal number
of parameters needed to become a request processor. You need to say you
want to receive a request message but do not want to remove it. You also
need to identify the specific call queue from which the message request
originated. Other parameters can be added as necessary.

Chapter 8. Working with Messages 233

Retrieving Messages in a CL Procedure
You can use the Retrieve Message (RTVMSG) command to retrieve the text of a
message from a message file into a variable. RTVMSG operates on predefined
message descriptions. You can specify the message identifier and message file
name in addition to the following:
v CCSID to convert to. Specifies the coded character set identifier that you want

your message text and data returned in.
v Message data fields. The message data for the substitution variables.
v Message data CCSID. Specifies the coded character set identifier that the

supplied message data is to be considered in.
v A group of CL variables into which the following information is placed (each

corresponds to one variable):
– Message (character variable, length varies)
– Length of message, including length of substitution variable data (decimal

variable, 5 decimal positions)
– Message online help information (character variable, length varies)
– Length of message help, including length of substitution variable data

(decimal variable, 5 decimal positions)
– Severity code (decimal variable, 2 decimal positions)
– Alert option (character variable, 9 characters)
– Log problem in the service activity log (character variable, 1 character)
– Message data CCSID is the coded character set identifier associated with the

replacement data returned (decimal variable, 5 decimal positions)
– Text data CCSID is the coded character set identifier associated with the text

returned by the Message and the Message help parameters (decimal variable,
5 decimal positions)

For example, the following command adds the message description for the
message USR1001 to the message file USRMSG:
ADDMSGD MSGID(USR1001) MSGF(QGPL/USRMSG) +

MSG('File &1 not found in library &2') +
SECLVL('Change file name or library name') +
SEV(40) FMT((*CHAR 10) (*CHAR 10))

The following commands result in the substitution of the file name INVENT in the
10-character variable &FILE and the library name QGPL in the 10-character
variable &LIB in the retrieved message USR1001.

DCL &FILE TYPE(*CHAR) LEN(10) VALUE(INVENT)
DCL &LIB TYPE(*CHAR) LEN(10) VALUE(QGPL)
DCL &A TYPE(*CHAR) LEN(20)
DCL &MSG TYPE(*CHAR) LEN(50)
CHGVAR VAR(&A) VALUE(&FILE||&LIB)
RTVMSG MSGID(USR1001) MSGF(QGPL/USRMSG) +

MSGDTA(&A) MSG(&MSG)

The data for &1 and &2; is contained in the procedure variable &A, in which the
values of the procedure variables &FILE and &LIB have been concatenated. The
following message is placed in the CL variable &MSG:

File INVENT not found in library QGPL

If the MSGDTA parameter is not used in the RTVMSG command, the following
message is placed in the CL variable &MSG:

File not found in library

234 CL Programming V5R1

After the message is placed in the variable &MSG, you could do the following:
v Send the message using the SNDPGMMSG command
v Use the variable as the text for a message line in DDS (M in position 38)
v Use a message subfile
v Print or display the message

Note: You cannot retrieve the message text with the variable names that are
included in the text. The system intends on RTVMSGD to return a sendable
message.

Removing Messages from a Message Queue
Messages are held on a message queue until they are removed by a Remove
Message (RMVMSG) command, Clear Message Queue (CLRMSGQ) command, the
RMV parameter on the Receive Message (RCVMSG) and Send Reply (SNDRPY)
commands, the remove function keys of the Display Messages display, or the clear
message queue option on the Work with Message Queue display. You can remove:
v A single message
v All messages
v All except unanswered messages
v All old messages
v All new messages
v All messages from all inactive programs

To remove a single message using the RMVMSG command or a single old message
using the RCVMSG command, you specify the message reference key of the
message to be removed.

Note: The message reference key can also be used to receive a message and to
reply to a message.

If you remove an inquiry message that you have not answered, a default reply is
sent to the sender of the message and the inquiry message and the default reply
are removed. If you remove an inquiry message that you have already answered,
both the message and your reply are removed.

To remove all messages for all inactive programs and procedures from a user’s job
message queue, specify *ALLINACT for the PGMQ parameter and *ALL for the
CLEAR parameter on the RMVMSG command. If you want to print your job log
before you remove all the inactive messages, use the Display Job Log
(DSPJOBLOG) command and specify *PRINT for the OUTPUT parameter.

When working with a call message queue of an ILE procedure, it is possible that
an exception message for unhandled exceptions is on the queue at the time the
RMVMSG command is run. The RMVEXCP keyword of this command can be used
to control actions for messages of this type. If *YES is specified for this keyword,
the RMVMSG command causes the exception to be handled and the message to be
removed. If *NO is specified, the message is not removed. As a result, the
exception is not handled.

The following RMVMSG command removes a message from the user message
queue JONES. The message reference key is in the CL variable &MRKEY.

Chapter 8. Working with Messages 235

DCL &MRKEY TYPE(*CHAR) LEN(4)
RCVMSG MSGQ(JONES) RMV(*NO) KEYVAR(&MRKEY)
RMVMSG MSGQ(JONES) MSGKEY(&MRKEY)

The following RMVMSG command removes all messages from a message queue.
RMVMSG CLEAR(*ALL)

Note: The maximum number of messages on a user message queue or a work
station message queue is 65 535 for each type of message sent. For example,
65 535 diagnostic messages can be on the queue; 65 535 completion
messages can be on the queue, and so on. For a call message queue or the
*EXT queue, there is no restriction on the maximum number of messages
per type.

Monitoring for Messages in a CL Program or Procedure
You can monitor for escape, notify, and status messages that are sent to your CL
procedure’s or program’s call message queue by the commands in your procedure
or program or by commands in another procedure or program. The Monitor
Message (MONMSG) command monitors the messages sent to the call message
queue for the conditions specified in the command. If the condition exists, the CL
command specified on the MONMSG command is run. The logic involved with
the MONMSG command is as follows:

Escape Messages: Escape messages are sent to tell your procedure or program of
an error condition that forced the sender to end. By monitoring for escape
messages, you can take corrective actions or clean up and end your procedure or
program.

Status or Notify Messages Status and notify messages are sent to tell your
procedure or program of an abnormal condition that is not serious enough for the
sender to end. By monitoring for status or notify messages, your procedure or
program can detect this condition and not allow the function to continue.

You can monitor for messages using two levels of MONMSG commands:
v Procedure level: You can monitor for an escape, notify, or status message sent by

any command in your procedure by specifying the MONMSG command
immediately following the last declare command in your CL procedure or
program. This is called a procedure-level MONMSG command. You can use as
many as 100 procedure-level MONMSG commands in a procedure or OPM
program. (A CL procedure or OPM program can contain a total of 1000
MONMSG commands.) This lets you handle the same escape message in the
same way for all commands. The EXEC parameter is optional, and only the
GOTO command can be specified on this EXEC parameter.

236 CL Programming V5R1

v Specific command level: You can monitor for an escape, notify, or status message
sent by a specific command in your procedure or program by specifying the
MONMSG command immediately following the command. This is called a
command level MONMSG command. You can use as many as 100
command-level MONMSG commands for a single command. This lets you
handle different escape messages in different ways.

Chapter 8. Working with Messages 237

To monitor for escape, status, or notify messages, you must specify, on the
MONMSG command, generic message identifiers for the messages in one of the
following ways:
v pppmmnn

Monitors for a specific message. For example, MCH1211 is the message identifier
of the zero divide escape message.

v pppmm00

Monitors for any message with a generic message identifier that begins with a
specific licensed program (ppp) and the digits specified by mm. For example,
CPF5100 indicates that all notify, status, and escape messages beginning with
CPF51 are monitored.

v ppp0000

Monitors for every message with a generic message identifier that begins with a
specific licensed program (ppp). For example, CPF0000 indicates that all notify,
status, and escape messages beginning with CPF are monitored.

Note: Do not use MONMSG CPF0000 when doing system function, such as install or
saving or restoring your entire system, since you may lose important
information.

v CPF9999
Monitors for function check messages for all generic message identifiers. If an
error message is not monitored, it becomes a CPF9999 (function check).

Note: Generally, when monitoring, your monitor also gets control when notify and
status messages are sent.

In addition to monitoring for escape messages by message identifier, you can
compare a character string, which you specify on the MONMSG command, to data
sent in the message. For example, the following command monitors for an escape
message (CPF5101) for the file MYFILE. The name of the file is sent as message
data.
MONMSG MSGID(CPF5101) CMPDTA(MYFILE) EXEC(GOTO EOJ)

The compare data can be as long as 28 characters, and the comparison starts with
the first character of the first field of the message data. If the compare data
matches the message data, the action specified on the EXEC parameter is run.

The EXEC parameter on the MONMSG command specifies how an escape message
is to be handled. Any command except PGM, ENDPGM, IF, ELSE, DCL, DCLF,
ENDDO, and MONMSG can be specified on the EXEC parameter. You can specify
a DO command on the EXEC parameter, in which case, the commands in the do
group are run. When the command or do group (on the EXEC parameter) has been
run, control returns to the command in your procedure or program that is after the
command that sent the escape message. However, if you specify a GOTO or
RETURN command, control does not return. If you do not specify the EXEC
parameter, the escape message is ignored and your procedure continues.

The following shows an example of a Change Variable (CHGVAR) command being
monitored for a zero divide escape message, message identifier MCH1211:
CHGVAR VAR(&A) VALUE(&A / &B)
MONMSG MSGID(MCH1211) EXEC(CHGVAR VAR(&A) VALUE(1))

The value of the variable &A is changed to the value of &A divided by &B. If &B
equals 0, the divide operation cannot be done and the zero divide escape message

238 CL Programming V5R1

is sent to the procedure. When this happens, the value of &A is changed to 1 (as
specified on the EXEC parameter). You may also test &B for zero, and only
perform the division if it is not zero. This is more efficient than attempting the
operation and monitoring for the escape message.

In the following example, the procedure monitors for the escape message CPF9801
(object not found message) on the Check Object (CHKOBJ) command:

PGM
CHKOBJ LIB1/PGMA *PGM
MONMSG MSGID(CPF9801) EXEC(GOTO NOTFOUND)
CALL LIB1/PGMA
RETURN

NOTFOUND: CALL FIX001 /* PGMA Not Found Routine */
ENDPGM

The following CL procedure contains two CALL commands and a procedure-level
MONMSG command for CPF0001. (This escape message occurs if a CALL
command cannot be completed successfully.) If either CALL command fails, the
procedure sends the completion message and ends.

PGM
MONMSG MSGID(CPF0001) EXEC(GOTO ERROR)
CALL PROGA
CALL PROGB
RETURN

ERROR: SNDPGMMSG MSG('A CALL command failed') MSGTYPE(*COMP)
ENDPGM

If the EXEC parameter is not coded on a procedure-level MONMSG command, any
escape message that is handled by the MONMSG command is ignored. If the
escape message occurs on any command except the condition of an IF command,
the procedure or program continues processing with the command that would
have been run next if the escape message had not occurred. If the escape message
occurs on the condition of an IF command, the procedure or program continues
processing as if the condition on the IF command were false. The following
example illustrates what happens if an escape message occurs at different points in
the procedure:
PGM
DCL &A TYPE(*DEC) LEN(5 0)
DCL &B TYPE(*DEC) LEN(5 0)
MONMSG MSGID(CPF0001 MCH1211)
CALL PGMA PARM(&A &B)
IF (&A/&B *EQ 5) THEN(CALL PGMB)
ELSE CALL PGMC
CALL PGMD
ENDPGM

Depending on where an escape message occurs, the following happens:
v If CPF0001 occurs on the call to PGMA, the procedure resumes processing on

the IF command.
v If MCH1211 (divide by 0) occurs on the IF command, the IF condition is

considered false, and the procedure resumes processing with the call to PGMC.
v If CPF0001 occurs on the call to PGMB or PGMC, the procedure resumes

processing with the call to PGMD.
v If CPF0001 occurs on the call to PGMD, the procedure resumes processing with

the ENDPGM command, which causes a return to the calling procedure.

You can also monitor for the same escape message to be sent by a specific
command in your procedure or program and by another command. This requires

Chapter 8. Working with Messages 239

two MONMSG commands. One MONMSG command follows the command that
needs special handling for the escape message; for that command, this MONMSG
command is used when the escape message is sent. The other MONMSG
command follows the last declare command so that for all other commands, this
MONMSG command is used.

MONMSG commands apply only to the CL procedure or OPM program in which
they are coded. MONMSG commands from one procedure do not apply to another
procedure even though both are part of the same program. IBM provides online
help that contains a list of the escape, notify, and status messages that are issued
for CL commands. Refer to the CL and APIs section of the Programming category
in the iSeries Information Center for this information. You should also keep a list
of all messages that you have defined.

Note: The above paragraph is not true for ILE procedures because of the way
messages percolate. The system requires MONMSG to handle any escape
message that is sent to a procedure. Otherwise, the message percolates up
the call stack until it finds a procedure that has a MONMSG to handle it or
hits a control boundary.

Default Handling
Many escape messages can be sent to a procedure that calls commands, programs,
and procedures. You will not want to monitor and handle all of the messages.
However, you may want to monitor and handle the escape messages which pertain
to the function of your procedure. The system provides default monitoring and
handling of any messages you do not monitor.

Default handling assumes that an error has been detected in a procedure. If you
are debugging the procedure, the message is sent to your display station. You can
then enter commands to analyze and correct the error. If you are not debugging
the procedure, the system performs a message percolation function.

Message percolation is a two-step function that does the following:
v Moves the escape message one step earlier in the call stack.
v Checks to see if the procedure has a MONMSG command for the escape.

If the procedure has a MONMSG command for the escape, the message percolation
action stops, and the system takes the action that is specified by the MONMSG
command. Message percolation continues until either finding a MONMSG
command, or until finding the nearest control boundary. This means that the
escape message does not percolate across control boundaries.

The function check processing begins by finding the control boundary before
finding a procedure with a MONMSG command which applies to the message.
The system considers action on the original escape exception complete. The system
then sends the function check message (CPF9999) to the procedure that was the
target of the original escape. If that procedure has a MONMSG for the function
check message, then it takes the action that is specified by that command.
Otherwise, the system sends an inquiry message to the workstation operator if the
job is an interactive job. The workstation operation can reply with one of the
following replies:

R Retry the failing command in the procedure.

I Ignore the message. Continue processing at the next command in the
procedure.

240 CL Programming V5R1

C Cancel the procedure and percolate the function check to the next previous
procedure on the call stack.

D Dump the call stack entry for the failing procedure, cancel the procedure,
and percolate the function check to the next previous procedure on the call
stack. This is the default action if entering no reply, or if the job is a batch
job.

The system does not percolate the function check across the control boundary. If
any reply causes the function check to move across an activation group boundary,
this stops further action on the function check. The system cancels all procedures
up to the activation group boundary, and sends the escape message CEE9901 to the
prior call stack entry.

You can monitor for function-check escape messages so that you can either:
v Clean up and end the procedure
v Continue with some other aspect of your procedure

Note: If the message description for the unmonitored escape specifies a default
action, the default handling program is called before the function check
message is sent. When the default handling program returns, function check
processing begins.

Notify Messages
Besides monitoring for escape messages, you can monitor for notify messages that
are sent to your CL procedure’s or program’s call message queue by the
commands in your procedure or program or by the programs and procedures it
calls. Notify messages are sent to tell your procedure or program of a condition
that is not typically an error. By monitoring for notify messages, you can specify an
action different from what you would specify if the condition had not been
detected. Very few IBM-supplied commands send notify messages.

Monitoring for and handling notify messages is similar to monitoring for and
handling escape messages. The difference is in what happens if you do not
monitor for and handle notify messages. Notify messages are also percolated from
procedure to procedure within the boundary of the activation group. If the
activation group boundary is reached without a MONMSG command being found
for it, the default reply is automatically returned to the sender of the notify
message and the sender is allowed to continue processing. Unlike escape messages,
unmonitored notify messages are not considered an indication of an error in your
procedure or program.

Status Messages
You can monitor for status messages that are sent by the commands in your CL
procedure or by the programs or procedures it calls. Status messages tell your
procedure the status of the work performed by the sender. By monitoring for
status messages, you can prevent the sending program or procedure from
proceeding with any more processing.

No message information is stored in a message queue for status messages.
Therefore, a status message cannot be received.

If a status message is not monitored for, it is percolated like escape and notify
messages are. If the activation group boundary is reached without a MONMSG
command being found, action on the message is considered complete and control

Chapter 8. Working with Messages 241

is returned to the sender of the message to continue processing. Status messages
are often sent to communicate normal conditions that have been detected where
processing can continue.

Status messages sent to the external message queue are shown on the interactive
display, informing the user of a function in progress. For example, the Copy File
(CPYF) command sends a message informing the user that a copy operation is in
progress.

Only predefined messages can be sent as status messages; immediate messages
cannot be sent. You can use the system-supplied message ID, CPF9898, and supply
message data to send a status message if you do not have an existing message
description.

When the function is completed, your procedure or program should remove the
status message from the interactive display. The message cannot be removed using
a command, but sending another status message to *EXT with a blank message
gives the appearance of removing the message. The system-supplied message ID
CPI9801 can be used for this purpose. When control returns to the OS/400
program, the *STATUS message may be cleared from line 24, without sending the
CPI9801 message. The following example shows a typical application of message
IDs CPF9898 and CPI9801:
SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) +

MSGDTA('Function xxx being performed') +
TOPGMQ(*EXT) MSGTYPE(*STATUS)

v
v /* Your processing function */
v

SNDPGMMSG MSGID(CPI9801) MSGF(QCPFMSG) +
TOPGMQ(*EXT) MSGTYPE(*STATUS)

Preventing the Display of Status Messages
You cannot prevent commands from sending status messages, but you can prevent
the status messages from being displayed at the bottom of the screen.

There are two preferred ways to prevent the status messages from being shown:
v Change User Profile (CHGUSRPRF) command

You can change your user profile so that whenever you sign on using that
profile, status messages are not shown. To do this, use the CHGUSRPRF
command and specify *NOSTSMSG on the User Option (USROPT) parameter.

v Change Job (CHGJOB) command
You can change the job you are currently running so that status messages are
not shown. To do this, use the CHGJOB command and specify *NONE on the
Status Message (STSMSG) parameter. You can also use the CHGJOB command to
see status messages by specifying *NORMAL on the STSMSG parameter.

A third alternative, however less preferred, is to use the Override Message File
(OVRMSGF) command and change the status message identifiers to a blank
message.

242 CL Programming V5R1

Break-Handling Programs
A break-handling program is one that is automatically called when a message
arrives at a message queue that is in *BREAK mode. You must specify the name of
both the program and the break delivery name on the same Change Message
Queue (CHGMSGQ) command. Although you specify the program on the
CHGMSGQ command, it is one or more procedures within the program that
processes the message. A procedure within this program must run a Receive
Message (RCVMSG) command to receive the message. To receive and handle the
message, the user-defined program called to handle messages for break delivery
receives parameters. Specifically, the first procedure to run within the program
receives these parameters. The parameters identify the message queue and the
message reference key (MRK) of the message that is causing the break. IBM
provides an online list for the parameters of the Break Handling exit program.
Refer to the CL and APIs section of the Programming category of the iSeries
Information Center for the list. If the system calls a break-handling program, it
interrupts the job that has the message queue in break mode. When the
break-handling program ends, the original program resumes processing.

The following program (PGMA), which consists of only this one procedure, is an
example of a break-handling program.
PGM PARM(&MSGQ &MSGLIB &MRK)
DCL VAR(&MSGQ) TYPE(*CHAR) LEN(10)
DCL VAR(&MSGLIB) TYPE(*CHAR) LEN(10)
DCL VAR(&MRK) TYPE(*CHAR) LEN(4)
DCL VAR(&MSG) TYPE(*CHAR) LEN(75)
RCVMSG MSGQ(&MSGLIB/&MSGQ) MSGKEY(&MRK) +

MSG(&MSG)
.
.
.
ENDPGM

After the break-handling program is created, running the following command
connects it to the QSYSMSG message queue.
CHGMSGQ MSGQ(QSYS/QSYSMSG) DLVRY(*BREAK) PGM(PGMA)

Notes:

1. When messages are handled, they should be removed from the message queue.
When a message queue is put in break mode, any message on the queue will
cause the break-handling program to get called.

2. The procedure or program receiving the message should not be coded with a
wait-time other than zero to receive a message. You can specify a value other
than zero for the wait parameter with the Receive Message (RCVMSG)
command. The message arrival event cannot be handled by the system while
the job is running a break-handling event.

An example of a break-handling program is to have the program send a message,
which is normally sent to the QSYSOPR queue, to another queue in place of or in
addition to QSYSOPR.

The following is an example of a user-defined program (again with only one
procedure) to handle break messages. The display station user does not need to
respond to the messages CPA5243 (Press Ready, Start, or Start-Stop on device &1)
and CPA5316 (Verify alignment on device &3) when this program is used.
BRKPGM: PGM (&MSGQ &MSGQLIB &MSGMRK)

DCL &MSGQ TYPE(*CHAR) LEN(10)
DCL &MSGQLIB TYPE(*CHAR) LEN(10)

Chapter 8. Working with Messages 243

DCL &MSGMRK TYPE(*CHAR) LEN(4)
DCL &MSGID TYPE(*CHAR) LEN(7)
RCVMSG MSGQ(&MSGQLIB/&MSGQ) MSGKEY(&MSGMRK) +

MSGID(&MSGID) RMV(*NO)
/* Ignore message CPA5243 */
IF (&MSGID *EQ 'CPA5243') GOTO ENDBRKPGM
/* Reply to forms alignment message */
IF (&MSGID *EQ 'CPA5316') +

DO
SNDRPY MSGKEY(&MSGMRK) MSGQ(&MSGQLIB/&MSGQ) RPY(I)
ENDDO

/* Other messages require user intervention */
ELSE CMD(DSPMSG MSGQ(&MSGQLIB/&MSGQ))

ENDBRKPGM: ENDPGM

Attention:

In the above example of a break-handling program, if a CPA5316 message should
arrive at the queue while the DSPMSG command is running, the DSPMSG display
shows the original message that caused the break and the CPA5316 message. The
DSPMSG display waits for the operator to reply to the CPA5316 message before
proceeding.

Note: This program cannot open a display file if the interrupted program is
waiting for input data from the display.

You can use the system reply list to indicate the system will issue a reply to
predefined inquiry messages. The display station user, therefore, does not need to
reply. For more information, see “Using the System Reply List” on page 262.

A procedure within a user break-handling program may need a Suspend and
Restore procedure to ensure the display is suspended and restored while the
message handling function is being performed. The Suspend and Restore
procedure is necessary only if the following conditions exist:
v A procedure in the break-program displays other menus or screens
v The break-program calls other programs which may display other menus or

screens.

The following example clarifies the user procedure and display file needed to
suspend and restore the display:

Note: RSTDSP(*YES) must be specified to create the display file.
A R SAVFMT OVERLAY KEEP
A*
A R DUMMY OVERLAY
A KEEP
A ASSUME
A DUMMYR 1A 1 2DSPATR(ND)

PGM PARM(&MSGQ &MSGLIB &MRK)
DCL VAR(&MSGQ) TYPE(*CHAR) LEN(10)
DCL VAR(&MSGLIB) TYPE(*CHAR) LEN(10)
DCL VAR(&MRK) TYPE(*DEC) LEN(4)
DCLF FILE(UDDS/BRKPGMFM)
SNDF RCDFMT(SAVFMT)
CALL PGM(User's Break Program)
SNDF RCDFMT(SAVFMT)

ENDPGM

244 CL Programming V5R1

If you do not want the user specified break-handling program to interrupt the
interactive job, the program may be submitted to run in batch. You may do this by
specifying a break-handling program that receives the message and then performs
a SBMJOB. The SBMJOB performs a call to the current break-handling program
with any parameters that you want to use. (An example is information from the
receive message.) Control will then be returned to the interactive job and it will
continue normally.

QSYSMSG Message Queue
The QSYSMSG message queue is an optional queue that you can create in the
QSYS library. If it exists and is not damaged, certain messages are directed to it
instead of, or in addition to, the QSYSOPR message queue. This allows a
user-written program to gain control when certain messages are sent. You should
not create the QSYSMSG queue unless you want it to receive specific messages.

Enter the following command to create the QSYSMSG queue:
CRTMSGQ QSYS/QSYSMSG +

TEXT('Optional MSGQ to receive specific system messages')

Once the QSYSMSG message queue is created, all of the specific messages (shown
below in “Messages Sent to QSYSMSG Message Queue”) are directed to it. You can
write a program to receive messages for which you can perform special action and
send other messages to the QSYSOPR message queue or another message queue.
This program should be written as a break-handling program.

Messages Sent to QSYSMSG Message Queue
This topic describes the specific messages sent to the QSYSMSG message queue. If
the QSYSMSG message queue exists, the system sends the following messages to
QSYSMSG instead of QSYSOPR:
v CPF1269, CPF1393, CPF1397
v CPI2209, CPI9014, and messages CPI96C0 through CPI96C7

The system sends all other messages in this topic to both QSYSMSG and
QSYSOPR.

CPD4070
Negative response received for remote location &5, device
description &4.

CPF0907
Serious storage condition may exist. Press HELP.

This message is sent if the amount of available auxiliary storage in the
system auxiliary storage pool has reached the threshold value.

The system service tools function can be used to display and change the

threshold value. For more information, see the Backup and Recovery
book.

CPF8AC4
Reserved library name &7 in use.

CPF9E7C
Operating System/400 grace period expired.

Chapter 8. Working with Messages 245

c4153045.pdf

The software license grace period for Operating System/400 has expired.
Successful completion of the next initial program load (IPL) requires a
software license key.

Contact your IBM marketing representative or IBM business partner for a
new Operating system/400 software license key. Use the Add License Key
Information (ADDLICKEY) command to add the software license key.

CPF1269
Program start request received on communications device was rejected
with reason codes.

This message is sent when a start request is rejected and contains a reason
code identifying why the rejection occurred.

If a password is not valid or an unauthorized condition occurs using
APPC, it may mean that a normal job is in error or that someone is
attempting to break security. You may choose to prevent further use of the
APPC device description until the condition is understood by doing the
following:
v Sending the message to the QSYSOPR message queue.
v Recording the attempt for the security officer to review.
v Issuing the End Mode (ENDMOD) command to set the allowed jobs to

zero. This allows jobs that are currently using the peer device
description to remain active, but prevents other jobs from starting until
the condition is understood.

v Counting the number of attempts in a given time period. You could
establish a threshold in your program for the number of attempts that
were not valid before you take serious action (such as changing the
maximum number of sessions to zero). You may want to assign this
threshold value by unit of work identifier (which may be blank), by
APPC device description, or for your entire APPC environment.

CPF1393
User profile has been disabled because maximum number of sign-on
attempts has been reached.

This message is sent when a user has attempted to sign-on multiple times,
causing the User Profile to be disabled.

CPF1397
Subsystem varied off work station.

This message is sent if the threshold value assigned by the system value
QMAXSIGN is reached and the device is varied off. The message indicates
that a user is not entering a valid password. The message data for CPF1397
contains the name of the device from which the message was sent. You can
use this information and design a program to take appropriate action. You
could consider performing one or several of the following:
v Send the same message to the QSYSOPR message queue
v Record the attempt for the security officer to review
v Automatically vary on the device after a significant time delay

CPF510E
Network interface &9 failed while doing a read or write to device
&4.

The system has detected a network interface failure and is attempting error
recovery for the network interface.

246 CL Programming V5R1

Try the request again. Recommendations on program recovery are in the

Communications Management book. If the problem occurs again,
enter the Analyze Problem (ANZPRB) command to run problem analysis.

CPF5167
SNA session for remote location &5, device description &4 ended
abnormally.

The Systems Network Architecture (SNA) session ended due to a request
shutdown (RSHUTD), request recovery (RQR), unbind (UNBIND), or
notify power off (NOTIFY) command received from the remote controller.

Contact the remote controller operator to determine why the
communications support ended the session. Correct the error, and try the
request again.

CPF5244
Internal system failure for remote location &5, device description
&4.

Vary off the device. Vary the device on and try the request again. If the
problem continues, report the problem (ANZPRB command).

CPF5248
SNA protocol violation for data received for remote location &5,
device description &4.

The Systems Network Architecture (SNA) request received for remote
location &5, device description &4 violates SNA protocol. The system
received a negative response with sense data &7 to the controller.

Correct the problem in the controller program and try the request again.
For more information on sense data and associated errors, see the Finance

Communications Programming book.

CPF5250
Negative response with sense data &7 received for remote location
&5.

The system received a negative response with sense data &7 for remote
location &5 device description &4. The first four characters of the data did
not begin with 10xx, 08xx, or 0000. The Systems Network Architecture
(SNA) session ended if it existed.

Correct the error and try the request again. For more information on sense
data and the causes of negative responses, see Systems Network Architecture
Formats, GA27-3136.

CPF5251
Password or user ID not valid for request for remote location &5.

A Systems Network Architecture (SNA) INIT-SELF command was received
for finance remote location &5, device description &4 that did not contain
valid authorization data. One of the following occurred:
v The system could not find the user ID or password.
v The system could not find the user ID.
v The password was not valid for this user ID.
v No authorization exists for this user ID to use device description &4.
v The user profile was not accessible.

Chapter 8. Working with Messages 247

c4154062.pdf
c4154490.pdf
c4154490.pdf

v The user ID contained a character that is not valid.

Have the user try the request again with a valid user ID and password. If
the user has no authorization to the device, use the Grant Object Authority
(GRTOBJAUT) command to authorize the user to this device.

CPF5257
Failure for device or member &4 file &2 in library &3.

An error occurred during a read or write operation. If this is a display file,
the display may not be usable.

See the previously listed messages, correct the errors, and try the request
again. If the problem continues, report the problem (ANZPRB command).

CPF5260
Switched connection failed for device &4 in file &2 in &3.

Close the file and then try the request again.

CPF5274
Error on device for remote location &5 file &2 in &3.

The program attempted an input operation or an output operation to
program device &4, remote location &5 that had a prior error.

Vary off device associated with remote location &5 and then on again
(VRYCFG or WRKCFGSTS command). Then try the request again.

CPF5341
SNA session not established for remote location &5, device
description &4.

The Systems Network Architecture (SNA) session could not be established.
The Synchronous Data Link Control (SDLC) frame size is not compatible
with the request/response unit (RU) size. This is either a configuration
error, or the SDLC frame size has been negotiated to a smaller value by
OS/400. This occured while the remote controller is using the Exchange
Identification (XID) command.

The MAXLENRU parameter of the device description contains the
specification of the RU size for retail and finance devices.

The MAXFRAME parameter of the line description contains the SDLC
frame size specification. The MAXFRAME parameter of the controller
description also contains the specification for retail and finance devices.

Do one or more of the following and try the request again:
v Verify that the frame size and the RU size values are compatible.
v Increase the SDLC frame size, or decrease the RU size, if necessary.
v Verify that this configuration is compatible with the remote controller

configuration.
v If you are making configuration changes, you must vary the

configuration off and on before the changes will take effect.

CPF5342
Line &9 failed on device description &4, remote location &5.

The system has detected line failure while processing input or output and
is attempting error recovery for the line.

248 CL Programming V5R1

Try the request again. If the problem continues, start problem analysis
(ANZPRB command). For more information on program recovery, see the

Communications Management book.

CPF5344
Error on controller &9, device description &4.

The system has detected a controller failure and is attempting error
recovery for the controller.

Try the request again. If the problem continues, start problem analysis
(ANZPRB command).

CPF5346
Error for remote location &5, device description &4.

Close the file. Vary off the device (VRYCFG command). Look at any
system operator messages in the job log to determine if any action is
necessary before you vary on the device. Correct the error, and vary on the
device (VRYCFG command). Then try the request again. If the problem
continues, start problem analysis (ANZPRB command).

CPF5355
Not able to locate object &7 in &8 of type *&9.

Object &7 type *&9 is either being used in another process, is not varied
on, or has no sessions available for advanced program-to-program
communications.

Close file &2. Try the request again when object &7 is available or varied
on. If the object that could not be allocated is for APPC, there were no
sessions available to use. You can change the WAITFILE parameter to
allow the system to wait longer for a session to become available. The
mode can also be changed (MAXSSN parameter) to make more sessions
available. The remote system may also have to configure again to accept a
greater number of sessions. If configuration exists for sufficient sessions,
use the CHGSSNMAX command to attempt to increase the current session
limit.

CPI091F
PWRDWNSYS &1 command in progress.

This message is sent in a secondary partition, when the primary partition
ends abnormally.

CPI0948
Mirrored protection is suspended on disk unit &1;

The system is not able to locate a storage unit. Data has not been lost. The
following information indicates where the system located the storage unit
before the storage unit was missing from the system configuration:
v Disk serial number: &5
v Disk type: &3
v Disk model: &4
v Device resource name: &26

Do the following:
1. Use the system Resource Configuration List display to see the storage

unit that is identified as missing.

Chapter 8. Working with Messages 249

c4154062.pdf

2. Ensure the proper installation of power cable connections on the
storage unit.

CPI0949
Mirrored protection is suspended on disk unit &1;

The mirrored protection for the disk is suspended.

CPI0950
Storage unit now available.

A storage unit, which was missing from the configuration, is now
available. Data has not been lost.

CPI0953
ASP storage threshold reached.

This message is sent if the amount of available storage in the specified
auxiliary storage pool (ASP) has reached the threshold value. The message
data for CPI0953 contains the auxiliary storage capacity, the auxiliary
storage used, the percentage of threshold, and the percentage of auxiliary
storage available. You can use this information to take appropriate action.

CPI0954
ASP storage limit exceeded.

This message is sent if all available storage in the specified ASP has been
used.

CPI0955
System ASP unprotected storage limit exceeded.

This message is sent if all available storage in the system ASP has been
used.

CPI0964
Weak battery condition exists.

This message is sent if the external uninterruptible power supply or
internal battery indicates a weak battery condition.

CPI0965
Failure of battery power unit feature in system unit.

This message is sent if there is a failure of the battery or the battery
charger for the battery power unit feature in the system unit.

CPI0966
Failure of battery power unit feature in expansion unit.

This message is sent if there is a failure of the battery or the battery
charger for the battery power unit feature in the expansion unit.

CPI0970
Disk unit &1 not operating

Disk unit &1 has stopped operating. No data has been lost. The following
information identifies the disk unit that is not operating:
v Disk serial number: &3
v Disk type: &5
v Disk model: &6
v Disk address: &4
v IOP resource name: &26

250 CL Programming V5R1

v Device controller resource name: &27
v Device resource name: &28

Press F14 to run problem analysis.

CPI0988
Mirrored protection is resuming on disk unit &1;

This message is sent if the mirroring synchronization of a disk unit has
started and disk mirroring protection is being resumed. One of the steps
the system performs before disk mirroring protection is resumed is to copy
data from one disk unit to another so that the data on both disk units is
the same. You may observe slow system performance during the time that
the data is being copied. After the copy of the disk data is complete,
message CPI0989 is sent to this message queue, and disk mirroring
protection resumes.

CPI0989
Mirrored protection resumed on disk unit &1;

This message is sent if the mirroring synchronization of a disk unit
completed successfully. The system completed the copy of data from one
disk unit to the other. Disk mirroring protection is resumed.

CPI0998
Error occurred on disk unit &1;

This message is sent if errors were found on disk unit &1; The message
does not include information about the failure to run problem analysis.

CPI0999
Storage directory threshold reached.

The storage directory is nearing capacity. This is a potentially serious
system condition. The system repeats this message until it receives an IPL.

You must reduce the amount of storage that is used on the system. To
reduce the amount of storage that is used, do the following:
v Delete objects from the system that are not needed.
v Save objects that are not needed online by specifying STG(*FREE) on the

Save Object (SAVOBJ) command.

CPI099C
Critical storage lower limit reached.

The amount of storage that is used in the system auxiliary storage pool has
reached the critical lower limit value. The system will now take the action
that is specified in the QSTGLOWACN system value: &5. The possible
actions are:
v *MSG — The system takes no further action.
v *CRITMSG — The system sends message CPI099B to the user that is

specified by the CRITMSGUSR service attribute.
v *REGFAC — The system submits a job to run the exit programs that are

registered for the QIBM_QWC_QSTGLOWACN exit point.
v *ENDSYS — The system ends to the restricted state.
v *PWRDWNSYS — The system powers down immediately and restarts.

You can reduce use of storage through the following actions:
v Delete any unused objects.

Chapter 8. Working with Messages 251

v Save objects by specifying STG(*FREE)
v Save the old unused log versions of QHST and then delete them.
v Print or delete spooled files on the system.

Failure to reduce the storage usage may lead to a situation that requires
initialization of auxiliary storage and loss of user data. Use the
WRKSYSSTS command to monitor the amount of storage that is used. Use
the PRTDSKINF command to print information about storage usage. The
WRKSYSVAL command can be used to display and change the auxiliary
storage lower limit value (QSTGLOWLMT) and action (QSTGLOWACN).

CPI099D
System starting in storage restricted state.

The system is being started to the restricted state because the amount of
storage available is below the auxiliary storage lower limit. Failure to
reduce storage usage may lead to a situation that requires initialization of
auxiliary storage and the loss of user data. The console is the only active
device.

You can reduce the use of storage through the following actions:
v Delete any unused objects.
v Save objects by specifying STG(*FREE).
v Save the old unused log versions of QHST and then delete them.
v Print or delete spooled files on the system.

Failure to reduce the storage usage may lead to a situation that requires
initialization of auxiliary storage and loss of user data. Use the
WRKSYSSTS command to monitor the amount of storage that is used. Use
the PRTDSKINF command to print information about storage usage. The
WRKSYSVAL command can be used to display and change the auxiliary
storage lower limit value (QSTGLOWLMT) and action (QSTGLOWACN).

CPI099E
Storage lower limit exit program error occurred.

An error occurred while calling a user exit program for exit point
QIBM_QWC_QSTGLOWACN. The reason code is &1. The reason codes
and their meanings follow:
1. An error occurred while running the user exit program.
2. The system did not find a user exit program.
3. The system did not find a registered user exit program.
4. A user exit program did not complete in 30 minutes.
5. The job running the user exit program ended.
6. The system did not submit the user exit program job because the

system is ending.
7. The system did not submit the user exit program job because errors

occurred.
8. The system submitted the user exit program job, but issued warnings

as well.
9. The system could not retrieve registration information for the exit

point.
10. The system did not submit the user exit program job because the

maximum number of failed exit program jobs was exceeded.

252 CL Programming V5R1

11. An unexpected error occurred in the user exit program job.

CPI099F
PWRDWNSYS &1 command in progress.

This message is sent in a secondary partition, when the primary partition
powers down.

CPI116A
Mirrored protection suspended on the load source disk unit.

Suspension of mirrored protection occurs on disk unit 1. Data has not been
lost. Disk unit 1 is attached to the Multi-Function I/O Processor (MFIOP).
Repair the disk unit as soon as possible. Do not power down the system,
IPL the system, or perform any operation which would IPL the system
until after completing disk repairs to unit 1.

The following information identifies the unit that is suspended:
v Disk serial number: &5
v Disk type: &3
v Disk model: &4
v Device resource name: &26

The system will automatically resume mirroring after corrections are made
to the error.

CPI116B
Mirrored protection still suspended on the load source disk unit.

Mirrored protection remains suspended on disk unit 1. Data has not been
lost. Disk unit 1 is attached to the Multi-Function I/O Processor (MFIOP).
Repair the disk unit as soon as possible. Do not power down the system,
IPL the system, or perform any operation which would IPL the system
until after repairing disk unit 1.

The following information identifies the unit that is suspended:
v Disk serial number: &5
v Disk type: &3
v Disk model: &4
v Device resource name: &26

See the previously listed messages in this message queue to determine the
failure that caused suspension of mirrored protection. Perform the
recommended recovery procedures.

CPI116C
Compressed disk unit &1 is full.

Compressed disk unit &1 is temporarily full. The storage subsystem
controller has detected the condition and is repositioning the data on the
compressed disk unit. The system does this to maximize the amount of
storable data on the disk unit. This operation could take a number of
minutes to complete. When the storage subsystem controller has completed
the repositioning of the data, the system will resume normal operations.

The following information identifies the unit that is full:
v Disk serial number: &5
v Disk type: &3
v Disk model: &4

Chapter 8. Working with Messages 253

v Device resource name: &26

Wait for the storage subsystem controller to reposition the data on the
compressed disk unit. Do not power off the system. If you are frequently
receiving this message that indicates that a compressed disk unit is full, do
one or more of the following:
1. Save objects that are not needed from the auxiliary storage pool by

specifying STG(*FREE) on the Save Object (SAVOBJ) command.
2. Delete objects that are not needed from the auxiliary storage pool.
3. Move one or more folders to a different auxiliary storage pool by

saving the folder, deleting the folder, and restoring the folder to a
different auxiliary storage pool.

4. Increase the storage capacity by adding disk units to the auxiliary
storage pool. You can direct the system to immediately overflow data
from the user auxiliary storage pool into the system auxiliary storage
pool. This prevents you from having to wait for the storage subsystem
controller to reposition the data on the compressed disk unit each time
it becomes full. Use the Change ASP Attribute (CHGASPA) command
to change the compression recovery policy to immediately overflow
data to the system auxiliary storage pool whenever a compressed disk
unit becomes full.

CPI1117
Damaged job schedule &1 in library &2 deleted.

This message is sent when the job schedule in the library was deleted
because of damage.

CPI1136
Mirrored protection still suspended.

This message is sent each hour if mirrored protection is still suspended on
one or more disk units.

CPI1138
Storage overflow recovered.

This message is sent when ASP &1 no longer has any objects that have
overflowed into the system ASP for reason &2;

CPI1139
Storage overflow recovery failed.

This message is sent when an attempt to recover from storage overflow
failed.

CPI1153
System password bypass period ended.

This message is sent when the system has been operating with the system
password bypass period in effect. The bypass period has ended. Unless the
correct system password is provided, the next IPL will not be allowed to
complete successfully.

CPI1154
System password bypass period will end in &5 days.

This message is sent when the system password (during a previous IPL)
was either not entered or not entered correctly, and the system bypass
period was selected.

254 CL Programming V5R1

CPI1159
System ID will expire with &1 more installs.

This message is sent when the system ID is about to expire. The IBM
Service Representative should be contacted.

CPI1160
System ID has expired.

This message is sent when the system identifier has expired. The IBM
Service Representative should be contacted.

CPI1161
Unit &1 with device parity protection not fully operational.

Unit &1 is part of a disk unit subsystem with device parity protection. Unit
&1 requires service. The data has been saved. Reduced performance,
machine checks, and possible data loss can occur if this condition is not
corrected.

CPI1162
Unit &1 with device parity protection not fully operational.

Unit &1 is part of a disk unit subsystem with device parity protection. Unit
&1 is not fully operational for one of the following reasons:
v The service representative is repairing the unit.
v The unit is not operating, but there is not enough information to run

problem analysis.

CPI1165
One or more device parity protected units still not fully
operational.

One or more units within disk unit subsystems with device parity
protection are still not fully operational due to errors.

CPI1166
Units with device parity protection fully operational. operational.

Units for all IOP subsystems that provide device parity protection are fully
operational.

CPI1167
Temporary I/0 processor error occurred.

An error condition occurred on a I/O processor with disk devices.

CPI1168
Error occurred on disk unit &1;

Disk unit number &1 found an error. A damaged object can occur. A
machine check can occur if the problem becomes worse. The following
identifies the disk unit.

CPI1169
Disk unit &1 not operating.

Disk unit &1 has stopped operating. No data has been lost.

CPI1171
Internal system object cannot be recovered.

The internal system object that contains an index of jobs on the system was
damaged. The system could not recover the object after &1 attempts.

Chapter 8. Working with Messages 255

No recovery action is necessary, but the performance of searching for jobs
may be affected.

CPI1468
System work control block table nearing capacity.

The system sends this message when the number of entries in the system
job tables approaches the maximum number allowed. Permitting the job
tables to fill completely may prevent the successful submission of jobs or
the completion of the subsequent IPL.

CPI2209
User profile &1 deleted because it was damaged.

This message is sent when a user profile is deleted because it was
damaged. This user profile may have owned objects prior to being deleted.
These objects now have no owner. A Reclaim Storage (RCLSTG) command
can be used to transfer the ownership of these objects to the QDFTOWN
user profile.

CPI2283
QAUDCTL system value changed to *NONE.

This message is sent each hour after auditing has been turned off by the
system because auditing failed. To turn auditing back on or to determine
why auditing failed, you can change system value QAUDCTL to a value
other than *NONE.

CPI2284
QAUDCTL system value changed to *NONE.

This message is sent during IPL if auditing was turned off by the system
because auditing failed. To turn auditing back on or to determine why
auditing failed, you can change system value QAUDCTL to a value other
than *NONE.

CPI8A13
QDOC library nearing save history limit.

This message is sent when the number of objects in library QDOC is
approaching the limit for the number of objects that the system supports
storing in one library.

CPI8A14
QDOC library has exceeded save history limit.

This message is sent when the number of objects in Library QDOC has
exceeded the limit for the number of objects that the system supports in
one library.

CPI8898
Optical signal loss is detected on optical bus.

This message is sent when an optical bus failure is detected. The bus is
running at reduced mode. This message is logged in the service activity
log and have the PAR option available.

CPI9014
Password received from device not valid.

This message is sent when a password has been received on a document
interchange session that is not correct. It may indicate unauthorized
attempts to access the system.

256 CL Programming V5R1

CPI9476
Temporary Device Error.

An error condition occurred on addressed disk unit &28. However, the
error condition has recovered. Unit &28 is still operable.

Press F14 to run problem analysis.

CPI9490
Disk error on device &25;

This message is sent when a disk error has been detected.

CPI94A0
Disk error on device &25;

This message is sent when a disk error has been detected.

CPI94CE
Error detected in bus expansion adapter, bus extension adapter,
System Processor, or cables.

This message is sent when the system has detected a failure in the main
storage. System performance may be degraded. Run problem analysis to
determine the failing card.

CPI94CF
Main storage card failure is detected.

This message is sent when the system has detected a failure in the main
storage. System performance may be degraded. Run problem analysis to
determine the failing card.

CPI94FC
Disk error on device &25;

This message is sent when the 9336 Disk Unit has determined that one of
its parts is exceeding the error threshold and is starting to fail.

CPI96C0
Protected password could not be validated.

The system sends this message when the protected password received for
the user profile by the APPC sign-on transaction program was not correct.
This message contains a reason code that identifies the error. Check the
reason code to take appropriate action.

CPI96C1
Sign-on request GDS variable was not correct.

The system sends this message when the sign-on request GDS variable
received by the APPC sign-on transaction program was not correct. Remote
program have to sent the correct sign-on data.

CPI96C2
User password could not be changed.

This messages is sent if a security problem has occured.

CPI96C3
Message &4 returned on system call.

The system sends this message when a message returns on a system call
by the APPC sign-on transaction program.

Chapter 8. Working with Messages 257

CPI96C4
Password not correct for user profile.

The system sends this message when the password specified is not correct.

CPI96C5
User &4 does not exist.

The system sends this message when the received user does not exist on
the system.

CPI96C6
Return code &4 received on call to CPI-Communications.

The system sends this message when a call to CPI-Communications has
sent a return code. Refer to the Common Programming Interface
Communications Reference manual to see the return code description and
determine why it is failing.

CPI96C7
System failure in the APPC sign-on transaction program.

The system sends this message when receiving an unexpected error. Run
problem analysis to determine the failing.

CPP0DD9
A system processor failure is detected.

This message is sent when a system processor or system processor cache
has failed. System performance may be degraded.

CPP0DDA
A system processor failure is detected in slot 9.

This message is sent when a system processor or system processor cache
has failed. System performance may be degraded.

CPP0DDB
A system processor failure is detected in slot 10.

This message is sent when a system processor or system processor cache
has failed. System performance may be degraded.

CPP0DDC
A system processor failure is detected.

This message is sent when the system has detected an error on the system
processor. System performance may be degraded.

CPP0DDD
System processor diagnostic code detected an error.

This message is sent when a failure has been detected by the
system-processor diagnostics during IPL, but the system is still able to
function.

CPP0DDE
A system processor error is detected.

This message is sent when a control failure is detected on a system
processor. Hardware ECC is correcting the failure. However, if you
performed an initial program load (IPL), control could not be initialized
and the system would reconfigure itself without that processor.

CPP0DDF
A system processor is missing.

258 CL Programming V5R1

This message is sent when a processor is missing on a multi-processor
system.

CPP29B0
Recovery threshold exceeded on device &25;

This message is sent when one of the parts in the 9337 disk unit is starting
to fail.

CPP29B8
Device parity protection suspended on device &25;

This message is sent when one of the parts in the 9337 disk array is failing.
Protection for implementation of RAID 5 technique has been suspended on
the disk array.

CPP29B9
Power protection suspended on device &25;

This message is sent when one of the power modules in the 9337 disk
array is failing. Power protection has been suspended on the disk array.

CPP29BA
Hardware error on device &25;

This message is sent when one of the parts in the 9337 disk array has
failed. Service action is required.

CPP951B
Battery power unit fault.

This message is sent when the battery power unit has failed.

CPP9522
Battery power unit fault.

This message is sent when the battery power unit in the 5042 Expansion
Unit or 5040 Extension Unit has failed.

CPP955E
Battery power unit not installed.

This message is sent when the battery power unit in the 9406 System Unit
power supply is not installed.

CPP9575
Battery power unit in 9406 needs to be replaced.

This message is sent when the battery power unit in the 9406 System Unit
has failed and needs to be replaced. It may still work, but more than the
recommended number of charge-discharge cycles have occurred.

CPP9576
Battery power unit in 9406 needs to be replaced.

This message is sent when the battery power unit in the 9406 System Unit
has failed and needs to be replaced. It may still work, but it has been
installed longer than recommended.

CPP9589
Test of battery power unit complete.

This message is sent when testing has been completed for the battery
power unit, and the results have been logged.

Chapter 8. Working with Messages 259

CPP9616
Battery power unit not installed.

This message is sent when the battery power unit has not been installed in
the 5042 Expansion Unit or 5040 Extension Unit power supply.

CPP9617
Battery power unit needs to be replaced.

This message is sent when the battery power unit in the 5042 Expansion
Unit or 5040 Extension Unit needs to be replaced. It may still work, but
more than the recommended number of charge-discharge cycles have
occurred.

CPP9618
Battery power unit needs to be replaced.

This message is sent when the battery power unit in the 5042 Expansion
Unit or 5040 Extension Unit needs to be replaced. It may still work, but it
has been installed longer than recommended.

CPP961F
DC Bulk Module 3 fault.

This message is sent when the dc bulk module 3 of the 9406 System Unit
has failed.

CPP9620
DC Bulk Module 2 fault.

This message is sent when the dc bulk module 2 of the 9406 System Unit
has failed.

CPP9621
DC Bulk Module 1 fault.

This message is sent when the dc bulk module 1 of the 9406 System Unit
has failed.

CPP9622
DC Bulk Module 1 fault.

This message is sent when the dc bulk module 1 of the 5042 Expansion
Unit or 5040 Extension Unit has failed. Other dc bulk modules can also
cause this fault.

CPP9623
DC Bulk Module 2 fault.

This message is sent when the dc bulk module 2 of the 5042 Expansion
Unit or 5040 Extension Unit has failed. Other DC bulk modules can also
cause this fault.

CPP962B
DC Bulk Module 3 fault.

This message is sent when the dc bulk module 3 of the 5042 Expansion
Unit or 5040 Extension Unit has failed. Other dc bulk modules can also
cause this fault.

Sample Program to Receive Messages from QSYSMSG
The following is a sample program which receives messages from the QSYSMSG
message queue. The program consists of a single procedure which is receiving
messages and handling message CPF1269. The reason code in the CPF1269

260 CL Programming V5R1

message is in binary format. This must be converted to a decimal value for the
comparisons to the 704 and 705 reason codes. The procedure issues the ENDMOD
command to prevent new jobs from being started until the situation is understood.
It then sends the same message to a user-defined message queue to be reviewed by
the security officer. It also sends a message to the system operator informing him
of what occurred. If a different message is received, it is sent to the system
operator.

A separate job would be started to call this sample program. The job would remain
active, waiting for a message to arrive. The job could be ended using the ENDJOB
command.
/**/
/* */
/* Sample program to receive messages from QSYSMSG */
/* */
/**/
/* */
/* Program looks for message CPF1269 with a reason code of 704 */
/* or 705. If found then notify QSECOFR of the security failure. */
/* Otherwise resend the message to QSYSOPR. */
/* */
/* The following describes message CPF1269 */
/* */
/* CPF1269: Program start request received on communications */
/* device &1 was rejected with reason codes &6,; &7; */
/* */
/* Message data from DSPMSGD CPF1269 */
/* */
/* Data type offset length Description */
/* */
/* &1 *CHAR 1 10 Device */
/* &2 *CHAR 11 8 Mode */
/* &3 *CHAR 19 10 Job - number */
/* &4 *CHAR 29 10 Job - user */
/* &5 *CHAR 39 6 Job - name */
/* &6 *BIN 45 2 Reason code - major */
/* &7 *BIN 47 2 Reason code - minor */
/* &8 *CHAR 49 8 Remote location name */
/* &9 *CHAR 57 *VARY Unit of work identifier */
/* */
/**/

PGM

DCL &MSGID *CHAR LEN(7)
DCL &MSGDTA *CHAR LEN(100)
DCL &MSG *CHAR LEN(132)

DCL &DEVICE *CHAR LEN(10)
DCL &MODE *CHAR LEN(8)
DCL &RMTLOC *CHAR LEN(8)

MONMSG CPF0000 EXEC(GOTO PROBLEM)
/**/
/* Fetch messages from QSYSMSG message queue */
/**/

LOOP: RCVMSG MSGQ(QSYS/QSYSMSG) WAIT(*MAX) MSGID(&MSGID) +
MSG(&MSG) MSGDTA(&MSGDTA)

IF ((&MSGID *EQ 'CPF1269') /* Start failed msg */ +
*AND ((%BIN(&MSGDTA 45 2) *EQ 704) +

*OR (%BIN(&MSGDTA 45 2) *EQ 705))) +
THEN(DO)

/**/

Chapter 8. Working with Messages 261

/* Report security failure to QSECOFR */
/**/

CHGVAR &DEVICE %SST(&MSGDTA 1 10) /* Extract device */
CHGVAR &MODE %SST(&MSGDTA 11 8) /* Extract mode */
CHGVAR &RMTLOC %SST(&MSGDTA 49 8) /* Get loc name */

ENDMOD RMTLOCNAME(&RMTLOC) MODE(&MODE)

SNDPGMMSG MSGID(&MSGID) MSGF(QCPFMSG) MSGDTA(&MSGDTA) +
TOMSGQ(QSECOFR)

SNDPGMMSG MSG('Device ' *CAT &DEVICE *TCAT ' Mode ' +
*CAT &MODE *TCAT ' had security failure, +
session max changed to zero') +
TOMSGQ(QSYSOPR)

ENDDO
ELSE DO

/**/
/* Other message - Resend to QSYSOPR */
/**/

SNDPGMMSG MSGID(&MSGID) MSGF(QCPFMSG) MSGDTA(&MSGDTA) +
TOMSGQ(QSYSOPR)

/* SNDPGMMSG would fail if the message does */
/* not have a MSGID or is not in QCPFMSG */

MONMSG MSGID(CPF0000) +
EXEC(SNDPGMMSG MSG(&MSG) TOMSGQ(QSYSOPR))

ENDDO

GOTO LOOP /* Go fetch next message */

/**/
/* Notify QSYSOPR of abnormal end */
/**/

PROBLEM: SNDPGMMSG MSG('QSYSMSG job has abnormally ended') +
TOMSGQ(QSYSOPR)

MONMSG CPF0000

SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) MSGTYPE(*ESCAPE) +
MSGDTA('Unexpected error occurred')

MONMSG CPF0000

ENDPGM

Using the System Reply List
The system reply list allows you to specify that the system issue the reply to
specified predefined inquiry messages so the display station user does not need to
reply. Only inquiry messages can be automatically responded to.

The system reply list contains message identifiers, optional compare data, a reply
value for each message, and a dump attribute. The system reply list applies only to
predefined inquiry messages that are sent by a job that uses the system reply list.
You specify that a job is to use the system reply list for inquiry messages on the
INQMSGRPY(*SYSRPYL) parameter on the following commands:
v Batch Job (BCHJOB)
v Submit Job (SBMJOB)
v Change Job (CHGJOB)

262 CL Programming V5R1

v Create Job Description (CRTJOBD)
v Change Job Description (CHGJOBD)

When a predefined inquiry message is sent by a job that uses the system reply list,
the system searches the reply list in ascending sequence number order for an entry
that matches the message identifier and, optionally, the compare data of the reply
message. If an entry is found, the reply specified is issued and the user is not
required to enter a reply. If an entry is not found, the message is sent to the
display station user for interactive jobs or system operator for batch jobs.

The system reply list is shipped with the system with the following initial entries
defined:

Sequence
Number

Message
Identifier Compare Value Reply Dump

10 CPA0700 *NONE D *YES

20 RPG0000 *NONE D *YES

30 CBE0000 *NONE D *YES

40 PLI0000 *NONE D *YES

These entries indicate that a reply of D is to be sent and a job dump is to be taken
if the message CPA0700-CPA0799, RPG0000-RPG9999, CBE0000-CBE9999, or
PLI0000-PLI9999 (which indicate a program failure) is sent by a job using the
system reply list. For the system to use these entries, you must specify that the jobs
are to use the system reply list.

To add other inquiry messages to the system reply list, use the Add Reply List
Entry (ADDRPYLE) command. On this command you can specify the sequence
number, the message identifier, optional compare data, compare data CCSID, reply
action, and the dump attribute. The ADDRPYLE command function can be easily
accessed by using the Work with System Reply List Entries (WRKRPYLE)
command.

The following reply actions can be specified for the inquiry messages that are
placed on the system reply list (the parameter value is given in parentheses):
v Send the default reply for the inquiry messages (*DFT). In this case, the default

reply for the message is sent. The message is not displayed, and no default
handling program is called.

v Require the work station user or system operator to respond to the message
(*RQD). If the message queue to which the message is sent (work station
message queue for interactive jobs and QSYSOPR for batch jobs) is in break
mode, the message is displayed, and the work station user must respond to the
message. This option operates as if the system reply list were not being used.

v Send the reply specified in the system reply list entry (message reply, 32
characters maximum). In this case, the specified reply is sent as the response to
the message. The message is not displayed, and no default handling program is
called.

The following commands add entries to the system reply list for messages
RPG1241, RPG1200, CPA4002, CPA5316, and any other inquiry messages:
v ADDRPYLE SEQNBR(15) MSGID(RPG1241) RPY(C)

v ADDRPYLE SEQNBR(18) MSGID(RPG1200) RPY(*DFT) DUMP(*YES)

Chapter 8. Working with Messages 263

v ADDRPYLE SEQNBR(22) MSGID(CPA4002) RPY(*RQD) + CMPDTA('QSYSPRT')

v ADDRPYLE SEQNBR(25) MSGID(CPA4002) RPY(G)

v ADDRPYLE SEQNBR(27) MSGID(CPA5316) RPY(I) DUMP(*NO) +
CMPDTA('QSYSPRT' 21)

v ADDRPYLE SEQNBR(9999) MSGID(*ANY) RPY(*DFT)

The system reply list now appears as follows:

Sequence
Number

Message
Identifier

Compare
Value (b is a
blank)

Compare
Start Position Reply Dump

10 CPA0700 1 D *YES

15 RPG1241 1 C *NO

18 RPG1200 1 *DFT *YES

20 RPG0000 1 D *YES

22 CPA4002 'QSYSPRT' 1 *RQD *NO

25 CPA4002 1 G *NO

27 CPA5316 'QSYSPRT' 21 I *NO

30 CBE0000 1 D *YES

40 PLI0000 1 D *YES

9999 *ANY 1 *DFT *NO

For a job that uses this system reply list, the following occurs when the messages
that were added to the reply list are sent by the job:
v For sequence number 15, whenever an RPG1241 message is sent by a job that

uses the system reply list, a reply of C is sent and the job is not dumped.
v For sequence number 18, a generic message identifier is used so whenever an

RPG1200 inquiry message is sent by the job, the default reply is sent. The
default reply can be the default reply specified in the message description or the
system default reply. Before the default reply is sent, the job is dumped. The
previous entry that was added overrides this entry for message RPG1241.

v For sequence number 22, if the inquiry message CPA4002 is sent with the
compare data of QSYSPRT, the message is sent to the display station user, and
the user must issue the reply.
When a compare value is specified without a start position, the compare value is
compared to the message data beginning in position 1 of the substitution data in
the message.
Sequence number 22 tests for a printer device name of QSYSPRT. For an
example of testing one substitution variable with a different start position, see
sequence number 27.

v For sequence number 25, if the inquiry message CPA4002 (verify alignment on
printer &1;) is sent with the compare not equal to QSYSPRT, a reply of G is sent.
The job is not dumped. Sequence number 22 requires an operator response to
the forms alignment message if the printer device is QSYSPRT. Sequence number
25 defines that if the forms alignment inquiry message occurs for any other
device, to assume a default response of G=Go.

v For sequence number 27, if the inquiry message CPA5316 is sent with the
compare data of TESTEDFILETSTLIBRARYQSYSPRT, a reply of I is sent.

264 CL Programming V5R1

When a compare value and a start position are specified, the compare value is
compared with the message data beginning with the start position. In this case,
position 21 is the beginning of the third substitution variable. For message
CPA5316, the first four substitution variables are as follows:

&1 ODP file name *CHAR 10
&2 ODP library name *CHAR 10
&3 ODP device name *CHAR 10
&4 Line number for first line *BIN 2

Therefore, sequence number 27 tests for an ODP device name of QSYSPRT
before sending a reply.

v For sequence number 9999, the message identifier of *ANY applies to any
predefined inquiry message that is not matched by an entry with a lower
sequence number, and the default reply for these inquiry messages is sent. If this
entry were not included in the system reply list, the display station user would
have to respond to all other inquiry messages that were not included in the
system reply list.

When the compare value contains *CCHAR data, the message data that is from the
sending function is converted to the CCSID of the message data that is stored in
the system reply list before the compare is made. The system converts only data
that is of type *CCHAR. IBM provides online information about the Add Message
Description (ADDMSGD) command *CCHAR data. Refer to the CL and APIs
section of the Programming category in the iSeries Information Center.

CAUTION:
The following restrictions apply when using *CCHAR data as compare data:

v You cannot mix *CCHAR data with other data when adding this type of reply
list entry.

v You cannot include the length of the *CCHAR data in the compare data.

If you mix *CCHAR data or include the length of the *CCHAR data,
unpredictable results may occur.

An entry remains on the system reply list until you use the Remove Reply List
Entry (RMVRPYLE) command to remove it. You can use the Change Reply List
Entry (CHGRPYLE) command to change the attributes of a reply list entry, and
you can use the Work with System Reply List Entry (WRKRPYLE) command to
display the reply entries currently in the reply list.

The job log receives a completion message indicating a successful change when the
system reply list is updated using (ADDRPYLE), (CHGRPYLE), or (RMVRPYLE).
The history log QHST also receives a completion message to record the change.

Message Logging
The two types of logs for messages are:
v Job log
v History log

A job log contains information related to requests entered for a job. The QHST log
contains system data, such as a history of job start and end activity on your
system.

Chapter 8. Working with Messages 265

Job Log
Each job has an associated job log that can contain the following for the job:
v The commands in the job.
v The commands in a CL program if the CL program was created with the

LOG(*YES) option or with the LOG(*JOB) option and a Change Job (CHGJOB)
command was run with the LOGCLPGM(*YES) option (for more information on
logging CL program commands, see “Logging CL Procedure Commands” on
page 55).

v All messages and message help sent to the requester and not removed from the
call message queues.

After the job ends, the job log can be written to either the output file QPJOBLOG
or a database file. From the output file QPJOBLOG, the job log can be printed;
from a database file, job log information can be queried using a database feature.
You can also specify to not write job logs for jobs that have run successfully—a
discussion about preventing job logs is presented later in this chapter.

IBM provides online information about how to write a job log to a database file
that requires the use of the QMHCTLJL API. Refer to the CL and APIs section of
the Programming category of the iSeries Information Center. When directing the
job log to the database file, the system can generate one or two files. The primary
file contains the essential information of a message such as message ID, message
severity, message type, and message data. The secondary file contains the print
images of the message text. Parameters on the QMHCTLJL API control the optional
production of the secondary file. You can use database and query features on the
system to externally describe and process both files. See “Appendix C. Job Log
Output Files” on page 395 for information on the formats of the primary and
secondary files.

You can control what information the system writes in the job log. To do this, you
specify the LOG parameter on the Create Job Description (CRTJOBD) command.
You can change these levels by using the Change Job (CHGJOB) command or the
Change Job Description (CHGJOBD) command. Three values make up the LOG
parameter: Message level, message severity, and message text level. For more
information on these commands, see the CL and APIs section of the Programming
category of the iSeries Information Center.

The first value, message level, has the following levels:

Level Description

0 No data is logged.

1 The only information to be logged is all messages sent to the job’s external
message queue with a severity greater than or equal to the message
severity specified. Messages of this type indicate when the job started,
when it ended, and its status at completion.

2 The following information is logged:
v Level 1 logging information.
v Any requests that result in high-level messages with a severity greater

than or equal to the severity specified. If the request is logged, all of its
associated messages are also logged.

3 The following information is logged:
v Logging level 1 and 2 information.

266 CL Programming V5R1

v All requests.
v Commands run by a CL program if allowed by the Log CL program

commands job attribute and the Log attribute of the CL program.

4 The following information is logged:
v All requests and all messages with a severity code greater than or equal

to the severity specified, including trace messages.
v Commands run by a CL program if allowed by the Log CL program

commands job attribute and the Log attribute of the CL program.

Note: A high-level message is one that is sent to the program message
queue of the program that receives the request. For example,
QCMD is an IBM-supplied request processing program that
receives requests.

The second value, message severity, specifies the severity level in conjunction with
the log level that causes error messages to be logged in the job log. Values 0
through 99 are allowed.

The third value in the LOG parameter, message text level, specifies the level of
message text that is written in the job log. The values are:

*SAME
The current value for the message text level does not change.

*MSG Only message text is written to the job log (message help is not included).

*SECLVL
The message and the message help (cause and recovery) are written to the
job log.

Before each new request is received by a request processing program, message
filtering occurs. Message filtering is the process of removing messages from the
job log based on the message logging level set for the job.

Filtering does not occur after every CL command is called within a program.
Therefore, if a CL program is run interactively or submitted to batch, the filtering
runs once after the program ends because the program is not a request processor.

Note: Since *NOLIST specifies that no job log is spooled for jobs that end
normally, it is a waste of system resource in batch jobs to remove the
messages from this log by specifying log level 0.

The following example shows how the logging level affects the information that is
stored in the job message queue and, therefore, written to the job log, if one is
requested. The example also shows that when the command is run interactively,
filtering occurs after each command.

Note: Both high-level and detailed message logging levels are included in the
examples. High-level messages are identified as Message; detailed messages
are identified as Detailed Message.

1. The CHGJOB command specifies a logging level of 2 and a message severity of
50, and that only messages are to be written to the job log (*MSG).

Chapter 8. Working with Messages 267

Command Entry SYSTEM1
Request level: 1

Previous commands and messages:
> CHGJOB LOG(2 50 *MSG)

2. PGMA sends three informational messages with severity codes of 20, 50, and 60
to its own call message queue and to the call message queue of the program
called before the specified call (*PRV). The messages that PGMA sends to its
own call message queue are called detailed messages. Detailed messages are
those messages that are sent to the call message queue of the lower-level
program call.
PGMB sends two informational messages with severity codes of 40 and 50 to
its own call message queue. These are detailed messages. PGMB also sends one
informational message with a severity code of 10 to *PRV.
Note that the CHGJOB command no longer appears on the display. According
to logging level 2, only requests for which a message has been issued with a
severity equal to or greater than that specified are saved for the job log, and no
messages were issued for this request. If such a message had been issued, any
detailed messages that had been issued would be saved for the job log and
could be displayed by pressing F10.

Command Entry SYSTEM1
Request level: 1

Previous commands and messages:
> CALL PGMA

Message sev 20 - PGMA
Message sev 50 - PGMA
Message sev 60 - PGMA

> CALL PGMB
Message sev 10 - PGMB

Bottom
Type command, press Enter.
===> ___
__
__

F3=Exit F4=Prompt F9=Retrieve F10=Include detailed messages
F11=Display full F12=Cancel F13=Information Assistant F24=More keys

3. When F10=Include detailed messages is pressed from the Command Entry
display, all the messages associated with the request are displayed. Press F10
again to exclude detailed messages.

268 CL Programming V5R1

Command Entry SYSTEM1
Request level: 1

All previous commands and messages:
> CALL PGMA

Detailed message sev 20 - PGMA
Detailed message sev 50 - PGMA
Detailed message sev 60 - PGMA
Message sev 20 - PGMA
Message sev 50 - PGMA
Message sev 60 - PGMA

> CALL PGMB
Detailed message sev 40 - PGMB
Detailed message sev 50 - PGMB
Message sev 10 - PGMB

Bottom
Type command, press Enter.
===> ___
__
__

F3=Exit F4=Prompt F9=Retrieve F10=Exclude detailed messages
F11=Display full F12=Cancel F13=Information Assistant F24=More Keys

4. When another command is entered (in this example, CHGJOB), the CALL PGMB
command and all messages (including detailed messages) are removed. They
are removed because the severity code for the high-level message associated
with this request was not equal to or greater than the severity code specified in
the CHGJOB command. The CALL PGMA command and its associated messages
remain because at least one of the high-level messages issued for that request
has a severity code equal to or greater than that specified.
On the following display, the CHGJOB command specifies a logging level of 3,
a message severity of 40, and that both the first- and second-level text of a
message are to be written to the job log. When another command is entered,
the CHGJOB command remains on the display because logging level 3 logs all
requests.
PGMC sends two messages with severity codes of 30 and 40 to the call
message queue of the program called before the specified call (*PRV).
PGMD sends a message with a severity of 10 to *PRV.

Command Entry SYSTEM1
Request level: 1

Previous commands and messages:
> CALL PGMA

Message sev 20 - PGMA
Message sev 50 - PGMA
Message sev 60 - PGMA

> CHGJOB LOG(3 40 *SECLVL)
> CALL PGMC

Message sev 30 - PGMC
Message sev 40 - PGMC

> CALL PGMD
Message sev 10 - PGMD

Bottom
Type command, press Enter.
===> ___
__
__

F3=Exit F4=Prompt F9=Retrieve F10=Include detailed messages
F11=Display full F12=Cancel F13=Information Assistant F24=More Keys

Chapter 8. Working with Messages 269

5. When another command is entered after the CALL PGMD command was entered,
the CALL PGMD command remains on the display, but its associated message is
deleted. The message is deleted because its severity code is not equal to or
greater than the severity code specified on the LOG parameter of the CHGJOB
command.
The command SIGNOFF *LIST is entered to print the job log.

Command Entry SYSTEM1
Request level: 1

Previous commands and messages:
> CHGJOB LOG(3 40 *SECLVL)
> CALL PGMC

Message sev 30 - PGMC
Message sev 40 - PGMC

> CALL PGMD
> CALL PGME

Bottom
Type command, press Enter.
===> SIGNOFF *LIST__
__
__

F3=Exit F4=Prompt F9=Retrieve F10=Include detailed messages
F11=Display full F12=Cancel F13=Information assistant F24=More Keys

The job log, which follows, contains all the requests and all the messages that have
remained on the Command Entry display. In addition, the job log contains the
message help associated with each message, as specified by the CHGJOB
command. Notice that the job log contains the message help of any message issued
during the job, not just for the messages issued since the second CHGJOB
command was entered.
5763SS1 V2R3M0 930925 Job Log SYSAS727 12/12/92 07:58:53 Page 1
Job name : QPADEV0007 User : JOHNDOE Number : 004201
Job description : QDFTJOBD Library : QGPL

MSGID TYPE SEV DATE TIME FROM PGM LIBRARY INST TO PGM LIBRARY INST
CPF1124 Information 00 12/12/93 07:57:16 QWTPIIPP QSYS 04FC *EXT 0000

Message : Job 004201/JOHNDOE/QPADEV0007 started on 12/12/92 at
07:57:16 in subsystem QINTER in QSYS. Job entered system on 12/12/92 at
07:57:16.

*NONE Request 12/12/93 07:57:50 QMHGSD QSYS 0322 QCMD QSYS 00B6
Message : -call pgma

CPF1001 Information 20 12/12/93 07:57:50 PGMA JOHNDOE 000C PGMA JOHNDOE 000C
Message : Detailed message sev 20 - PGMA
CPF1001 second level text - PGMA

CPF1002 Information 50 12/12/93 07:57:50 PGMA JOHNDOE 0010 PGMA JOHNDOE 0010
Message : Detailed message sev 50 - PGMA
CPF1002 second level text - PGMA

CPF1003 Information 60 12/12/93 07:57:50 PGMA JOHNDOE 0014 PGMA JOHNDOE 0014
Message : Detailed message sev 60 - PGMA
CPF1003 second level text - PGMA

CPF1004 Information 20 12/12/93 07:57:50 PGMA JOHNDOE 0018 QCMD QSYS 00DE
Message : Message sev 20 - PGMA
CPF1004 second level text - PGMA

CPF1005 Information 50 12/12/93 07:57:50 PGMA JOHNDOE 001C QCMD QSYS 00DE
Message : Message sev 50 - PGMA
CPF1005 second level text - PGMA

CPF1006 Information 60 12/12/93 07:57:50 PGMA JOHNDOE 0020 QCMD QSYS 00DE
Message : Message sev 60 - PGMA
CPF1006 second level text - PGMA

*NONE Request 12/12/93 07:58:31 QMHGSD QSYS 0322 QCMD QSYS 00B6
Message : -chgjob log(3 40 *seclvl)

*NONE Request 12/12/93 07:58:34 QMHGSD QSYS 0322 QCMD QSYS 00B6
Message : -call pgmc

CPF100F Information 30 12/12/93 07:58:34 PGMC JOHNDOE 000C QCMD QSYS 00DE
Message : Message sev 30 - PGMC
CPF100F second level text - PGMC

CPF1010 Information 40 12/12/93 07:58:34 PGMC JOHNDOE 0010 QCMD QSYS 00DE
Message : Message sev 40 - PGMC
CPF1010 second level text - PGMC

*NONE Request 12/12/93 07:58:38 QMHGSD QSYS 0322 QCMD QSYS 00B6
Message : -call pgmd

*NONE Request 12/12/93 07:58:45 QMHGSD QSYS 0322 QCMD QSYS 00B6
Message : -call pgme

*NONE Request 12/12/93 07:58:52 QMHGSD QSYS 0322 QCMD QSYS 00B6
Message : -signoff *list

CPF1164 Completion 00 12/12/93 07:58:52 QWTMCEOJ QSYS 01EE *EXT 0000
Message : Job 004201/JOHNDOE/QPADEV0007 ended on 12/12/92 at
07:58:52; 3 seconds used; end code 0 .

270 CL Programming V5R1

Cause : Job 004201/JOHNDOE/QPADEV0007 completed on 12/12/92 at
07:58:52 after it used 3 seconds processing unit time. The job had ending
code 0. The job ended after 1 routing steps with a secondary ending code of
0. The job ending codes and their meanings are as follows: 0 - The job
completed normally. 10 - The job completed normally during controlled ending
or controlled subsystem ending. 20 - The job exceeded end severity (ENDSEV
job attribute). 30 - The job ended abnormally. 40 - The job ended before
becoming active. 50 - The job ended while the job was active. 60 - The
subsystem ended abnormally while the job was active. 70 - The system ended
abnormally while the job was active. 80 - The job ended (ENDJOBABN command).
90 - The job was forced to end after the time limit ended (ENDJOBABN
command). Recovery . . . : For more information, see the Work Management,
SC41-8078.

The headings at the top of each page of the printed job log identify the job to
which the job log applies and the characteristics of each entry:
v The fully qualified name of the job (job name, user name, and job number).
v The name of the job description used to start the job.
v The date and time the job started.
v The message identifier.
v The message type.
v The message severity.
v The date and time each message was sent. This is not included for request

messages.
v The message. If the logging level specifies that second-level text is to be

included, the second-level text appears on subsequent lines below the message.
v The program or procedure from which the message or request was sent.
v The instruction number for the machine interface or higher-level statement

number for the program or procedure from which the message was sent.
v The program or procedure to which the message or request was sent.
v The instruction number for the machine interface or the higher-level language

statement number to which the program or procedure was sent.

Sending or Receiving Program or Procedure
When the sender or receiver is an ILE procedure, the message entry contains the
full name of the procedure (procedure name, module name, and ILE program
name). When the sender or receiver is an original program model (OPM) program,
only the OPM program name is shown.

If the sender or receiver is an OPM program, the corresponding instruction
number represents an instruction number. There is only one such number. If the
sender or receiver is an ILE procedure, the instruction number represents a high
level language statement number rather than an MI instruction number. If the ILE
procedure has been optimized (maximum efficiency), there may be up to three
numbers. It is not always possible to determine a single statement number for an
optimized procedure. If there is more than one number given, each number
represents a potential point where the procedure was when the message was sent.
It is also possible that no number can be determined. If this the case, *N appears in
the message rather than a number.

The logging levels affect a batch job log in the same way as shown in the
preceding example. If the job uses APPC, the heading contains a line showing the
unit of work identifier for APPC.

Additional Message Filtering
If the job log is directed to a database file through use of the QMHCTLJL API,
additional message filtering can be specified. The message filtering specified
through this API is applied when the job ends and the records for the messages are
being written to the file. Up until this time, the messages which are now filtered
have appeared. Thus they can be seen while the job is running. When the job log is

Chapter 8. Working with Messages 271

written, the messages which are filtered will have no records written to the file for
them. Thus, even though they appear while the job is running they will not appear
in the final file that is produced.

Displaying the Job Log
The way to display a job log depends on the status of the job.
v If the job has ended and the job log is not yet printed, use the Display Spooled

File (DSPSPLF) command, as follows:
DSPSPLF FILE(QPJOBLOG) JOB(001293/FRED/WS3)

to display the job logs for job number 001293 associated with user FRED at
display station WS3.

v If the job is still active (batch or interactive jobs) or is on a job queue and has
not yet started, use the Display Job Log (DSPJOBLOG) command. For example,
to display the job log of the interactive job for user JSMITH at display station
WS1, enter:
DSPJOBLOG JOB(nnnnnn/JSMITH/WS1)

where nnnnnn is the job number.

To display the job log of your own interactive job, do one of the following:
v Enter the following command:

DSPJOBLOG

v Enter the WRKJOB command and select option 10 (Display job log) from the
Work with Job display.

v Press F10=Include detailed messages from the Command Entry display (this key
displays the messages that are shown in the job log).

v If the input-inhibited light on your display station is on and remains on, do the
following:
1. Press the System Request key, then press the Enter key.
2. On the System Request menu, select option 3 (Display current job).
3. On the Display Job menu, select option 10 (Display Job log, if active or on

job queue).
4. On the Job Log display, DSPJOB appears as the processing request. Press F10

(Display detailed messages).
5. On the Display All Messages display, press the Roll Down key to see

messages that were received before you pressed the System Request key.
v Sign off the work station, specifying LOG(*LIST) on the SIGNOFF command.

When you use the Display Job Log (DSPJOBLOG) command, you see the Job Log
display. This display shows program names with special symbols, as follows:

>> The running command or the next command to be run. For example, if a
program was called, the call to the program is shown.

> The command has completed processing.

. . The command has not yet been processed.

? Reply message. This symbol marks both those messages needing a reply
and those that have been answered.

On the Job Log display, you can do the following:

272 CL Programming V5R1

v Press F10 to display detailed messages. This display shows the commands or
operations that were run within an HLL program or within a CL program or
procedure for which LOG is activated.

v Use the cursor movement keys to get to the end of the job log. To get to the end
of the job log quickly, press F18 (Bottom). After pressing F18, you might need to
roll down to see the command that is running.

v Use the cursor movement keys to get to the top of the job log. To get to the top
of the job log quickly, press F17 (Top).

You may use the DSPJOBLOG command to direct the job to a database file instead
of having it printed or displayed. There are two options available. In the first
option, you may specify a file and member name on the command. In this option,
the primary job log information is written to the database file specified on the
command. In the second option you may use the command in conjunction with the
information provided on the QMHCTLJL API which was run previously. In this
option, the job log is written to the file(s) specified on the API call. With this
option, both primary and secondary files can be produced and message filtering
can be performed as the messages are written to the file. With both these options,
when the DSPJOBLOG command completes, the output will not be displayed nor
will there be a spooled file available for printing.

Preventing the Production of Job Logs
To prevent a job log from being produced at the completion of a batch job, you can
specify *NOLIST for the message text-level value of the LOG parameter on the
Batch Job (BCHJOB), Submit Job (SBMJOB), Change Job (CHGJOB), Create Job
Description (CRTJOBD), or Change Job Description (CHGJOBD) command. If you
specify *NOLIST for the message level value of the LOG parameter, the job log is
not produced at the end of a job unless the job end code is 20 or greater. If the job
end is 20 or greater, the job log is produced.

For an interactive job, the value specified for the LOG parameter on the SIGNOFF
command takes precedence over the LOG parameter value specified for the job.

Job Log Considerations
The following suggestions apply to using job logs:
v To change the output queue for all jobs on the system, use the OUTQ or DEV

parameter on the Change Printer File (CHGPRTF) command to change the file
QSYS/QPJOBLOG. The following are two examples using each of the
parameters:
CHGPRTF FILE(QSYS/QPJOBLOG)

DEV (USRPRT)

or

CHGPRTF FILE(QSYS/QPJOBLOG)
OUTQ(USROUTQ)

v To change the QPJOBLOG printer file to use output queue QEZJOBLOG, use the
Operational Assistant cleanup function. When you want to use automatic
cleanup of the job logs, the printer files must be directed to this output queue.
For more information on the Operational Assistant cleanup function, see the
Getting Started with iSeries topic System Overview, Planning, and Installation
category of the iSeries Information Center.

v To specify the output queue to which a job’s job log is written, make sure that
file QPJOBLOG has OUTQ(*JOB) specified. You can use the OUTQ parameter on
any of the following commands: BCHJOB, CRTJOBD, CHGJOBD, or CHGJOB.
The following is an example:

Chapter 8. Working with Messages 273

CHGJOB OUTQ(*JOB)

If you change the default OUTQ at the beginning of the job, all spooled files are
affected. If you change it just before job completion, only the job log is affected.
You cannot use the Override with Printer File (OVRPRTF) command to affect the
job log.

v If the output queue for a job cannot be found, no job log is produced.
v To hold all job logs, specify HOLD(*YES) on the CHGPRTF command for the file

QSYS/QPJOBLOG. The job logs are then released to the writer when the Release
Spooled File (RLSSPLF) command is run. The following is an example:
CHGPRTF FILE(QSYS/QPJOBLOG)

HOLD(*YES)

v If the system abnormally ends, the start prompt allows the system operator to
specify whether the job logs are to be printed for any jobs that were active at the
time of the abnormal end.

v To delete a job log, use the Delete Spooled File (DLTSPLF) command or the
Delete option on the output queue display.

v If you used the USRDTA parameter on the Change Print File (CHGPRTF)
command to change the user data value for the QSYS/QPJOBLOG file, the value
specified will not be shown on the Work with Output Queue or Work with All
Spooled Files displays. The value shown in the user data column is the job name
of the job whose job log has printed.

v If job logs are being analyzed by programming technique, use the QMHCTLJL
API to direct the job log to the database file(s). The format of the records in the
database file is guaranteed while the printed format is not. If new fields need to
be added to a job log record, they are added at the end of the record so existing
programs will continue to work. Query features provided by the system can be
used directly on the files.

Considerations for Interactive Job Logs
The IBM-supplied job descriptions QCTL, QINTER, and QPGMR all have a log
level of LOG(4 0 *NOLIST); therefore, all messages and both first- and second-level
text for the messages are written to the job log. However, the job logs are not
printed unless you specify *LIST on the SIGNOFF command. To change the log
level for interactive jobs, you can use the CHGJOB or CHGJOBD command.

If a display station user uses an IBM-supplied menu or the command entry
display, all error messages are displayed. If the display station user uses a
user-written initial program, any unmonitored message causes the initial program
to end and a job log to be produced. However, if the initial program monitors for
messages, it receives control when a message is received. In this case, it may be
important to ensure that the job log is produced so you can determine the specific
error that occurred. For example, assume that the initial program displays a menu
that includes a sign-off option, which defaults to *NOLIST. The initial program
monitors for all exceptions and includes a Change Variable (CHGVAR) command
that changes the sign-off option to *LIST if an exception occurs:

PGM
DCLF MENU
DCL &SIGNOFFOPT TYPE(*CHAR) LEN(7) VALUE(*NOLIST)
.
.
.
MONMSG MSG(CPF0000) EXEC(GOTO ERROR)

PROMPT: SNDRCVF RCDFMT(PROMPT)
CHGVAR &IN41 '0'
.

274 CL Programming V5R1

.

.
IF (&OPTION *EQ '90') SIGNOFF LOG(&SIGNOFFOPT)
.
.
.
GOTO PROMPT

ERROR: CHGVAR &SIGNOFFOPT '*LIST'
CHGVAR &IN41 '1'
GOTO PROMPT
ENDPGM

If an exception occurs in the previous example, the CHGVAR command changes
the option on the SIGNOFF command to *LIST and sets on an indicator. This
indicator could be used to condition a constant that displays a message informing
the display station user that an unexpected event has occurred and telling him
what to do.

If the interactive job is running a CL program or procedure, the CL commands are
logged only if the log level is 3 or 4 and one of the following is true:
v You specified LOG(*YES) on the Create Control Language Program

(CRTCLPGM) command, the Create Control Language Module (CRTCLMOD)
command, or the Create Bound CL Program (CRTBNDCL) command.

v You specified LOG(*JOB) on the Create Control Language Program
(CRTCLPGM) command, the Create Control Language Module (CRTCLMOD)
command, or the Create Bound CL Program (CRTBNDCL) command, and
(*YES) is the current LOGCLPGM job attribute.
You can set and change the LOGCLPGM job attribute by using the LOGCLPGM
parameter on the SBMJOB, CRTJOBD, CRTJOBD, and CHGJOBD commands.

Considerations for Batch Job Logs
For your batch applications, you may want to change the amount of information
logged. The log level (LOG(4 0 *NOLIST)) specified in the job description for the
IBM-supplied subsystem QBATCH supplies a complete log if the job abnormally
ends. If the job completes normally, no job log is produced.

If you want to print the job log in all cases, use the Change Job Description
(CHGJOBD) command to change the job description, or specify a different LOG
value on the BCHJOB or SBMJOB command. See “Job Log” on page 266 for a
description of logging levels.

If a batch job is running a CL program or procedure, the CL commands are always
logged if you specify LOG(*YES) when you create modules or programs using the
following commands:
v Create Control Language Program (CRTCLPGM)
v Create Control Language Module (CRTCLMOD)
v Create Bound Control Language Program (CRTBNDCL)

CL commands are also logged if you specify LOGCLPGM(*YES) when you use the
CHGJOB command and the SBMJOB command.

QHST History Log
The history log (QHST) consists of a message queue and a physical file known as a
log-version. Messages sent to the history log message queue are written by the
system to the current log version physical file.

Chapter 8. Working with Messages 275

v History log (QHST). Contains a high-level trace of system activities such as
system, subsystem, and job information, device status, and system operator
messages. Its message queue is QHST.

When a log-version is full, a new version of the log is automatically created. Each
version is a physical file that is named in the following way:
Qxxxyydddn

where:

xxx Is a 3-character description of the log type (HST)

yyddd Is the Julian date of the first message in the log version

n Is a sequence number within the Julian date (A through Z and 0 through
9)?

Note: The number of records in each version of the history log is specified in the
system value QHSTLOGSIZ.

The text of the log version file contains the date and time of the first message and
last message in the log version. The date and time of the first message are in
positions 1-13 of the text; the date and time of the last message are in positions
14-26. The date and time are in the format cyymmddhhmmss, where:

c Is the century guard digit

yymmdd Is the date the message was sent

hhmmss Is the time the message was sent

You can create a maximum of 36 log versions with the same Julian date. If more
than 36 log versions are created on the same day, the next available Julian day is
used for subsequent log versions. If some of the older log versions are then
deleted, it is possible to use the names again. Log versions are out of order when
sequenced by name if log versions are deleted and names used again.

You can also write a program to process history log records. Because several
versions of each log may be available, you must select the log-version to be
processed. To determine the available log-versions, use the Display Object
Description (DSPOBJD) command. For example, the following DSPOBJD command
displays what versions of the history log are available:
DSPOBJD OBJ(QSYS/QHST*) OBJTYPE(*FILE)

You can delete logs on your system by using the delete option from the display
that is presented on the Work with Objects (WRKOBJ) command.

You can display or print the information in a log using the Display Log (DSPLOG)
command. You can select the information you want displayed or printed by
specifying any combination of the following:
v Period of time
v Name of job that sent the log entry
v Message identifiers of entries

The following DSPLOG command displays all the available entries for the job
OEDAILY in the current day:
DSPLOG JOB(OEDAILY)

276 CL Programming V5R1

The resulting display is:

Display History Log Contents

Job OEDAILY started
Database file OEMSTR in library OELIB expired
Job OEDAILY abnormally ended
Job OEDAILY started
Job OEDAILY ended

Bottom
Press Enter to continue.

F3=Exit F10=Display all F12=Cancel

If you reset the system date or time to an earlier setting, or if you advanced the
system date and time by more than 48 hours, a new log version is started. This
ensures that all messages in a single log version are in chronological order.

Log versions created on a release prior to V3R6M0 may contain entries that are not
in chronological order if the system date and time was reset to an earlier setting.
Therefore, when you try to display the log-version, some entries may be missed.
For example, if the log-version contains entries dated 1988 followed by entries
dated 1987, and you want to display those 1987 entries, you specify the 1987 dates
on the PERIOD parameter on the DSPLOG command but the expected entries are
not displayed. You should always use the system date (QDATE) and the system
time (QTIME), or you should specify the PERIOD parameter as follows:
PERIOD((start-time start-date) (*AVAIL *END))

The system writes the messages sent to a log message queue to the current version
physical file when the message queue is full or when the DSPLOG command was
used. If you want to ensure the current version is up-to-date, specify a fictitious
message identifier, such as ###0000, on the DSPLOG command. No messages are
displayed, but the log-version physical file is made current.

If you print the information in a log using the Display Log command and output
parameter *PRINT, (DSPLOG OUTPUT(*PRINT), only one line from each message
is printed, using the first 105 characters of each message.

If you print the information in a log using the Display Log command and output
parameter *PRTWRAP, (DSPLOG OUTPUT(*PRTWRAP), messages longer than 105
characters are wrapped to include additional lines to a limit of 2000 characters.

If you display the information in a log using the Display Log (DSPLOG)
command, only 105 characters of message text are shown. Any characters after 105
characters are truncated at the right.

Chapter 8. Working with Messages 277

Format of the History Log
A database file is used to store the messages sent to a log on the system. Because
all records in a physical file have the same length and messages sent to a log have
different lengths, the messages can span more than one record. Each record for a
message has three fields:
v System date and time (a character field of length 8). This is an internal field. The

converted date and time also are in the message.
v Record number (a 2-byte field). For example, the field contains hex 0001 for the

first record, hex 0002 for the second record, and so on.
v Data (a character field of length 132).

The third field (data) of the first record has the following format:

Contents Type Length Positions in Record

Job name Character 26 11-36

Converted date and
time1

Character 13 37-49

Message ID Character 7 50-56

Message file name Character 10 57-66

Library name Character 10 67-76

Message type2 Character 2 77-78

Severity code Character 2 79-80

Sending program
name3

Character 12 81-92

Sending program
instruction number4

Character 4 93-96

Receiving program
name3

Character 10 97-106

Receiving program
instruction number4

Character 4 107-110

Message text length Binary 2 111-112

Message data length Binary 2 113-114

Coded character set
identifier (CCSID) for
text or data5

Binary 4 115-118

Reserved Character 24 119-142

278 CL Programming V5R1

Contents Type Length Positions in Record

:
1 The format is: cyymmddhhmmss

where:

c Is the century digit (c=0 if yy ≥ 40, c = 1 if yy < 40)

yymmdd Is the year, month, and day that the message is sent

hhmmss Is the hour, minute, and second that the message is sent
2 This has the same value as the RTNTYPE parameter on the Receive Message

(RCVMSG) command.
3 If the sender or receiver is an ILE procedure, the entry in the history log contains

only the ILE program name. The module name and procedure name are not
included in the history log.

4 If the sender or receiver is an ILE procedure, the sending or receiving instruction
number is 0.

5 This CCSID applies only to the message data that is defined as *CCHAR data if
the message is a stored message. The rest of the message data can be considered
65 535. Otherwise, this is the CCSID of the immediate message.

The third field (data) of the remaining records has the following format:

Contents Type Length

Message Character Variable1

Message data Character Variable2

:
1 This length is specified in the first record (positions 111 and 112) and cannot

exceed 132.
2 This length is specified in the first record (positions 113 and 114).

A message is never split when a new version of a log is started. The first and last
records of a message are always in the same QHST version.

For a description of the message data for a message, see “Defining Substitution
Variables” on page 187.

Processing the QHST File
If you use an HLL program to process the QHST file, keep in mind that the length
of the message can vary with each occurrence of a message. Because the message
includes replaceable variables, the actual length of the message varies; therefore,
the message data begins at a variable location for each use of the same message.

QHST Job Start and Completion Messages
The system performs special formatting of the job start and job completion
messages. For message CPF1124 (job start) and message CPF1164 (job completion),
the message data always begins in position 11 of the third record.

Chapter 8. Working with Messages 279

Job accounting provides more information than CPF1124 and CPF1164. For simple
job accounting functions, use the CPF1164 message.

Performance information is not displayed as text on message CPF1164. Because the
message is in the QHST log, users can write application programs to retrieve this
data. The format of this performance information is as follows.

The performance information is passed as a variable length replacement text value.
This means that the data is in a structure with the first entry being the length of
the data. The size of the length field is not included in the length. The first data
fields in the structure are the times and dates that the job entered the system and
when the first routing step for the job was started. The times are in the format
’hh:mm:ss’. The separators are always colons. The dates are in the format defined
in the system value QDATFMT and the separators are in the system value
QDATSEP. The time and date the job entered the system precede the job start time
and date in the structure.

The time and date the job entered the system are when the system becomes aware
of a job to be initiated (a job structure is set aside for the job). For an interactive
job, the job entry time is the time the password is recognized by the system. For a
batch job, it is the time the BCHJOB or SBMJOB command is processed. For a
monitor job, reader or writer, it is the time the corresponding start command is
processed, and for autostart jobs it is during the start of the subsystem.

Following the times and dates are the total response time and the number of
transactions. The total response time is in seconds and contains the accumulated
value of all the intervals the job was processing between pressing the Enter key at
the work station and when the next display is shown. This information is similar
to that shown on the WRKACTJOB display. This field is only meaningful for
interactive jobs.

It is also possible in the case of a system failure or abnormal job end that the last
transaction will not be included in the total. The job end code in this case would
be a 40 or greater. The transaction count is also only meaningful for interactive jobs
other than the console job and is the number of response time intervals counted by
the system during the job.

The number of synchronous auxiliary I/O operations follows the number of
transactions. This is the same as the AUXIO field that appears on the
WRKACTJOB display except that this value is the total for the job. If the job ends
with a end code of 70, this value may not contain the count for the final routing
step. Additionally, if a job exists across an IPL (using a TFRBCHJOB command) it
is ended before becoming active following an IPL, the value is 0.

The final field in the performance statistics is the job type. Values for this field are:

A Automatically started job

B Batch job

I Interactive job

M Subsystem monitor

R Spooling reader

S System job

W Spooling writer

280 CL Programming V5R1

X Start job

For messages in which the message data begins in a variable position, you can
access the message data by doing the following:
v Determine the length of the variables in the message. For example, assume that

a message uses the following five variables:
Job name *CHAR 10
User name *CHAR 10
Job number *CHAR 6
Time *CHAR 8
Date *CHAR 8

These variables are fixed in the first 42 positions of the message data.
v To find the location of the message data, consider that:

– The message always begins in position 11 of the second record.
– The length of the message is stored in a 2-position field beginning at position

111 of the first record. This length is stored in a binary value so if the message
length is 60, the field contains hex 003C.

Then, by using the length of the message and the start position of the message,
you can determine the location of the message data.

Deleting QHST Files
Log-version physical files accumulate on a system and you should periodically
delete old logs that are not needed. A log-version is created such that only the
security officer is authorized to delete it.

The Operational Assistant* provides a cleanup function which includes the deletion
of old QHST files. Another alternative is:
v As the security officer, specify:

WRKOBJ OBJ(QSYS/QHST*) OBJTYPE(*FILE)

Use option 4 to delete old unneeded files.

Chapter 8. Working with Messages 281

282 CL Programming V5R1

Chapter 9. Defining Commands

A CL command is a statement that requests that the system perform a function.
Enterring the command starts a program that performs the function. CL commands
allow you to request a broad range of functions. You can use these IBM-supplied
commands, change the default values that are supplied by IBM, define your own
commands. This chapter describes how you can define and create your own
commands. If you need help with the abbreviations of CL commands and
keywords, see “Appendix E. Abbreviations of CL Commands and Keywords” on
page 413.

Overview of How to Define Commands
The following illustration shows the steps to create a command. The text that
follows the illustration describes each step.

Writing your own validity checking and prompt override programs are optional
steps.

© Copyright IBM Corp. 1997, 2001 283

Step Description

Command Definition Statements
The command definition statements contain the information that is necessary to
prompt the work station user for input, to validate that input, and to define the
values to be passed to the program that is called when the command is run.

Command definition statements may exist in any file supported as input to the
CRTCMD command. For example, source entry utility (SEU) source files, diskette
files, and other device files may contain command definition statements. They are
usually entered in a source file by SEU. Table 8 contains the statements used for
defining commands.

Table 8. Statements for Defining CL Commands

Statement Type Statement Name Description

Command CMD Specifies the prompt text, if any, for
the command name

Parameter PARM Defines a parameter or key
parameter for a command

Element ELEM Defines an element in a list used as
a parameter value

Qualifier QUAL Defines a qualifier of a name used
as a parameter

Dependent DEP Defines the relationship among
parameters

Prompt Control PMTCTL Defines the conditions under which
certain parameters are prompted.

Create Command (CRTCMD) Command
The CRTCMD command processes the command definition statements to create
the command definition object. The CRTCMD command may be run interactively
or in a batch job.

Command Definition Object
The command definition object is the object that is checked by a system program
to ensure that the command is valid and that the proper parameters were entered.

Validity Checking
The system performs validity checking on commands. You may also write your
own validity checking program although it is not required.

The validity checking performed by the system ensures that:
v Values for the required parameters are entered.
v Each parameter value meets data type and length requirements.
v Each parameter value meets optional requirements specified in the command

definition of:
– A list of valid values
– A range of values
– A relational comparison to a value

v Conflicting parameters are not entered.

The system performs validity checking when:

284 CL Programming V5R1

v Commands are entered interactively from a display station.
v Commands are entered from a batch input stream using spooling.
v Commands are entered into a database file through the source entry utility

(SEU).
v A command is passed to the QCMDEXC, QCMDCHK, or QCAPCMD program

by a call from a HLL. See Chapter 6 for more information on the QCMDEXC
program.

v A CL module or OPM program is created.
v Commands are run by a CL procedure or program or a REXX procedure.
v A command is run using the C language system function.

If you need more validity checking than the system performs, you can write a
program called a validity checking program (see “Writing a Validity Checking
Program” on page 339) or you can include the checking in the command
processing program. You specify the names of both the command processing and
validity checking programs on the CRTCMD command.

If a command has a validity checking program, the system passes the command
parameter values to the validity checking program. This happens before the system
calls the command processing program. A validity checking program runs during
syntax checking during the following conditions:
v When running the command.
v When using the source entry utility (SEU) to enter commands into a CL source

member and the programmer uses constants instead of variables for the
parameters that are specified on the command.

v When compiling a CL program or procedure that uses constants instead of
variables for all the parameters that are specified on the command.

When the program finds an error, the user receives a message to allow immediate
correction of errors. The command processing program can assume that the data
that is passed to it is correct. Refer to “Writing a Validity Checking Program” on
page 339 for further information on writing validity checking programs.

Prompt Override Program
You can write prompt override programs to supply current values for parameter
defaults when prompting the command. For example, prompt override programs
are frequently used on Change commands to supply values for parameters with a
default value of *SAME. See “Using Key Parameters and a Prompt Override
Program” on page 320 for more details. A prompt override program is optional.

Providing Help Information for Commands
To provide online help information for your command, you can use help panel
groups. A panel group is an object with type *PNLGRP. For more information on

help panel groups, see the Application Display Programming book.

Command Processing Program
The command processing program (CPP) is the program that the command
analyzer calls to perform the function requested. The CPP can be a CL program,
another HLL program, or a REXX procedure. For example, it can be an application
program that your command calls, or it can be a CL program or REXX procedure
that contains a system command or series of commands.

The CPP must accept the parameters as defined by the command definition
statements.

Chapter 9. Defining Commands 285

c4157150.pdf

Authority Needed for the Commands You Define
For users to use a command you create, they must have operational authority to
the command and data authority to the command processing program and
optional validity checking program. They also must have read authority to the
library that contains the command, to the command processing program, and to
the validity checking program. If the command processing program or the validity
checking program refers to any service programs, the user must have execute
authority to the service programs and to the service program libraries. The user
must have the execute authority to the programs that are listed below.
v Command Processing Program (CPP).
v Validity Checking Program (VCP).
v Any service programs that are used by the CPP or VCP.
v The libraries that contain the CPP, VCP, and service programs.

The user must also have the proper authority to any other commands run in the
command processing programs. The user must also have authority to the files to
open them.

Example of Creating a Command
If you want to create a command to allow the system operator to call a program to
start the system, you would do the following. (This example assumes you are
using IBM-supplied source files.)
1. Enter the command definition source statement into the source file QCMDSRC

using the member name of STARTUP.
CMD PROMPT('S Command for STARTUP')

2. Create the command by entering the following command.
CRTCMD CMD(S) PGM(STARTUP) SRCMBR(STARTUP)

3. Enter the source statements for the STARTUP program (the command
processing program).
PGM
STRSBS QINTER
STRSBS QBATCH
STRSBS QSPL
STRPRTWTR DEV(QSYSPRT) OUTQ(QPRINT) WTR(WTR)
STRPRTWTR DEV(WSPR2) OUTQ(WSPRINT) WTR(WTR2)
SNDPGMMSG MSG('STARTUP procedure completed') MSGTYPE(*COMP)
ENDPGM

4. Create the program using the Create Bound CL Program (CRTBNDCL)
command.
CRTBNDCL STARTUP

In the previous example, S is the name of the new command (specified by the
CMD parameter). STARTUP is the name of the command processing program
(specified by the PGM parameter) and also the name of the source member that
contains the command definition statement (specified by the SRCMBR parameter).
Now the system operator can either enter S to call the command or CALL STARTUP
to call the command processing program.

How to Define Commands
To create a command, you must first define the command through command
definition statements. Refer to the CL and APIs section of the Programming
category of the iSeries Information Center for details. The general format of the
command definition statements and a summary of the coding rules follow.

286 CL Programming V5R1

Statement
Coding Rules

CMD One and only one CMD statement must be used. The CMD statement can
be placed anywhere in the source file.

PARM A maximum of 75 PARM statements is allowed. The order in which you
enter the PARM statements into the source file determines the order in
which the parameters are passed to the command processing program
(CPP) and validity checking program (VCP). One PARM statement is
required for each parameter that is to be passed to the command
processing program. To specify a parameter as a key parameter, you must
specify KEYPARM(*YES) for the PARM statement. The number of
parameters coded with KEYPARM(*YES) should be limited to the number
needed to uniquely define the object to be changed. To use key parameters,
the prompt override program must be specified when creating the
command. Key parameters can not be defined with PMTCTL(*PMTRQS) or
(PMTCTL(label).

ELEM A maximum of 300 ELEM statements is allowed in one list. The order in
which you enter the ELEM statements into the source file determines the
order of the elements in the list. The first ELEM statement must have a
statement label that matches the statement label on the TYPE parameter on
the PARM or ELEM statement for the list.

QUAL A maximum of 300 qualifiers is allowed for a qualified name. The order in
which you enter the QUAL statements into the source file determines the
order in which the qualifiers must be specified and the order in which they
are passed to the validity checking program and command processing
program.

DEP The DEP statement must be placed after all PARM statements it refers to.
Therefore, the DEP statements are normally placed near the end of the
source file.

PMTCTL
The PMTCTL statement must be placed after all PARM statements it refers
to. Therefore, the PMTCTL statements are normally placed at the end of
the source file.

At least one PARM statement must precede any ELEM or QUAL statements in the
source file. The source file in which you enter the command definition statements
is used by the CRTCMD command when you create a command. For information
on entering statements into a source file, see the ADTS for AS/400: Screen Design

Aid book.

Using the CMD Statement
When you define a command, you must include one and only one CMD statement
with your command definition statements.

When you define a command, you can provide command prompt text for the user.
If the user chooses to be prompted for the command instead of entering the entire
command, the user types in the command name and presses F4 (Prompt). The
command prompt is then displayed with the command name and the heading
prompt text on line 1 of the display.

Chapter 9. Defining Commands 287

c0926040.pdf
c0926040.pdf

If you want to specify prompt text for the command, use the PROMPT parameter
on the CMD statement to specify the heading for the prompt. You then specify the
prompts for the parameters, elements of a list, and qualifiers on the PROMPT
parameters for the PARM, ELEM, and QUAL statements.

On the PROMPT parameter for the CMD statement, you can specify the actual
prompt heading text as a character string 30 characters maximum, or you can
specify the message identifier of a message description. In the following example, a
character string is specified for the command ORDENTRY.
CMD PROMPT('Order Entry')

Line 1 of the prompt looks like this after the user types in the command name and
presses F4.
Order Entry (ORDENTRY)

If you do not provide prompt text for the command you are defining, you only
need to use the word CMD for the CMD statement. However, you may want to
use the PROMPT keyword for documentation purposes.

Defining Parameters
You can define as many as 75 parameters for each command. To define a
parameter, you must use the PARM statement.

On the PARM statement, you specify the following:
v Name of the keyword for the parameter
v Whether or not the parameter is a key parameter
v Type of parameter value that can be passed
v Length of the value
v If needed, the default value for the parameter.

In addition, you must consider the following information when defining
parameters. (The associated PARM statement parameter is given in parentheses.)
v Whether a value is returned by the command processing program (RTNVAL). If

RTNVAL (*YES) is specified, a return variable must be coded on the command
when it is called, if you want to have the value returned. If no variable is
specified for a RTNVAL(*YES) parameter, a null pointer is passed to the
command processing program.

v Whether the parameter is not to appear on the prompt to the user but is to be
passed to the command processing program as a constant (CONSTANT).

v Whether the parameter is restricted (RSTD) to specific values (specified on the
VALUES, SPCVAL, or SNGVAL parameter) or can include any value that
matches the parameter type, length, value range, and a specified relationship.

v What the specific valid parameter values are (VALUES, SPCVAL, and SNGVAL).
v What tests should be performed on the parameter value to determine its validity

(REL and RANGE).
v Whether the parameter is optional or required (MIN).
v How many values can be specified for a parameter that requires a simple list

(MIN and MAX).
v Whether unprintable data (any character with a value of hexadecimal 00 through

3F or FF can be entered for the parameter value (ALWUNPRT).
v Whether a variable name can be entered for the parameter value (ALWVAR).

288 CL Programming V5R1

v Whether the value is a program name (PGM).
v Whether the value is a data area name (DTAARA).
v Whether the value is a file name (FILE).
v Whether the value must be the exact length specified (FULL).
v Whether the length of the value should be given with the value (VARY).
v Whether expressions can be specified for a parameter value (EXPR).
v Whether attribute information should be given about the value passed for the

parameter (PASSATR).
v Whether to pass a value to the command processing program or validity

checking program if the parameter being defined is not specified (PASSVAL).
v Whether the case value is preserved or the case value is converted to uppercase

(CASE).
v Whether list within list displacements (LISTDSPL) are 2-byte or 4-byte binary

values.
v What the message identifier is or what the prompt text for the parameter is

(PROMPT).
v What valid values are shown in the possible choices field on the prompt display

(CHOICE).
v Whether the choice values are provided by a program (CHOICEPGM).
v Whether prompting for a parameter is controlled by another parameter

(PMTCTL).
v Whether values for a PMTCTL statement are provided by a program (for

parameters referred to in CTL keywords) (PMTCTLPGM).
v Whether the value is to be hidden in the job log or hidden when the command

is being prompted (DSPINPUT).

Naming the Keyword for the Parameter
The name of the keyword you choose for a parameter should be descriptive of the
information being requested in the parameter value. For example, USER for user
name, CMPVAL for compare value, and OETYPE for order entry type. The
keyword can be as long as 10 alphanumeric characters, the first of which must be
alphabetic.

Parameter Types
The basic parameter types are (parameter TYPE value given in parentheses):
v Decimal (*DEC). The parameter value is a decimal number, which is passed to

the command processing program as a packed decimal value of the length
specified on the LEN parameter. Values specified with more fractional digits
than defined for the parameter are truncated.

v Logical (*LGL). The parameter value is a logical value, ’1’ or ’0’, which is passed
to the command processing program as a character string of length 1 (F1 or F0).

v Character (*CHAR). The parameter value is a character string, which can be
enclosed in apostrophes and which is passed to the command processing
program as a character string of the length specified on the LEN parameter. The
value is passed with its apostrophes removed, is left-justified, and is padded
with blanks.

v Name (*NAME). The parameter value is a character string that represents a basic
name. The maximum length of the name is 256 characters. The first character is
alphabetic (A-Z), $, #, or @. The remaining characters are the same as the first
character, but can also include the numbers 0 through 9, underscores (_), and
periods (.). The name can also be a string of characters that begin and end with
double quotation marks (″). The system passes the value to the command

Chapter 9. Defining Commands 289

processing program as a character string of the length specified in the LEN
parameter. The value is left-justified and padded with blanks. Normally, you use
the *NAME type for object names. If you can enter a special value such as *LIBL
or *NONE for the name parameter, you must describe the special value on the
SPCVAL parameter. Then, if the display station user enters one of the allowed
special values for the parameter, the system bypasses the rules for name
verification.

v Simple name (*SNAME). The parameter value is a character string that follows
the same naming rules as *NAME, except that no periods (.) are allowed.

v Communications name (*CNAME). The parameter value is a character string
that follows the same naming rules as *NAME, except that no periods (.) or
underscores (_) are allowed.

v Path name (*PNAME). The parameter value is a character string, which can be
enclosed in apostrophes and which is passed to the command processing
program as a character string of the length specified on the LEN parameter. The
value is passed with its apostrophes removed, is left-justified, and is padded
with blanks.

v Generic name (*GENERIC). The parameter value is a generic name, which ends
with an asterisk (*). If the name does not end with an asterisk, then the generic
name is assumed to be a complete object name. A generic name identifies a
group of objects whose names all begin with the characters preceding the
asterisk. For example, INV* identifies the objects whose names begin with INV,
such as INV, INVOICE, and INVENTORY. The generic name is passed to the
command processing program so that it can find the object names beginning
with the characters in the generic name.

v Date (*DATE). The parameter value is a character string that is passed to the
command processing program. The character string uses the format cyymmdd (c =
century digit, y = year, m = month, d = day). The system sets the century digit
based on the year specified on the date parameter for the command. If the
specified year contained 4 digits, the system sets the century digit to 0 for years
that start with 19. The system sets the century digit to 1 for years that start with
20. For years that are specified with 2 digits, the system sets the century digit to
0 if yy equals a number from 40 to 99. However, if yy equals a number from 00
through 39, the system sets the century digit to 1. The user must enter the date
on the date parameter of the command in the format that is specified by the
date format (DATFMT) job attribute. The date separator (DATSEP) job attribute
determines the optional separator character to use for entering the date. Use the
Change Job (CHGJOB) command to change the DATFMT and DATSET job
attributes . The program reads dates with 2–digit years to be in the range of
January 1, 1940, to December 31, 2039. Dates with 4–digit years must be in the
range of August 24, 1928, to May 9, 2071.

v Time (*TIME). The parameter value is a character string. The system passes this
string to the command processing program in the format hhmmss (h = hour, m =
minute, s = second). The time separator (TIMSEP) job attribute determines the
optional separator to use for entering the time. Use the Change Job (CHGJOB)
command to change the TIMSEP job attribute.

v Hexadecimal (*HEX). The parameter value is a hexadecimal value. The
characters specified must be 0 through F. The value is passed to the CPP as
hexadecimal (EBCDIC) characters (2 hexadecimal digits per byte), and is right
adjusted and padded with zeros. If the value is enclosed in apostrophes, an even
number of digits is required.

v Zero elements (*ZEROELEM). The parameter value is considered to be a list of
zero elements for which no value can be specified in the command. This
parameter type is used to prevent a value from being entered for a parameter

290 CL Programming V5R1

that is a list even though the command processing program (CPP) expects a
value. For example, if two commands use the same CPP, one command could
pass a list for a parameter, and the other command may not have any values to
pass. The parameter for the second command would be defined with
TYPE(*ZEROELEM).

v Integer (*INT2 or *INT4). The parameter value is an integer that is passed as a
2-byte or 4-byte signed binary number. CL does not support a binary variable
type. However, you can declare binary numbers in a CL procedure or program
as variables of TYPE(*CHAR) and process them with the %BINARY built-in
function.

v Unassigned integer (*UINT2 or *UINT4). The parameter value is an integer that
is passed as a 2-byte or 4-byte unsigned binary number. CL does not support a
binary variable type. However, you can declare binary numbers in a CL
procedure or program as variables of TYPE(*CHAR) and process them with the
%BINARY built-in function.

v Null (*NULL). The parameter value is a null pointer, which is always passed to
the command processing program as a place holder. The only PARM keywords
valid for this parameter type are KWD, MIN, and MAX.

v Command string (*CMDSTR). The parameter value is a command. You can use
CL variables to specify parameters in the command that are specified in the
*CMDSTR parameter. However, you cannot use them to specify the entire
*CMDSTR parameter. For example, ″SBMJOB CMD(DSPLIB LIB(&LIBVAR))″ is
valid in a CL Program or procedure, but ″SBMJOB CMD(&CMDVAR)″ is not.

v Statement label. The statement label identifies the first of a series of QUAL or
ELEM statements that further describe the qualified name or the mixed list
being defined by this PARM statement.

The following parameter types are for IBM-supplied commands only.
v Expression (*X). The parameter value is a character string, variable name, or

numeric value. The value is passed as a numeric value if it contains only digits,
a plus or minus sign, and/or a decimal point; otherwise, it is passed as a
character string.

v Variable name (*VARNAME). The parameter value is a variable name, which is
passed to the command processing program as a character string. The value is
left-justified and is padded with blanks. A variable is a name that refers to an
actual data value during processing. A variable name can be as long as 10
alphanumeric characters (the first of which must be alphabetic) preceded by an
ampersand (&); for example, &PARM. If the name of your variable does not
follow the naming convention used on OS/400, you must enclose the name in
apostrophes.

v Command (*CMD). The parameter value is a command. For example, the CL
command IF has a parameter named THEN whose value must be another
command.

Length of Parameter Value
You can also specify a length (LEN parameter) for parameter values of the
following types. For parameter types of date or time, date is always 7 characters
long and time is always 6 characters long. The following shows the maximum
length for each parameter type and the default length for each parameter type for
which you can specify a length.

Data Type Maximum Length Default Length

*DEC 24 (9 decimal positions) 15 (5 decimal positions)

Chapter 9. Defining Commands 291

Data Type Maximum Length Default Length

*LGL 1 1

*CHAR 5000 32

*NAME 256 10

*SNAME 256 10

*CNAME 256 10

*GENERIC 256 10

*HEX 256 1

*X (256 24 9) (1 15 5)

*VARNAME 11 11

*CMDSTR 20K 256

*PNAME 5000 32

The maximum length that is shown here is the maximum allowed length for these
parameter types when the command runs. However, the maximum length that is
allowed for character constants in the command definition statements is 32
characters. This restriction applies to the CONSTANT, DFT, VALUES, REL,
RANGE, SPCVAL, and SNGVAL parameters. There are specific lengths for input
fields available when prompting for a CL command. The input field lengths are 1
through 12 characters and 17, 25, 32, 50, 80, 132, 256, and 512 characters. If a
particular parameter has a length that is not allowed,the input field displays with
the next larger field length. The prompter displays a 512–character input field for
parameters that can be longer than 512 characters.

Default Values
If you are defining an optional parameter, you can define a value on the DFT
parameter to be used if the user does not enter the parameter value on the
command. This value is called a default value. The default value must meet all the
value requirements for that parameter (such as type, length, and special values). If
you do not specify a default value for an optional parameter, the following default
values are used.

Data Type Default Value

*DEC 0

*INT2 0

*INT4 0

*UINT2 0

*UINT4 0

*LGL ’0’

*CHAR Blanks

*NAME Blanks

*SNAME Blanks

*CNAME Blanks

*GENERIC Blanks

*DATE Zeros (’F0’)

*TIME Zeros (’F0’)

*ZEROELEM 0

*HEX Zeros (’00’)

292 CL Programming V5R1

Data Type Default Value

*NULL Null

*CMDSTR Blanks

*PNAME Blanks

Example of Defining a Parameter
The following example defines a parameter OETYPE for a command to call an
order entry application.
PARM KWD(OETYPE) TYPE(*CHAR) RSTD(*YES) +

VALUES(DAILY WEEKLY MONTHLY) MIN(1) +
PROMPT('Type of order entry:')

The OETYPE parameter is required (MIN parameter is 1) and its value is restricted
(RSTD parameter is *YES) to the values DAILY, WEEKLY, or MONTHLY. The
PROMPT parameter contains the prompt text for the parameter. Since no LEN
keyword is specified and TYPE(*CHAR) is defined, a length of 32 is the default.

Data Type and Parameter Restrictions
The following figure shows the valid combinations of parameters according to the
parameter type. An X indicates that the combination is valid, a number refers to a
restriction noted at the bottom of the table.

LEN RTNVAL CONSTANT RSTD DFT VALUES REL RANGE SPCVAL SNGVAL

*DEC X 2 X X X X X X 3 1

*LGL X 2 X X X X 3 1

*CHAR X 2 X X X X X X 3 1

*NAME X X X X X X X 3 1

*SNAME X X X X X X X 3 1

*CNAME X X X X X X X 3 1

*PNAME X 2 X X X X X X 3 1

*GENERIC X X X X X X X 3 1

*DATE X X X X X X 3 1

*TIME X X X X X X 3 1

*HEX X X X X X X X 3 1

*ZEROELEM

*INT2 X X X X X X 3 1

*INT4 X X X X X X 3 1

*UINT2 X X X X 3 1

*UINT4 X X X X 3 1

*CMDSTR X X X

*NULL X

STMT LABEL X X X

Notes:

Chapter 9. Defining Commands 293

1. Valid only if the value for MAX is greater than 1. Also, To-values are ignored
when CPP is a REXX procedure. Values passed as REXX procedure parameters
are the values typed or the defaults for each parameter.

2. Not valid when the command CPP is a REXX procedure.
3. To-values are ignored when CPP is a REXX procedure. Values passed as REXX

procedure parameters are the values typed or the default values for each
parameter.

MIN MAX ALWUNPRT ALWVAR PGM DTAARA FILE FULL EXPR VARY

*DEC X X X X

*LGL X X X X X 1

*CHAR X X X X X X X X X 1

*NAME X X X X X X X X 1

*SNAME X X X X X X X X 1

*CNAME X X X X X X X X 1

*PNAME X X X X X X X X X 1

*GENERIC X X X X X X X X 1

*DATE X X X X

*TIME X X X X

*HEX X X X X X

*ZEROELEM X X

*INT2 X X X X

*INT4 X X X X

*UINT2 X X X X

*UINT4 X X X X

*CMDSTR 2 3 4 1

*NULL 2 3

STMT LABEL X X X

Notes:
1. Parameter is ignored when CPP is a REXX procedure.
2. The value for MIN cannot exceed 1 for TYPE(*NULL).
3. The value for MAX cannot exceed 1 for TYPE(*NULL) or TYPE(*CMDSTR).
4. The ALWVAR value is ignored for this type of parameter. CL variables are not

allowed when the parameter type is *CMDSTR.

PASSATR PASSVAL CASE LISTDSPL DSPINPUT

*DEC 1 X 3 X X

*LGL 1 X 3 X X

*CHAR 1 X 3 X X

*NAME 1 X 3 X X

*SNAME 1 X 3 X X

*CNAME 1 X 3 X X

*PNAME 1 X 3 X X

294 CL Programming V5R1

PASSATR PASSVAL CASE LISTDSPL DSPINPUT

*GENERIC 1 X 3 X X

*DATE 1 X 3 X X

*TIME 1 X 3 X X

*HEX 1 X 3 X X

*ZEROELEM 3

*INT2 1 X 3 X X

*INT4 1 X 3 X X

*UINT2 1 X 3 X X

*UINT4 1 X 3 X X

*CMDSTR 1 3 X X

*NULL 3

STMT LABEL 2 3

CHOICE CHOICEPGM PMTCTL PMTCTLPGM PROMPT INLPMTLEN

*DEC X X X X X

*LGL X X X X X

*CHAR X X X X X 4

*NAME X X X X X 4

*SNAME X X X X X 4

*CNAME X X X X X 4

*PNAME X X X X X 4

*GENERIC X X X X X 4

*DATE X X X X X

*TIME X X X X X

*HEX X X X X X 4

*ZEROELEM

*INT2 X X X X X

*INT4 X X X X X

*UINT2 X X X X X

*UINT4 X X X X X

*CMDSTR X X X X X 4

*NULL

STMT LABEL X X X X X X

Notes:
1. Parameter is ignored when CPP is a REXX procedure.
2. PASSVAL passes a keyword with no blanks or other characters between

parentheses when CPP is a REXX procedure.
3. Case (*MIXED) is allowed only with type *CHAR and *PNAME.
4. You can use INLPMTLEN(*PWD) only with types *CHAR, *NAME, *SNAME,

*CNAME, and *PNAME.

Chapter 9. Defining Commands 295

The next figure shows the valid parameter combinations and restrictions for the
PARM, ELEM, and QUAL statements. For example, the intersection of the row for
LEN and the column for DFT are blank; therefore, there are no restrictions and
combination of LEN(XX) and DFT(XX) is valid. However, the intersection of the
row for DFT and the column for CONSTANT contains a 4 which refers to a note at
the bottom of the table describing the restriction.

LEN RTNVAL CONSTANT RSTD DFT VALUES REL RANGE SPCVAL SNGVAL

LEN

RTNVAL 1 1 1 1 1 1 1 1

CONSTANT 1 4 16

RSTD 1 7 9 9 7 7

DFT 1 4

VALUES 1 7

REL 1 9 9

RANGE 1 9 9

SPCVAL 1 7

SNGVAL 1 21 7

MIN 8

MAX 2 2 10

ALWUNPRT

ALWVAR 12

PGM 1

DTAARA 1

FILE 1

FULL 1

EXPR 1 5

VARY 3

PASSATR 3

PASSVAL 13 11

CASE

LISTDSPL

CHOICE 14

CHOICEPGM

PMTCTL 15

PMTCTLPGM 15

PROMPT 6

INLPMTLEN 17 17 17

Notes:
1. The RTNVAL parameter cannot be used with any of the following parameters:

CONSTANT, RSTD, DFT, VALUES, REL, RANGE, SPCVAL, SNGVAL, PGM,

296 CL Programming V5R1

DTAARA, FILE, FULL, or EXPR. The RTNVAL parameter cannot be used on
any command using a REXX procedure as a CPP.

2. A MAX value greater than 1 is not allowed.
3. If PASSATR(*YES) and RTNVAL(*YES) are specified, VARY(*YES) must also be

specified. If RTNVAL(*YES) and VARY(*YES) are specified, you must use
either *INT2 or *INT4. Combinations of *INT2 and *INT4 are not valid.

4. The CONSTANT and DFT parameters are mutually exclusive.
5. The EXPR(*YES) and CONSTANT parameters are mutually exclusive.
6. The PROMPT parameter is not allowed.
7. If the RSTD parameter is specified, one of the following parameters must also

be specified: VALUES, SPCVAL, or SNGVAL.
8. The MIN value must be 0.
9. The REL, RANGE, and RSTD(*YES) parameters are mutually exclusive.

10. Either the MAX value must be greater than 1 or the parameter type must be a
statement label, or both.

11. The parameter may not refer to a parameter defined with the parameter
PASSVAL(*NULL). A range between parameters is not valid on a PARM
statement defined with PASSVAL(*NULL).

12. If RTNVAL(*YES) is specified, ALWVAR(*NO) cannot be specified.
13. PASSVAL(*NULL) is not allowed with RTNVAL(*YES) or a value greater than

0 for MIN.
14. The CHOICE and CONSTANT parameters are mutually exclusive.
15. CONSTANT is mutually exclusive with the PMTCTL and PMTCTLPGM

parameters.
16. The CONSTANT parameter cannot be defined on the ELEM/QUAL statement

if a SNGVAL parameter is defined on the PARM statement.
17. You cannot use the INLPMTLEN parameter with CONSTANT. You must

specify INLPMTLEN(*CALC) or use it as the default if you have specified
FULL(*YES), RTNVAL(*YES), or RSTD(*YES).

MIN MAX ALWUNPRT ALWVAR PGM DTAARA FILE FULL EXPR VARY

LEN

RTNVAL 2 8 1 1 1 1 1 3

CONSTANT 2 4

RSTD

DFT 5

VALUES

REL

RANGE

SPCVAL

SNGVAL 7

MIN 6

MAX 6

ALWUNPRT

ALWVAR

PGM 9 9

Chapter 9. Defining Commands 297

MIN MAX ALWUNPRT ALWVAR PGM DTAARA FILE FULL EXPR VARY

DTAARA 9 9

FILE 9 9

FULL

EXPR

VARY

PASSATR 3

PASSVAL 10

CASE

LISTDSPL

CHOICE

CHOICEPGM

PMTCTL 11

PMTCTLPGM

PROMPT

INLPMTLEN 12

Notes:
1. The RTNVAL parameter cannot be used with any of the following parameters:

CONSTANT, RSTD, DFT, VALUES, REL, RANGE, SPCVAL, SNGVAL, PGM,
DTAARA, FILE, FULL, or EXPR. The RTNVAL parameter cannot be used on
any command using a REXX procedure as a CPP.

2. A MAX value greater than 1 is not allowed.
3. If PASSATR(*YES) and RTNVAL(*YES) are specified, VARY(*YES) must also be

specified. If RTNVAL(*YES) and VARY(*YES) are specified, you must use
either *INT2 or *INT4. Combinations of *INT2 and *INT4 are not valid.

4. The EXPR(*YES) and CONSTANT parameters are mutually exclusive.
5. The MIN value must be 0.
6. The value specified for the MIN parameter must not exceed the value

specified for the MAX parameter.
7. Either the MAX value must be greater than 1 or the parameter type must be a

statement label, or both.
8. If RTNVAL(*YES) is specified, ALWVAR(*NO) cannot be specified.
9. PGM(*YES), DTAARA(*YES), and a value other than *NO for the FILE

parameters are mutually exclusive.
10. PASSVAL(*NULL) is not allowed with RTNVAL(*YES) or a value greater than

0 for MIN.
11. PMTCTL is not allowed with a value greater than 0 for MIN.
12. You must specify INLPMTLEN(*CALC) or use it as the default if you

specified FULL(*YES), RTNVAL(*YES), or RSTD(*YES).

PASSATR PASSVAL CASE LISTDSPL DSPINPUT

LEN

RTNVAL 1 4

298 CL Programming V5R1

PASSATR PASSVAL CASE LISTDSPL DSPINPUT

CONSTANT 9 5

RSTD

DFT

VALUES

REL

RANGE 3

SPCVAL

SNGVAL

MIN 4

MAX

ALWUNPRT

ALWVAR

PGM

DTAARA

FILE

FULL

EXPR

VARY 1

PASSATR

PASSVAL

CASE 10

LISTDSPL 11

CHOICE

CHOICEPGM

PMTCTL

PMTCTLPGM

PROMPT

INLPMTLEN

CHOICE CHOICEPGM PMTCTL PMTCTLPGM PROMPT INLPMTLEN

LEN

RTNVAL 12

CONSTANT 7 7 2 12

RSTD 12

DFT

VALUES

REL

RANGE

SPCVAL

Chapter 9. Defining Commands 299

CHOICE CHOICEPGM PMTCTL PMTCTLPGM PROMPT INLPMTLEN

SNGVAL

MIN 8

MAX

ALWUNPRT

ALWVAR

PGM

DTAARA

FILE

FULL 12

EXPR

VARY

PASSATR

PASSVAL

CASE

LISTDSPL

CHOICE 6

CHOICEPGM 6

PMTCTL

PMTCTLPGM

PROMPT

INLPMTLEN

Notes:
1. If PASSATR(*YES) and RTNVAL(*YES) are specified, VARY(*YES) must also be

specified. If RTNVAL(*YES) and VARY(*YES) are specified, you must use
either *INT2 or *INT4. Combinations of *INT2 and *INT4 are not valid.

2. The PROMPT parameter is not allowed.
3. The parameter may not refer to a parameter defined with the parameter

PASSVAL(*NULL). A range between parameters is not valid on a PARM
statement defined with PASSVAL(*NULL).

4. PASSVAL(*NULL) is not allowed with RTNVAL(*YES) or a value greater than
0 for MIN.

5. The CHOICE and CONSTANT parameters are mutually exclusive.
6. CHOICE(*PGM) requires a name for CHOICEPGM.
7. CONSTANT is mutually exclusive with the PMTCTL and PMTCTLPGM

parameters.
8. PMTCTL is not allowed with a value greater than 0 for MIN.
9. CONSTANT is mutually exclusive with DSPINPUT(*NO) and

DSPINPUT(*PROMPT).
10. The CASE parameter is valid only on PARM and ELEM statements. CASE is

not valid on the QUAL statement.
11. The LISTDSPL parameter is valid only on the PARM statement.

300 CL Programming V5R1

12. You cannot use the INLPMTLEN parameter with CONSTANT. You must
specify INLPMTLEN(*CALC) or use it as the default if you specified
FULL(*YES), RTNVAL(*YES), or RSTD(*YES).

Defining Lists for Parameters
You can define a parameter to accept a list of values instead of just a single value.
You can define the following types of lists:
v A simple list, which allows one or more values of the same type to be specified

for a parameter
v A mixed list, which allows a set of separately defined values to be specified for

a parameter
v A list within a list, which allows a list to be specified more than once for a

parameter or which allows a list to be specified for a value within a mixed list

The following sample command source illustrates the different types of lists:
CMD PROMPT('Example of lists command')

/* THE FOLLOWING PARAMETER IS A SIMPLE LIST. IT WILL ACCEPT UP TO */
/* 5 NAMES. */

PARM KWD(SIMPLST) TYPE(*NAME) LEN(10) DFT(*ALL) +
SPCVAL((*ALL)) MAX(5) PROMPT('Simple list +
of up to 5 names')

/* THE FOLLOWING PARAMETER IS A MIXED LIST OF 3 VALUES, EACH OF A */
/* DIFFERENT TYPE AND/OR LENGTH. EACH ELEMENT MAY NOT BE REPEATED. */

PARM KWD(MXDLST) TYPE(MLSPEC) PROMPT('This is a +
mixed list of 3 val')

MLSPEC: ELEM TYPE(*CHAR) LEN(4) PROMPT('Elem 1 of 3')
ELEM TYPE(*DEC) LEN(3 0) PROMPT('Second of three')
ELEM TYPE(*CHAR) LEN(10) PROMPT('Last of three +

elements')

/* THE FOLLOWING PARAMETER IS A LIST WITHIN A LIST. IT CONTAINS A */
/* LIST OF UP TO 2 ELEMENTS, WHICH MAY BE REPEATED UP TO 3 TIMES. */

PARM KWD(LWITHINL1) TYPE(LWLSPECA) MAX(3) +
PROMPT('Repeatable list of 2 elements')

LWLSPECA: ELEM TYPE(*CHAR) LEN(10) PROMPT('1st part of +
repeatable list')

ELEM TYPE(*DEC) LEN(5 0) PROMPT('2nd part of +
repeatable list')

/* THE FOLLOWING PARAMETER IS A LIST WITHIN A LIST. IT CONTAINS A */
/* LIST OF UP TO 2 ELEMENTS, THE FIRST OF WHICH MAY BE REPEATED */
/* UP TO 3 TIMES. */

PARM KWD(LWITHINL2) TYPE(LWLSPECB) MAX(1) +
PROMPT('Repeated simple within mixed')

LWLSPECB: ELEM TYPE(*CHAR) LEN(10) MAX(3) PROMPT('Simple +
list within a list')

ELEM TYPE(*DEC) LEN(5 0) PROMPT('Single parm +
within a list')

The following display shows the prompt for the preceding sample command:

Chapter 9. Defining Commands 301

Defining a Simple List
A simple list can accept one or more values of the type specified by the parameter.
For example, if the parameter is for the user name, a simple list means that more
than one user name can be specified on that parameter.
USER(JONES SMITH MILLER)

If a parameter’s value is a simple list, you specify the maximum number of
elements the list can accept using the MAX parameter on the PARM statement. For
a simple list, no command definition statements other than the PARM statement
need be specified.

The following example defines a parameter USER for which the display station
user can specify up to five user names (a simple list).
PARM KWD(USER) TYPE(*NAME) LEN(10) MIN(0) MAX(5) +

SPCVAL(*ALL) DFT(*ALL)

The parameter is an optional parameter as specified by MIN(0) and the default
value is *ALL as specified by DFT(*ALL).

When the elements in a simple list are passed to the command processing
program, the format varies depending on whether you are using CL or HLL, or
REXX. The following section describes how the elements used in the previous
example are passed using CL and HLL. For an explanation of the differences when
using REXX, see “Using REXX for Simple Lists” on page 305.

Example of lists command (LSTEXAMPLE)

Type choices, press Enter.

Simple list of up to 5 names . . SIMPLST *ALL
+ for more values

This is a mixed list of 3 val MXDLST
Elem 1 of 3
Second of three
Last of three elements

Repeatable list of 2 elements LWITHINL1
1st part of repeatable list .
2nd part of repeatable list .

+ for more values
Repeatable simple within mixed LWITHINL2

Simple list within a list . .
+ for more values

Single parm within a list . .

Bottom
F3=Exit F4=List F5=Refresh F12=Cancel F13=Prompter help
F24=More keys

302 CL Programming V5R1

Using CL or HLL for Simple Lists
When the command is run using CL or HLL, the elements in a simple list are
passed to the command processing program in the following format.

The number of values passed is specified by a binary value that is two characters
long. This number indicates how many values were actually entered (are being
passed), not how many can be specified. The values are passed by the type of
parameter just as a value of a single parameter is passed (as described under
Defining Parameters). For example, if two user names (BJONES and TBROWN) are
specified for the USER parameter, the following is passed.

The user names are passed as 10-character values that are left-adjusted and padded
with blanks.

When a simple list is passed, only the number of elements specified on the
command are passed. The storage immediately following the last element passed is
not part of the list and must not be referred to as part of the list. Therefore, when
the command processing program (CPP) processes a simple list, it uses the number
of elements passed to determine how many elements can be processed.

Figure 13 on page 304 shows an example of a CL procedure using the binary
built-in function to process a simple list.

Chapter 9. Defining Commands 303

This same technique can be used to process other lists in a CL procedure or
program.

For a simple list, a single value such as *ALL or *NONE can be entered on the
command instead of the list. Single values are passed as an individual value.
Similarly, if no values are specified for a parameter, the default value, if any is
defined, is passed as the only value in the list. For example, if the default value
*ALL is used for the USER parameter, the following is passed.

*ALL is passed as a 10-character value that is left-adjusted and padded with
blanks.

PGM PARM (...&USER..)
.
.
.
/* Declare space for a simple list of up to five */
/* 10-character values to be received */
DCL VAR(&USER) TYPE(*CHAR) LEN(52)
.
DCL VAR(&CT) TYPE(*DEC) LEN(3 0)
DCL VAR(&USER1) TYPE(*CHAR) LEN(10)
DCL VAR(&USER2) TYPE(*CHAR) LEN(10)
DCL VAR(&USER3) TYPE(*CHAR) LEN(10)
DCL VAR(&USER4) TYPE(*CHAR) LEN(10)
DCL VAR(&USER5) TYPE(*CHAR) LEN(10)
.
.
.
CHGVAR VAR(&CT) VALUE(%BINARY(&USER 1 2))
.
IF (&CT > 0) THEN(CHGVAR &USER1 %SST(&USER 3 10))
IF (&CT > 1) THEN(CHGVAR &USER2 %SST(&USER 13 10))
IF (&CT > 2) THEN(CHGVAR &USER3 %SST(&USER 23 10))
IF (&CT > 3) THEN(CHGVAR &USER4 %SST(&USER 33 10))
IF (&CT > 4) THEN(CHGVAR &USER5 %SST(&USER 43 10))
IF (&CT > 5) THEN(DO)
/* If CT is greater than 5, the values passed */
/* is greater than the program expects, and error */
/* logic should be performed */
.
.
.
ENDDO
ELSE DO
/* The correct number of values are passed */
/* and the program can continue processing */
.
.
.
ENDDO
ENDPGM

Figure 13. Simple List Example

304 CL Programming V5R1

If no default value is defined for an optional simple list parameter, the following is
passed:

Using REXX for Simple Lists
When the same command is run, the elements in a simple list are passed to the
REXX procedure in the argument string in the following format:
. . . USER(value1 value2 . . . valueN) . . .

where valueN is the last value in the simple list.

For example, if two user names (BJONES and TBROWN) are specified for the
USER parameter, the following is passed:
. . . USER(BJONES TBROWN) . . .

When a simple list is passed, only the number of elements specified on the
command are passed. Therefore, when the CPP processes a simple list, it uses the
number of elements passed to determine how many elements can be processed.

The REXX example in Figure 14 produces the same result as the CL procedure in
Figure 13 on page 304:

This same procedure can be used to process other lists in a REXX program.

For a simple list, a single value such as *ALL or *NONE can be entered on the
command instead of the list. Single values are passed as an individual value.

.

.

.
PARSE ARG . 'USER(' user ')' .
.
.
CT = WORDS(user)
IF CT > 0 THEN user1 = WORD(user,1) else user1 = '
IF CT > 1 THEN user2 = WORD(user,2) else user2 = '
IF CT > 2 THEN user3 = WORD(user,3) else user3 = '
IF CT > 3 THEN user4 = WORD(user,4) else user4 = '
IF CT > 4 THEN user5 = WORD(user,5) else user5 = '
IF CT > 5 THEN

DO
/* If CT is greater than 5, the values passed

is greater than the program expects, and error
logic should be performed */

.

.

.
END

ELSE
DO

/* The correct number of values are passed
and the program can continue processing */

END
EXIT

Figure 14. REXX Simple List Example

Chapter 9. Defining Commands 305

Similarly, if no values are specified for a parameter, the default value, if any is
defined, is passed as the only value in the list. For example, if the default value
*ALL is used for the USER parameter, the following is passed:
. . . USER(*ALL) . . .

If no default value is defined for an optional simple list parameter, the following is
passed:
. . . USER() . . .

For more information about REXX procedures, see the REXX/400 Programmer’s

Guide and the REXX/400 Reference .

Defining a Mixed List
A mixed list accepts a set of separately defined values that usually have different
meanings, are of different types, and are in a fixed position in the list. For example,
LOG(4 0 *SECLVL) could specify a mixed list. The first value, 4, identifies the
message level to be logged; the second value, 0, is the lowest message severity to
be logged. The third value, *SECLVL, specifies the amount of information to be
logged (both first- and second-level messages). If a parameter’s value is a mixed
list, the elements of the list must be defined separately using an Element (ELEM)
statement for each element.

The TYPE parameter on the associated PARM statement must have a label that
refers to the first ELEM statement for the list.

PARM KWD(LOG) TYPE(LOGLST) ...

LOGLST: ELEM TYPE(*INT2) ...
ELEM TYPE(*INT2) ...
ELEM TYPE(*CHAR) LEN(7)

The first ELEM statement is the only ELEM statement that can have a label.
Specify the ELEM statements in the order in which the elements occur in the list.

Note that when the MAX parameter has a value greater than 1 on the PARM
statement, and the TYPE parameter refers to ELEM statements, the parameter
being defined is a list within a list.

Parameters that you can specify on the ELEM statement include TYPE, LEN,
CONSTANT, RSTD, DFT, VALUES, REL, RANGE, SPCVAL, SNGVAL, MIN, MAX,
ALWUNPRT, ALWVAR, PGM, DTAARA, FILE, FULL, EXPR, VARY, PASSATR,
CHOICE, CHOICEPGM, and PROMPT.

In the following example, a parameter CMPVAL is defined for which the display
station user can specify a comparison value and a starting position for the
comparison (a mixed list).

PARM KWD(CMPVAL) TYPE(CMP) SNGVAL(*ANY) DFT(*ANY) +
MIN(0)

CMP: ELEM TYPE(*CHAR) LEN(80) MIN(1)
ELEM TYPE(*DEC) LEN(2 0) RANGE(1 80) DFT(1)

When the elements in a mixed list are passed to the command processing program,
the format varies depending on whether you are using CL or HLL, or REXX. The
following section describes how the elements used in the previous example are
passed using CL and HLL. For an explanation of the differences when using REXX,
see “Using REXX for Mixed Lists” on page 308.

306 CL Programming V5R1

c4157280.pdf
c4157280.pdf
c4157290.pdf

Using CL or HLL for Mixed Lists
When a command is run using CL or HLL, the elements in a mixed list are passed
to the command processing program in the following format:

The number of values in the mixed list is passed as a binary value of length 2. This
value always indicates how many values have been defined for the mixed list, not
how many were actually entered on the command. This value may be 1 if the
SNGVAL parameter is entered or is passed as the default value. If the user does
not enter a value for an element, a default value is passed. The elements are
passed by their types just as single parameter values are passed (as described
under “Defining Parameters” on page 288). For example, if, in the previous
example the user enters a comparison value of QCMDI for the CMPVAL
parameter, but does not enter a value for the starting position, whose default value
is 1, the following is passed.

The data QCMDI is passed as an 80-character value that is left-adjusted and
padded with blanks. The number of elements is sent as a binary value of length 2.

When the display station user enters a single value or when a single value is the
default for a mixed list, the value is passed as the first element in the list. For
example, if the display station user enters *ANY as a single value for the
parameter, the following is passed.

*ANY is passed as an 80-character value that is left-adjusted and padded with
blanks.

Mixed lists can be processed in CL programs. Unlike simple lists, the binary value
does not need to be tested to determine how many values are in the list because
this value is always the same for a given mixed list unless the SNGVAL parameter
was passed to the command processing program. In this case, the value is 1. If the
command is entered with a single value for the parameter, only that one value is
passed. To process the mixed list in a CL procedure, you must use the substring
built-in function (see Chapter 2).

In one case, only a binary value of 0000 is passed as the number of values for a
mixed list. If no default value is defined on the PARM statement for an optional
parameter and the first value of the list is required (MIN(1)), then the parameter
itself is not required; but if any element is specified the first element is required. In
this case, if the command is entered without specifying a value for the parameter,

Chapter 9. Defining Commands 307

the following is passed.

An example of such a parameter is:
PARM KWD(KWD1) TYPE(E1) MIN(0)

E1: ELEM TYPE(*CHAR) LEN(10) MIN(1)
ELEM TYPE(*CHAR) LEN(2) MIN(0)

If this parameter were to be processed by a CL procedure, the parameter value
could be received into a 14-character CL variable. The first 2 characters could be
compared to either of the following:
v a 2-character variable initialized to hex 0000 using the %SUBSTRING function.
v a decimal 0 using the %BINARY built-in function.

Using REXX for Mixed Lists
When a command is run using REXX, the elements in a mixed list are passed to
the command processing program in the following format:
. . . CMPVAL(value1 value2 . . . valueN) . . .

where valueN is the last value in the mixed list.

If the user does not enter a value for an element, a default value is passed. For
example, if in the previous example, the user enters a comparison value of QCMDI
for the CMPVAL parameter, but does not enter a value for the starting position,
whose default value is 1, the following is passed:
. . . CMPVAL(QCMDI 1) . . .

Note that trailing blanks are not passed with REXX values.

When a display station user enters a single value or when a single value is the
default for a mixed list, the value is passed as the first element in the list. For
example, if the display station user enters *ANY as a single value for the
parameter, the following is passed:
. . . CMPVAL(*ANY) . . .

Again note that trailing blanks are not passed with REXX values.

If no default value is defined on the PARM statement for an optional parameter
and the first value of the list is required (MIN(1)), then the parameter itself is not
required. But if any element is specified, the first element is required. In this case,
if the command is entered without specifying a value for the parameter, the
following is passed:
. . . CMPVAL() . . .

Defining Lists within Lists
A list within a list can be:
v A list that can be specified more than once for a parameter (simple or mixed list)
v A list that can be specified for a value within a mixed list

The following is an example of lists within a list.

308 CL Programming V5R1

STMT((START RESPND) (ADDDSP CONFRM))

The outside set of parentheses enclose the list that can be specified for the
parameter (the outer list) while each set of inner parentheses encloses a list within
a list (an inner list).

In the following example, a mixed list is defined within a simple list. A mixed list
is specified, and the MAX value on the PARM statement is greater than 1;
therefore, the mixed list can be specified up to the number of times specified on
the MAX parameter.

PARM KWD(PARM1) TYPE(LIST1) MAX(5)
LIST1: ELEM TYPE(*CHAR) LEN(10)

ELEM TYPE(*DEC) LEN(3 0)

In this example, the two elements can be specified up to five times. When a value
is entered for this parameter, it could appear as follows:
PARM1((VAL1 1.0) (VAR2 2.0) (VAR3 3.0))

In the following example, a simple list is specified as a value in a mixed list. In
this example, the MAX value on the ELEM statement is greater than 1; therefore,
the element can be repeated up to the number of times specified on the MAX
parameter.

PARM KWD(PARM2) TYPE(LIST2)
LIST2: ELEM TYPE(*CHAR) LEN(10) MAX(5)

ELEM TYPE(*DEC) LEN(3 0)

In this example, the first element can be specified up to five times, but the second
element can be specified only once. When a value is entered for this parameter, it
could appear as follows.
PARM2((NAME1 NAME2 NAME3) 123.0)

When lists within lists are passed to the command processing program, the format
varies depending on whether you are using CL or HLL, or REXX. The following
section describes how elements are passed using CL and HLL. For an explanation
of the differences when using REXX, see “Using REXX for Lists within Lists” on
page 311.

Using CL or HLL for Lists within Lists
When a command is run using CL or HLL, a list within a list is passed to the
command processing program in the following format:

The number of lists is passed as a binary value of length 2. Following the number
of lists, the displacement to the lists is passed (not the values that were entered in
the lists). Each displacement is passed as a binary value of length 2 or length 4
depending on the value of the LISTDSPL parameter.

The following example shows a definition for a parameter KWD2 (which is a
mixed list within a simple list) how the parameter can be specified by the display
station user, and what is passed. The parameter definition is:

Chapter 9. Defining Commands 309

PARM KWD(KWD2) TYPE(LIST) MAX(20) MIN(0) +
DFT(*NONE) SNGVAL(*NONE) LISTDSPL(*INT2)

LIST: ELEM TYPE(*CHAR) LEN(10) MIN(1) /*From value*/
ELEM TYPE(*CHAR) LEN(5) MIN(0) /*To value*/

The display station user enters the KWD2 parameter as:
KWD2((A B))

The following is passed to the command processing program:

If the display station user enters the following instead:
KWD2((A B) (C D))

the following is passed to the command processing program:

Lists within a list are passed to the command processing program in the order n
(the last one entered by the display station user) to 1 (the first one entered by the
display station user). The displacements, however, are passed from 1 to n.

The following is a more complex example of lists within lists. The parameter
definition is:

310 CL Programming V5R1

PARM KWD(PARM1) TYPE(LIST3) MAX(25)
LIST3: ELEM TYPE(LIST4)

ELEM TYPE(*CHAR) LEN(3)
ELEM TYPE(*NAME) LEN(2) MAX(5)

LIST4: ELEM TYPE(*DEC) LEN(7 2)
ELEM TYPE(*TIME)

If the display station user enters the PARM1 parameter as:
PARM1(((11.1 120900) A (A1 A2)) ((-22.2 131500) B (B1 B2)))

the following is passed to the command processing program:

Using REXX for Lists within Lists
When a command is run using REXX, a list within a list is passed to the command
processing program just as the values are entered for the parameters. Trailing
blanks are not passed.

The following example shows a definition for a parameter KWD2, which is a
mixed list within a simple list, how the parameter can be specified by the display
station user, and what is passed. The parameter definition is:

Displacement to second list

Displacement to first list

Second value passed as
character string of length 6

First value passed as packed decimal

Displacement from beginning of this list to simple list
Second element (LIST3) passed as three characters

Displacement from beginning of this list to inner list (LIST4)
Number of elements specified in inner list (LIST3)

Second value passed as
character string of length 6

First value passed as packed decimal

Displacement from beginning of this list to simple list
Second element (LIST3) passed as three characters

Displacement from beginning of this list to inner list (LIST4)
Number of elements specified in inner list (LIST3)

0003 0016 A 0009 0002 A1 A2 0002 11.1 120900

0003 0016 B 0009 0002 B1 B2 0002 -22.2 131500

0002 0021 0006

Number of lists

Number of values in mixed list (LIST4)

Number of values in mixed list (LIST4)

RV2W506-1

Simple list values passed as two characters each

Number of values in simple list

Simple list values passed as two characters each
Number of values in simple list

Chapter 9. Defining Commands 311

PARM KWD(KWD2) TYPE(LIST) MAX(20) MIN(0) +
DFT(*NONE) SNGVAL(*NONE)

LIST: ELEM TYPE(*CHAR) LEN(10) MIN(1) /*From value*/
ELEM TYPE(*CHAR) LEN(5) MIN(0) /*To value*/

The display station user enters the KWD2 parameter as:
KWD2((A B))

The following is passed to the command processing program:
KWD2(A B)

If the display station user enters the following instead:
KWD2((A B) (C D))

The following is passed to the command processing program:
KWD2((A B) (C D))

The following is a more complex example of lists within lists. The parameter
definition is:

PARM KWD(PARM1) TYPE(LIST3) MAX(25)
LIST3: ELEM TYPE(LIST4)

ELEM TYPE(*CHAR) LEN(3)
ELEM TYPE(*NAME) LEN(2) MAX(5)

LIST4: ELEM TYPE(*DEC) LEN(7 2)
ELEM TYPE(*TIME)

The display station user enters the PARM1 parameter as:
PARM1(((11.1 12D900) A (A1 A2)) ((-22.2 131500) B (B1 B2)))

The following is passed to the command processing program:
PARM1(((11.1 12D900) A (A1 A2)) ((-22.2 131500) B (B1 B2)))

Defining a Qualified Name
A qualified name is the name of an object preceded by the name of the library in
which the object is stored. If a parameter value or list item is a qualified name, you
must define the name separately using Qualifier (QUAL) statements. Each part of
the qualified name must be defined with a QUAL statement. The parts of a
qualified name must be described in the order in which they occur in the qualified
name. You must specify *NAME or *GENERIC in the first QUAL statement. The
associated PARM or ELEM statement must identify the label that refers to the first
QUAL statement for the qualified name.

The following command definition statements define the most common qualified
name. A qualified object consists of the library name which contains an object
followed by the name of the object itself. The QUAL statements must appear in the
order in which they are to occur in the qualified name.

312 CL Programming V5R1

Many of the parameters that can be specified for the QUAL statement are the same
as those described for the PARM statement (see “Defining Parameters” on
page 288). However, only the following values can be specified for the TYPE
parameter:
v *NAME
v *GENERIC
v *CHAR
v *INT2
v *INT4

When a qualified name is passed to the command processing program, the format
varies depending on whether you are using CL or HLL, or REXX. The following
section describes how qualified names are passed using CL and HLL. For an
explanation of the differences when using REXX, see “Using REXX for a Qualified
Name” on page 315.

Using CL or HLL for a Qualified Name
A qualified name is passed to the command processing program in the following
format when using CL or HLL:

For example, if the display station user enters NAME(USER/A) for the previously
defined QUAL statements, the name is passed to the command processing
program as follows:

Qualifiers are passed to the command processing program consecutively by their
types and length just as single parameter values are passed (as described under
“Defining Parameters” on page 288). The separator characters (/) are not passed.
This applies regardless of whether a single parameter, an element of a mixed list,
or a simple list of qualified names is passed.

If the display station user enters a single value for a qualified name, the length of
the value passed is the total of the length of the parts of the qualified name. For
example, if you define a qualified name with two values each of length 10, and if
the display station user enters a single value, the single value passed is
left-adjusted and padded to the right with blanks so that a total of 20 characters is
passed. If the display station user enters *NONE as the single value, the following
20-character value is passed:

Qualified names can be processed in CL programs using the Substring built-in
function as shown in the following example.

Chapter 9. Defining Commands 313

The substring built-in function (%SUBSTRING or %SST) is used to separate the
qualified name into two values.
PGM PARM(&QLFDNAM)
DCL &QLFDNAM TYPE(*CHAR) LEN(20)
DCL &OBJ TYPE(*CHAR) LEN(10)
DCL &LIB TYPE(*CHAR) LEN(10)
CHGVAR &OBJ %SUBSTRING(&QLFDNAM 1 10) /* First 10 */
CHGVAR &LIB %SST(&QLFDNAM 11 10) /* Second 10 */
.
.
.
ENDPGM

You can then specify the qualified name in the proper CL syntax. For example,
OBJ(&LIB/&OBJ).

You can also separate the qualified name into two values using the following
method:
PGM PARM(&QLFDNAM)
DCL &QLFDNAM TYPE(*CHAR) LEN(20)
CHKOBJ (%SST(&QLFDNAM 11 10)/%SST(&QLFDNAM 1 10)) *PGM
.
.
.
ENDPGM

A simple list of qualified names is passed to the command processing program in
the following format:

For example, assume that MAX(3) were added as follows to the PARM statement
for the NAME parameter.

PARM KWD(NAME) TYPE(NAME1) SNGVAL(*NONE) MAX(3)
NAME1: QUAL TYPE(*NAME)

QUAL TYPE(*NAME)

If the display station user enters the following:
NAME(QGPL/A USER/B)

then the name parameter would be passed to the command processing program as
follows.

If the display station user enters the single value NAME(*NONE), the name
parameter is passed as follows.

314 CL Programming V5R1

Using REXX for a Qualified Name
When a command is run using REXX, a qualified name is passed to the command
processing program just as the value is entered for the parameter. Trailing blanks
are not passed.

For example, if a display station user enters the following for the QUAL statements
defined previously in this section:
NAME(USER/A)

the qualified name is passed to the command processing program in the following
format:
NAME(USER/A)

Qualifiers are passed to the command processing program consecutively by their
types and length just as single parameter values are passed (as described under
“Defining Parameters” on page 288).

If the display station user enters *NONE as the single value, the following
20-character value is passed:
NAME(*NONE)

The following example shows how a display station user would enter a simple list
of qualified names:
NAME(QGPL/A USER/B)

Using REXX, the name parameter would be passed to the command processing
program as the following:
NAME(QGPL/A USER/B)

Defining a Dependent Relationship
If a required relationship exists between parameters, and if parameter values must
be checked when the command is run, use the Dependent (DEP) statement to
define that relationship. Using the DEP statement, you can perform the functions
that are listed below:
v Specify the controlling conditions that must be true before the parameter

relationships defined in the PARM parameter need to be true (CTL).
v Specify the parameter relationships that require testing if the controlling

conditions defined by CTL are true (PARM).
v Specify the number of parameter relationships that are defined on the associated

PARM statement that must be true if the control condition is true (NBRTRUE).
v Specify the message identifier of an error message in a message file that the

system is to send to the display station user if the parameter dependencies have
not been satisfied.

In the following example, if the display station user specifies the TYPE(LIST)
parameter, the display station user must also specify the ELEMLIST parameter.
DEP CTL(&TYPE *EQ LIST) PARM(ELEMLIST)

In the following example, the parameter &WRITER must never be equal to the
parameter &NEWWTR. If this condition is not true, message USR0001 is issued to
the display station user.
DEP CTL(*ALWAYS) PARM((&WRITER *NE &NEWWTR)) MSGID(USR0001)

Chapter 9. Defining Commands 315

In the following example, if the display station user specifies the FILE parameter,
the display station user must also specify both the VOL and LABEL parameters.
DEP CTL(FILE) PARM(VOL LABEL) NBRTRUE(*EQ 2)

Possible Choices and Values
The prompter will display possible choices for parameters to the right of the input
field on the prompt displays. The text to be displayed can be created automatically,
specified in the command definition source, or created dynamically by an exit
program. Text describing possible choices can be defined for any PARM, ELEM, or
QUAL statement, but because of limitations in the display format, the text is
displayed only for values with a field length of 12 or less, 10 or less for all but the
first qualifier in a group.

The text for possible choices is defined by the CHOICE parameter. The default for
this parameter is *VALUES, which indicates that the text is to be created
automatically from the values specified for the TYPE, RANGE, VALUES, SPCVAL,
and SNGVAL keywords. The text is limited to 30 characters; if there are more
values than can fit in this size, an ellipsis (...) is added to the end of the text to
indicate that it is incomplete.

You can specify that no possible choices should be displayed (*NONE), or you can
specify either a text string to be displayed or the ID of a text message which is
retrieved from the message file specified in the PMTFILE parameter of the
CRTCMD command.

You can also specify that an exit program to run during prompting to provide the
possible choices text. This could be done if, for example, you want to show the
user a list of objects that currently exist on the system. The same exit program can
be used to provide the list of permissible values shown on the Specify Value for
Parameter display. To specify an exit program, specify *PGM for the CHOICE
parameter, and the qualified name of the exit program in the CHOICEPGM
parameter on the PARM, ELEM, or QUAL statement.

The exit program must accept the following two parameters:
v Parameter 1: A 21-byte field that is passed by the prompter to the choice

program, and contains the following:

Positions
Descriptions

1-10 Command name. Specifies the name of the command being processed
that causes the program to run.

11-20 Keyword name. Specifies the keyword for which possible choices or
permissible values are being requested.

21 C or P character indicating the type of data being requested by
prompter. The letter C indicates that this is a 30-byte field into which the
text for possible choices is to be returned. The letter P indicates that this
a 2000-byte field into which a permissible values list is to be returned.

v Parameter 2: A 30- or 2000-byte field for returning one of the following:
– If C is in byte 21 of the first parameter, this indicates that the text for possible

choices will return. Additionally, this is a 30-byte field where the program
places the text to the right of the input field on the prompt display.

– If P is in byte 21 of the first parameter (indicating that a permissible values
list is to be returned), this is a 2000-byte field into which the program is to

316 CL Programming V5R1

place the list. The first two bytes of the list must contain the number of
entries (in binary) in the list. This value is followed by entries that consist of a
2-byte binary length followed by the value, which must be 1 to 32 characters
long.
If a binary zero value is returned in the first two bytes, no permissible values
are displayed.
If a binary negative value is returned in the first two bytes, the list of
permissible values is taken from the command.

If any exception occurs when the program is called, the possible choices text is left
blank, and the list of permissible values is taken from the command.

Using Prompt Control
You can control which parameters are displayed for a command during prompting
by using prompt control specifications. This control can simplify prompting for a
command by displaying only the parameters that you want to see.

You can specify that a parameter be displayed depending on the value specified
for other parameters. This specification is useful when a parameter has meaning
only when another parameter (called a controlling parameter) has a certain value.

You can also specify that a parameter be selected for prompting only if additional
parameters are requested by pressing a function key during prompting. This
specification can be used for parameters that are seldom specified by the user,
either because the default is normally used or because they control seldom-used
functions.

If you want to show all parameters for a command that has prompt control
specified, you can request that all parameters be displayed by pressing F9 during
prompting.

Conditional Prompting
When prompting the user for a command, a parameter which is conditioned by
other parameters is displayed if:
v It is selected by the value specified for the controlling parameter.
v The value specified for the controlling parameter is in error.
v A value was specified for the conditioned parameter.
v A function key was pressed during prompting to request that all parameters be

displayed.

When a user is to be prompted for a conditioned parameter and no value has yet
been specified for its controlling parameter, all parameters previously selected are
displayed. When the user presses the Enter key, the controlling parameter is then
tested to determine if the conditioned parameter should be displayed or not.

To specify conditional prompting in the command definition source, specify a label
name in the PMTCTL parameter on the PARM statement for each parameter that is
conditioned by another parameter. The label specified must be defined on a
PMTCTL statement which specifies the controlling parameter and the condition
being tested to select the parameter for prompting. More than one PARM
statement can refer to the same label.

Chapter 9. Defining Commands 317

On the PMTCTL statement, specify the name of the controlling parameter, one or
more conditions to be tested, and the number of conditions that must be true to
select the conditioned parameters for prompting. If the controlling parameter has
special value mapping, the value entered on the PMTCTL statement must be the
to-value. If the controlling parameter is a list or qualified name, only the first list
item or qualifier is compared.

In the following example, parameters OUTFILE and OUTMBR is selected only if
*OUTFILE is specified for the OUTPUT parameter, and parameter OUTQ is
selected only if *PRINT is specified for the OUTPUT parameter.

PARM OUTPUT TYPE(*CHAR) LEN(1) DFT(*) RSTD(*YES) +
SPCVAL((*) (*PRINT P) (*OUTFILE F))

PARM OUTFILE TYPE(Q1) PMTCTL(OUTFILE)
PARM OUTMBR TYPE(*NAME) LEN(10) PMTCTL(OUTFILE)
PARM OUTLINK TYPE(*CHAR) LEN(10)
PARM OUTQ TYPE(Q1) PMTCTL(PRINT)
Q1: QUAL TYPE(*NAME) LEN(10)

QUAL TYPE(*NAME) LEN(10) SPCVAL(*LIBL) DFT(*LIBL)
OUTFILE: PMTCTL CTL(OUTPUT) COND((*EQ F)) NBRTRUE(*EQ 1)
PRINT: PMTCTL CTL(OUTPUT) COND((*EQ P)) NBRTRUE(*EQ 1)

In this previous example, the user is prompted for the OUTLINK parameter after
the condition for OUTMBR parameter has been tested. In some cases, the user
should be prompted for the OUTLINK parameter before the OUTMBR parameter
is tested. To specify a different prompt order, either reorder the parameters in the
command definition source or use the PROMPT keyword on the PARM statement
for the OUTLINK parameter.

A label can refer to a group of PMTCTL statements. This allows you to condition a
parameter with more than one controlling parameter. To specify a group of
PMTCTL statements, enter the label on the first statement in the group. No other
statements can be placed between the PMTCTL statements in the group.

Use the LGLREL parameter to specify the logical relationship between the
statements in the group. The LGLREL parameter is not allowed on the first
PMTCTL statement in a group. For subsequent PMTCTL statements, the LGLREL
parameter specifies the logical relationship (*AND or *OR) to the PMTCTL
statement or statements preceding it. Statements in a group can be logically related
in any combination of *AND and *OR relationships (*AND relationships are
checked first, then *OR relationships).

The following example shows how the logical relationship is used to group
multiple PMTCTL statements. In this example, parameter P3 is selected when any
one of the following conditions exists:
v *ALL is specified for P1.
v *SOME is specified for P1 and *ALL is specified for P2.
v *NONE is specified for P1 and *ALL is not specified for P2.
PARM P1 TYPE(*CHAR) LEN(5) RSTD(*YES) VALUES(*ALL *SOME *NONE)
PARM P2 TYPE(*NAME) LEN(10) SPCVAL(*ALL)
PARM P3 TYPE(*CHAR) LEN(10) PMTCTL(PMTCTL1)
PMTCTL1:PMTCTL CTL(P1) COND((*EQ *ALL))

PMTCTL CTL(P1) COND((*EQ *SOME)) LGLREL(*OR)
PMTCTL CTL(P2) COND((*EQ *ALL)) LGLREL(*AND)
PMTCTL CTL(P1) COND((*EQ *NONE)) LGLREL(*OR)
PMTCTL CTL(P2) COND((*NE *ALL)) LGLREL(*AND)

318 CL Programming V5R1

An exit program can be specified to perform additional processing on a controlling
parameter before it is tested. The exit program can be used to condition prompting
based on:
v The type or other attribute of an object
v A list item or qualifier other than the first one
v An entire list or qualified name

To specify an exit program, specify the qualified name of the program in the
PMTCTLPGM parameter on the PARM statement for the controlling parameter.
The exit program is run during prompting when checking a parameter. The
conditions on the PMTCTL statement are compared with the value returned by the
exit program rather than the value specified for the controlling parameter.

When the system cannot find or successfully run the exit program, the system
assumes any conditions that would use the returned value as true.

The exit program must be written to accept three parameters:
v A 20-character field. The prompter passes the name of the command in the first

10 characters and the name of the controlling parameter in the last 10 characters.
This field should not be changed.

v The value of the controlling parameter. This field is in the same format as it is
when passed to the command processing program and should not be changed.

v If the controlling parameter is defined as VARY(*YES) the value is not preceded
by a length value. If the controlling parameter is PASSATR(*YES), the attribute
byte is not included.

v A 32-character field into which the exit program places the value to be tested in
the PMTCTL statements.
The value being tested in the PMTCTL statement must be returned in the same
format as the declared data type.

In the following example, OBJ is a qualified name which may be the name of a
command, program, or file. The exit program determines the object type and
returns the type in the variable &RTNVAL:
CMD
PARM OBJ TYPE(Q1) PMTCTLPGM(CNVTYPE)
Q1: QUAL TYPE(*NAME) LEN(10)

QUAL TYPE(*NAME) LEN(10) SPCVAL(*LIBL) DFT(*LIBL)
PARM CMDPARM TYPE(*CHAR) LEN(10) PMTCTL(CMD)
PARM PGMPARM TYPE(*CHAR) LEN(10) PMTCTL(PGM)
PARM FILEPARM TYPE(*CHAR) LEN(10) PMTCTL(FILE)
CMD: PMTCTL CTL(OBJ) COND((*EQ *CMD) (*EQ *)) NBRTRUE(*EQ 1)
PGM: PMTCTL CTL(OBJ) COND((*EQ *PGM) (*EQ *)) NBRTRUE(*EQ 1)
FILE: PMTCTL CTL(OBJ) COND((*EQ *FILE) (*EQ *)) NBRTRUE(*EQ 1)

The source for the exit program is shown here:
PGM PARM(&CMD &PARMVAL &RTNVAL)
DCL &CMD *CHAR 20 /* Command and parameter name */
DCL &PARMVAL *CHAR 20 /* Parameter value */
DCL &RTNVAL *CHAR 32 /* Return value */
DCL &OBJNAM *CHAR 10 /* Object name */
DCL &OBJLIB *CHAR 10 /* Object type */
CHGVAR &OBJNAM %SST(&PARMVAL 1 10)
CHGVAR &OBJLIB %SST(&PARMVAL 11 10)
CHGVAR &RTNVAL '*' /* Initialize return value to error*/
CHKOBJ &OBJLIB/&OBJNAM *CMD /* See if command exists */
MONMSG CPF9801 EXEC(GOTO NOTCMD) /* Skip if no command */
CHGVAR &RTNVAL '*CMD' /* Indicate object is a command */

Chapter 9. Defining Commands 319

RETURN /* Exit */
NOTCMD:
CHKOBJ &OBJLIB/&OBJNAM *PGM /* See if program exists */
MONMSG CPF9801 EXEC(GOTO NOTPGM) /* Skip if no program */
CHGVAR &RTNVAL '*PGM' /* Indicate object is a program */
RETURN /* Exit */
NOTPGM:
CHKOBJ &OBJLIB/&OBJNAM *FILE /* See if file exists */
MONMSG CPF9801 EXEC(RETURN) /* Exit if no file */
CHGVAR &RTNVAL '*FILE' /* Indicate object is a file */
ENDPGM

Additional Parameters
You can specify that a parameter which is not frequently used will not be
prompted for unless the user requests additional parameters by pressing a function
key during prompting. This is done by specifying PMTCTL(*PMTRQS) on the
PARM statement for the parameter. When prompting for a command, parameters
with PMTCTL(*PMTRQS) coded will not be prompted unless a value was specified
for them or the user presses F10 to request the additional parameters.

The prompter displays a separator line before the parameters with
PMTCTL(*PMTRQS) to distinguish them from the other parameters. By default, all
parameters with PMTCTL(*PMTRQS) are prompted last, even though they are not
defined in that order in the command definition source. You can override this by
specifying a relative prompt number in the PROMPT keyword. If you do this,
however, it can be difficult to see what parameters were added to the prompt
when F10 is pressed.

Using Key Parameters and a Prompt Override Program
The prompt override program allows current values rather than defaults to be
displayed when a command is prompted.

If a prompt override program is defined for a command, you can see the results of
calling the prompt override program in the following two ways:
v Type the name of the command without parameters on any command line and

press F4=Prompt. The next screen shows the key parameters for the command.
Key parameters are parameters, such as the name of an object, that uniquely
identify the object.
Complete all fields shown and press the Enter key. The next screen shows all
command parameters, and the parameter fields that are not key parameter fields
contain current values rather than defaults (such as *SAME and *PRV).
For example, if you type CHGLIB on a command line and press F4=Prompt, you
see only the Library parameter. If you then type *CURLIB and press the Enter
key, the current values for your current library are displayed.

v Type the name of the command and the values for all key parameters on any
command line. Press F4=Prompt. The next screen shows all command
parameters, and the parameter fields that are not key parameter fields will
contain current values rather than defaults (such as *SAME and *PRV).
For example, if you type CHGLIB LIB(*CURLIB) on a command line and press
F4=Prompt, the current values for your current library are displayed.

When F10=Additional parameters is pressed, any parameters defined with
PMTCTL(*PMTRQS) are displayed with current values. For more information
about additional parameters, see “Additional Parameters”.

320 CL Programming V5R1

To exit the command prompt, press F3=Exit.

Procedure for Using Prompt Override Programs
To use a prompt override program, do the following:
1. Specify any parameters that are to be key parameters on the PARM statement

in the command definition source. For information about the KEYPARM
parameter, see the following section, “Identifying Key Parameters”.

2. Write a prompt override program. For information about creating prompt
override programs, see “Writing a Prompt Override Program”.

3. Specify the name of the prompt override program on the PMTOVRPGM
parameter when you create or change the command. For information about
creating or changing commands that use the prompt override program, see
“Specifying the Prompt Override Program When Creating or Changing
Commands” on page 324.

Identifying Key Parameters
The number of key parameters should be limited to the number of parameters
needed to uniquely define the object to be changed.

To ensure a key parameter is coded correctly in the command definition source, do
the following:
v Specify KEYPARM(*YES) on the PARM statement in the command definition

source.
v Define all parameters that specify KEYPARM(*YES) before all parameters that

specify KEYPARM(*NO).

Note: If a PARM statement specifies KEYPARM(*YES) after a PARM statement
that specifies KEYPARM(*NO), the parameter is not treated as a key
parameter and a warning message is issued.

v Do not specify a MAX value greater than one in the PARM statement.
v Do not specify a MAX value greater than one for ELEM statements associated

with key parameters.
v Do not specify *PMTRQS or a prompt control statement for the PMTCTL

keyword on the PARM statement.
v Place key parameters in the command definition source in the same order you

want them to appear when prompted.

Writing a Prompt Override Program
A prompt override program needs to be passed certain information to return
current values when a command is prompted. You must consider both the passed
information and the returned values when you write a prompt override program.

For an example of CL source for a prompt override program, see “CL Sample for
Using the Prompt Override Program” on page 324.

Parameters Passed to the Prompt Override Program: The prompt override
program is passed the following parameters:
v A 20-character field. The first 10 characters of the field contain the name of the

command and the last 10 characters contain the name of the library.
v A value for each key parameter, if any. If more than one key parameter is

defined, the parameter values are passed in the order that the key parameters
are defined in the command definition source.

Chapter 9. Defining Commands 321

v A 32676-byte (32K) space to hold the command string that is created by the
prompt override program. The first two bytes of this field must contain the
hexadecimal length of the command string that is returned. The actual command
string follows the first two bytes.
For example, when defining two key parameters for a command, four
parameters pass to the prompt override program as follows:
– One parameter for the command.
– Two parameters for the key parameters.
– One parameter for the command string space.

Information Returned from the Prompt Override Program: Based on the values
passed, the prompt override program retrieves the current values for the
parameters that are not key parameters. These values are placed into a command
string, where the length of the string is determined and returned.

Use the following guidelines to ensure your command string is correctly defined:
v Use the keyword format for the command string just as you would on the

command line.
v Do not include the command name and the key parameters in the command

string.
v Precede each keyword with a selective prompt character to define how to

display the parameter and what value to pass to the CPP. For information about
using selective prompt characters, see “Selective Prompting for CL Commands”
on page 168.

When using selective prompts, do the following:
– If a parameter is defined as MIN(1) in the command definition source (that is,

the parameter is required), you must use the ?? selective prompt character for
that keyword in the command string from the prompt override program.

– Do not use the ?- selective prompt character in the prompt override program
command string.

The following example shows a command string returned from a prompt
override program:
??Number(123456) ?<Qualifier(CLIB/CFILE) ?<LIST(ITEM1 ITEM2 ITEM3) ?<TEXT('Carol's file')

v Make sure that the specified value in the first two bytes of the space the
program passes is the actual hexadecimal length of the command string.

v Include only the parameters in the command string whose current values you
want displayed when the command is prompted. Parameters not included in the
command string have their defaults displayed.

v Use character form for any numbers that appear in the command string. Do not
use binary or packed form. Do not include any hexadecimal numbers in the
command string.

322 CL Programming V5R1

v Do not put blank spaces between the library and the qualifier or the qualifier
and the object. For example:

??KWD1(library /object)
Not valid

??KWD1(library/ object)
Not valid

??KWD1(library/object)
Valid

??KWD1(library/object)
Valid

v If you use special values or single values, make sure they are translated into the
from-value defined in the command definition source.
For example, a keyword has a special value defined as SPCVAL(*SPECIAL *) in
the command definition source. *SPECIAL is the from-value and * is the
to-value. When the current value is retrieved for this keyword, * is the value
retrieved, but *SPECIAL must appear in the command string returned from the
prompt override program. The correct from-value must be placed into the
command string since more than one special value or single value can have the
same to-value. For example, if KWD1 SPCVAL((*SPC *) (*SPECIAL *)) is specified,
the prompt override program must determine whether * is the to-value for *SPC
or *SPECIAL.

v Define the length of fields used to retrieve text as follows:
(2*(field length defined in command definition source)) + 2

This length allows for the maximum number of quotation marks allowed in the
text field. For example, if the TEXT parameter on the CHGxxx command is
defined in the command definition source as LEN(50), then the parameter is
declared as CHAR(102) in its prompt override program. For an example of how
to define the length of fields used to retrieve text, see “CL Sample for Using the
Prompt Override Program” on page 324.

If the parameter for a text field is not correctly defined in the prompt override
program and the text string retrieved by the prompt override program contains
a quote, the command does not prompt correctly.

v Make sure that you double any embedded apostrophes, for example:
?<TEXT('Carol''s library')

Some commands can only be run in certain modes (such as DEBUG) or job status
(such as *BATCH) but can still be prompted for from other modes or job statuses.
When the command is prompted, the prompt override program is called regardless
of the user’s environment. If the prompt override program is called in a mode or
environment that is not valid for the command, the defaults are displayed for the
command and a value of 0 is returned for the length. Using the debug commands
Change Debug (CHGDBG) and Add Program (ADDPGM) when not in debug
mode are examples of this condition.

Allowing for Errors in a Prompt Override Program: If the prompt override
program detects an error, it should do the following:
v Set the command string length to zero so that the defaults rather than current

values are displayed when the command is prompted.
v Send a diagnostic message to the previous call.
v Send escape message CPF0011.

Chapter 9. Defining Commands 323

For example, if you need a message saying that a library does not exist, add a
message description similar to the following:
ADDMSGD MSG('Library &2 does not exist') +

MSGID(USR0012) +
MSGF(QGPL/ACTMSG) +
SEV(40) +
FMT((*CHAR 4) (*CHAR 10))

Note: The substitution variable &1 is not in the message but is defined in the FMT
parameter as 4 characters. &1 is reserved for use by the system and must
always be 4 characters. If the substitution variable &1 is the only
substitution variable defined in the message, you must ensure that the
fourth byte of the message data does not contain a blank when you send the
message. The fourth byte is used by the system to manage messages during
command processing and prompting.

This message can be sent to the calling program of the prompt override program
by specifying the following in the prompt override program:
SNDPGMMSG MSGID(USR0012) MSGF(QGPL/ACTMSG) +

MSGDTA('0000' || &libname) MSGTYPE(*DIAG)

After the prompt override program sends all the necessary diagnostic messages, it
should then send message CPF0011. To send message CPF0011, use the Send
Program Message (SNDPGMMSG) command as follows:
SNDPGMMSG MSGID(CPF0011) MSGF(QCPFMSG) +

MSGTYPE(*ESCAPE)

When message CPF0011 is received, message CPD680A is sent to the calling
program and displayed on the prompt screen to indicate that errors have been
found. All diagnostic messages are placed in the user’s job log.

Specifying the Prompt Override Program When Creating or
Changing Commands
To use a prompt override program for a command you want to create, specify the
program name when you use the Create Command (CRTCMD) command. You can
also specify the program name when you change the command using the Change
Command (CHGCMD) command. For both commands, specify the name of the
prompt override program on the PMTOVRPGM parameter.

If key parameters are defined in the command definition source but the prompt
override program is not specified when the command is created or changed,
warning message CPD029B results. The key parameters are ignored, and when the
command is prompted, it is displayed using the defaults specified in the command
definition source.

Sometimes a prompt override program is specified when a command is created but
when no key parameters are defined in the command definition source. In these
cases, the prompt override program is called before the command is prompted;
informational message CPD029A is sent when the command is created or changed.

CL Sample for Using the Prompt Override Program
The following example shows the command source for a command and the
prompt override program. This command allows the ownership and text
description of a library to be changed. The prompt override program for this

324 CL Programming V5R1

command receives the name of the library; retrieves the current value of the library
owner and the text description; and then places these values into a command
string and returns it.

This prompt override program uses the ″?|″ selective prompt characters.

Sample Command Source

Sample Prompt Override Program

CHGLIBATR: CMD PROMPT('Change Library Attributes')
PARM KWD(LIB) +

TYPE(*CHAR) MIN(1) MAX(1) LEN(10) +
KEYPARM(*YES) +
PROMPT('Library to be changed')

PARM KWD(OWNER) +
TYPE(*CHAR) LEN(10) MIN(0) MAX(1) +
KEYPARM(*NO) +
PROMPT('Library owner')

PARM KWD(TEXT) +
TYPE(*CHAR) MIN(0) MAX(1) LEN(50) +
KEYPARM(*NO) +
PROMPT('Text description')

PGM PARM(&cmdname &keyparm1 &rtnstring)
/***/
/* */
/* Declarations of parameters passed to the prompt override program */
/* */
/***/
DCL VAR(&cmdname) TYPE(*CHAR) LEN(20)
DCL VAR(&keyparm1) TYPE(*CHAR) LEN(10)
DCL VAR(&rtnstring) TYPE(*CHAR) LEN(5700)

/**/
/* */
/* Return command string structure declaration */
/* */
/**/

/* Length of command string generated */
DCL VAR(&stringlen) TYPE(*DEC) LEN(5 0) VALUE(131)
DCL VAR(&binlen) TYPE(*CHAR) LEN(2)

/* OWNER keyword */
DCL VAR(&ownerkwd) TYPE(*CHAR) LEN(8) VALUE('?<OWNER(')
DCL VAR(&name) TYPE(*CHAR) LEN(10)

/* TEXT keyword */
DCL VAR(&textkwd) TYPE(*CHAR) LEN(8) VALUE(' ?<TEXT(')
DCL VAR(&descript) TYPE(*CHAR) LEN(102)

/**/
/* */
/* Variables related to command string declarations */
/* */
/**/
DCL VAR("e) TYPE(*CHAR) LEN(1) VALUE('''')
DCL VAR(&closparen) TYPE(*CHAR) LEN(1) VALUE(')')

Chapter 9. Defining Commands 325

/**/
/* */
/* Start of operable code */
/* */
/**/
/**/
/* */
/* Monitor for exceptions */
/* */
/**/

MONMSG MSGID(CPF0000) +
EXEC(GOTO CMDLBL(error))

/**/
/* */
/* Retrieve the owner and text description for the library specified*/
/* on the LIB parameter. Note: This program assumes there are */
/* no apostrophes in the TEXT description, such as (Carol's) */
/* */
/**/

RTVOBJD OBJ(&keyparm1) OBJTYPE(*LIB) OWNER(&name) TEXT(&descript)

CHGVAR VAR(%BIN(&binlen)) VALUE(&stringlen)

/**/
/* */
/* Build the command string */
/* */
/**/

CHGVAR VAR(&rtnstring) VALUE(&binlen)
CHGVAR VAR(&rtnstring) VALUE(&rtnstring *TCAT &ownerkwd)
CHGVAR VAR(&rtnstring) VALUE(&rtnstring *TCAT &name)
CHGVAR VAR(&rtnstring) VALUE(&rtnstring *TCAT &closparen)
CHGVAR VAR(&rtnstring) VALUE(&rtnstring *TCAT &textkwd)
CHGVAR VAR(&rtnstring) VALUE(&rtnstring *TCAT "e)
CHGVAR VAR(&rtnstring) VALUE(&rtnstring *TCAT &descript)
CHGVAR VAR(&rtnstring) VALUE(&rtnstring *TCAT "e)
CHGVAR VAR(&rtnstring) VALUE(&rtnstring *TCAT &closparen)

GOTO CMDLBL(pgmend)
ERROR:
VALUE(0)
CHGVAR VAR(%BIN(&rtnstring 1 2)) VALUE(&stringlen)
VALUE(&binlen)

326 CL Programming V5R1

Creating Commands
After you have defined your command through the command definition
statements, you use the Create Command (CRTCMD) command to create the
command. Besides specifying the command name, library name, and command
processing program name for CL or high-level languages (HLL), or the source
member, source file, command environment, and exit program for REXX, you can
define the following attributes of the command:
v The validity checking used by the command
v The modes in which the command can be run

– Production
– Debug
– Service

v Where the command can be used
– Batch job
– Interactive job
– ILE CL module in a batch job
– CL program in a batch job
– ILE CL module in an interactive job
– CL program in an interactive job
– REXX procedure in a batch job
– REXX procedure in an interactive job
– As a command interpretively processed by the system through a call to

QCMDEXC (see Chapter 6, for information about QCMDEXC)
v The maximum number of parameters that can be specified by position
v The message file containing the prompt text
v The help panel group that is used as help for promptable parameters
v The help identifier name for the general help module used on this command
v The message file containing the messages identified on the DEP statement
v The current library to be active during command processing
v The product library to be active during command processing

/**/
/* */
/* Send error message(s) */
/* */
/* NOTE: If you wish to send a diagnostic message as well as CPF0011*/
/* you will have to enter a valid error message ID in the */
/* MSGID parameter and a valid message file in the MSGF */
/* parameter for the first SNGPGMMSG command listed below. */
/* If you do not wish to send a diagnostic message, do not */
/* include the first SNDPGMMSG your program. However, in */
/* error conditions, you must ALWAYS send CPF0011 so the */
/* second SNDPGMMSG command must be included in your program. */
/* */
/**/

SNDPGMMSG MSGID(XXXXXXX) MSGF(MSGLIB/MSGFILE) MSGTYPE(*DIAG)
SNDPGMMSG MSGID(CPF0011) MSGF(QCPFMSG) MSGTYPE(*ESCAPE)

PGMEND:
ENDPGM

Chapter 9. Defining Commands 327

v Whether an existing command with the same name, type, and library is replaced
if REPLACE(*YES) is specified.

v The authority given to the public for the command and its description
v Text that briefly describes the command and its function

For commands with REXX CPPs, you can also specify the following:
v The initial command environment to handle commands when the procedure is

started
v Exit programs to control running of your procedure

The following example defines a command named ORDENTRY to call an order
entry application. The CRTCMD command defines the preceding attributes for
ORDENTRY and creates the command using the parameter definitions contained
in the member ORDENTRY in the IBM-supplied source file QCMDSRC.
ORDENTRY contains the PARM statement used in the example under “Example of
Defining a Parameter” on page 293.
CRTCMD CMD(DSTPRODLB/ORDENTRY) +

PGM(*LIBL/ORDENT) +
TEXT('Calls order entry application')

The resulting command is:
ORDENTRY OETYPE(value)

where the value can be DAILY, WEEKLY, or MONTHLY.

Once you have created a command, you can:
v Display the attributes of the command by using the Display Command

(DSPCMD) command
v Change the attributes of the command by using the Change Command

(CHGCMD) command
v Delete the command by using the Delete Command (DLTCMD) command

Command Definition Source Listing
When you create a command, a source list is produced. The following shows a
sample source list. The numbers refer to descriptions following the list.
5769SS1 V4R5M0 990521�1� Command Definition DSTPRODLB/ORDENTRY 11/20/98 14:53:32�2�Page 1�3�

Command name : ORDENTRY
Library : DSTPRODLB

Command processing program : ORDENT �4�
Library : *LIBL

Source file : QCMDSRC
Library : QGPL

Source file member : ORDENTRY 11/20/98 14:54:32
Validity checker program : *NONE
Mode in which valid : *PROD

*DEBUG
*SERVICE

Environment allowed : *IREXX
*BREXX
*BPGM
*IPGM
*EXEC
*INTERACT
*BATCH
*BMOD
*IMOD

Allow limited user : *NO
Max positional parameters : *NOMAX
Prompt file : *NONE
Message file : QCPFMSG
Library : *LIBL

Authority : *LIBCRTAUT
Replace command : *YES
Enable graphical user interface : *NO
Threadsafe : *NO
Multithreaded job action : *SYSVAL
Text . : Calls order entry application
Help book name : *NONE
Help bookshelf. : *NONE
Help panel group : *NONE
Help identifier : *NONE
Help search index : *NONE
Current library : *NOCHG

328 CL Programming V5R1

Product library : *NOCHG
Prompt override program : *NONE
Compiler : IBM AS/400 Command Definition Compiler �5�

Command Definition Source
�6�
SEQNBR *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+. DATE �8�

100- CMD PROMPT('Order entry command') 11/20/98
�7�

200- PARM KWD(OETYPE) TYPE(*CHAR) RSTD(*YES) + 11/20/98
300 VALUES(DAILY WEEKLY MONTHLY) MIN(1) + 11/20/98
400 PROMPT('Type of order entry:') 11/20/98

* * * * * E N D O F S O U R C E * * * * *

5769SS1 V4R4M0 990521 Command Definition DSTPRODLB/ORDENTRY 11/20/98 14:54:32 Page 2
Cross Reference

Defined Keywords �9�
Keyword Number Defined References
OETYPE 001 200

* * * * * E N D O F C R O S S R E F E R E N C E * * * * *

5769SS1 V4R4M0 990521 Command Definition DSTPRODLB/ORDENTRY 11/20/98 14:54:32 Page 3
Final Messages

Message Sequence
ID Number Sev Text �10�

Message Summary
Total Info Error

0 0 0 �11�
* CPC0202 00 Command ORDENTRY created in library DSTPRODLB. �12�

* * * * * E N D O F C O M P I L A T I O N * * * * *

Title:

�1� The program number, version, release, modification level, and date of
OS/400.

�2� The date and time of this run.

�3� The page number in the list.

Prologue

�4� The parameter values specified (or defaults if not specified) on the
CRTCMD command. If the source is not in a database file, the member
name, date, and time are omitted.

�5� The name of the create command definition compiler.

Source:

�6� The sequence number of lines (records) in the source file. A dash following
a sequence number indicates that a source statement begins at that
sequence number. The absence of a dash indicates that a statement is the
continuation of the previous statement. For example, a PARM source
statement starts at sequence number 200 and continues at sequence
numbers 300 and 400. (Note the continuation character of + on the PARM
statement at sequence number 200 and 300.)

Comment source statements are handled like any other source statement
and have sequence numbers.

�7� The source statements.

�8� The last date the source statement was changed or added. If the statement
has not been changed or added, no date is shown. If the source is not in a
database file, the date is omitted.

If an error is found during processing of the command definition
statements and can be traced to a specific source statement, the error
message is printed immediately following the source statement. An asterisk
(*) indicates that the line contains an error message. The line contains the
message identifier, severity, and the text of the message.

For more information about the command definition errors, see “Errors
Encountered when Processing Command Definition Statements” on
page 330.

Chapter 9. Defining Commands 329

Cross-references:

�9� The keyword table is a cross-reference list of the keywords validly defined
in the command definition. The table lists the keyword, the position of the
keyword in the command, the sequence number of the statement where
the keyword is defined, and the sequence numbers of statements that refer
to the keyword.

If valid labels are defined in the command definition, a cross-reference list
of the labels (label table) is provided. The table lists the label, the sequence
number of the statement where the label is defined, and the sequence
numbers of statements that refer to the label.

Messages:

�10� A list of the general error messages not listed in the source section that
were encountered during processing of the command definition statements,
if any. For each message, this section contains the message identifier, the
sequence number of where the error occurred, the severity, and the
message.

Message summary:

�11� A summary of the number of messages issued during processing of the
command definition statements. The total number is given along with
totals by severity.

�12� A completion message is printed following the message summary.

Errors Encountered when Processing Command Definition
Statements

The types of errors that are caught during processing of the command definition
statements include syntax errors, references to keywords and labels not defined,
and missing statements. The following types of errors detected by the command
definition compiler stop the command from being created (severity codes are
ignored).
v Value errors
v Syntax errors

Even after an error that stops the command from being created is encountered, the
command definition compiler continues to check the source for other errors. Syntax
errors and fixed value errors prevent final checking that identifies errors in user
names and values or references to keywords or labels. Checking for syntax errors
and fixed value errors does continue. This lets you see and correct as many errors
as possible before you try to create the command again. To correct errors made in

the source statements, see the ADTS for AS/400: Screen Design Aid book.

In the command definition source list, an error condition that relates directly to a
specific source statement is listed after that command. See “Command Definition
Source Listing” on page 328 for an example of these inline messages. Messages that
do not relate to a specific source statement but are more general in nature are
listed in a messages section of the list, not inline with source statements.

330 CL Programming V5R1

c0926040.pdf

Displaying a Command Definition
You can use the Display Command (DSPCMD) command to display or print the
values that were specified as parameters on the CRTCMD command. The
DSPCMD command displays the following information for your commands or for
IBM-supplied commands:
v Qualified command name. The library name is the name of the library in which

the command being displayed is located.
v Qualified name of the command processing program. The library name is the

name of the library in which the command processing program resided when
the command was created if a library name was specified on the CRTCMD or
CHGCMD command. If a library name was not specified, *LIBL is displayed as
the library qualifier. If the CPP is a REXX procedure, *REXX is shown.

v Qualified source file name, if the source file was a database file. The library
name is the name of the library in which the source file was located when the
CRTCMD command was processed. This field is blank if the source file was not
a database file.

v Source file member name, if the source file was a database source file.
v If the CPP is a REXX procedure, the following information is shown:

– REXX procedure member name
– Qualified REXX source file name where the REXX procedure is located
– REXX command environment
– REXX exit programs

v Qualified name of the validity checking program. The library name is the name
of the library in which the program resided when the command was created if a
library name was specified on the CRTCMD or CHGCMD command. If a library
name was not specified, *LIBL is displayed as the library qualifier.

v Valid modes of operation.
v Valid environments in which the command can be run.
v The positional limit for the command. *NOMAX is displayed if no positional

limit exists for the command.
v Qualified name of the prompt message file. The library name is the name of the

library in which the message file was located when the CRTCMD command was
run. *NONE is displayed if no prompt message file exists for the command.

v Qualified name of the message file for the DEP statement. If a library name was
specified for the message file when the command was created, that library name
is displayed. If the library list was used when the command was created, *LIBL
is displayed. *NONE is displayed if no DEP message file exists for the
command.

v Qualified name of the help panel group.
v The help identifier name for the command.
v Qualified name for the prompt override program.
v Text associated with the command. Blanks are displayed if no text exists for the

command.
v Indicator for whether the command prompt is enabled for conversion to a

graphical user interface.
v Threadsafe indicator.
v Multithreaded job action, if the command is not threadsafe.

Chapter 9. Defining Commands 331

Effect of Changing the Command Definition of a Command in a
Procedure or Program

When a CL module or program is created, the command definitions of the
commands in the procedure or program are used to generate the module or
program. When the CL procedure or program is run, the command definitions are
also used. If you specify a library name for the command in the CL procedure or
program, the command must be in the same library at procedure creation time and
at run time. If you specify *LIBL for the command in the CL procedure or
program, the command is found, both at procedure creation and run time, using
the library list (*LIBL).

You can make the following changes to the command definition statements for a
command without re-creating the modules and programs that use the command.
Some of these changes are made to the command definition statements source,
which requires the command to be re-created. Other changes can be made with the
Change Command (CHGCMD) command.
v Add an optional parameter in any position. Adding an optional parameter

before the positional limit may affect any procedures, programs, and batch input
streams that have the parameters specified in positional form.

v Change the REL and RANGE checks to be less restrictive.
v Add new special values. However, this could change the action of the procedure

or program if the value could be specified before the change.
v Change the order of the parameters. However, changing the order of the

parameters that precede the positional limit will affect any procedures, programs,
and batch input streams that have the parameters specified in positional form.

v Increase the number of optional elements in a simple list.
v Change default values. However, this may affect the operation of the procedure

or program.
v Decrease the number of required list items in a simple list.
v Change a parameter from required to optional.
v Change RSTD from *YES to *NO.
v Increase the length when FULL(*NO) is specified.
v Change FULL from *YES to *NO.
v Change the PROMPT text.
v Change the ALLOW value to be less restrictive.
v Change the name of the command processing program if the new command

processing program accepts the proper number and type of parameters.
v Change the name of the validity checking program if the new validity checking

program accepts the proper number and type of parameters.
v Change the mode in which the command can be run as long as the new mode

does not affect the old mode of the same command that is used in a CL
procedure or program.

v Change the TYPE to a compatible and less restrictive value. For example, change
the TYPE from *NAME to *CHAR.

v Change the MAX value to greater than 1.
v Change the PASSATR and VARY values.

The following changes can be made to the command definition statements
depending on what was specified in the CL procedure or program in which the
command is used:

332 CL Programming V5R1

v Remove a parameter.
v Change the RANGE and REL values to be more restrictive.
v Remove special values.
v Decrease the number of elements allowed in a list.
v Change the TYPE value to be more restrictive or incompatible with the original

TYPE value. For example, change the TYPE value from *CHAR to *NAME or
change *PNAME to *CHAR.

v Add a SNGVAL parameter that was previously a list item.
v Change the name of an optional parameter.
v Remove a value from a list of values.
v Increase the number of required list items.
v Change a SNGVAL parameter to a SPCVAL parameter.
v Change a simple list to a mixed list of like elements.
v Change an optional parameter to a constant.
v Change RTNVAL from *YES to *NO, or from *NO to *YES.
v Change case value from *MIXED to *MONO.

The following changes can be made to the command definition statements, but
may cause the procedure or program that uses the command to function
differently:
v Change the meaning of a value.
v Change the default value.
v Change a SNGVAL parameter to a SPCVAL parameter.
v Change a value to a SNGVAL parameter.
v Change a list to a list within a list.
v Change case value from *MIXED to *MONO.

The following changes to the command definition statements require that the
procedures or program using the command be re-created.
v Addition of a new required parameter.
v Removal of a required parameter.
v Changing the name of a required parameter.
v Changing a required parameter to a constant.
v Changing the command processing program to or from *REXX

In addition, if you specify *LIBL as the qualifier on the name of the command
processing program or the validity checking when the command is created or
changed, you can move the command processing program or the validity checking
to another library in the library list without changing the command definition
statements.

Changing Command Defaults
You can change the default value of a command keyword by using the Change
Command Default (CHGCMDDFT) command. Refer to the CL and APIs section of
the Programming category of the iSeries Information Center for details. The
keyword must have an existing default in order to allow a change to a new default
value. You can change either an IBM-supplied command or a user-written
command. You must use caution when changing defaults for IBM-supplied
commands. The following are recommendations for changing defaults:

Chapter 9. Defining Commands 333

1. Use the Create Duplicate Object (CRTDUPOBJ) command to create a duplicate
of the IBM-supplied command that you want to change in a user library. This
allows other users on the system to use the IBM-supplied defaults if necessary.
Use the Change System Library List (CHGSYSLIBL) command to move the user
library ahead of QSYS or any other system-supplied libraries in the library list.
This will allow the user to use the changed command without using the library
qualifier.
Changes to commands that are needed on a system-wide basis should be made
in a user library. Additionally, you should add the user library name to the
QSYSLIBL system value ahead of QSYS. The changed command is used
system-wide. If you need to run an application that uses the IBM-supplied
default, do so by using the Change System Library List (CHGSYSLIBL)
command. Doing this removes the special library or library-qualify to the
affected commands.

2. Installing a new release of a licensed program replaces all IBM-supplied
commands for the licensed program on the machine. You should use a CL
program to make changes to commands when installing a new release. This
way you can run the CL program to duplicate the new commands to pick up
any new keywords and make the command default changes.
If an IBM-supplied command has new keywords, a copy of the command from
a previous release may not run properly.
The following is an example of a CL program that is used to delete the old
version and create the new changed command:
PGM
DLTCMD USRQSYS/SIGNOFF
CRTDUPOBJ OBJ(SIGNOFF) FROMLIB(QSYS) OBJTYPE(*CMD) +

TOLIB(USRQSYS) NEWOBJ(*SAME)
CHGCMDDFT CMD(USRQSYS/SIGNOFF) NEWDFT('LOG(*LIST)')
.
.
Repeat the DLTCMD, CRTDUPOBJ and CHGCMDDFT for each
command you want changed
.
.
ENDPGM

You can track changes you make to CL command defaults for use when you install
a new release. To track changes, register an exit program for exit point
QIBM_QCA_RTV_COMMAND. The exit program is called when you run the
CHGCMDDFT command. One of the parameters passed to the exit program is the
command string that is being run. You can save the command string to a source
file and then compile the source file into a CL program. Finally, you use this
program to reproduce the changes you have made to command defaults during
the previous release. For more information, see the Command Analyzer Retrieve
exit program description in the CL and APIs section of the Programming category
of the iSeries Information Center.

The following steps can be used to build the NEWDFT command string for the
CHGCMDDFT command. The USRQSYS/CRTCLPGM command is used in this
example.
1. Create a duplicate copy of the command to be changed in a user library with

the following command:
CRTDUPOBJ OBJ(CRTCLPGM) FROMLIB(QSYS) OBJTYPE(*CMD) +

TOLIB(USRQSYS) NEWOBJ(*SAME)

2. Enter the command name to be changed in a source file referred to by the
Source Entry Utility (SEU).

334 CL Programming V5R1

3. Press F4 to call the command prompter.
4. Enter any new default values for the keywords you want changed. In this

example, AUT(*EXCLUDE) and TEXT('Isn''t this nice text') is entered.
5. Required keywords cannot have a default value; however, in order to get the

command string in the source file, a valid value must be specified for each
required keyword. Specify PGM1 for the PGM parameter.

6. Press the Enter key to put the command string into the source file. The
command string returned would look like this:
USRQSYS/CRTCLPGM PGM(PGM1) AUT(*EXCLUDE) +
TEXT('Isn''t this nice text')

7. Remove the required keywords from the command string:
USRQSYS/CRTCLPGM AUT(*EXCLUDE) +
TEXT('Isn''t this nice text')

Remember that you may change only parameters, elements, or qualifiers that
have existing default values. Specifying a value for a parameter, element, or
qualifier that does not have an existing default value makes no default
changes.

8. Insert the CHGCMDDFT at the beginning as shown in the example below:
CHGCMDDFT USRQSYS/CRTCLPGM AUT(*EXCLUDE) +
TEXT('Isn''t this nice text')

9. You must quote the input for the NEWDFT keyword as shown in the example
below:
CHGCMDDFT USRQSYS/CRTCLPGM 'AUT(*EXCLUDE) +
TEXT('Isn''t this nice text')'

10. Since there are embedded apostrophes in the NEWDFT value, you must
double them for the process to run properly:
CHGCMDDFT USRQSYS/CRTCLPGM 'AUT(*EXCLUDE) +
TEXT(''Isn''''t this nice text'')'

11. Now if you press F4 to call the command prompter, then F11 to request
keyword prompting, you will see the following display:
Command : CMD R CRTCLPGM

Library : USRQSYS
New default parameter string: NEWDFT R 'AUT(*EXCLUDE)
TEXT(''Isn''''t this nice text'')'

12. Now if you press the Enter key, the CHGCMDDFT command string is:
CHGCMDDFT CMD(USRQSYS/CRTCLPGM) NEWDFT('AUT(*EXCLUDE) +

TEXT(''Isn''''t this nice text'')')

13. Press F1 to exit SEU and create and run the CL program or procedure.
14. The USRQSYS/CRTCLPGM will have default values of *EXCLUDE for AUT and

'Isn''t this nice text' for TEXT.

Example 1
To provide a default value of *NOMAX for the MAXMBRS keyword of command
CRTPF, do the following:

CRTPF FILE(FILE1) RCDLEN(96) MAXMBRS(1)
.
.

CHGCMDDFT CMD(CRTPF) NEWDFT('MAXMBRS(*NOMAX)')

Example 2
To provide a default value of 10 for the MAXMBRS keyword of the command
CRTPF, do the following:

Chapter 9. Defining Commands 335

CRTPF FILE(FILE1) RCDLEN(96) MAXMBRS(*NOMAX)
.
.

CHGCMDDFT CMD(CRTPF) NEWDFT('MAXMBRS(10)')

Example 3
The following allows you to provide a default value of LIB001 for the first qualifier
of the SRCFILE keyword and FILE001 for the second qualifier of the SRCFILE
keyword for the command CRTCLPGM. The AUT keyword now have a default
value of *EXCLUDE.

CRTCLPGM PGM(PROGRAM1) SRCFILE(*LIBL/QCMDSRC)
.
.

CHGCMDDFT CMD(CRTCLPGM) +
NEWDFT('SRCFILE(LIB001/FILE001) AUT(*EXCLUDE)')

Example 4
The following provides a default value of ’Isn’t this print text’ for the PRTTXT
keyword of the command CHGJOB. Since the NEWDFT keyword has embedded
apostrophes, you must not double these apostrophes, or the process will not run
correctly.
CHGJOB PRTTXT('Isn''t this print text')

.

.
CHGCMDDFT CMD(CHGJOB) +

NEWDFT('PRTTXT(''Isn''''t this print text'')')

Example 5
The following provides a default value of QGPL for the first qualifier (library
name) of the first list item of the DTAMBRS keyword for the command CRTLF.
The new default value for the second list item of the DTAMBRS keyword (member
name) is MBR1.

CRTLF FILE(FILE1) DTAMBRS(*ALL)
.
.

CHGCMDDFT CMD(CRTLF) +
NEWDFT('DTAMBRS((QGPL/*N (MBR1)))')

Since *ALL is a SNGVAL (single value) for the entire DTAMBRS list, the defaults
of *CURRENT for the library name and *NONE for the member name do not
show up on the original command prompt display. The defaults *CURRENT and
*NONE can be changed to a new default value but do not show up on the original
prompt display because of the *ALL single value for the entire DTAMBRS list.

Example 6
Create a command that will display the spool files for a job:

CRTDUPOBJ OBJ(WRKJOB) FROMLIB(QSYS) +
TOLIB(MYLIB) NEWOBJ(WRKJOBSPLF)

WRKJOBSPLF OPTION(*SPLF)
.
.

CHGCMDDFT CMD(MYLIB/WRKJOBSPLF) +
NEWDFT('OPTION(*SPLF)')

Writing a Command Processing Program or Procedure
A command processing program (CPP) can be a CL or HLL program, or a REXX
procedure. Programs written in CL or HLL can also be called directly with the
CALL CL command. REXX procedures can be called directly using the Start REXX
Procedure (STRREXPRC) command. The command processing program does not

336 CL Programming V5R1

need to exist when the Create Command (CRTCMD) command is run. If *LIBL is
used as the library qualifier, the library list is used to find the command processing
program when the created command is run.

Messages issued as a result of running the command processing program can be
sent to the job message queue and automatically displayed or printed. You can
send displays to the requesting display station.

Notes:

1. The parameters defined on the command are passed individually in the order
they were defined (the PARM statement order).

2. Decimal values are passed to HLL and CL programs as packed decimal values
of the length specified in the PARM statement.

3. Character, name, and logical values are passed to HLL and CL programs as a
character string of the length defined in the PARM statement.

Writing a CL or HLL Command Processing Program
Figure 15 shows the relationship between the Create Command (CRTCMD)
command, the command definition statements, and the command processing
program.
If the command processing program is a program written in CL, the variables that

receive the parameter values must be declared to correspond to the type and
length specified for each PARM statement. The following shows this
correspondence. (Note the declare for the parameter ORDER in Figure 15.)

Figure 15. Command Relationships for CL and HLL

Chapter 9. Defining Commands 337

PARM Statement
Type

PARM Statement
Length

Declared Variable
Type

Declared Variable
Length

*DEC x y1 *DEC x y1

*LGL 1 *LGL 1

*CHAR n *CHAR ≤n2

*NAME n *CHAR ≤n2

*CNAME n *CHAR ≤n2

*SNAME n *CHAR ≤n2

*GENERIC n *CHAR ≤n2

*CMDSTR n *CHAR ≤n2

*DATE 7 *CHAR 7

*TIME 6 *CHAR 6

*INT2 n *CHAR 2

*INT4 n *CHAR 4

*UINT2 n *CHAR 2

*UINT4 n *CHAR 4

:
1 x equals the length and y is the number of decimal positions.
2 For character variables, if the length of the value passed is greater than the length

declared, the value is truncated to the length declared. If RTNVAL(*YES) is
specified, the length declared must equal the length defined on the PARM
statement.

A program written in CL used as a command processing program can process
binary values (such as *INT2 or *INT4). The program should receive these values
as character fields. The binary built-in function (%BINARY) can be used to convert
them to decimal values.

The difference between *INT2 or *INT4 and *UINT2 or *UINT4 is that the *INT 2
and *INT4 types are signed integers and the *UINT2 and *UINT4 types are
unsigned integers. The default value for both *UINT2 and *UINT4 is 0. The
*UINT2 and *UINT4 types have the same restrictions as the *INT and *INT4 types.

Note: The %BINARY built-in function is for use with signed integers. There is no
corresponding function for unsigned integers.

For examples of command processing programs, see “Examples of Defining and
Creating Commands” on page 340.

Writing a REXX Command Processing Procedure
Figure 16 on page 339 shows the relationship between the Create Command
(CRTCMD) command, the command definition statements, and the command
processing procedure for REXX.

338 CL Programming V5R1

Writing a Validity Checking Program
If you write a validity checking program for your command, specify the name of
the validity checking program on the VLDCKR parameter on the Create Command
(CRTCMD) command. The program does not have to exist when the CRTCMD
command is run. If *LIBL is used as the library qualifier, the library list is used to
find the validity checking program when the created command is run.

The following are two considerations for validity checking programs:
v The validity checking program is called only if the command syntax is correct.

All parameters are passed to the program the same as they are passed to a
command processing program.

v You should not use the validity checking program to change parameter values
because the changed values are not always passed to the command processing
program.

The remainder of this section describes how to send messages from a validity
checking program that is written in CL.

If the validity checking program detects an error, it should send a diagnostic
message to the previous call and then send escape message CPF0002. For example,
if you need a message saying that an account number is no longer valid, you add
a message description similar to the following to a message file:
ADDMSGD MSG('Account number &2 no longer valid') +

MSGID(USR0012) +
MSGF(QGPL/ACTMSG) +
SEV(40) +
FMT((*CHAR 4) (*CHAR 6))

Note that the substitution variable &1 is not in the message but is defined in the
FMT parameter as 4 characters. &1 is reserved for use by the system and must
always be 4 characters. If the substitution variable &1 is the only substitution
variable defined in the message, you must ensure that the fourth byte of the
message data does not contain a blank when you send the message.

Figure 16. Command Relationships for REXX

Chapter 9. Defining Commands 339

This message can be sent to the system by specifying the following in the validity
checking:
SNDPGMMSG MSGID(USR0012) MSGF(QGPL/ACTMSG) +

MSGDTA('0000' || &ACCOUNT) MSGTYPE(*DIAG)

After the validity checking has sent all the necessary diagnostic messages, it should
then send message CPF0002. The Send Program Message (SNDPGMMSG)
command to send message CPF0002 looks like this:
SNDPGMMSG MSGID(CPF0002) MSGF(QCPFMSG) +

MSGTYPE(*ESCAPE)

When the system receives message CPF0002, it sends message CPF0001 to the
calling program to indicate that errors have been found.

Message CPD0006 has been defined for use by the user-defined validity checking
programs. An immediate message can be sent in the message data. Note in the
following example that the message must be preceded by four character zeros.

The following shows an example of a validity checking program:
PGM PARM(&PARM01)
DCL VAR(&PARM01) TYPE(*CHAR) LEN(10)
IF COND(&PARM01 *EQ 'ERROR') THEN(DO)
SNDPGMMSG MSGID(CPD0006) MSGF(QCPFMSG) +

MSGDTA('0000 DIAGNOSTIC MESSAGE FROM USER-DEFINED +
VALIDITY CHECKER INDICATING THAT PARM01 IS IN ERROR.') +
MSGTYPE(*DIAG)

SNDPGMMSG MSGID(CPF0002) MSGF(QCPFMSG) MSGTYPE(*ESCAPE)
ENDDO
ELSE
.
.
.
ENDPGM

Examples of Defining and Creating Commands
This section contains examples of defining and creating commands.

Calling Application Programs
You can create commands to call application programs. If you create a command to
call an application program, OS/400 performs validity checking on the parameters
passed to the program. However, if you use the CALL command to call an
application program, the application program must perform the validity checking.

For example, a label writing program (LBLWRT) writes any number of labels for a
specific customer on either 1- or 2-part forms. When the LBLWRT program is run,
it requires three parameters: the customer number, the number of labels, and the
type of form to be used (ONE or TWO).

If the program were called directly from the display, the second parameter would
be in the wrong format for the program. A numeric constant on the CALL
command is always 15 digits with 5 decimal positions, and the LBLWRT program
expects a 3-digit number with no decimal positions. A command can be created
that provides the data in the format required by the program.

The command definition statements for a command to call the LBLWRT program
are:

340 CL Programming V5R1

CMD PROMPT('Label Writing Program')
PARM KWD(CUSNBR) TYPE(*CHAR) LEN(5) MIN(1) +

PROMPT('Customer Number')
PARM KWD(COUNT) TYPE(*DEC) LEN(3) DFT(20) RANGE(10 150) +

PROMPT('Number of Labels')
PARM KWD(FRMTYP) TYPE(*CHAR) LEN(3) DFT('TWO') RSTD(*YES) +

SPCVAL(('ONE') ('TWO') ('1' 'ONE') ('2' 'TWO')) +
PROMPT('Form Type')

For the second parameter, COUNT, a default value of 20 is specified and the
RANGE parameter allows only values from 10 to 150 to be entered for the number
of labels.

For the third parameter, FRMTYP, the SPCVAL parameter allows the display
station user to enter 'ONE', 'TWO', '1', or '2' for this parameter. The program
expects the value 'ONE' or 'TWO'; however, if the display station user enters '1' or
'2', the command makes the necessary substitution for the FRMTYP parameter.

The command processing program for this command is the application program
LBLWRT. If the application program were an RPG for OS/400 program, the
following specifications would be made in the program to receive the parameters:
*ENTRY PLIST

PARM CUST 5
PARM COUNT 30
PARM FORM 3

The CRTCMD command is:
CRTCMD CMD(LBLWRT) PGM(LBLWRT) SRCMBR(LBLWRT)

Substituting a Default Value
You can create a command that provides defaults for an IBM-supplied command
and reduces the entries that the display station user must make. For example, you
could create a Save Library on Tape (SAVLIBTAP) command that initializes a tape
and saves a library on the tape device TAPE1. This command provides defaults for
the standard Save Library (SAVLIB) command parameters and requires the display
station user to specify only the library name.

The command definition statements for the SAVLIBTAP command are:
CMD PROMPT('Save Library to Tape')
PARM KWD(LIB) TYPE(*NAME) LEN(10) MIN(1) +

PROMPT('Library Name')

The command processing program is:
PGM PARM(&LIB)
DCL &LIB TYPE(*CHAR) LEN(10)
INZTAP DEV(TAPE1) CHECK(*NO)
SAVLIB LIB(&LIB) DEV(TAPE1)
ENDPGM

The CRTCMD command is:
CRTCMD CMD(SAVLIBTAP) PGM(SAVLIBTAP) SRCMBR(SAVLIBTAP)

Displaying an Output Queue
You can create a command to display an output queue that defaults to display the
output queue PGMR. The following command, DSPOQ, also allows the display
station user to display any queue on the library list and provides a print option.

Chapter 9. Defining Commands 341

The command definition statements for the DSPOQ command are:
CMD PROMPT('WRKOUTQ.-Default to PGMR')
PARM KWD(OUTQ) TYPE(*NAME) LEN(10) DFT(PGMR) +

PROMPT('Output queue')
PARM KWD(OUTPUT) TYPE(*CHAR) LEN(6) DFT(*) RSTD(*YES)

VALUES(* *PRINT) PROMPT('Output')

The RSTD parameter on the second PARM statement specifies that the entry can
only be one of the list of values.

The command processing program for the DSPOQ command is:
PGM PARM(&OUTQ &OUTPUT)
DCL &OUTQ TYPE(*CHAR) LEN(10)
DCL &OUTPUT TYPE(*CHAR) LEN(6)
WRKOUTQ OUTQ(*LIBL/&OUTQ) OUTPUT(&OUTPUT)
ENDPGM

The CRTCMD command is:
CRTCMD CMD(DSPOQ) PGM(DSPOQ) SRCMBR(DSPOQ)

The following command, DSPOQ1, is a variation of the preceding command. This
command allows the work station user to enter a qualified name for the output
queue name, and the command defaults to *LIBL for the library name.

The command definition statements for the DSPOQ1 command are:
CMD PROMPT('WRKOUTQ.-Default to PGMR')
PARM KWD(OUTQ) TYPE(QUAL1) +

PROMPT('Output queue:')
PARM KWD(OUTPUT) TYPE(*CHAR) LEN(6) RSTD(*YES) +

VALUES(* *PRINT) DFT(*) +
PROMPT('Output')

QUAL1: QUAL TYPE(*NAME) LEN(10) DFT(PGMR)
QUAL TYPE(*NAME) LEN(10) DFT(*LIBL) +
SPCVAL(*LIBL)

The QUAL statements are used to define the qualified name that the user can enter
for the OUTQ parameter. If the user does not enter a name, *LIBL/PGMR is used.
The SPCVAL parameter is used because any library name must follow the rules for
a valid name (for example, begin with A through Z), and the value *LIBL breaks
these rules. The SPCVAL parameter specifies that if *LIBL is entered, OS/400 is to
ignore the name validation rules.

The command processing program for the DSPOQ1 command is:
PGM PARM(&OUTQ &OUTPUT)
DCL &OUTQ TYPE(*CHAR) LEN(20)
DCL &OBJNAM TYPE(*CHAR) LEN(10)
DCL &LIB TYPE(*CHAR) LEN(10)
DCL &OUTPUT TYPE(*CHAR) LEN(6)
CHGVAR &OBJNAM %SUBSTRING(&OUTQ 1 10)
CHGVAR &LIB %SUBSTRING(&OUTQ 11 10)
WRKOUTQ OUTQ(&LIB/&OBJNAM) OUTPUT(&OUTPUT)
ENDPGM

Because a qualified name is passed from a command as a 20-character variable, the
substring built-in function (%SUBSTRING or %SST) must be used in this program
to put the qualified name in the proper CL syntax.

342 CL Programming V5R1

Displaying Messages from IBM Commands More Than Once
The CLROUTQ command issues the completion message CPF3417, which describes
the number of entries deleted, the number not deleted, and the name of the output
queue. If the CLROUTQ command is run within a CPP, the message is still issued
but it becomes a detailed message because it is not issued directly by the CPP. For
example, if a user-defined CLROUTQ command was issued from the Programmer
Menu, the message would not be displayed. You can, however, receive an IBM
message and reissue it from your CPP.

For example, you create a command named CQ2 to clear the output queue
QPRINT2.

The command definition statements for the CQ2 command are:
CMD PROMPT ('Clear QPRINT2 output queue')

The CRTCMD command is:
CRTCMD CMD(CQ2) PGM(CQ2)

The CPP, which receives the completion message and displays it, is as follows:
PGM /* Clear QPRINT2 output queue CPP */
DCL &MSGID TYPE(*CHAR) LEN(7)
DCL &MSGDTA TYPE(*CHAR) LEN(100)
CLROUTQ QPRINT2
RCVMSG MSGID(&MSGID) MSGDTA(&MSGDTA) MSGTYPE(*COMP)
SNDPGMMSG MSGID(&MSGID) MSGF(QCPFMSG) MSGDTA(&MSGDTA) MSGTYPE(*COMP)
ENDPGM

The MSGDTA length for message CPF3417 is 28 bytes. However, by defining the
variable &MSGDTA as 100 bytes, the same approach can be used on most
messages because any unused positions are ignored.

Creating Abbreviated Commands

Example 1
You can create your own abbreviated commands to simplify IBM-supplied
commands or to restrict the parameters allowed for users. For example, to allow
users the ability to change only the printer device parameter, you can create your
own Change Job (CJ) command. Following are three steps to create and implement
your own CJ command:
v Step one: Command definition source statements

CMD PROMPT('Change Job')

PARM KWD(PRTDEV) +
TYPE(*NAME) +
LEN(10) +
SPCVAL(*SAME *USRPRF *SYSVAL *WRKSTN) +
PROMPT('Printer Device')

v Step two: Processing program
PGM PARM(&PRTDEV)
DCL VAR(&PRTDEV) TYPE(*CHAR) LEN(10)
CHGJOB PRTDEV(&PRTDEV)
ENDPGM

v Step three: CRTCMD command
CRTCMD CMD(CJ) PGM(CJ) SRCMBR(CJ)

Chapter 9. Defining Commands 343

Example 2
You could create an abbreviated command called DW1 to start the printer writer
W1.

The command definition statement is:
CMD /* Start printer writer command */

The command processing program is:
PGM
STRPRTWTR DEV(QSYSPRT) OUTQ(QPRINT) WTR(W1)
ENDPGM

The CRTCMD command is:
CRTCMD CMD(DW1) PGM(DW1) SRCMBR(DW1)

Deleting Files and Source Members
You can create a command to delete files and their corresponding source members
in QDDSSRC.

The command definition statements for the command named DFS are:
CMD PROMPT('Delete File and Source')
PARM KWD(FILE) TYPE(*NAME) LEN(10) PROMPT('File Name')

The command processing program is written assuming that the name of the file
and the source file member are the same. The program also assumes that both the
file and the source file are on the library list. If the program cannot delete the file,
an information message is sent and the command attempts to remove the source
member. If the source member does not exist, an escape message is sent.

The command processing program is:
PGM PARM(&FILE)
DCL &FILE TYPE(*CHAR) LEN(10)
DCL &MSGID TYPE(*CHAR) LEN(7)
DCL &MSGDTA TYPE(*CHAR) LEN(80)
DCL &SRCFILE TYPE(*CHAR) LEN(10)
MONMSG MSGID(CPF0000) EXEC(GOTO ERROR) /* CATCH ALL */
DLTF &FILE
MONMSG MSGID(CPF2105) EXEC(DO) /* NOT FOUND */
RCVMSG MSGTYPE(*EXCP) MSGID(&MSGID) MSGDTA(&MSGDTA)
SNDPGMMSG MSGID(&MSGID) MSGF(QCPFMSG) MSGTYPE(*INFO) +

MSGDTA(&MSGDTA)
GOTO TRYDDS
ENDDO
RCVMSG MSGTYPE(*COMP) MSGID(&MSGID) MSGDTA(&MSGDTA)

/* DELETE FILE COMPLETED */
SNDPGMMSG MSGID(&MSGID) MSGF(QCPFMSG) MSGTYPE(*COMP) +

MSGDTA(&MSGDTA) /* TRY IN QDDSSRC FILE */
TRYDDS: CHKOBJ QDDSSRC OBJTYPE(*FILE) MBR(&FILE)

RMVM QDDSSRC MBR(&FILE)
CHGVAR &SRCFILE 'QDDSSRC'
GOTO END

END: RCVMSG MSGTYPE(*COMP) MSGID(&MSGID) MSGDTA(&MSGDTA)
/* REMOVE MEMBER COMPLETED */

SNDPGMMSG MSGID(&MSGID) MSGF(QCPFMSG) MSGTYPE(*COMP) +
MSGDTA(&MSGDTA)
RETURN

ERROR: RCVMSG MSGTYPE(*EXCP) MSGID(&MSGID) MSGDTA(&MSGDTA)

344 CL Programming V5R1

/* ESCAPE MESSAGE */
SNDPGMMSG MSGID(&MSGID) MSGF(QCPFMSG) MSGTYPE(*ESCAPE) +

MSGDTA(&MSGDTA)
ENDPGM

Deleting Program Objects
You can create a command to delete HLL programs and their corresponding source
members.

The command definition statements for the command named DPS are:
CMD PROMPT ('Delete Program and Source')
PARM KWD(PGM) TYPE(*NAME) LEN(10) PROMPT('Program Name')

The command processing program is written assuming that the name of the
program and the source file member are the same. Additionally, you have to use
the IBM-supplied source files of QCLSRC, QRPGSRC, and QCBLSRC. The program
also assumes that both the program and the source file are on the library list. If
you cannot open the program, the system sends an information message, and the
command attempts to remove the source member. If the source member does not
exist, the system sends an escape message. The command processing program is:
PGM PARM(&PGM)
DCL &PGM TYPE(*CHAR) LEN(10)
DCL &MSGID TYPE(*CHAR) LEN(7)
DCL &MSGDTA TYPE(*CHAR) LEN(80)
DCL &SRCFILE TYPE(*CHAR) LEN(10)
MONMSG MSGID(CPF0000) EXEC(GOTO ERROR) /* CATCH ALL */
DLTPGM &PGM
MONMSG MSGID(CPF2105) EXEC(DO) /* NOT FOUND*/
RCVMSG MSGTYPE(*EXCP) MSGID(&MSGID) MSGDTA(&MSGDTA)
SNDPGMMSG MSGID(&MSGID) MSGF(QCPFMSG) MSGTYPE(*INFO) +

MSGDTA(&MSGDTA)
GOTO TRYCL /* TRY TO DELETE SOURCE MEMBER */
ENDDO
RCVMSG MSGTYPE(*COMP) MSGID(&MSGID) MSGDTA(&MSGDTA)

/* DELETE PROGRAM COMPLETED */
SNDPGMMSG MSGID(&MSGID) MSGF(QCPFMSG) MSGTYPE(*COMP) +

MSGDTA(&MSGDTA) /* TRY IN QCLSRC */
TRYCL: CHKOBJ QCLSRC OBJTYPE(*FILE) MBR(&PGM)

MONMSG MSGID(CPF9815) EXEC(GOTO TRYRPG) /* NO CL MEMBER */
RMVM QCLSRC MBR(&PGM)
CHGVAR &SRCFILE 'QCLSRC'
GOTO END

TRYRPG: /* TRY IN QRPGSRC FILE */
CHKOBJ QRPGSRC OBJTYPE(*FILE) MBR(&PGM)
MONMSG MSGID(CPF9815) EXEC(GOTO TRYCBL) /* NO RPG MEMBER */
RMVM QRPGSRC MBR(&PGM)
CHGVAR &SRCFILE 'QRPGSRC'
GOTO END

TRYCBL: /* TRY IN QCBLSRC FILE */
CHKOBJ QCBLSRC OBJTYPE(*FILE) MBR(&PGM)
/* ON LAST SOURCE FILE LET CPF0000 OCCUR FOR A NOT FOUND +
CONDITION */
RMVM QCBLSRC MBR(&PGM)
CHGVAR &SRCFILE 'QCBLSRC'
GOTO END

TRYNXT: /* INSERT ANY ADDITIONAL SOURCE FILES */
/* ADD MONMSG AFTER CHKOBJ IN TRYCBL AS WAS +

DONE IN TRYCL AND TRYRPG */
END: RCVMSG MSGTYPE(*COMP) MSGID(&MSGID) MSGDTA(&MSGDTA)

/*REMOVE MEMBER COMPLETED */
SNDPGMMSG MSGID(&MSGID) MSGF(QCPFMSG) MSGTYPE(*COMP) +

MSGDTA(&MSGDTA)
RETURN

Chapter 9. Defining Commands 345

ERROR: RCVMSG MSGTYPE(*EXCP) MSGID(&MSGID) MSGDTA(&MSGDTA)
/* ESCAPE MESSAGE */

SNDPGMMSG MSGID(&MSGID) MSGF(QCPFMSG) MSGTYPE(*ESCAPE) +
MSGDTA(&MSGDTA)

ENDPGM

346 CL Programming V5R1

Chapter 10. Debugging ILE Programs

Debugging allows you to detect, diagnose, and eliminate errors in a program. You
can debug your ILE programs by using the ILE source debugger. This chapter
describes how to use the ILE source debugger.

This chapter describes how to:
v Prepare your ILE program for debugging
v Start a debug session
v Add and remove programs from a debug session
v View the program source from a debug session
v Set and remove conditional and unconditional breakpoints
v Step through a program
v Display the value of variables
v Change the value of variables
v Display the attributes of variables
v Equate a shorthand name to a variable, expression, or debug command.

While debugging and testing your programs, ensure that your library list is
changed to direct the programs to a test library containing test data so that any
existing real data is not affected.

You can prevent database files in production libraries from being modified
unintentionally by using one of the following commands:
v Use the Start Debug (STRDBG) command and retain the default *NO for the

UPDPROD parameter.
v Use the Change Debug (CHGDBG) command.

See the CL and APIs section of the Programming category of the iSeries
Information Center for more information.

See ILE Concepts book, Chapter 10, ″Debugging Considerations″, for more
information on the ILE source debugger (including authority required to debug a
program or service program and the effects of optimization levels).

The ILE Source Debugger
The ILE source debugger is used to detect errors in and eliminate errors from
program objects and service programs. You can use the source debugger to:
v Debug any ILE CL or mixed ILE language application
v Monitor the flow of a program by using the debug commands while the

program is running.
v View the program source
v Set and remove conditional and unconditional breakpoints
v Step through a specified number of statements
v Display or change the value of variables
v Display the attributes of a variable

© Copyright IBM Corp. 1997, 2001 347

c4156065.pdf

When a program stops because of a breakpoint or a step command, the applicable
module object’s view is shown on the display at the point where the program
stopped. At this point you can enter more debug commands.

Before you can use the source debugger, you must use the debug options
(DBGVIEW) when you create a module object or program object using Create CL
Module (CRTCLMOD) or Create Bound CL (CRTBNDCL). After you set the
breakpoints or other ILE source debugger options, you can call the program.

Debug Commands
Many debug commands are available for use with the ILE source debugger. The
debug commands and their parameters are entered on the debug command line
displayed on the bottom of the Display Module Source and Evaluate Expression
displays. These commands can be entered in upper case, lower case, or mixed case.

Note: The debug commands entered on the source debugger command line are
not CL commands.

Table 9 summarizes these debug commands. The online help for the ILE source
debugger describes the debug commands and explains their allowed abbreviations.

Table 9. ILE source debugger commands

Debug
Command Description

ATTR Permits you to display the attributes of a variable. The attributes are
the size and type of the variable as recorded in the debug symbol table.

BREAK Permits you to enter either an unconditional or conditional breakpoint
at a position in the program being tested. Use BREAK position WHEN
expression to enter a conditional breakpoint.

CLEAR Permits you to remove conditional and unconditional breakpoints.

DISPLAY Allows you to display the names and definitions assigned by using the
EQUATE command. It also allows you to display a different source
module than the one currently shown on the Display Module Source
display. The module object must exist in the current program object.

EQUATE Allows you to assign an expression, variable, or debug command to a
name for shorthand use.

EVAL Allows you to display or change the value of a variable or to display
the value of expressions.

QUAL Allows you to define the scope of variables that appear in subsequent
EVAL commands.

STEP Allows you to run one or more statements of the program being
debugged.

FIND Searches the module currently displayed for a specified line-number or
string or text.

UP Moves the displayed window of source towards the beginning of the
view by the amount entered.

DOWN Moves the displayed window of source towards the end of the view by
the amount entered.

LEFT Moves the displayed window of source to the left by the number of
characters entered.

RIGHT Moves the displayed window of source to the right the number of
characters entered.

348 CL Programming V5R1

Table 9. ILE source debugger commands (continued)

Debug
Command Description

TOP Positions the view to show the first line.

BOTTOM Positions the view to show the last line.

NEXT Positions the view to the next breakpoint in the source currently
displayed.

PREVIOUS Positions the view to the previous breakpoint in the source currently
displayed.

HELP Shows the online help information for the available source debugger
commands.

SET Specifies if case sensitive or case insensitive searching is performed for
all subsequent FIND requests in the current debug session. It also
allows you to change the update production files value.

WATCH Displays a list of the currently active watch conditions.

Preparing a Program Object for a Debug Session
Before you can use the ILE source debugger, you must use either the CRTCLMOD
or CRTBNDCL command and specify the DBGVIEW option.

For each ILE CL module object that you want to debug, you can create one of
three views:
v Root source view
v Listing view
v Statement view

Using a Root Source View
A root source view contains the source statements of the source member.

To use the root source view with the ILE source debugger, the ILE CL compiler
creates the root source view while the module object (*MODULE) is being created.

Note: The module object is created by using references to locations of the source
statements in the root source member instead of copying the source
statements into the view. Therefore, you should not modify, rename, or
move root source members between the creation of the module and the
debugging of the module created from these members.

To debug an ILE CL module object by using a root source view, use the *SOURCE
or *ALL option on the DBGVIEW parameter for either the CRTCLMOD or
CRTBNDCL commands.

One way to create a root source view, is as follows:
CRTCLMOD
MODULE(MYLIB/MYPGM) SRCFILE(MYLIB/QCLLESRC) SRCMBR(MYPGM) TEXT('CL Program')
DBGVIEW(*SOURCE)

The Create CL Module (CRTCLMOD) command with *SOURCE for the DBGVIEW
parameter creates a root source view for module object MYPGM.

Chapter 10. Debugging ILE Programs 349

Using a Listing View
A listing view is similar to the source code portion of the compile listing or spool
file produced by the ILE CL compiler.

To debug an ILE CL module object by using a listing view, use the *LIST or *ALL
option on the DBGVIEW parameter for either the CRTCLMOD or CRTBNDCL
commands when you create the module.

One way to create a listing view is as follows:
CRTCLMOD
MODULE(MYLIB/MYPGM) SRCFILE(MYLIB/QCLLESRC) SRCMBR(MYPGM) TEXT('CL Program')
DBGVIEW(*LIST)

Using a Statement View
A statement view does not contain any CL source data. However, breakpoints can
be added by using procedure names and statement numbers found in the compiler
listing. To debug an ILE CL module object using a statement view, you need a
copy of the compiler listing.

Note: No data is shown in the Display Module Source display when a statement
view is used to debug an ILE CL module object.

To debug an ILE CL module object by using a statement view, use the *STMT,
*SOURCE, *LIST, or *ALL option on the DBGVIEW parameter for either the
CRTCLMOD or CRTBNDCL commands when you create the module.

One way to create a statement view is as follows:
CRTCLMOD
MODULE(MYLIB/MYPGM) SRCFILE(MYLIB/QLSRC) SRCMBR(MYPGM) TEXT('CL Program')
DBGVIEW(*STMT)

Starting the ILE Source Debugger
After you create the debug view, you can begin debugging your application.

To start the ILE source debugger, use the Start Debug (STRDBG) command. Once
the debugger is started, it remains active until you enter the End Debug
(ENDDBG) command.

Initially, you can add as many as twenty (20) program objects and twenty (20)
service programs to a debug session. Do this by using the Program (PGM) and
Service Program (SRVPGM) parameters on the STRDBG command. The program
objects can be any combination of ILE or original program model (OPM) programs.
To start a debug session with three program objects, type:
STRDBG PGM(*LIBL/MYPGM1 *LIBL/MYPGM2 *LIBL/MYPGM3) SRVPGM(*LIBL/SRVPGM1 *LIBL/SRVPGM2)
DBGMODSRC(*YES)

Note: You must have *CHANGE authority to a program object to add it to a
debug session.

After entering the STRDBG command, the Display Module Source display appears
for ILE program objects. The first module object bound to the program object with
debug data is shown.

350 CL Programming V5R1

The option to use the ILE source debugger to debug OPM programs exists for
users. OPM programs contain source debug data when created. Do this only by
specifying the OPTION(*SRCDBG) parameter of the Create CL Program
(CRTCLPGM) command. The source debug data is actually part of the program
object.

To add OPM programs that are created containing source debug data to the ILE
source debugger, use the Program (PGM) and OPM Source Level Debug
(OPMSRC) parameters on the STRDBG command. To start a debug session with an
OPM program created with source debug data, type:
STRDBG PGM(*LIBL/MYOPMPGM) OPMSRC(*YES) DSPMODSRC(*YES)

Adding Program Objects to a Debug Session
You can add more program objects to a debug session after starting the session.

To add ILE program objects and service programs to a debug session, use option 1
(Add program) and type the name of the program object on the first line of the
Work with Module List display. See Table 9 on page 348 for a list of ILE source
debugger commands. The Work with Module List display can be accessed from the
Display Module Source display by pressing F14 (Work with Module List). To add a
service program, change the default program type from *PGM to *SRVPGM. There
is no limit to the number of ILE program objects and service programs that can be
included in a debug session at any given time.

Work with Module List
System: SYSTEM01

Type options, press enter.
1=Add program 4=Remove program 5=Display module source
8=Work with module breakpoints

Opt Program/module Library Type
1 weekday2 *LIBL *PGM

DSPWKDAY MYLIB *PGM
DSPWKDAY *MODULE Selected
AABP1 *MODULE

Bottom
Command
===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel

Figure 17. Adding an ILE Program Object to a Debug Session. When the Enter is pressed,
program WEEKDAY2 is added to the debug session

Chapter 10. Debugging ILE Programs 351

When you have finished adding program objects to the debug session, press F3
(Exit) from the Work with Module List display to return to the Display Module
Source display. You can also use option 5 (Display Module Source) to select and
display a module.

To add OPM programs to a debug session, use the Add Program (ADDPGM)
command. A debug session can include up to twenty (20) OPM programs at any
given time. You can add OPM programs that contain source debug data to the
debug session by using option 1 (Add program) on the Work with Module List
display. (This is true provided the debug session allows OPM source level
debugging.) You can allow OPM source level debugging by starting the debug
session and by using the OPMSRC parameter on the STRDBG command. If the
OPMSRC parameter was not specified on the STRDBG command, activate OPM
source level debugging. Do this by using the OPM Source Level Debug (OPMSRC)
parameter on the Change Debug (CHGDBG) command. Alternately, you can
change the value of the OPM source debug support option by using the SET debug
command.

Removing Program Objects from a Debug Session
You can remove program objects from a debug session after starting the session.

To remove ILE program objects and service programs from a debug session, use
option 4 (Remove program), next to the program object you want to remove, on
the Work with Module List display. See Figure 19 on page 353. The Work with
Module List display can be accessed from the Display Module Source display by
pressing F14 (Work with Module List). To remove a service program, change the
default program type from *PGM to *SRVPGM.

Work with Module List
System: SYSTEM01

Type options, press enter.
1=Add program 4=Remove program 5=Display module source
8=Work with module breakpoints

Opt Program/module Library Type
WEEKDAY2 *LIBL *PGM
WEEKDAY2 MYLIB *PGM
WEEKDAY2 *MODULE
DSPWKDAY MYLIB *PGM
DSPWKDAY *MODULE Selected
AABP1 *MODULE

Bottom
Command
===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel
Program WEEKDAY2 added to source debugger.

Figure 18. Adding an ILE Program Object to a Debug Session. The information message at
the bottom of the display shows that program WEEKDAY2 was added to the debug session.

352 CL Programming V5R1

When you have finished removing program objects from the debug session, press
F3 (Exit) from the Work with Module List display to return to the Display Module
Source display.

Note: You must have *CHANGE authority to a program to remove it from a
debug session.

Work with Module List
System: SYSTEM01

Type options, press enter.
1=Add program 4=Remove program 5=Display module source
8=Work with module breakpoints

Opt Program/module Library Type
*LIBL *PGM

4 WEEKDAY2 MYLIB *PGM
WEEKDAY2 *MODULE
DSPWKDAY MYLIB *PGM
DSPWKDAY *MODULE Selected
AABP1 *MODULE

Bottom
Command
===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel

Figure 19. Removing an ILE Program Object from a Debug Session. When the Enter key is
pressed, program WEEKDAY2 is removed from the debug session.

Work with Module List
System: SYSTEM01

Type options, press enter.
1=Add program 4=Remove program 5=Display module source
8=Work with module breakpoints

Opt Program/module Library Type
*LIBL *PGM

DSPWKDAY MYLIB *PGM
DSPWKDAY *MODULE Selected
AABP1 *MODULE

Bottom
Command
===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel
Program WEEKDAY2 removed from source debugger.

Figure 20. Removing an ILE Program Object from a Debug Session

Chapter 10. Debugging ILE Programs 353

To remove OPM programs from a debug session, use the Remove Program
(RMVPGM) command. If OPM source level debugging is active, OPM programs
that are created with source debug data may be listed on the Work with Module
List display. You can remove these programs from the debug session by using
option 4 (Remove program) on the Work with Module List display.

Viewing the Program Source
The Display Module Source display shows the source of a program object one
module object at a time. A module object’s source can be shown if the module
object was compiled using one of the following debug view options:
v DBGVIEW(*ALL)
v DBGVIEW(*SOURCE)
v DBGVIEW(*LISTING)

There are two methods to change what is shown on the Display Module Source
display:
v Change a view
v Change a module

When you change a view, the ILE source debugger maps to equivalent positions in
the view you are changing to. When you change the module, the executable
statement on the displayed view is stored in memory and is viewed when the
module is displayed again. Line numbers that have breakpoints set are highlighted.
When a breakpoint, step, or message causes the program to stop and the display to
be shown, the source line where the event occurred is highlighted.

Changing a Module Object
You can change the module object that is shown on the Display Module Source
display by using option 5 (Display module source) on the Work with Module List
display. The Work with Module List display can be accessed from the Display
Module Source display by pressing F14 (Work with Module List). The Display
Module Source display is shown in Figure 21 on page 355.

To select a module object, type 5 (Display module source) next to the module
object you want to show.

354 CL Programming V5R1

After you select the module object that you want to view, press Enter. The selected
module object is shown in the Display Module Source display.

An alternate method of changing a module object is to use the DISPLAY debug
command. On the debug command line, type:
DISPLAY MODULE module-name

The module object module-name will now be shown. The module object must exist
in a program or service program object that has been added to the debug session.

Changing the View of a Module Object
Several views of an ILE CL module object are available depending on the values
you specify when you create an ILE CL module object. These views are:
v Root source view
v Listing view
v Statement view

You can change the view of the module object that is shown on the Display
Module Source display through the Select View display. The Select View display
can be accessed from the Display Module Source display by pressing F15 (Select
View). The Select View display is shown in Figure 22 on page 356. The current
view is listed at the top of the window, and the other views that are available are
shown below. Each module object in a program object can have a different set of
views available, depending on the debug options used to create it.

To select a view, type 1 (Select) next to the view you want to show.

Display Module Source

Program: DSPWKDAY Library: MYLIB Module: DSPWKDAY
24 500- CALL PGM(WEEKDAY2) PARM(&DAYOFWK)
25 600- IF COND(&DAYOFWK *EQ 1) THEN(CHGVAR +
26 700 VAR(&WEEKDAY) VALUE('Sunday'))
27 800- ELSE CMD(IF COND(&DAYOFWK *EQ 2) THEN(CHGV
28 900 VAR(&WEEKDAY) VALUE('Monday')))
29 1000- ELSE CMD(IF COND(&DAYOFWK *EQ 3) THEN(CHGV
30 1100 VAR(&WEEKDAY) VALUE('Tuesday')))
31 1200- ELSE CMD(IF COND(&DAYOFWK *EQ 4) THEN(CHGV
32 1300 VAR(&WEEKDAY) VALUE('Wednesday')))
33 1400- ELSE CMD(IF COND(&DAYOFWK *EQ 5) THEN(CHGV
34 1500 VAR(&WEEKDAY) VALUE('Thursday')))
35 1600- ELSE CMD(IF COND(&DAYOFWK *EQ 6) THEN(CHGV
36 1700 VAR(&WEEKDAY) VALUE('Friday')))
37 1800- ELSE CMD(IF COND(&DAYOFWK *EQ 7) THEN(CHGV
38 1900 VAR(&WEEKDAY) VALUE('Saturday')))

More...
Debug . . .

F3=End program F6=Add/Clear breakpoint F10=step F11=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys

Figure 21. Display a Module View

Chapter 10. Debugging ILE Programs 355

After you select the view of the module object that you want to show, press Enter
and the selected view of the module object is shown in the Display Module Source
display.

Setting and Removing Breakpoints
You can use breakpoints to halt a program object at a specific point when it is
running. An unconditional breakpoint stops the program object at a specific
statement. A conditional breakpoint stops the program object when a specific
condition at a specific statement is met.

When the program object stops, the Display Module Source display is shown. The
appropriate module object is shown with the source positioned at the line where
the breakpoint occurred. This line is highlighted. At this point, you can evaluate
variables, set more breakpoints, and run any of the debug commands.

You should know the following characteristics about breakpoints before using
them:
v When a breakpoint is bypassed, for example with the GOTO statement, that

breakpoint isn’t processed.
v When a breakpoint is set on a statement, the breakpoint occurs before that

statement is processed.
v When a statement with a conditional breakpoint is reached, the conditional

expression associated with the breakpoint is evaluated before the statement is
processed.

v Breakpoint functions are specified through debug commands.
These functions include:
– Adding breakpoints to program objects
– Removing breakpoints from program objects
– Displaying breakpoint information

Display Module Source
..
: Select View :
: :
: Current View . . . : CL Root Source :
: :
: Type option, press Enter. :
: 1=Select :
: :
: Opt View :
: CL Root Source :
: 1 CL Listing View :
: :
: :
: Bottom :
: F12=Cancel :
: :
:..:

More...
Debug . . .

F3=End Program F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys

Figure 22. Changing a View of a Module Object

356 CL Programming V5R1

– Resuming the running of a program object after a breakpoint has been
reached.

Setting and Removing Unconditional Breakpoints
You can set or remove an unconditional breakpoint by using:
v F6 (Add/Clear breakpoint) from the Display Module Source display
v F13 (Work with Module Breakpoints) from the Display Module Source display
v The BREAK debug command to set a breakpoint
v The CLEAR debug command to remove a breakpoint

The simplest way to set and remove an unconditional breakpoint is to use F6
(Add/Clear breakpoint) from the Display Module Source display. To set an
unconditional breakpoint using F6, place your cursor on the line to which you
want to add the breakpoint and press F6. An unconditional breakpoint is then set
on the line. To remove an unconditional breakpoint, place your cursor on the line
from which you want to remove the breakpoint and press F6. The breakpoint is
then removed from the line.

Repeat the previous steps for each unconditional breakpoint you want to set.

Note: If the line on which you want to set a breakpoint is not a runnable
statement, the breakpoint is set at the next runnable statement.

After the breakpoints are set, press F3 (Exit) to leave the Display Module Source
display. You can also use F21 (Command Line) from the Display Module Source
display to call the program from a command line.

Call the program object. When a breakpoint is reached, the program stops and the
Display Module Source display is shown again. At this point, you can evaluate
variables, set more breakpoints, and run any of the debug commands.

An alternate method of setting and removing unconditional breakpoints is to use
the BREAK and CLEAR debug commands.

To set an unconditional breakpoint by using the BREAK debug command, type:
BREAK line-number

on the debug command line. Line-number is the line number in the currently
displayed view of the module object on which you want to set a breakpoint.

To remove an unconditional breakpoint by using the CLEAR debug command,
type:
CLEAR line-number

on the debug command line. Line-number is the line number in the currently
displayed view of the module object from which you want to remove a breakpoint.

If using the statement view, there is no line numbers displayed. To set
unconditional breakpoints in the statement view, type:
BREAK procedure-name/statement-number

on the debug command line. Procedure-name is the name of your CL module.
Statement-number(from the compiler listing) is the statement number where you
wanted to stop.

Chapter 10. Debugging ILE Programs 357

Setting and Removing Conditional Breakpoints
You can set or remove a conditional breakpoint by using:
v The Work with Breakpoints display
v The BREAK debug command to set a breakpoint
v The CLEAR debug command to remove a breakpoint

Using the Work with Breakpoints Display

Note: The relational operators supported for conditional breakpoints are <, >, =,
<=, >=, and <> (not equal).

One way you can set or remove conditional breakpoints is through the Work with
Module Breakpoints display. The Work with Module Breakpoints display can be
accessed from the Display Module Source display by pressing F13 (Work with
Module Breakpoints). The Work with Module Breakpoints display is shown in
Figure 23. To set a conditional breakpoint, type the following:
v 1 (Add) in the Opt field,
v the debugger line number where you want to set the breakpoint in the Line field,
v a conditional expression in the Condition field,

and press Enter. For example, to set a conditional breakpoint at debugger line 35,
as shown in Figure 23, type the following:
v 1 (Add) in the Opt field,
v 35 in the Line field,
v type &I=21 in the Condition field,

and press Enter.

To remove a conditional breakpoint, type 4 (Clear) in the Opt field next to the
breakpoint you want to remove, and press Enter. You can also remove
unconditional breakpoints in this manner.

Repeat the previous steps for each conditional breakpoint you want to set or
remove.

Note: If the line on which you want to set a breakpoint is not a runnable
statement, the breakpoint is set at the next runnable statement.

After you specify all breakpoints that you want to set or remove, press F3 (Exit) to
return to the Display Module Source display.

Work with Module Breakpoints
System: SYSTEM01

Program . . . : MYPGM Library . . . : MYLIB
Module . . . : MYMOD Type : *PGM

Type options, press Enter.
1=Add 4=Clear

Opt Line Condition
1 35____ &I=21______________________
_ ______ ____________________________

Figure 23. Setting a Conditional Breakpoint

358 CL Programming V5R1

Then press F3 (Exit) to leave the Display Module Source display. You can also use
F21 (Command Line) from the Display Module Source display to call the program
object from a command line.

Call the program object. When a statement with a conditional breakpoint is
reached, the conditional expression associated with the breakpoint is evaluated
before the statement is run. If the result is false, the program object continues to
run. If the result is true, the program object stops, and the Display Module Source
display is shown. At this point, you can evaluate variables, set more breakpoints,
and run any of the debug commands.

Using the BREAK and CLEAR Debug Commands
An alternate method of setting and removing conditional breakpoints is to use the
BREAK and CLEAR debug commands.

To set a conditional breakpoint by using the BREAK debug command, type:
BREAK line-number WHEN expression

on the debug command line. Line-number is the line number in the currently
displayed view of the module object on which you want to set a breakpoint.
expression is the conditional expression that is evaluated when the breakpoint is
encountered. The relational operators supported for conditional breakpoints are <,
>, =, <=, >=, and <> (not equal).

In non-numeric conditional breakpoint expressions, the shorter expression is
implicitly padded with blanks before the comparison is made. This implicit
padding occurs before any National Language Sort Sequence (NLSS) translation.
See “National Language Sort Sequence (NLSS)” for more information on NLSS.

To remove a conditional breakpoint by using the CLEAR debug command, type:
CLEAR line-number

on the debug command line. Line-number is number in the currently displayed
view of the module object from which you want to remove a breakpoint.

In the statement view, no line numbers are displayed. To set conditional
breakpoints in the statement view, type:
BREAK procedure-name/statement-name WHEN expression

on the debug command line. Procedure-name is the name of your CL module.
Statement-number(from the compiler listing) is the statement number where you
want to stop.

National Language Sort Sequence (NLSS)
Non-numeric conditional breakpoint expressions are divided into the following
two types:
v Char- 8: each character contains 8 bits
v Char-16: each character contains 16 bits (DBCS)

NLSS applies only to non-numeric conditional breakpoint expressions of type
Char-8. See Table 10 on page 360 for the possible combinations of non-numeric
conditional breakpoint expressions.

The sort sequence table used by the source debugger for expressions of type
Char-8 is the sort sequence table specified for the SRTSEQ parameter on the
CRTCLMOD or CRTBNDCL commands.

Chapter 10. Debugging ILE Programs 359

If the resolved sort sequence table is *HEX, no sort sequence table is used.
Therefore, the source debugger uses the hexadecimal values of the characters to
determine the sort sequence. Otherwise, the specified sort sequence table is used to
assign weights to each byte before the comparison is made. Bytes between, and
including, shift-out/shift-in characters are not assigned weights.

Note: The name of the sort sequence table is saved during compilation. At debug
time, the source debugger uses the name saved from the compilation to
access the sort sequence table. If the sort sequence table specified at
compilation time resolves to something other than *HEX or *JOBRUN, it is
important the sort sequence table does not get altered before debugging is
started. If the table cannot be accessed because it is damaged or deleted, the
source debugger uses the *HEX sort sequence table.

Table 10. Non-numeric Conditional Breakpoint Expressions

Type Possibilities

Char-8 v Character variable compared to character variable

v Character variable compared to character literal 1

v Character variable compared to hex literal 2

v Character literal 1 compared to character variable

v Character literal 1 compared to character literal 1

v Character literal 1 compared to hex literal 2

v Hex literal 2 compared to character variable 1

v Hex literal 2 compared to character literal 1

v Hex literal 2 compared to hex literal 2

Char 16 v DBCS character variable compared to DBCS character
variable

v DBCS character variable compared to graphic literal 3

v DBCS character variable compared to hex literal 2

v Graphic literal 3 compared to DBCS character variable

v Graphic literal 3 compared to Graphic literal 3

v Graphic literal 3 compared to hex literal 2

v Hex literal 2 compared to DBCS character variable

v Hex literal 2 compared to Graphic literal 3

:
1 Character literal is of the form ‘abc’.
2 Hexadecimal literal is of the form X‘hex digits’.
3 Graphic literal is of the form G‘<so>DBCS data<si>’. Shift-out is represented as

<so> and shift-in is represented as <si>.

Conditional Breakpoint Examples
CL declarations: DCL VAR(&CHAR1) TYPE(*CHAR) LEN(1)

DCL VAR(&CHAR2) TYPE(*CHAR) LEN(2)
DCL VAR(&DEC1) TYPE(*DEC) LEN(3 1)
DCL VAR(&DEC2) TYPE(*DEC) LEN(4 1)

Debug command: BREAK 31 WHEN &DEC1 = 48.1

Debug command: BREAK 31 WHEN &DEC2 > &DEC1

360 CL Programming V5R1

Debug command: BREAK 31 WHEN &CHAR2 <> ‘A’

Comment: ‘A’ is implicitly padded to
the right with one blank character before
the comparison is made.

Debug command: BREAK 31 WHEN %SUBSTR(&CHAR2 2 1) <= X‘F1’

Debug command: BREAK 31 WHEN %SUBSTR(&CHAR2 1 1) >= &CHAR1

Debug command: BREAK 31 WHEN %SUBSTR(&CHAR2 1 1) < %SUBSTR(&CHAR2 2 1)

The %SUBSTR built-in function allows you to substring a character string variable.
The first argument must be a string identifier, the second argument is the starting
position, and the third argument is the number of single byte or double byte
characters. Arguments are delimited by one or more spaces.

Removing All Breakpoints
You can remove all breakpoints, conditional and unconditional, from a program
object that has a module object shown on the Display Module Source display by
using the CLEAR PGM debug command. To use the debug command, type:
CLEAR PGM

on the debug command line. The breakpoints are removed from all of the modules
bound to the program or service program.

Stepping through the Program Object
After a breakpoint is encountered, you can run a specified number of statements of
a program object, then stop the program again and return to the Display Module
Source display. The program object begins running on the next statement of the
module object in which the program stopped. Typically, a breakpoint is used to
stop the program object.

You can step through a program object by using:
v F10 (Step) or F22 (Step into) on the Display Module Source display
v The STEP debug command

Using F10 or F22 on the Display Source Display
The simplest way to step through a program object one statement at a time is to
use F10 (Step) or F22 (Step into) on the Display Module Source display. When you
press F10 (Step) or F22 (Step into), then next statement of the module object shown
in the Display Module Source display is run, and the program object is stopped
again.

Note: You cannot specify the number of statements to step through when you use
F10 (Step) or F22 (Step into). Pressing F10 (Step) or F22 (Step into) performs
a single step.

Another way to step through a program object is to use the STEP debug command.
The STEP debug command allows you to run more than one statement in a single
step.

Chapter 10. Debugging ILE Programs 361

Using the STEP Debug Command
The default number of statements to run, using the STEP debug command, is one.
To step through a program object using the STEP debug command, type:
STEP number-of-statements

on the debug command line. Number-of-statementsis the number of statements of
the program object that you want to run in the next step before the program object
is halted again. For example, if you type
STEP 5

on the debug command line, the next five statements of your program object are
run, then the program object is stopped again and the Display Module Source
display is shown.

Step Over and Step Into
When a CALL statement to another program object is encountered in a debug
session, you can do either of the following:
v Step over the called program object, or
v Step into the called program object.

If you choose to step over the called program object, then the CALL statement and
the called program object are run as a single step. The called program object is run
to completion before the calling program object is stopped at the next step. Step
over is the default step mode.

If you choose to step into the called program object, then each statement in the
called program object is run as a single step. If the next step at which the running
program object is to stop falls within the called program object, the called program
object is halted at this point. The called program object is then shown in the
Display Module Source display if the called program object is compiled with
debug data and you have the correct authority to debug it.

Stepping over Program Objects
You can step over program objects by using:
v F10 (Step) on the Display Module Source display
v The STEP OVER debug command

Using F10(Step)
You can use F10 (Step) on the Display Module Source display to step over a called
program object in a debug session. If the next statement to be run is a CALL
statement to another program object, then pressing F10 (Step) will cause the called
program object to run to completion before the calling program object is stopped
again.

Using the Step Over Debug Command
Alternatively, you can use the STEP OVER debug command to step over a called
program object in a debug session. To use the STEP OVER debug command, type:
STEP number-of-statements OVER

on the debug command line. Number-of-statements is the number of statements of
the program object that you want to run in the next step before the program object

362 CL Programming V5R1

is halted again. If one of the statements that are run contains a CALL statement to
another program object, the ILE source debugger steps over the called program
object.

Stepping into Program Objects
You can step into program objects by using:
v F22 (Step into) on the Display Module Source display
v The STEP INTO debug command

Using F22(Step Into)
You can use F22 (Step into) on the Display Module Source display to step into a
called program object in a debug session. If the next statement to be run is a CALL
statement to another program object, pressing F22 (Step into) causes the first
statement in the called program object to be run. The called program object is then
shown in the Display Module Source display.

Note: The called program object must have debug data associated with it in order
for it to be shown in the Display Module Source display.

Using the Step Into Debug Command
Alternatively, you can use the STEP INTO debug command to step into a called
program object in a debug session. To use the STEP INTO debug command, type:
STEP number-of-statements INTO

on the debug command line. Number-of-statements is the number of statements of
the program object that you want to run in the next step before the program object
is halted again. If one of the statements that are run contains a CALL statement to
another program object, the debugger steps into the called program object. Each
statement in the called program object is counted in the step. If the step ends in
the called program object then the called program object is shown in the Display
Module Source display. For example, if you type
STEP 5 INTO

on the debug command line, the next five statements of the program object are
run. If the third statement is a CALL statement to another program object, then
two statements of the calling program object are run and the first three statements
of the called program object are run.

Displaying Variables
You can display the value of variables by using:
v F11 (Display variable) on the Display Module Source display
v The EVAL debug command

The scope of the variables used in the EVAL command is defined by using the
QUAL command. However, you do not need to specifically define the scope of the
variables contained in a CL module because they are all of global scope.

Chapter 10. Debugging ILE Programs 363

Using F11(Display Variable)
To display a variable using F11 (Display variable), place your cursor on the
variable that you want to display and press F11. The current value of the variable
is shown on the message line at the bottom of the Display Module Source display.

You can also use the EVAL debug command to determine the value of a variable.
To display the value of a variable using the EVAL debug command, type:
EVAL variable-name

on the debug command line. Variable-name is the name of the variable that you
want to display. The value of the variable is shown on the message line if the
EVAL debug command is entered from the Display Module Source display and the
value can be shown on a single line. If the value cannot be shown on a single line,
it is shown on the Evaluate Expression display.

For example, to display the value of the variable &DAYOFWK; on line 7 of the
module object shown in Figure 24, type:
EVAL &DAYOFWK

The message line of the Display Module Source display shows &DAYOFWK = 3. as in
Figure 24.

Display logical variable example
CL declarations: DCL VAR(&LGL1) TYPE(*LGL) VALUE(‘1’)

Debug command: EVAL &LGL1

Result: &LGL1 = ‘1’

Display Module Source

Program: DSPWKDAY Library: MYLIB Module: DSPWKDAY
4 DCL VAR(&MSGTEXT) TYPE(*CHAR) LEN(20)
5 CALL PGM(WEEKDAY2) PARM(&DAYOFWK)
6 IF COND(&DAYOFWK *EQ 1) THEN(CHGVAR +
7 VAR(&WEEKDAY) VALUE('Sunday'))
8 ELSE CMD(IF COND(&DAYOFWK *EQ 2) THEN(CHGVAR +
9 VAR(&WEEKDAY) VALUE('Monday')))
10 ELSE CMD(IF COND(&DAYOFWK *EQ 3) THEN(CHGVAR +
11 VAR(&WEEKDAY) VALUE('Tuesday')))
12 ELSE CMD(IF COND(&DAYOFWK *EQ 4) THEN(CHGVAR +
13 VAR(&WEEKDAY) VALUE('Wednesday')))
14 ELSE CMD(IF COND(&DAYOFWK *EQ 5) THEN(CHGVAR +
15 VAR(&WEEKDAY) VALUE('Thursday')))
16 ELSE CMD(IF COND(&DAYOFWK *EQ 6) THEN(CHGVAR +
17 VAR(&WEEKDAY) VALUE('Friday')))
18 ELSE CMD(IF COND(&DAYOFWK *EQ 7) THEN(CHGVAR +

More...
Debug . . .

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F17=Watch Variable F18=Work with watch F24=More keys
&DAYOFWK = 3.

Figure 24. Displaying a Variable using F11 (Display variable). Using the EVAL Debug
Command

364 CL Programming V5R1

Display character variable examples
CL declarations: DCL VAR(&CHAR1) TYPE(*CHAR) LEN(10) VALUE(‘EXAMPLE’)

Debug command: EVAL &CHAR1

Result: &CHAR1 = ‘EXAMPLE ’

Debug command: EVAL %SUBSTR(&CHAR1 5 3)

Result: %SUBSTR(&CHAR1 5 3) = ‘PLE’

Debug command: EVAL %SUBSTR(&CHAR1 7 4)

Result: %SUBSTR(&CHAR1 7 4) = ‘E ’

The %SUBSTR built-in function allows you to substring a character string variable.
The first argument must be a string identifier, the second argument is the starting
position, and the third argument is the number of single byte or double byte
characters. Arguments are delimited by one or more spaces.

Display decimal variable example
CL declarations: DCL VAR(&DEC1) TYPE(*DEC) LEN(4 1) VALUE(73.1)

CL declarations: DCL VAR(&DEC2) TYPE(*DEC) LEN(3 1) VALUE(12.5)

Debug command: EVAL &DEC1

Result: &DEC1 = 073.1

Debug command: EVAL &DEC2

Result: &DEC2 = 12.5

Displaying Variables as Hexadecimal Values
You can use the EVAL debug command to display the value of variables in
hexadecimal format. To display a variable in hexadecimal format, on the debug
command line, type:
EVAL variable-name: x number-of-bytes

Variable-name is the name of the variable that you want to display in hexadecimal
format. 'x' specifies that the variable is to be displayed in hexadecimal format and
number-of-bytes indicates the number of bytes displayed. If no length is specified
after the 'x', the size of the variable is used as the length. A minimum of 16 bytes is
always displayed. If the length of the variable is less than 16 bytes, then the
remaining space IS FILLED WITH ZEROES until the 16 byte boundary is reached.
CL declaration: DCL VAR(&CHAR1) TYPE(*CHAR) LEN(10) VALUE('ABC')

DCL VAR(&CHAR2) TYPE(*CHAR) LEN(10) VALUE('DEF')

Debug command: EVAL &CHAR1:X 32

Result:
00000 C1C2C340 40404040 4040C4C5 C6404040 ABC DEF
00010 40404040 00000000 00000000 00000000

Chapter 10. Debugging ILE Programs 365

Changing the Value of Variables
You can change the value of variables by using the EVAL command with the
assignment operator (=).

The scope of the variables used in the EVAL command is defined by using the
QUAL command. However, you do not need to specifically define the scope of the
variables contained in a CL module because they are all of global scope.

You can use the EVAL debug command to assign numeric, character, and
hexadecimal data to variables provided they match the definition of the variable.

To change the value of the variable, type:
EVAL variable-name = value

on the debug command line. Variable-name is the name of the variable that you
want to change and value is an identifier or literal value that you want to assign to
variable-name. For example,
EVAL &COUNTER = 3.0

changes the value of &COUNTER; to 3.0 and shows
&COUNTER = 3.0 = 3.0

on the message line of the Display Module Source display. The result is preceded
by the variable-name and value you are changing.

When you assign values to a character variable, the following rules apply:
v If the length of the source expression is less than the length of the target

expression, the data is left justified in the target expression and the remaining
positions are filled with blanks.

v If the length of the source expression is greater than the length of the target
expression, the data is left justified in the target expression and truncated to the
length of the target expression.

Note: DBCS variables can be assigned any of the following:
v Another DBCS variable
v A graphic literal of the form G‘<so>DBCS data<si>’
v A hexadecimal literal of the form X'hex digits'

Change logical variable examples
CL declarations: DCL VAR(&LGL1) TYPE(*LGL) VALUE(‘1’)

DCL VAR(&LGL2) TYPE(*LGL)

Debug command: EVAL &LGL1

Result: &LGL1 = ‘1’

Debug command: EVAL &LGL1 = X‘F0’

Result: &LGL1 = X‘F0’ = ‘0’

366 CL Programming V5R1

Debug command: EVAL &LGL2 = &LGL1

Result: &LGL2 = &LGL1 = ‘0’

Change character variable examples
CL declarations: DCL VAR(&CHAR1) TYPE(*CHAR) LEN(1) VALUE(‘A’)

DCL VAR(&CHAR2) TYPE(*CHAR) LEN(10)

Debug command: EVAL &CHAR1 = ‘B’

Result: &CHAR1 = ‘B’ = ‘B’

Debug command: EVAL &CHAR1 = X‘F0F1F2F3’

Result: &CHAR1 = ‘F0F1F2F3’ = ‘0’

Debug command: EVAL &CHAR2 = ‘ABC’

Result: &CHAR2 = 'ABC' = ‘ABC ’

Debug command: EVAL %SUBSTR(CHAR2 1 2) = %SUBSTR(&CHAR2 3 1)

Result: %SUBSTR(CHAR2 1 2) = %SUBSTR(&CHAR2 3 1) = ‘C ’

Comment: Variable &CHAR contains ‘C C ’

The %SUBSTR built-in function allows you to substring a character string variable.
The first argument must be a string identifier, the second argument is the starting
position, and the third argument is the number of single byte or double byte
characters. Arguments are delimited by one or more spaces.

Change decimal variable examples
CL declarations: DCL VAR(&DEC1) TYPE(*DEC) LEN(3 1) VALUE(73.1)

DCL VAR(&DEC2) TYPE(*DEC) LEN(2 1) VALUE(3.1)

Debug command: EVAL &DEC1 = 12.3

Result: &DEC1 = 12.3 = 12.3

Debug command: EVAL &DEC1 = &DEC2

Result: &DEC1 = &DEC2 = 03.1

Attributes of a Variable Examples
The Attribute (ATTR) debug command permits you to display the attributes of a
variable. The attributes are the size (in bytes) and type of the variable as recorded
in the debug symbol table on Table 9 on page 348.

The following is an example using the ATTR debug command.
CL declaration: DCL VAR(&CHAR2) TYPE(*CHAR) LEN(10)

Debug command: ATTR &CHAR2

Chapter 10. Debugging ILE Programs 367

Result: TYPE = FIXED LENGTH STRING, LENGTH = 10 BYTES

CL declaration: DCL VAR(&DEC) TYPE(*DEC) LEN(3 1)

Debug command: ATTR &DEC

Result: TYPE = PACKED(3,1), LENGTH = 2 BYTES

Equating a Name with a Variable, Expression, or Command
You can use the EQUATE debug command to equate a name with a variable,
expression or debug command for shorthand use. You can then use that name
alone or within another expression. If you use it within another expression, the
value of the name is determined before the expression is evaluated. These names
stay active until a debug session ends or a name is removed.

To equate a name with a variable, expression or debug command, type:
EQUATE shorthand-name definition

on the debug command line. shorthand-name is the name that you want to equate
with a variable, expression, or debug command, and definition is the variable,
expression, or debug command that you are equating with the name.

For example, to define a shorthand name called DC that displays the contents of a
variable called &COUNTER, type:
EQUATE DC EVAL &COUNTER

on the debug command line. Now, each time DC is typed on the debug command
line, the command EVAL &COUNTER is performed.

The maximum number of characters that can be typed in an EQUATE command is
144. If a definition is not supplied and a previous EQUATE command defined the
name, the previous definition is removed. If the name was not previously defined,
an error message is shown.

To see the names that have been defined with the EQUATE debug command for a
debug session, type:
DISPLAY EQUATE

on the debug command line. A list of the active names is shown on the Evaluate
Expression display.

Source Debug National Language Support for ILE CL
The following conditions exist when you are working with source debug National
Language Support for ILE CL.
v When a view is displayed on the Display Module Source display, the source

debugger converts all data to the Coded Character Set Identifier (CCSID) of the
debug job.

v When assigning literals to variables, the source debugger does not perform
CCSID conversion on quoted literals (for example ‘abc’). Also, quoted literals are
case sensitive.

368 CL Programming V5R1

Working with *SOURCE View
The following condition is true only when you are working with the CL Root
Source View:
v If the source file CCSID is different from the module CCSID, the source

debugger may not recognize a CL identifier containing variant characters (#, @,
$)

The CCSID of the module can be found using the Display Module (DSPMOD) CL
command. If you need to work with CL Root Source View and the source file
CCSID is different from the module CCSID, you can take one of the following
actions:
v Ensure the CCSID of CL source is the same as the CCSID of the compile-time

job.
v Change the CCSID of the compile-time job to 65 535 and compile.
v Use the CL Listing View if the previous two options are not possible.

See the ILE Concepts book, Chapter 10, “Debugging Considerations” for more
information on national language Restrictions for Debugging.

Using COPY, SAVE, RESTORE, CRTDUPOBJ, and CHKOBJITG
while Debugging

Breakpoints or steps may be temporarily removed from a program while
debugging when you use certain control language (CL) commands to specify your
library or program. Breakpoints and steps are restored when the CL command
completes running. A CPD190A message will be in the job log when the
breakpoints or steps are removed; another CPD190A message will be in the job log
when the breakpoints or steps are restored.

The following are the CL commands which can cause the breakpoint or step to be
temporarily removed:

CHKOBJITG CPY
CPYLIB

CPROBJ
CRTDUPOBJ

RSTLIB
RSTOBJ

SAVLIB
SAVOBJ
SAVSYS
SAVCHGOBJ

Note: When the CL commands are operating on the program, you will receive
error message CPF7102 when you issue the BREAK or STEP command.

Chapter 10. Debugging ILE Programs 369

c4156065.pdf

370 CL Programming V5R1

Appendix A. Debugging OPM Programs

Testing functions are designed to help you write and maintain your applications. It
lets you run your programs in a special testing environment while closely
observing and controlling the processing of these programs in the testing
environment. You can interact with your programs using the testing functions
described in this chapter. These functions are available through a set of commands
that can be used interactively or in a batch job. The functions allow you to:
v Trace a program’s processing sequence and show the statements processed and

the values of program variables at each point in the sequence.
v Stop at any statement in a program (called a breakpoint) and receive control to

perform a function such as displaying or changing a variable value or calling
another user-defined program.

No special commands specifically for testing are contained in the program being
tested. The same program being tested can be run normally without changes. All
test commands are specified within the job the program is in, not as a permanent
part of the program being tested. With the testing commands, you interact with the
programs symbolically in the same terms as the high-level language (HLL)
program was written in. You refer to variables by their names and statements by
their numbers. (These are the numbers used in the program’s source list.) In
addition, the test functions are only applicable to the job they are set up in. The
same program can be used at the same time in another job without being affected
by the testing functions set up.

Debug Mode
To begin testing, your program must be put in debug mode. Debug mode is a
special environment in which the testing functions can be used in addition to the
normal system functions. Testing functions cannot be used outside debug mode. To
start debug mode, you must use the Start Debug (STRDBG) command. In addition
to placing your program in debug mode, the STRDBG command lets you specify
certain testing information such as the programs that are being debugged. Your
program remains in debug mode until an End Debug (ENDDBG) or Remove
Program (RMVPGM) command is encountered or your current routing step ends.

The following STRDBG command places the job in debug mode and adds program
CUS310 as the program to be debugged.
STRDBG PGM(CUS310)

The option exists to use the ILE source debugger to debug OPM programs. To
create OPM programs that contain source debug data, specify the
OPTION(*SRCDBG) parameter on the Create CL Program (CRTCLPGM) command.
The source debug data is actually part of the program object.

To add OPM programs that get created containing source debug data to the ILE
source debugger, use the Program (PGM) and OPM Source Level Debug
(OPMSRC) parameters on the STRDBG command. To start a debug session with an
OPM program created with source debug data, type:
STRDBG PGM(*LIBL/MYOPMPGM) OPMSRC(*YES) DSPMODSRC(*YES)

© Copyright IBM Corp. 1997, 2001 371

For more information on ILE source debugging , see “Chapter 10. Debugging ILE
Programs” on page 347.

Adding Programs to Debug Mode
Any program can be run in debug mode, but before you can debug it, you must
put it in debug mode. You can place a program in debug mode by specifying it in
the PGM parameter on the STRDBG command or by adding it to the debugging
session with an Add Program (ADDPGM) command. You can specify as many as
twenty (20) programs to be debugged simultaneously in a job. You must have
*CHANGE authority to add a program to debug mode.

If you specified twenty (20) programs for debug mode (using either the STRDBG
or ADDPGM command or both commands) and you want to add more programs
to the debug job, you must remove some of the previously specified programs. Use
the Remove Program (RMVPGM) command. When debug mode ends, all
programs are automatically removed from debug mode.

When you start debug mode, you can specify that a program be a default program.
By specifying a default program, you can use any debug command that has the
PGM parameter without having to specify a program name each time a command
is used. This is helpful if you are only debugging one program. For example, in the
Add Breakpoint (ADDBKP) command, you would not specify a program name on
the PGM parameter because the default program is assumed to be the program the
breakpoint is being added to. The default program name must be specified in the
list of programs to be debugged (PGM parameter). If more than one program is
listed to be debugged, you can specify the default program on the DFTPGM
parameter. If you do not, the first program in the list on the PGM parameter on the
STRDBG command is assumed to be the default program.

The default program can be changed any time during testing by using either the
Change Debug (CHGDBG) or the ADDPGM command.

Note: If a program that is in debug mode is deleted, re-created, or saved with
storage freed, references made to that program (except a RMVPGM
command) may result in a function check. You must either remove the
program using a RMVPGM command or end debug mode using an
ENDDBG command. If you want to change the program and then debug it,
you must remove it from debug mode and after it is re-created, add it to
debug mode (ADDPGM command).

Preventing Updates to Database Files in Production Libraries
You can use files in production libraries while you are in debug mode. To prevent
database files in production libraries from being unintentionally changed, you can
specify UPDPROD(*NO) or default to *NO on the STRDBG command. Then, only
files in test libraries can be opened for updating or adding new records. If you
want to open database files in production libraries for updating or adding new
records or if you want to delete members from production physical files, you can
specify UPDPROD(*YES).

You can use this function with the library list. In the library list for your debug job,
you can place a test library before a production library. You should have copies of
the production files that might be updated by the program being debugged in the
test library. Then, when the program runs, it uses the files in the test library.
Therefore, production files cannot be unintentionally updated.

372 CL Programming V5R1

The Call Stack
You can use the Display Debug (DSPDBG) command to display the call stack,
which indicates:
v Which programs are currently being debugged
v The instruction number of the calling instruction or the instruction number of

each breakpoint at which program processing is stopped
v The program recursion level
v The names of the programs that are in debug mode but have not been called

A call of a program is the allocation of automatic storage for the program and the
transfer of machine processing to the program. A series of calls is placed in a call
stack. When a program finishes processing or transfers control, it is removed from
the call stack. For more information about the call stack, see Chapter 3.

A program may be called a number of times while the first call is still in the call
stack. Each call of a program is a recursion level of the program.

When a call is ended (the program returns or transfers control), automatic storage
is returned to the system.

Notes:

1. CL programs can be recursive; that is, a CL program can call itself either
directly or indirectly through a program it has called.

2. Some high-level languages do not allow recursive program calls. Other
languages allow not only programs to be recursive, but also procedures within
a program to be recursive. (In this guide, the term recursion level refers to the
number of times the program has been called in the call stack. A procedure’s
recursion level is referred to explicitly as the procedure recursion level.)

3. All CL commands and displays make use of only the program qualified name
recursion level.

Program Activations
An activation of a program is the allocation of static storage for the program. An
activation is always ended when one of the following happens:
v The current routing step ends.
v The request that activated the program is canceled.
v The Reclaim Resources (RCLRSC) command is run such that the last (or only)

call of a program is ended.

In addition, an activation can be destroyed by actions taken during a program call.
These actions are dependent on the language (HLL or CL) in which the program is
written.

When a program is deactivated, static storage is returned to the system. The
language (HLL or CL) in which the program is written determines when the
program is normally deactivated. A CL program is always deactivated when the
program ends.

An RPG/400® program is deactivated when the last record indicator (LR) is set on
before the program ends. If there is a return operation and LR is off, the program
is not deactivated.

Appendix A. Debugging OPM Programs 373

Handling Unmonitored Messages
Normally, if a program receives an unmonitored escape message, the system sends
the function check message (CPF9999) to the program’s program message queue
and the program stops processing. However, HLL program compilers may insert
monitors for the function check message or for messages that may occur in the
program. (An inquiry message is sent to the program messages display.) This
allows you to end the program the way you want. In an interactive debug job,
when a function check occurs, the system provides default handling and gives you
control instead of stopping the program. The system displays the following on the
unmonitored message display:
v The message
v The MI instruction number and HLL statement identifier, if available, to which

the message was sent
v The name and recursion level of the program to which the message was sent

The following is an example of an unmonitored message breakpoint display:

Display Unmonitored Message Breakpoint

Statement/Instruction : 440 /0077
Program : TETEST
Recursion level : 1

Errors occurred on command.

Press Enter to continue.

F3=Exit program F10=Command Entry

You can try to isolate the source of the error by using the testing functions.
However, the original request in error is still stopped at the point where the error
occurred. To remove the request in error from the call stack, you must use the End
Request (ENDRQS) command or press F3 when the unmonitored message
breakpoint display is shown. You can let the usual function check processing
continue by pressing the Enter key when the unmonitored message breakpoint
display is shown. If you press F10 to call the command entry display, you must
press F3 to return to the unmonitored message breakpoint display.

374 CL Programming V5R1

The following shows how a ENDRQS command works:

Program calls are destroyed when a ENDRQS command is entered. (In the
previous diagram, the program call of PGMA is destroyed.)

Breakpoints
A breakpoint is a place in a program at which the system stops program
processing and gives control to you at a display station (interactive mode) or to a
program specified on the BKPPGM parameter in the Add Breakpoint (ADDBKP)
command (batch mode).

Adding Breakpoints to Programs
Use the ADDBKP command to add breakpoints to the program you want
debugged. You can specify up to 10 statement identifiers on the one ADDBKP
command. The program variables specified on an ADDBKP command apply only
to the breakpoints specified on that command. Up to 10 variables can be specified
in one ADDBKP command.

You can also specify the name of the program to which the breakpoint is to be
added. If you do not specify the name of the program that you want the
breakpoint added to, the breakpoint is added to the default program specified on
the STRDBG, CHGDBG, or ADDPGM command.

For more information about breakpoint commands, see the CL and APIs section of
the Programming category of the iSeries Information Center.

To add a breakpoint to a program, specify a statement identifier, which can be:
v A statement label

Appendix A. Debugging OPM Programs 375

v A statement number
v A machine interface (MI) instruction number

When you add a breakpoint to a program, you can also specify program variables
whose values or partial values you want to display when the breakpoint is
reached. These variables can be shown in character or hexadecimal format.

Program processing stops at a breakpoint before the instruction is processed. For an
interactive job, the system displays what breakpoint the program has stopped at
and, if requested, the values of the program variables.

In high-level language programs, different statements and labels may be mapped
to the same internal instruction. This happens when there are several inoperable
statements (such as DO and ENDDO) following one another in a program. You can
use the IRP list to determine which statements or labels are mapped to the same
instruction.

The result of different statements being mapped to the same instruction is that a
breakpoint being added may redefine a previous breakpoint that was added for a
different statement. When this occurs, a new breakpoint replaces the previously
added breakpoint, that is, the previous breakpoint is removed and the new
breakpoint is added. After this information is displayed, you can do any of the
following:
v End the most recent request by pressing F3.
v Continue program processing by pressing Enter.
v Go to the command entry display at the next request level by pressing F10.

From this display, you can:
– Enter any CL command that can be used in an interactive debug

environment. You may display or change the values of variables in your
program, add or remove programs from debug mode, or perform other debug
commands.

– Continue processing the program by entering the Resume Breakpoint
(RSMBKP) command.

– Return to the breakpoint display by pressing F3.
– Return to the command entry display at the previous request level by

entering the End Request (ENDRQS) command.

For a batch job, a breakpoint program can be called when a breakpoint is reached.
You must create this breakpoint program to handle the breakpoint information.
The breakpoint information is passed to the breakpoint program. The breakpoint
program is another program such as a CL program that can contain the same
commands (requests for function) that you would have entered interactively for an
interactive job. For example, the program can display and change variables or add
and remove breakpoints. Any function valid in a batch job can be requested. When
the breakpoint program completes processing, the program being debugged
continues.

A message is recorded in the job log for every breakpoint for the debug job.

The following ADDBKP commands add breakpoints to the program CUS310.
CUS310 is the default program, so it does not have to be specified. The value of
the variable &ARBAL is shown when the second breakpoint is reached.
ADDBKP STMT(900)
ADDBKP STMT(2200) PGMVAR('&ARBAL')

376 CL Programming V5R1

Note: A CL variable must be entered with surrounding apostrophes.

The source for CUS310 looks like this:
The following is displayed as a result of reaching the first breakpoint:

Display Breakpoint

Statement/Instruction : 900 /0009
Program : CUS310
Recursion level : 1

Press Enter to continue.

F3=Exit program F10=Command entry

The following is displayed as a result of reaching the second breakpoint:

5728PW1 R01M00 880101 SEU SOURCE LISTING

SOURCE FILE QGPL/QCLSRC
MEMBER CUS310

SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...
100 PGM PARM(&NBRITEMS &ITEMPRC &PARBAL &PTOTBAL)
200 DCL VAR(&PARBAL) TYPE(*DEC) LEN(15 5) /* INPUT AREA INV BALANCE */
300 DCL VAR(&PTOTBAL) TYPE(*DEC) LEN(15 5) /* INPUT TOTAL INV BALANCE*/
400 DCL VAR(&NBRITEMS) TYPE(*DEC) LEN(15 5) /* NUMBER OF ITEMS */
500 DCL VAR(&ITEMPRC) TYPE(*DEC) LEN(15 5) /* PRICE OF THE ITEM */
600 DCL VAR(&ARBAL) TYPE(*DEC) LEN(5 2) /* AREA INVENTORY BALANCE */
700 DCL VAR(&TOTBAL) TYPE(*DEC) LEN(5 2) /* TOTAL INVENTORY BALANCE*/
800 DCL VAR(&TOTITEM) TYPE(*DEC) LEN(5 2) /* TOTAL PRICE OF ITEMS */
900 CHGVAR VAR(&ARBAL) VALUE(&PARBAL)
1000 CHGVAR VAR(&TOTBAL) VALUE(&PTOTBAL)
1100 IF COND(&NBRITEMS *EQ 0) THEN(DO)
1200 SNDPGMMSG MSG('The number of items is zero. This item +
1300 should be ordered.') TOMSGQ(INVLIB/INVQUEUE)
1400 GOTO CMDLBL(EXIT)
1500 ENDDO
1600 CHGVAR VAR(&TOTITEM) VALUE(&NBRITEMS * &ITEMPRC)
1700 IF COND(&NBRITEMS *GT 50) THEN(DO)
1800 SNDPGMMSG MSG('Too much inventory for this item.') +
1900 TOMSGQ(INVLIB/INVQUEUE)
2000 ENDDO
2100 CHGVAR VAR(&ARBAL) VALUE(&ARBAL + &TOTITEM)
2200 IF COND(&ARBAL *GT 1000) THEN(DO)
2300 SNDPGMMSG MSG('The area has too much money in +
2400 inventory.') TOMSGQ(INVLIB/INVQUEUE)
2500 ENDDO
2600 CHGVAR VAR(&TOTBAL) VALUE(&TOTBAL + &TOTITEM)
2700 EXIT: ENDPGM

Appendix A. Debugging OPM Programs 377

Display Breakpoint

Statement/Instruction : 2200 /0022
Program : CUS310
Recursion level : 1
Start position : 1
Format : *CHAR
Length : *DCL

Variable : &ARBAL
Type : PACKED
Length : 5 2
'610.00'

Press Enter to continue.

F3=Exit program F10=Command entry

The variable &ARBAL is shown. (Note that the value of &ARBAL will vary
depending on the parameter values passed to the program.) You can press F10 to
display the command entry display so that you could change the value of the
variable &ARBAL to alter your program’s processing. You use the Change Program
Variable (CHGPGMVAR) command to change the value of a variable.

Conditional Breakpoints
You may add a conditional breakpoint to a program that is being debugged. Use
the Add Breakpoint (ADDBKP) command to specify the statement and condition.
If the condition is met, the system stops the program processing at the specified
statement.

You may specify a skip value on the ADDBKP command. A skip value is a
number that indicates how many times a statement should be processed before the
system stops the program. For example, to stop a program at statement 1200 after
the statement has been processed 100 times, enter the following command:
ADDBKP STMT(1200) SKIP(100)

If you specify multiple statements when the SKIP parameter is specified, each
statement has a separate count. The following command causes your program to
stop on statement 150 or 200, but only after the statement has processed 400 times:
ADDBKP STMT(150 200) SKIP(400)

If statement 150 has processed 400 times but statement 200 has processed only 300
times, then the program does not stop on statement 200.

If a statement has not processed as many times as was specified on the SKIP
parameter, the Display Breakpoint (DSPBKP) command can be used to show how
many times the statement was processed. To reset the SKIP count for a statement
to zero, enter the breakpoint again for that statement.

You can specify a more general breakpoint condition on the ADDBKP command.
This expression uses a program variable, an operator, and another variable or

378 CL Programming V5R1

constant as the operands. For example, to stop a program at statement 1500 when
variable &X is greater than 1000, enter the following command:
ADDBKP STMT(1500) PGMVAR('&X') BKPCOND(*PGMVAR1 *GT 1000)

The BKPCOND parameter requires three values:
v In the example, the first value specifies the first variable specified on the

PGMVAR parameter. (To specify the third variable, you would use *PGMVAR3.)
v The second value must be an operator. For a list of all valid operators, see the

CL and APIs section of the Programming category of the iSeries Information
Center.

v The third value may be a constant or another variable. A constant may be a
number, character string, or bit string, and must be the same type as the
program variable specified in the first value.

The SKIP and BKPCOND parameters can be used together to specify a complex
breakpoint condition. For example, to stop a program on statement 1000 after the
statement has been processed 50 times and only when the character string &STR is
TRUE, enter the following command:
ADDBKP STMT(1000) PGMVAR('&STR') SKIP(50)

BKPCOND(*PGMVAR1 *EQ 'TRUE ')

Removing Breakpoints from Programs
To remove breakpoints from a program, use the Remove Breakpoint (RMVBKP)
command. To remove a breakpoint you must specify the statement number of the
statement for which the breakpoint has been defined.

Traces
A trace is the process of recording the sequence in which the statements in a
program are processed. A trace differs from a breakpoint in that you are not given
control during the trace. The system records the traced statements that were
processed. However, the trace information is not automatically displayed when the
program completes processing. You must request the display of trace information
using the Display Trace Data (DSPTRCDTA) command. The display shows the
sequence in which the statements were processed and, if requested, the values of
the variables specified on the Add Trace (ADDTRC) command.

Adding Traces to Programs
Adding a trace consists of specifying what statements are to be traced and, if you
want, the names of program variables. Before a traced statement processes, the
value of the variable is recorded. Also, you can specify that the values of the
variables are to be recorded only if they have changed from the last time a traced
statement was processed. These variables can be displayed in character format or
hexadecimal format.

To specify which statements are to be traced, you can specify:
v The statement identifier at which the trace is to start and the statement identifier

at which the trace is to stop
v That all statements in the program are to be traced
v A single statement identifier of a statement to be traced

On the STRDBG or CHGDBG command, you can specify how many statement
traces can be recorded for a job and what action the system should take when the

Appendix A. Debugging OPM Programs 379

maximum is reached. When the maximum is reached, the system performs one of
the following actions (depending on what you specify):
v For an interactive job, either of the following can be done:

– Stop the trace (*STOPTRC). Control is given to you (a breakpoint occurs), and
you can remove some of the trace definitions (RMVTRC command), clear the
trace data (CLRTRCDTA command), or change the maximum (MAXTRC
parameter on the CHGDBG command).

– Continue the trace (*WRAP). Previously recorded trace data is overlaid with
trace data recorded after this point.

v For a batch job, either of the following can be done:
– Stop the trace (*STOPTRC). The trace definitions are removed and the

program continues processing.
– Continue the trace (*WRAP). Previously recorded trace data is overlaid with

trace data recorded after this point.

You can change the maximum and the default action any time during the debug
job using the Change Debug (CHGDBG) command. However, the change does not
affect traces that have already been recorded.

You can only specify a total of five statement ranges for a single program at any
one time, which is a total taken from all the Add Trace (ADDTRC) commands for
the program. In addition, only 10 variables can be specified for each statement
range.

In high-level language programs, different statements and labels may be mapped
to the same internal instruction. This happens when there are several inoperable
statements (such as DO, END) following one another in a program. You can use
the IRP list to determine which statements or labels are mapped to the same
instruction.

When you specify CL variables, you must enclose the & and the variable name in
single apostrophes. For example:
ADDTRC PGMVAR('&IN01')

When you specify a statement range, the source statement number for the stop
statement is ordinarily larger than the number for the start statement. Tracing,
however, is performed with machine interface (MI) instructions, and some
compilers (notably RPG/400) generate programs in which the order of MI
instructions is not the same as the order of the source statements. Therefore, in
some cases, the MI number of the stop statement may not be larger than the MI
number of the start statement, and you will receive message CPF1982.

When you receive this message, you should do one of the following:
v Trace all statements in the program.
v Restrict a statement range to one specification.
v Use MI instruction numbers gotten from an intermediate representation of a

program (IRP) list of the program. (See “Debugging at the Machine Interface
Level” on page 388.)

The following Add Trace (ADDTRC) command adds a trace to the program
CUS310. CUS310 is the default program, so it does not have to be specified. The
value of the variable &TOTBAL is recorded only if its value changes between the
times each traced statement is processed.

380 CL Programming V5R1

ADDTRC STMT((900 2700)) PGMVAR('&TOTBAL') OUTVAR(*CHG)

The following displays result from this trace and are displayed using the Display
Trace Data (DSPTRCDTA) command. Note that column headers are not supplied
for all displays.

Display Trace Data

Statement/
Program Instruction Recursion level Sequence number
CUS310 900 1 1

Start position : 1
Length : *DCL
Format : *CHAR

Variable : &TOTBAL
Type : PACKED
Length : 5 2
' .00'

Statement/
Program Instruction Recursion level Sequence number
CUS310 1000 1 2
CUS310 1100 1 3 +

Press Enter to continue.

F3=Exit F12=Cancel

Display Trace Data

Start position : 1
Length : *DCL
Format : *CHAR

*Variable : &TOTBAL
Type : PACKED
Length : 5 2
' 1.00'

Statement/
Program Instruction Recursion level Sequence number
CUS310 1600 1 4
CUS310 1700 1 5
CUS310 2100 1 6
CUS310 2200 1 7
CUS310 2600 1 8 +

Press Enter to continue.

F3=Exit F12=Cancel

Appendix A. Debugging OPM Programs 381

Display Trace Data

CUS310 2700 1 9

Start position : 1
Length : *DCL
Format : *CHAR

*Variable : &TOTBAL
Type : PACKED
Length : 5 2
' 2.00'

Press Enter to continue.

F3=Exit F12=Cancel

Instruction Stepping
You can step through the instructions of a program by using the STRDBG or
CHGDBG commands and setting the MAXTRC parameter to 1 and the TRCFULL
parameter to *STOPTRC. When you specify a trace range (ADDTRC command)
and the program processes an instruction within that range, a breakpoint display
with an error message appears. If you press Enter, another breakpoint display with
the same error message appears for the next instruction processed in the trace
range. When tracing is completed, the trace data contains a list of the instructions
traced. You can display this data by entering the Display Trace Data (DSPTRCDTA)
command.

Using Breakpoints within Traces
Breakpoints can be used within a trace range. At a breakpoint within a trace, you
can display the trace data (DSPTRCDTA command) to determine if you need to
take some action. The trace data is recorded before the breakpoint occurs. The trace
information contains the value of any variables before the statement was processed.

Removing Trace Information from the System
On the DSPTRCDTA command, you can specify whether the trace information is
removed from the system or left on the system after the information is displayed.
If you leave the trace information on the system, any other traces are added to it.
The information remains on the system (unless removed) until the debug job ends
or the ENDDBG command is submitted. You can also use the Clear Trace Data
(CLRTRCDTA) command to remove trace information from the system.

Removing Traces from Programs
The Remove Trace (RMVTRC) command removes all or some of the ranges
specified in one or more Add Trace (ADDTRC) commands. Removing a trace range
consists of specifying the statement identifiers used on the RMVTRC command, or
specifying that all ranges be removed.

You can use the STMT parameter on the RMVTRC command to specify:

382 CL Programming V5R1

v All HLL statements and/or machine instructions in the specified program are
not to be traced regardless of how the trace was defined by the ADDTRC
command.

v The start and stop trace location of the HLL statements and/or system
instructions to be removed.

The RMVPGM and ENDDBG commands also remove traces, but they also remove
the program from debug mode.

Display Functions
In debug mode, you can display testing information that lets you review how you
have set up your debug job. You can display what programs are in debug mode
and what breakpoints and traces have been defined for those programs. In
addition, you can display the status of the programs in debug mode.

You can use the following commands to display testing information:
v Display Debug (DSPDBG), which displays the current call stack and the names

of the programs that are in debug mode and indicates the following:
– Which are stopped at a breakpoint
– Which are currently called
– The request level of those that are called
– Debug options selected for the debug job

v Display Breakpoint (DSPBKP), which displays the locations of breakpoints that
are currently defined in a program.

v Display Trace (DSPTRC), which displays the statements or statement ranges that
are currently defined in a program.

Displaying the Values of Variables
When you are at a breakpoint, you can display the values of program variables.
You can have this done automatically on the breakpoint display by specifying the
variable names on the ADDBKP command, or you can enter the Display Program
Variable (DSPPGMVAR) command at the breakpoint by pressing F10 to show the
command entry display. Only 10 variables can be specified on one DSPPGMVAR
command. For character and bit variables, you can tell the system to begin
displaying the value of the variable starting at a certain position and for a specified
length. Variables can be displayed in either character or hexadecimal format.

Notes:

1. If you specify an array variable, you can do one of the following:
a. Specify the subscript values of the array element you want to display. The

subscript values can either be integer values or the names of numeric
variables in the program.

b. Display the entire array by not entering any subscripts.
c. Display a single-dimension cross-section of the array by specifying values

for all subscripts except one, and an asterisk for that one subscript value.
2. Variable names can be specified as simple or qualified names, but must be

placed between apostrophes. A qualified name can be specified in either of two
ways:
a. Variable names alternating with the special separator words OF or IN,

ordered from lowest to highest qualification level. A blank must separate
the variable name and the special separator word.

Appendix A. Debugging OPM Programs 383

b. Variable names separated by periods, ordered from highest to lowest
qualification level.

The following DSPPGMVAR command displays the variable ARBAL used in the
program CUS310. CUS310 is the default program, so it does not have to be
specified. The entire value is to be displayed in character format.
DSPPGMVAR PGMVAR('&ARBAL')

The resulting display looks like this:

Display Program Variables

Program : CUS310
Recursion level : 1
Start position : 1
Format : *CHAR
Length : *DCL

Variable : &ARBAL
Type : PACKED
Length : 5 2
'610.00'

Press Enter to continue.

F3=Exit F12=Cancel

Some HLLs allow variables to be based on a user-specified pointer variable (HLL
pointer). If you do not specify an explicit pointer for a based variable, the pointer
specified in the HLL declaration (if any) is used. You must specify an explicit
basing pointer if one was not specified in the HLL declaration for the based
variable. The PGMVAR parameter allows you to specify up to five explicit basing
pointers when referring to a based variable. When multiple basing pointers are
specified, the first basing pointer specified is used to locate the second basing
pointer, the second one is then used to locate the third, and so forth. The last
pointer in the list of basing pointers is used to locate the primary variable.

Changing the Values of Variables
To change the value of a program variable, use the Change Program Variable
(CHGPGMVAR), the Change HLL Pointer (CHGHLLPTR), or the Change Pointer
(CHGPTR) command. Changing the value of a program variable consists of
specifying the variable name and a value that is compatible with the data type of
the variable. For example, if the variable is character type, you must enter a
character value.

When changing the value of variables, you should be aware of whether the
variable is an automatic variable or a static variable. The difference between the
two is in the storage for the variables. For automatic variables, the storage is
associated with the call of the program. Every time a program is called, a new
copy of the variable is placed in automatic storage. A change to an automatic
variable remains in effect only for the program call the change was made in.

384 CL Programming V5R1

Note: In some languages, the definition of a call is made at the procedure level
and not just at the program level. For these languages, storage for automatic
variables is associated with the call of the procedure. Every time a
procedure is called, a new copy of the variable is gotten. A change to an
automatic variable remains in effect only while that procedure is called.
Only the automatic variables in the most recent procedure call can be
changed. The RCRLVL (recursion level) parameter on the commands applies
only on a program basis and not on a procedure basis.

For static variables, the storage is associated with the activation. Only one copy of
a static variable exists in storage no matter how many times a program is called. A
change to a static variable remains in effect for the duration of the activation.

To determine if a program variable is a static or an automatic variable, request an
intermediate representation of a program (IRP) list (*LIST and *XREF on the
GENOPT parameter) when the program containing the variables is created.

When changing a variable that is an array, you must specify one element of the
array. Consequently, you must specify the subscript values for the array element
you want to change.

Using a Job to Debug Another Job
You may want to use a separate job to debug programs running in another job for
one of the following reasons:
v Batch jobs can be debugged by an interactive job.
v An interactive job can be debugged from another interactive job. This allows one

display to show debug information without interrupting the application
program display.

v An interactive or batch job that is looping can be interrupted and put into debug
mode.

Debugging Batch Jobs Submitted to a Job Queue
Using a separate job to debug another batch job submitted to the job queue allows
you to put the batch job into debug mode and to set breakpoints and traces before
the job starts to process. Use the following steps to debug batch jobs to be
submitted to a job queue:
1. Submit the batch job using the Submit Job (SBMJOB) command or a program

that automatically submits the job with HOLD(*YES).
SBMJOB HOLD(*YES)

2. Determine the qualified job name (number/user/name) that is assigned to the
job using the Work with Submitted Jobs (WRKSBMJOB) command or the Work
with Job Queues (WRKJOBQ) command. The SBMJOB command also displays
the name in a completion message when the command finishes processing.
The WRKJOBQ (Work With Job Queue) command displays all the jobs waiting
to start in a particular job queue. You can show the job name from this display
by selecting option 5 for the job.

3. Enter the Start Service Job (STRSRVJOB) command from the display you plan
to use to debug the batch job as follows:
STRSRVJOB JOB(qualified-job-name)

4. Enter the STRDBG command and provide the names of all programs to be
debugged. No other debug commands can be entered while the job is waiting
on the job queue.

Appendix A. Debugging OPM Programs 385

5. Use the Release Job Queue (RLSJOBQ) command to release the job queue. A
display appears when the job is ready to start, indicating that you may begin
debugging the job. Press F10 to show the Command Entry display.

6. Use the Command Entry display to enter any debug commands, such as the
Add Breakpoint (ADDBKP) or Add Trace (ADDTRC) commands.

7. Press F3 to leave the Command Entry display, and then press Enter to start the
batch job.

8. When the job stops at a breakpoint, you see the normal breakpoint display.
When the job finishes, you cannot add breakpoints and traces, or display or
change variables. However, you can display any trace data using the Display
Trace Data (DSPTRCDTA) command.

9. If you wish to debug another batch job, first end debugging using the End
Debug (ENDDBG) command and then end servicing the job using the End
Servicing Job (ENDSRVJOB) command.

Debugging Batch Jobs Not Started from Job Queues
Some jobs started on the system are not submitted to a job queue. These jobs
cannot be stopped before they start running but they can usually be debugged. To
debug jobs not started from a job queue, do the following:
1. Rename the program that is called when the job starts. For example, if the job

runs program CUST310, you can rename this program to CUST310DBG.
2. Create a small CL program with the same name as the original program (before

the program was renamed). In the small CL program, use the Delay Job
(DLYJOB) command to delay for one minute and then use the CALL command
to call the renamed program.

3. Allow the batch job to start to force the CL program to be delayed for one
minute.

4. Use the Work with Active Jobs (WRKACTJOB) command to find the batch job
that is running. When the display appears, enter option 5 next to the job to
obtain the qualified job name.

5. Enter the Start Service Job (STRSRVJOB) command as follows:
STRSRVJOB JOB(qualified-job-name)

6. Enter STRDBG and any other debug commands, such as the Add Breakpoint
(ADDBKP) or Add Trace (ADDTRC) command. Proceed with debugging as
usual.

Debugging a Running Job
You can debug a job that is already running if you know what statements the job
will run. For example, you may want to debug a running program if the job is
looping or the job has not yet run a program that is to be debugged. The following
steps allow you to debug a running job:
1. Use the Work with Active Jobs (WRKACTJOB) command to find the job that is

running. When the display appears, enter option 5 next to the job to obtain the
qualified job name.

2. Enter the Start Service Job (STRSRVJOB) command as follows:
STRSRVJOB JOB(qualified-job-name)

3. Enter the Start Debug (STRDBG) command. (Entering the command does not
stop the job from running.)

386 CL Programming V5R1

Note: You can use the Display Debug (DSPDBG) command to show the call
stack. However, unless the program is stopped for some reason, the stack
is correct only for an instant, and the program continues to run.

4. If you know a statement to be run, enter the Add Breakpoint (ADDBKP)
command to stop the job at the statement.
If you do not know what statements are being run, do the following:
a. Enter the Add Trace (ADDTRC) command.
b. After a short time, enter the Remove Trace (RMVTRC) command to stop

tracing the program.
c. Enter the Display Trace Data (DSPTRCDTA) command to show what

statements have processed. Use the trace data to determine which data
statements to process next (for example, statements inside a program loop).

d. Enter the Add Breakpoint (ADDBKP) command to stop the job at the
statement.

5. Enter the desired debug commands when the program is stopped at a
breakpoint.

Debugging Another Interactive Job
You can debug a job from another display, whether the job is running or waiting at
a menu or command entry display. To debug another interactive job, do the
following:
1. Determine the qualified job name of the job to be debugged. To determine the

name, either enter the Display Job (DSPJOB) command from the display of the
job to be debugged, or use the Work with Active Jobs (WRKACTJOB)
command.

2. Enter the Start Service Job (STRSRVJOB) command using the qualified job
name.

3. Enter the Start Debug (STRDBG) command and any other debug commands
desired. If the job is already running, you may need to enter the Display Debug
(DSPDBG) command to determine what statement in the program is
processing.

When the job being debugged is stopped at a breakpoint, the display station is
locked.

Considerations When Debugging One Job from Another Job
Although most jobs can be debugged from another job, you must take the
following into consideration:
v A job being debugged cannot be held or suspended (for example, when running

another group job or a secondary job).
v When servicing another job with the Start Service Job (STRSRVJOB) command,

you cannot also debug the job doing the servicing. All debug commands apply
only to the job being serviced. To debug the job doing the servicing, you must
either end the servicing of the other job, or have another job service and debug
it.

v Debug commands operate on another job, even if that job is not stopped at a
breakpoint. For example, if you are debugging a running job and you enter the
Display Program Variable (DSPPGMVAR) command, the variable you specify is
shown. Since the job continues to run, the value of the variable may change
soon after the command is entered.

Appendix A. Debugging OPM Programs 387

v A job being debugged must have enough priority to respond to debug
commands. If you are debugging a batch job with a low priority and that job
gets no processing time, then any debug command you issue waits for a
response from the job. If the job does not respond, the command ends and an
error message is displayed.

v You cannot service and debug a job that is debugging itself. However, you can
service and debug a job that is servicing and debugging another job.

Debugging at the Machine Interface Level
To debug your programs at the machine interface (MI) level, you can specify an MI
object definition vector (ODV) number for the PGMVAR parameter of a command
and MI instruction numbers for the STMT parameter of a command. For a
breakpoint, the system stops at the MI instruction number just as it would at an
HLL statement number. You must always precede the ODV or MI instruction
number with a slash (/) and enclose it in apostrophes (for example, '/1A') to
signal to the system that you are debugging at the MI level.

The ODV and MI instruction numbers can be obtained from the IRP listing
produced by most high-level language compilers. Use the *LIST value of the
GENOPT parameter to produce the IRP listing at program creation time.

Note: When you debug at the machine interface level, only the characteristics that
are defined at the machine interface level are available; the HLL
characteristics that are normally passed to the test environment are not
available. These HLL characteristics may include: the variable type, number
of fractional digits, length, and array information. For example, a numeric
variable in your HLL program may be displayed without the correct decimal
alignment or possibly as a character string.

Security Considerations
To debug a program, you must have *CHANGE authority to that program. The
*CHANGE authority available by adopting another user’s profile is not considered
when determining whether a user has authority to debug a program. This prevents
users from accessing program data in debug mode by adopting another user’s
profile.

Additionally, when you are at a user-defined breakpoint of a program that you are
debugging with adopted user authority, you have only the authority of your user
profile and not the adopted profile authority. You do not have authorities adopted
by prior program calls for all breakpoints whether they are added by the Add
Breakpoint (ADDBKP) command or are caused by an unmonitored escape
message.

Using COPY, SAVE, RESTORE, CRTDUPOBJ, and CHKOBJITG
while Debugging

Breakpoints or statement traces may be temporarily removed from a program
while the debug function is running if you use certain control language (CL)
commands to specify your library or program. Breakpoints and statement traces
are restored when the CL command completes running. A CPD190A message is in
the job log when the breakpoints or traces are removed; another CPD190A message
is in the job log when the breakpoints and statement traces are restored.

388 CL Programming V5R1

Breakpoints or statement traces may be temporarily removed from a program
when you use the following CL commands to specify your library:

CHKOBJITG CPY
CPYLIB

CPROBJ
CRTDUPOBJ

RSTLIB
RSTOBJ

SAVLIB
SAVOBJ
SAVSYS
SAVCHGOBJ

Note: When the CL commands are running on your program, you may not be able
to add breakpoints or add traces to the program. If you enter the Add
Breakpoint (ADDBKP) command or the Add Trace (ADDTRC) command
when any of the commands are running on your program, you will receive
error message CPF7102.

Appendix A. Debugging OPM Programs 389

390 CL Programming V5R1

Appendix B. TFRCTL Command

The Transfer Control (TFRCTL) command calls the program specified on the
command, passes control to it, and removes the transferring program from the call
stack. Reducing the number of programs on the call stack can have a performance
benefit. When a CALL command is used, the program called returns control to the
program containing the CALL command. When a TFRCTL command is used,
control returns to the first program in the call stack. The first program then
initiates the next sequential instruction following the CALL command.

Note: The TRFCTL command is not valid in ILE CL procedures.

Using the TFRCTL Command
In the following illustration, if Program A is specified with USRPRF(*OWNER), the
owner’s authorities are in effect for all of the programs shown. If Program B is
specified with USRPRF(*OWNER), the owner’s authorities are in effect only while
Programs B and C are active. When Program B transfers control to Program D,
Program B is no longer in the call stack and the owner of Program B is no longer
considered for authorization during the running of Program D. When the
programs complete processing (by returning or transferring control), the owner’s
authorities are no longer in effect. Any overrides issued by Program B remain in
effect while Program D is running and are lost when Program D does a return.

The TFRCTL command has the following format:
TFRCTL PGM(library-name/program-name) PARM(CL-variable)

The program (and library qualifier) may be a variable.

It is important to note that only variables may be used as parameter arguments on
this command, and that those variables must have been received as a parameter in
the argument list from the program that called the transferring program. That is,
the TFRCTL command cannot pass a variable that was not passed to the program
running the TFRCTL command.

© Copyright IBM Corp. 1997, 2001 391

In the following example, the first TRFCTL is valid. The second TFRCTL command
is not valid because &B was not passed to this program. The third TFRCTL
command is not valid because a constant cannot be specified as an argument.
PGM PARM(&A)
DCL &A *DEC 3
DCL &B *CHAR 10
IF (&A *GT 100) THEN (TFRCTL PGM(PGMA) PARM(&A)) /* valid */
IF (&A *GT 50) THEN (TFRCTL PGM(PGMB) PARM(&B)) /* not valid */
ELSE (TFRCTL PGM(PGMC) PARM('1')) /* not valid */
ENDPGM

The PARM parameters are discussed under “Passing Parameters between Programs
and Procedures” on page 68.

Passing Parameters
The TFRCTL command can be used to pass parameters to the program being
called in the same way the CALL command passes parameters, but with these
restrictions:
v The parameters passed must be CL variables.
v The CL variables passed by the transferring program must have been received as

parameters by that program.
v This command is valid only within OPM CL programs.

In the following example, PROGA calls PROGB and passes two variables, &A and
&B, to it. PROGB uses these two variables and another internally declared variable,
&C. When control is transferred to PROGC, only &A and &B can be passed to
PROGC. When PROGC finishes processing, control is returned to PROGA, where

392 CL Programming V5R1

these variables originated.

Appendix B. TFRCTL Command 393

394 CL Programming V5R1

Appendix C. Job Log Output Files

Directing a Job Log
You can direct the job log for a job to one or two database files with the Control
Job Log (QMHCTLJL) API or the Display Job Log (DSPJOBLOG) command. The
first file is the primary job log file. This file contains the essential information for a
message, such as, message ID, message type, and message severity. One record is
produced in the primary job log file for each message selected for processing. The
second file is the secondary job log file. The production of this file is only possible
by using QMHCTLJL API; however, it is also optional.

The secondary job log file contains the first and second level text for a message.
The text is in print format. Any message data is merged with the message
description and the result is formatted into one or more print lines. For each
message selected for processing there can be more than one record in the
secondary job log file; one record for each first and second level print line.

Records in the primary file can be related to records in the secondary file through
use of the Message Reference Key. Each record placed in the primary file contains
a field that is the Message Reference Key (MRK) of the related message. Similarly,
each secondary file record contains the MRK of the related message. The MRK for
a message is unique within the context of a job. Once the MRK of a primary file
record is known, the related secondary records can be readily identified since only
these secondary records will contain the same MRK value.

Model for the Primary Job Log
The IBM supplied model for the primary job log file is QAMHJLPR in library
QSYS. The primary record format is QMHPFT. A detailed description of this
format follows:

Field
Order Field Name Data Type

Length in
Bytes Field Description

1 QMHJDT DATE 10 Date job log created
2 QMHJTM TIME 8 Time job log created
3 QMHMRK CHAR 4 Message reference key
4 QMHTYP CHAR 10 Message type
5 QMHSEV BIN 4 Message severity
6 QMHMID CHAR 7 Message ID
7 QMHDAT DATE 10 Message sent date
8 QMHTIM TIME 8 Message sent time
9 QMHMF CHAR 20 Message file name
10 QMHRPY CHAR 4 Reply reference key
11 QMHRQS CHAR 1 Request Message Status
12 QMHSTY CHAR 1 Sending program type
13 QMHRTY CHAR 1 Receiving program type
14 QMHSSN BIN 4 Number of statements for sending

program
15 QMHRSN BIN 4 Number of statements for

receiving program
16 QMHCID BIN 4 CCSID of the message data or

immediate message

© Copyright IBM Corp. 1997, 2001 395

Field
Order Field Name Data Type

Length in
Bytes Field Description

17 QMHPRL CHAR 1 Message percolated indicator
18 QMHSPR VAR CHAR 256 MAX Sending procedure name
19 QMHSMD CHAR 10 Sending module name
20 QMHSPG CHAR 12 Sending program name
21 QMHSLB CHAR 10 Sending library name
22 QMHSTM CHAR 30 Statement number(s) for sending

program
23 QMHRPR VAR CHAR 256 MAX Receiving procedure name
24 QMHRMD CHAR 10 Receiving module name
25 QMHRPG CHAR 10 Receiving program name
26 QMHRLB CHAR 10 Receiving program library name
27 QMHRTM CHAR 30 Statement number(s) for receiving

program
28 QMHSYS CHAR 8 System name
29 QMHJOB CHAR 26 Qualified Job name
30 QMHMDT VAR CHAR 3000 MAX Message data or immediate

message
31 QMHCSP VAR CHAR 4096 MAX Complete sending procedure

name
32 QMHCRP VAR CHAR 4096 MAX Complete receiving procedure

name
33 QMHLSP VAR CHAR 6144 MAX Long sending program name
34 QMHTID CHAR 8 Thread

The definition of the fields in this record are as follows:

QMHJDT
Date job log created; DATE(10)

The date the production of the job log began. The field is a date field in the
database record. The format of the date is *ISO. A value in this date field is in
the format yyyy-mm-dd. Each record produced for the same job log will have
the same value in this field.

QMHJTM
Time job log create; TIME(8)

The time the production of the job log began. This field is defined as a time
field in the database record. The format of the time is defined to be *ISO. A
value in this time field is in the format hh.mm.ss. Each record produced for the
same job log will have the same value in this field.

QMHMRK
Message reference key; CHAR(4)

The message reference key the related message had in the job message queue.
The records are placed in the primary database file in strictly ascending
sequence by message reference key. Within the set of records produced for a
single job log, this field is unique for each record and thus can be used as a
unique key for the record. If the records for two or more job logs are placed
into the same member, the key may no longer be unique.

QMHTYP
Message type; CHAR(10)

The message type of the related message. One of the following special values
will appear in this field:

*CMD Commands that are logged from the execution of a CL program.

396 CL Programming V5R1

*COMP
Completion message type.

*COPY
Sender’s copy message type.

*DIAG
Diagnostic message type.

*ESCAPE
Escape message type.

*INFO
Information message type.

*INQ Inquiry message type.

*NOTIFY
Notify message type.

*RQS Request message type.

*RPY Reply message type.

QMHSEV
Message severity; BIN(4)

The severity the message has. This is a value from 0 through 99.

QMHMID
Message ID; CHAR(7)

The message ID for the message. This field will contain the special value
*IMMED if the message is an immediate message which has no message ID.

QMHDAT
Message sent date; DATE(10)

The date the message was sent. This field is defined as a date field in the
database record. The format of the date is *ISO. A value in this field is in the
format yyyy-mm-dd.

QMHTIM
Message sent time; TIME(8)

The time the message was sent. The field is defined as a time field in the
database record. The format of the time is defined to be *ISO. A value in this
field is in the format hh.mm.ss.

QMHMF
Message File; CHAR(20)

The name of the message file that is to be used to obtain the message
description for the message. The first 10 characters of the field contain the
message file name. The second 10 characters contain the library name. If the
field QMHMID contains *IMMED to indicate an immediate message, this field
will contain all blanks.

QMHRPY
Reply reference key; CHAR(4)
v If the message type of the message is inquiry, notify, or sender’s copy, this is

the message reference key of the related reply message.
v If there is no reply message available this field will contain a null value

(’00000000’X).

Appendix C. Job Log Output Files 397

v If the message type is not inquiry, notify, or sender’s copy, this field will also
contain a null value.

In order to maintain the strictly ascending sequence by message reference key,
the record for the reply message may not immediately follow the record for the
inquiry, notify, or sender’s copy message.

QMHRQS
Request Message Status; CHAR(1)
v If the message type is *RQS, this is an indicator which shows whether the

request message was run or not.
v If the indicator is set to zero (’F0’X) the request was not run.
v If the indicator is set to one (’F1’X) the request was run.

If the messages type is not *RQS, this indicator will always be zero.

QMHSTY
Sending program type; CHAR(1)

An indicator with the following values that shows whether the sending
program was an OPM program or an ILE program.
v If this indicator is set to zero (’F0’X), the sending program is an OPM or

System Licensed Internal Code (SLIC) program with a name less than or
equal to 12 characters. The program name is placed in fields QMHSPG and
QMHLSP.

v If the indicator is set to one (’F1’X), the sending program is an ILE program
with a procedure name less than or equal to 256 characters. The procedure
name is placed in fields QMHSPR and QMHCSP.

v If the indicator is set to two (’F2’X), the sending program is an ILE program
with a procedure name greater than 256 characters and up to 4096
characters. The complete sending sending procedure name is in field
QMHCSP; field QMHSPR is blank.

v If the indicator is set to three (’F3’X), the sending program is a SLIC
program with a name greater than 12 characters and up to 256 characters.
The complete sending program name is in field QMHLSP; field QMHSPG is
blank.

QMHRTY
Receiving program type; CHAR(1)

An indicator with the following values that shows the type of the receiving
program:
v If this indicator is set to zero (’F0’X), the receiving program was an OPM

program. The program name is placed in field QMHRPG.
v If the indicator is set to one (’F1’X), the receiving program was an ILE

program with a procedure name less than or equal to 256 characters. The
procedure name is placed in fields QMHRPR and QMHCRP.

v If the indicator is set to two (’F2’X), the receiving program is an ILE
program with a procedure name greater than 256 and up to 4096 characters.
The entire receiving procedure name is placed field QMHCRP; the field
QMHRPR is blank.

QMHSSN
Number of statements for sending program; BIN(4)

The number of statement numbers for sending program.

398 CL Programming V5R1

v If the sending program type field QMHSTY contains a zero (’F0’X) or a three
(’F3’X), this field contains a value of 0 or 1.

v If the sending program type field contains a one (’F1’X) or a two (’F2’X), this
field can contain the value 0, 1, 2, or 3.

The value provided in this field defines how many statement numbers are in
the field QMHSTM.

QMHRSN
Number of statements for receiving program; BIN(4)

The number of statement numbers for receiving program.
v If the receiving program type field QMHRTY contains a zero (’F0’X), this

field contains a value of 0 or 1.
v If the receiving program type field contains a one (’F1’X) or a two (’F2’X),

this field contains the value 0, 1, 2, or 3. The value provided in this field
defines how many statement numbers are in the field QMHRTM.

QMHCID
CCSID of message data; BIN(4)

The CCSID of the message data or immediate message that is contained in the
field QMHMDT.

QMHPRL
Message percolate indicator; CHAR(1)

An indicator that shows whether the message was percolated to the receiving
program or not.
v If the message was not percolated this field contains a zero (’F0’X).
v If the message was sent this field contains a one (’F1’X).

Message percolation can only occur within an ILE program. Therefore, this
field contains a one only if the receiving program type field QMHRTY contains
a one (’F1’X) or a two (’F2’X).

QMHSPR
Sending procedure name; VAR CHAR(*)
v If the sending program type field QMHSTY contains a zero (’F0’X) or three

(’F3’X), this field contains the value *N.
v If the sending program type field QMHSTY contains a one (’F1’X), this field

contains the sending ILE procedure name. The name can be a maximum of
256 characters in length.

v If the sending program type field QMHSTY contains a two (’F2’X), this filed
contains blanks, while the entire name will be contained in the field
QMHCSP.

This field can contain a nested procedure name for a sending program type of
one (’F1’X) or two (’F2’X); each procedure name is separated by a colon. The
outer-most procedure name is identified first and is followed by the
procedures contained in it. The inner-most procedures are identified last in the
string.

QMHSMD
Sending module name; CHAR(10)
v If the sending program type field QMHSTY contains a zero (’F0’X) or a three

(’F3’X), this field contains the value *N.

Appendix C. Job Log Output Files 399

v If the sending program type field QMHSTY contains a one (’F1’X) or a two
(’F2’X), this field contains the sending ILE module name.

QMHSPG
Sending program name; CHAR(12)
v If the sending program type field QMHSTY contains a zero (’F0’X), a one

(’F1’X), or a two (’F2’X), the field contains the program name from which the
message was sent.

v If the sending program type is a three (’F3’X), this field contains blanks and
field QMHLSP contains the sending program name.

QMHSLB
Sending library name; CHAR(10)

The name of the library that the sending program was contained in.

QMHSTM
Statement number(s) for sending program; CHAR(30)

The statement number(s) at which the sending program sent the message. Each
statement number is 10 characters in length.
v If the sending program type field QMHSTY contains a zero (’F0’X) or a three

(’F3’X), there is, at most, one statement number in the first 10 characters.
That statement number represents an MI instruction number. The number is
a hexadecimal number.

v If the sending program type field contains a one (’F1’X) or a two (’F2’X), this
field can contain statement numbers of 0, 1, 2, or 3. The field QMHSSN
specifies how many there are. In this case, a statement number is a higher
level language statement number and not an MI instruction number. Each
number is a decimal number.

QMHRPR
Receiving procedure name; VAR CHAR(*)
v If the receiving program type field contains a zero (’F0’X), this field contains

the value *N.
v If the Receiving program type field QMHRTY contains a one (’F1’X), this

field contains the receiving ILE procedure name. The name can be a
maximum of 256 characters in length.

v If the Receiving program type field QMHRTY contains a two (’F2’X), this
field contains blanks, while the entire name will be contained in the field
QMHCRP.

This field can contain a nested procedure name for a sending program type of
1 or 2; each procedure name is separated by a colon. The outer-most procedure
name is identified first and is followed by the procedures contained in it. The
inner-most procedures are identified last in the string.

QMHRMD
Receiving module name; CHAR(10)
v If the receiving program type field contains a zero (’0F’X), this field contains

the value *N.
v If the receiving program type field QMHRTY contains a one (’F1’X) or a two

(’F2’X), this field contains the receiving ILE module name.

QMHRPG
Receiving program name; CHAR(10)

400 CL Programming V5R1

The program name of the OPM or ILE program to which the message was
sent.

QMHRLB
Receiving library name; CHAR(10)

The name of the library that the receiving program was in.

QMHRTM
Statement number(s) for receiving program; CHAR(30)

The statement number(s) at which the receiving program was stopped when
the message was sent. Each statement number is 10 characters in length.
v If the receiving program type field QMHRTY contains a zero (’F0’X), there is,

at most, one statement number in the first 10 characters. That statement
number represents an MI instruction number. The number is a hexadecimal
number.

For any other value of the receiving program type, there can be 0, 1, 2, or 3
statement numbers in this field. The field QMHRSN specifies how many there
are. In this case, a statement number is a higher level language statement
number and not an MI instruction number. Each number is a decimal number.

QMHSYS
System name; CHAR(8)

The name of the system that the job log was produced on.

QMHJOB
Qualified job Name; CHAR(26)

The fully qualified name of the job for which the message is being logged for.
The first 10 positions contain the job name, the next 10 positions the user
name, and the last six positions the job number.

QMHMDT
Message data; VAR CHAR(*)

If the field QMHMID contains the special value *IMMED, this field contains an
immediate message. Otherwise, this field contains the message data that was
used when the message was sent. This field can contain a maximum of 3000
characters. If the immediate message or message data is longer, it is truncated
to 3000 characters.

If the message data contains pointers, the pointers is invalidated before the
message data is written to the database file.

QMHCSP
Complete sending procedure name; CHAR(VAR)
v If the sending program type is zero (’F0’X) or three (’F3’X), this field

contains blanks.
v If the sending program type is one (’F1’X) or two (’F2’X), this field contains

the entire ILE procedure name. The name can be a maximum of 4096
characters in length.
This field can contain a nested procedure name where each procedure name
is separated by a colon. The outer-most procedure name is identified first
and is followed by the procedures contained in it. The inner-most
procedures are identified last in the string.

QMHCRP
Complete receiving procedure name; CHAR(VAR)

Appendix C. Job Log Output Files 401

v If the sending program type is zero (’F0’X), this field contains blanks.
v If the receiving program type is one (’F1’X) or two (’F2’X), this field contains

the entire ILE procedure name. The name can be a maximum of 4096
characters in length.
The field can contain a nested procedure name where each procedure name
is separated by a colon. The outer-most procedure name is identified first
and is followed by the procedures contained in it. The inner-most
procedures are identified last in the string.

QMHLSP
Long sending program name; CHAR(VAR)

This field contains the entire sending program name from which the message
was sent for all sending program types. The name can be a maximum of 6144
characters in length.

QMHTID
Thread; CHAR(8)

This field identifies the thread within the job that sent the message.

The IBM supplied model for the secondary job log file is QAMHJLSC in library
QSYS. The secondary record format name is QMHSFT. A detailed description of
the secondary record format follows:

Field Order Field Name Data Type Length in Bytes Field Description
1 QMHJDS DATE 10 Date job log created
2 QMHJTS TIME 8 Time job log created
3 QMHMKS CHAR 4 Message reference key
7 QMHSYN CHAR 8 System name
8 QMHJBN CHAR 26 Qualified job name
4 QMHLNN BIN 4 Message line number
5 QMHSID BIN 4 CCSID of text line
6 QMHTTY CHAR 1 Message text indicator
9 QMHLIN CHAR 78 Message text line

The length of the field indicates the number of total bytes for the field.

The definition of the fields in this record are as follows:

QMHJDS
Date job log created; DATE(8)

The date the production of the job log began. The field is a date field in the
database record. The format of the date is *ISO. A value in this field is in the
format yyyy-mm-dd. Each record produced for the same job log will have the
same value in this field.

QMHJTS
Time job log created; TIME(8);

The time the production of the job log began. This field is defined as a time
field in the database record. The format of the time is defined to be *ISO. A
value in this field is in the format hh.mm.ss. Each record produced for the
same job log will have the same value in this field.

QMHMKS
Message reference key; CHAR(4)

402 CL Programming V5R1

The message reference key the related message had in the job message queue.
The records are placed in the secondary database file in ascending sequence by
message reference key. There can be more than one secondary record for a
specific message reference key. This field also exists in the related primary
record. Therefore, once the message reference key is obtained from a primary
record, it can be used to read the related records from the secondary file.

QMHSYN
System name; CHAR(8)

The name of the system that the job log was produced on.

QMHJBN
Qualified job Name; CHAR(26)

The fully qualified name of the job for which the message is being logged for.
The first 10 positions contain the job name, the next 10 positions the user
name, and the last six positions the job number.

QMHLNN
Message line number; BIN(4)

The line number of the line within the text type. For both the first and second
level text, the line number starts at one for the first line of the text and is
incremented by one for each additional line within that level.

QMHSID
CCSID of message text line; BIN(4)

The CCSID of the message text line that is contained in field QMHLIN.

QMHTTY
Message text type; CHAR(1)

An indicator which specifies whether field QMHLIN contains a line of the first
or second level text. This field will contain one of the following values:

1 Field QMHLIN contains first level text.

2 Field QMHLIN contains second level text.

QMHLIN
Message text line: CHAR(78)

This field contains one line of the first or second level text.

Appendix C. Job Log Output Files 403

404 CL Programming V5R1

Appendix D. IBM-Supplied Libraries in Licensed Programs
(LP)

The iSeries server contains the definitions of many libraries. They provide a
method to organize most of the objects that are stored on the system.

In the following tables, the IBM-supplied libraries display in alphabetical order
under the licensed program (LP) that provided them.
v “IBM-Supplied Libraries for the OS/400 Licensed Program” shows the libraries

that are supplied for use with the base operating system, the Operating
System/400 (OS/400) licensed program.

v “IBM-Supplied Libraries for Other iSeries Licensed Programs” on page 407
shows the libraries supplied for all the other iSeries licensed programs.
– The licensed programs appear alphabetically by the full descriptive name of

each program. They display on the Install Licensed Programs menu on the
system.

– Also, if there are features in a licensed program, the feature name and
number precede the libraries that are contained in that feature.

IBM-Supplied Libraries for the OS/400 Licensed Program
Table 11. IBM-Supplied Libraries for the OS/400 Program
Program Name Library Name Purpose of Library
Operating System/400 (5769-SS1)

QAFPLIB Print services facility
QCPA Common programming APIs toolkit
QDB2MS DB2® multisystem
QDNS Domain name system
QDOC Contains document library objects

residing in the system auxiliary storage
pool (ASP), ASP 1. Document library
services (DLS) system objects reside here.
Not shipped with system; created at IPL
time.

QDOCnnnn Contains document library objects
residing in user auxiliary storage pools
(ASP). nnnn is the number, 0002 through
0016, of the ASP. Not shipped with
system; created at IPL time.

QDSNX Not shipped with system; created at
install time

QFLOWMARK Integration of Flowmark
QFNTCPL AFP* compatibility fonts
QFPNTWE NetWare enhanced integration
QFSNOTES Lotus® notes enhanced integration
QGDDM Support for graphical data display

manager (GDDM*) and presentation
graphics routines (PGR)

QGPL General purpose library of the user
QGPLTEMP Not shipped with system; created at

install time

© Copyright IBM Corp. 1997, 2001 405

Table 11. IBM-Supplied Libraries for the OS/400 Program (continued)
Program Name Library Name Purpose of Library

QHLPSYS Online documentation for some system
functions

QICSS Digital Certificate Manager
QIWS Host servers
QM36 Advanced 36
QMGU System/36 and System/38 migration

utility
QMSE Media and Storage Extensions (MSE)

library
QMU400 System/36 Migration Assistant
QNTAP AS/400 NT Server
QPASE Private Address Space Environment
QPFRDATA Library of system-collected performance

data
QQALIB Question-and-answer utility library
QRCL Library for reclaiming objects via the

RCLSTG command
QRECOVERY System recovery library
QRPLOBJ Library for replaced objects
QSCxxxxxxx Data library for collecting APAR data;

xxxxxxx = last 7 digits of the problem
identifier

QSHELL Qshell interpreter
QSMP DB2 symmetric multiprocessing
QSOC OptiConnect
QSPL Spooling library
QSR Object Connect
QSRV System service library
QSYS System library
QSYSCGI Extended base directory support
QSYSDIR Extended base directory support
QSYSINC System openness includes
QSYSLOCALE Contains locale source members for use

in creating *LOCALE objects.
QSYSVxRxMx iSeries CL compiler library, previous

release support; x identifies the version,
release, and modification level of the
previous release.

QSYS2 Supplemental system library for objects
whose names do not begin with the letter
Q; includes, for example, objects for CPIs.

QSYSxxxx Online information.
QTEMP Temporary library of user
QUMEDIA Ultimedia system facilities
QM36 Advanced 36
QUSRINFSKR1 Bookmarks for InfoSeeker books. Created

at install time.
QUSRSYS Additional IBM-supplied objects
QUSRTEMP Not shipped with system; created at

install time
QUSRTOOL Example tools

OS/400 Libraries

406 CL Programming V5R1

Table 11. IBM-Supplied Libraries for the OS/400 Program (continued)
Program Name Library Name Purpose of Library

Notes:

1. Support for Infoseeker went away in V4R4, and the library was removed from the system
in V4R5.

Libraries for System/36 Environment
QSSP System/36 environment library
QS36F System/36 environment file library;

created by system
#CGULIB System/36 Character Generator Utility

(CGU)
#DFULIB System/36 Data File Utility (DFU)
#DSULIB System/36 Development Support Utility

(DSU)
#LIBRARY System/36 environment, general purpose

library of user
#SDALIB System/36 Screen Design Aid (SDA)
#SEULIB System/36 Source Entry Utility (SEU)

Library for System/38 Environment
QSYS38 System/38 environment library

IBM-Supplied Libraries for Other iSeries Licensed Programs
Table 12. Libraries for Other LPs on the iSeries server
Program Name Library Name Purpose of Library

ADSTAR® Distributed Storage Manager for AS/400 (5769-SV3)
QADSM ADSM

Advanced DBCS Printer Support for AS/400 (5722-AP1)
QAPS Advanced double-byte character set

(DBCS) printer support
QAPS2 Advanced DBCS Printer Support for

AS/400-IPDS
Advanced Function Printing DBCS Fonts for AS/400 (5769-FN1)

QFNT60 AFP™ DBCS Fonts/400–Base Support
Library for: Japanese Fonts
QFNT61 AFP DBCS Fonts/400–Japanese
QFNT62 AFP DBCS Fonts/400–Korean
Library for: Traditional Chinese Fonts
QFNT63 AFP DBCS Fonts/400–Traditional

Chinese
Library for: Simplified Chinese Fonts
QFNT64 AFP DBCS Fonts/400–Simplified

Chinese
Library for: Thai Fonts
QFNT65 AFP DBCS Fonts/400–Thai

Advanced Function Printing Fonts for AS/400 (5769-FNT)
QFNT00 OS/400 Base support for AFP fonts
QFNT01 OS/400 Sonoran Serif** font support

(Sonoran Serif is a functional
equivalent of Monotype Times New
Roman**)

QFNT02 OS/400 Sonoran Serif Headliner font

OS/400 Libraries

Appendix D. IBM-Supplied Libraries in Licensed Programs (LP) 407

Table 12. Libraries for Other LPs on the iSeries server (continued)
Program Name Library Name Purpose of Library

QFNT03 OS/400 Sonoran Sans Serif** font
support (Sonoran Sans Serif is a
functional equivalent of Monotype
Arial**)

QFNT04 OS/400 Sonoran Sans Serif Headliner
font

QFNT05 OS/400 Sonoran Sans Serif Condensed
font

QFNT06 OS/400 Sonoran San Serif Expanded
font

QFNT07 OS/400 Monotype Garamond** font
QFNT08 OS/400 Century Schoolbook** font
QFNT09 OS/400 Pi and special characters font
QFNT10 OS/400 ITC Souvenir** font
QFNT11 OS/400 ITC Avant Garde Gothic** font
QFNT12 OS/400 Math and Science font
QFNT13 OS/400 DATA1 font
QFNT14 OS/400 APL2® font
QFNT15 OS/400 OCR A and OCR B fonts

AFP Utilities for AS/400 (5722-AF1)
QAFP AFP Utilities for AS/400

WebSphere Development Studio (5722-WDS)
QPDA Includes the following tools and

utilities:

v APF (advanced printer function)

v CGU (character generator utility),
for DBCS systems only

v DFU (data file utility)

v ISDB (interactive source debugger)

v PDM (programming development
manager)

v RLU (report layout utility)

v SDA (screen design aid)

v SEU (source entry utility)
QADM Application development manager
QDMT Application dictionary services

Application Program Driver for AS/400 (5722-PD1)
QAPD Application Program Driver/400

AS/400 Client Access Family (5769-XY1)
QCA400Y AS/400 Client Access Family

iSeries Client Access Family for Windows (5722-XW1)
QCA400W AS/400 Client Access for Windows

Base
QWIN32 Windows® 3.1 Client
QWIN16 Enhanced Windows 3.1 Client

Developer Kit for Java (5722-JV1)
QJAVA Developer Kit for Java

Toolbox for Java (5722-JC1)
QJT400 Toolbox for Java

Backup Recovery and Media Services for iSeries (5722-BR1)
QBRM BRM Services/400 support

LP Libraries

408 CL Programming V5R1

Table 12. Libraries for Other LPs on the iSeries server (continued)
Program Name Library Name Purpose of Library

QBRMSFnn BRM Services/400 save file library,
where nn is the number of both the
ASP and its library (01 through 16)

QUSRBRM BRM Services/400 user data
Business Graphics Utility for AS/400 (5722-DS1)

QBGU AS/400 Business Graphics Utility
(BGU)

CallPath® Server for AS/400 (5769-CP4)
QCSA CallPath Client/400

CICS Transaction Server for iSeries (5722-DFH)
QCICS CICS/400®

QCICSSAMP Sample CICS® application programs
Client Access (5716-XA1)

Libraries for: Client Access/400 – Base Support
QIWS Client Access/400, including

double-byte character set (DBCS)
support

QIWSFD DBCS DOS programs
QIWSFS DOS programs
QIWSPD Extended DBCS DOS programs
QIWSPS Extended DOS programs
QIWSTL PC tools folder
Libraries for: Operating System/2® (OS/2) Support
QIWS2D OS/2® programs using DBCS
QIWS2S OS/2 programs using SBCS
Library for: Communications Manager/400 feature (Feature 5109)
QCM400 Communications Manager/400
Libraries for: RUMBA**/400 feature (Feature 5120)
QRUMBA RUMBA/400 DOS using SBCS
QRUMBAD RUMBA/400 DOS using DBCS
QRUMBA2 RUMBA/400 OS/2 using SBCS
QRUMBA2D RUMBA/400 OS/2 using DBCS

Communications Utilities for iSeries (5722-CM1)
QRJE Remote job entry (RJE) and VM/MVS

bridge
Cryptographic Access Provider 56-bit (5722-AC2)

QCAP2 Cryptographic Access Provider 56-bit
Cryptographic Access Provider 128-bit (5722-AC3)

QCAP3 Cryptographic Access Provider 128-bit
Cryptographic Support for AS/400 (5722-CR1)

QCRP Cryptographic Support for AS/400
DB2 DataPropagator for iSeries Version 7.1 (5769-DP3)

QDPR Product library
ASN Data library

DB2 Query Manager and SQL Development Kit for iSeries (5722-ST1)
QSQL Structured Query Language/400

(SQL/400)
DCE Base Services (5798-TBF)

QDCE DCE Base Services
DCE Base Services for AS/400 (5769-DC1)

QDCE2 DCE Base Services for AS/400
DOS Client (5763-XL1)

QIWSF DOS Client
QIWSFS Client Access - DOS SBCS

LP Libraries

Appendix D. IBM-Supplied Libraries in Licensed Programs (LP) 409

Table 12. Libraries for Other LPs on the iSeries server (continued)
Program Name Library Name Purpose of Library

QIWSFD Client Access - DOS DBCS
DOS with Extended Memory Client (5763-XB1)

QIWSP DOS with Extended Memory Client
QIWSPS Client Access - Extended DOS SBCS
QIWSPD Client Access - Extended DOS DBCS
QRUMBA Client Access - Extended DOS RUMBA

SBCS
QRUMBAD Client Access - Extended DOS RUMBA

DBCS
QUMSFWIN Client Access - Ultimedia Facilities

DW/36 Language Dictionaries (5716-DCN)
QDCEE DW/36 Language Dictionaries

Enhanced Windows 3.1 Client (5763-XK1)
QWIN16 Enhanced Windows 3.1 Client
QWIN16S Client Access - Windows 3.1 SBCS
QWIN16D Client Access - Windows 3.1 DBCS
QPC5250K Client Access - Windows 3.1 PC5250

Korean
QPC5250T Client Access - Windows 3.1 PC5250

Traditional Chinese
QPC5250P Client Access - Windows 3.1 PC5250

Simple Chinese
eTill for AS/400 (5769-PY1)

QPMTSVR eTill for AS/400
HTTP Server for AS/400 (5769-DG1)

QHTTPSVR Go Webserver for AS/400
ILE C (5722-WDS)

QCLE Integrated Language Environment®

C/400
ILE COBOL (5722-WDS)

QCBLLE ILE COBOL/400 library
QCBLLEP ILE COBOL/400, previous release

support
QLBL COBOL/400
#COBLIB System/36-compatible COBOL
QCBL System/38-compatible COBOL

ILE RPG (5722-WDS)
QRPG RPG/400
QRPGLE ILE RPG/400
QRPGLEP ILE RPG/400, previous release support
#RPGLIB System/36-compatible RPG II
QRPG38 System/38-compatible RPG III

Internet Connection Secure Server (U.S.) (5769-NC1)
QICSS Internet Connection Secure Server

Internet Connect Secure Server (International) (5769-NCE)
QICSS Internet Connection Secure Server

Job Scheduler for AS/400 (5769-JS1)
QIJS Job Scheduler

Knowledge Tool Development (5798-TAW)
QKTC Knowledge Tool Development

Knowledge Tool Runtime (5798-TAT)
QKTL Knowledge Tool Runtime

Language Dictionaries for AS/400 (5716-DCT)

LP Libraries

410 CL Programming V5R1

Table 12. Libraries for Other LPs on the iSeries server (continued)
Program Name Library Name Purpose of Library

QDCT Language Dictionaries/400
MQSeries® for AS/400 (5769-MQ1)

QMQM MQSeries
QMQMSAMP MQSeries for AS/400- Samples
QMQMADM MQSeries for AS/400- Administration

Application
NetFinity Manager for OS/2 (5769-SVD)

QSVCM2 NetFinity Manager for OS/2
NetFinity Manager for Windows 95 (5769-SVE)

QSVCM95 NetFinity Manager for Windows 95
NetFinity Server (5769-SVA)

QSVCM NetFinity Server
NetQuestion (5769-NC5)

QNETQ NetQuestion
NetWare Integration (5769-SA3)

QFPNTWI NetWare Integration
OnDemand for AS/400 (5769-RD1)

QRDARS OnDemand
OS/2 Client (5763-XF1)

QIWS2 OS/2 Client
QIWS2S Client Access - OS/2 SBCS
QIWSOS2D Client Access - OS/2 DBCS
QRUMBA2 Client Access - OS/2 RUMBA SBCS
QRUMBA2D Client Access - OS/2 RUMBA DBCS
QHMC400 Client Access - OS/2 Communications

Manager
QGYOS2 Client Access - GraphicOps for OS/2
QUMBOS2 Client Access - Ultimedia Facilities

Optimized OS/2 Client (5763-XG1)
QPWXGOS2 Optimized OS/2 Client
QPWXGRB Client Access - RUMBA Optimized for

OS/2
QPWXGPC Client Access - PC5250 Optimized for

OS/2
QPWXGGY Client Access - GraphicOps for OS/2
QPWXGUM Client Access - Ultimedia Facilities
QPWXGGA Client Access - Graphical Access for

AS/400
Performance Tools for iSeries (5722-PT1)

QPFR Performance Tools for iSeries
Point-of-Sale Utility (5722-CF1)

QPOS Point-of-Sale Utility
Query for iSeries (5722-QU1)

QQRYLIB Query for iSeries
SystemView® Base (5716-SVM)

QSVBASE SystemView Base
QSVLNCH SystemView for AS/400 Launch

Window
System/38 Utilities for AS/400 (5722-DB1)

QIDU System/38 Query, Text Management,
and Data File Utility (DFU)

System Manager for iSeries (5722-SM1)
QSMU SystemView System Manager/400

LP Libraries

Appendix D. IBM-Supplied Libraries in Licensed Programs (LP) 411

Table 12. Libraries for Other LPs on the iSeries server (continued)
Program Name Library Name Purpose of Library
Managed System Services for iSeries (5722-MG1)

QSVMSS SystemView Managed System
Services/400

QSVDSTRPS SystemView distribution repository for
user objects; created when LP is
installed

TCP/IP Connectivity Utilities for iSeries (5722-TC1)
QTCP TCP/IP Connectivity Utilities/400
QTCPCGI TCP/IP Connectivity Utilities/400

extended base directories support
QHTTP HTTP server
QWSG Workstation Gateway server

Ultimedia Business Conferencing for AS/400 (5716-UB1)
QUMCONFER Business Conferencing Base
QUMBCEDS Business Conferencing- Windows
QUMBCOS2 Business Conferencing- OS/2
QUMBPPOS2 Person-to-Person- OS/2
QUMPPWIN Person-to-Person- Windows

Ultimedia Tools (5716-US1)
QUMHCATL Ultimedia Tool Base
QUMPIOSS Ultimedia Perfect Image- OS2 SBCS
QUMPISAM Ultimedia Perfect Image- OS2 Samples
QUMBLOSS Ultimedia Builder- OS2 SBCS
QUMBLSAM Ultimedia Builder- OS2 Samples

VisualGen® Host Services for AS/400 (5716-VG1)
QVGEN VisualGen Host Services

VisualInfo™ for AS/400 (5769-VI1)
QVI VisualInfo for AS/400

Windows 3.1 Client (5763-XC1)
QPWXCLIB Windows 3.1 Client
QPWXCWN Client Access - Windows 3.1 SBCS
QPWXCWND Client Access - Windows 3.1 DBCS
QPWXCRB Client Access - Windows 3.1 RUMBA

SBCS
QPWXCRBD Client Access - Windows 3.1 RUMBA

DBCS
QPWXCPC Client Access -Windows 3.1 PC5350
QPWXCGY Client Access - GraphicOps for

Windows
QPWXCUM Client Access - Ultimedia Facilities
QPWXCGA Client Access - Graphic Access
QPWXCSO Client Access - SysObject Access

Windows 95/NT Client (5763-XD1)
QWIN32 Windows 95/NT Client

Wireless Connection (5798-TBW)
QTELSTAR Wireless Connection

LP Libraries

412 CL Programming V5R1

Appendix E. Abbreviations of CL Commands and Keywords

This section contains alphabetic lists of abbreviations that are used in CL
commands that are part of IBM OS/400 and other IBM iSeries licensed programs.

This information can assist you in naming commands and keywords in a
consistent manner when using command definition. (See “Chapter 9. Defining
Commands” on page 283 and the chapter on command definition statements in the
CL and APIs section of the Programming category in the iSeries Information Center.

CL Command Verb Abbreviations
Most CL command names follow a consistent naming style. The first three letters
of the command name represent the action that is being performed. The remaining
letters of the command name describe the object that is having the action
performed on it.

Another name for the three-letter command prefix is the command ’verb’. The
majority of all CL commands use one of the following common command verbs:

Verb Abbreviation Meaning
ADD add
CHG change
CRT create
DLT delete
DSP display
END end
RMV remove
STR start
WRK work with

The following is a list of all the abbreviations that are used as command verbs:

Verb Abbreviation Meaning
ADD add
ALC allocate
ALM alarm
ANS answer
ANZ analyze
APY apply
ASK ask
BLD build
CFG configuration
CHG change
CHK check
CLO close
CLR clear
CMP compare
CNL cancel
CPH cipher
CPR compress
CPY copy

© Copyright IBM Corp. 1997, 2001 413

Verb Abbreviation Meaning
CRT create
CVT convert
DCP decompress
DLC deallocate
DLT delete
DLY delay
DMP dump
DSC disconnect
DSP display
DUP duplicate
EDT edit
EJT eject
EML emulate
ENC encipher
END end
EXP export
EXT extract
FIL file
FMT format
FND find
GEN generate
GRT grant
HLD hold
IMP import
INS install
INZ initialize
LNK link
LOD load
MGR migrate
MON monitor
MOV move
MRG merge
OPN open
ORD order
OVR override
PAG paginate
PKG package
POS position
PRM promote
PRT print
PWR power
QRY query
RCL reclaim
RCV receive
RGZ reorganize
RLS release
RMV remove
RNM rename
RPL replace
RQS request
RRT reroute
RSM resume
RST restore
RTV retrieve

Abbreviations of CL Commands and Keywords

414 CL Programming V5R1

Verb Abbreviation Meaning
RUN run
RVK revoke
SAV save
SBM submit
SET set
SLT select
SND send
STR start
TFR transfer
TRC trace
UPD update
VFY verify
VRY vary
WRK work with

CL Command Abbreviations
The following is a list of all abbreviations that are used in CL command names,
including command verb abbreviations:

Command Abbreviation Meaning
A (suffix) attributes
ABN abnormal
ACC access code
ACCGRP access group
ACG accounting
ACN action
ACNE action entry
ACT active, activity, activation
ADD add
ADM application development manager,

administration, administrative
ADP adopt, adopting
ADPI adapter information
ADPP adapter profile
ADPT adapter
ADR address
ADSM ADSTAR distributed storage manager
AFP advanced function printing
AJE autostart job entry
ALC allocate
ALR alert
ALRD alert description
ALRTBL alert table
ALS alias
ANS answer
ANZ analyze
AP access path
APAR authorized program analysis report
APF advanced printer function
APP application
APPC advanced program-to-program

communications
APPN® advanced peer-to-peer networking

Abbreviations of CL Commands and Keywords

Appendix E. Abbreviations of CL Commands and Keywords 415

Command Abbreviation Meaning
APY apply
ARA area
ARC archive
ASC asynchronous
ASK ask
ASN association
ASP auxiliary storage pool
AST assistance
ATM asynchronous transfer mode
ATN attention
ATR attribute
AUD audit, auditing
AUT authority
AUTE authentication entry
AUTL authorization list
BACK back
BAL balance, balancing
BAS BASIC language
BCD barcode
BCH batch
BCK backup
BCKUP backup
BGU business graphics utility
BKP breakpoint
BKU backup
BND binding, bound
BP boot protocol
BRM BRMS (backup recovery and media services)
BSC binary synchronous
BSCF bsc file
BUF buffer
C C language
CAL calendar
CALL call
CAP capture
CBL COBOL language
CCS change control server
CCT IPX circuit
CCTRTE circuit route
CCTSRV circuit service
CDE code, coded
CDS coded data store
CFG configuration
CFGL configuration list
CFGLE configuration list entry
CGY category
CHG change
CHK check
CHT chart
CICS customer information control system
CL control language
CLD C locale description
CLG catalog
CLNUP cleanup

Abbreviations of CL Commands and Keywords

416 CL Programming V5R1

Command Abbreviation Meaning
CLO close
CLR clear
CLS class
CLT client
CMD command
CMN communications
CMNE communications entry
CMNF communications file
CMP compare
CMT commit
CNL cancel
CNN connection
CNNL connection list
CNNLE connection list entry
CNR container
CNT contact
CNV conversation
CODE cooperative development environment
COL collection
COM community
COSD class-of-service description
CP check pending
CPH cipher
CPIC common programming interface for

communications
CPP C++ language
CPR compress
CPT component
CPY copy
CPYSCN copy screen
CRG cluster resource group
CRP cryptographic
CRQ change request
CRSDMN cross-domain
CRT create
CSI communications side information
CSL console
CST constraint, customization
CTG cartridge
CTL control
CTLD controller description
CUR current
CVN conversion
CVT convert
D (suffix) description
DAT date
DB database
DBF database file
DBG debug
DCL declare
DCP decompress
DCT dictionary
DDI distributed data interface
DDM distributed data management

Abbreviations of CL Commands and Keywords

Appendix E. Abbreviations of CL Commands and Keywords 417

Command Abbreviation Meaning
DDMF distributed data management file
DEP dependent
DEV device
DEVD device description
DFN definition
DFT default
DFU data file utility
DHCP dynamic host configuration protocol
DIR directory
DIRE directory entry
DIRSHD directory shadow
DKT diskette
DKTF diskette file
DL DataLink
DLC deallocate
DLF DataLink file
DLFM DataLink file manager
DLO document library object
DLT delete
DLY delay
DMN domain
DMP dump
DNS domain name service
DO do
DOC document
DOM Domino™

DPCQ DSNX/PC queue
DPR DataPropagator™ Relational
DSC disconnect
DSK disk
DSP display
DSPF display file
DST distribution
DSTL distribution list
DSTLE distribution list entry
DSTQ distribution queue
DSTSRV distribution services
DTA data
DTAARA data area
DTAQ data queue
DUP duplicate
DWN down
E (suffix) entry
EDT edit
EDTD edit description
EDU education
EJT eject
EML emulate, emulation
ENC encipher
END end
ENR enrollment
ENV environment
ENVVAR environment variable
EPM extended program model

Abbreviations of CL Commands and Keywords

418 CL Programming V5R1

Command Abbreviation Meaning
ERR error
ETH ethernet
EWC extended wireless controller
EWL extended wireless line
EXIT exit
EXP expiration, export
EXT extract
F (suffix) file
FAX facsimile
FCN function
FCT forms control table
FCTE forms control table entry
FD file description
FFD file field description
FIL file
FILL fill
FLR folder
FMT format
FNC finance
FND find
FNT font
FNTRSC font resource
FNTTBL font table
FORM form
FORMD form description
FORMDF form definition
FR frame relay
FRM from
FRW firewall
FTN FORTRAN language
FTP file transfer protocol
FTR filter
GDF graphics data format
GEN generate
GO go to
GPH graphics
GPHPKG graph package
GRP group
GRT grant
GSS graphic symbol set
HDB host database
HDW hardware
HDWRSC hardware resources
HLD hold, held
HLL high level language
HLP help
HLR holder
HOST host
HST history, historical
HTE host table entry
HTTP hypertext transfer protocol
I (suffix) information, item, ILE
ICF intersystem communications function
ICFF icf file

Abbreviations of CL Commands and Keywords

Appendix E. Abbreviations of CL Commands and Keywords 419

Command Abbreviation Meaning
IDD interactive data definition utility
IDLC ISDN data link control
IDX index
IDXE index entry
IFC interface
IMG image
IMP import
INF information
INP input
INS install
INT internal machine
INTR intrasystem
INZ initialize
IPI internet protocol over IPX
IPL initial program load
IPS internet protocol over SNA
IPX internetwork packet exchange
IPXD IPX description
ISDB interactive source debugger
ISDN integrated services digital network
ITF interactive terminal facility
ITG integrity
ITM item
IWS intelligent work station
JOB job
JOBD job description
JOBE job entry
JOBQ job queue
JOBQE job queue entry
JRN journal
JRNRCV journal receiver
JS job scheduler
JVA Java
KBD keyboard
KEY key
L (suffix) list
LAN local area network
LANG language
LBL label
LCK lock
LCL local
LCLA local attributes
LF logical file
LFM logical file member
LIB library
LIBL library list
LIBM library member
LIC license, licensed
LIN line
LIND line description
LNK link
LOC location
LOCALE locale
LOD load

Abbreviations of CL Commands and Keywords

420 CL Programming V5R1

Command Abbreviation Meaning
LOF logical optical file
LOG log
LOGE log entries
LPD line printer daemon
LPDA link problem determination aid
LPR line printer requester
LWS local work station
M (suffix) member
MAC message authentication code
MAIL mail
MAP map
MAX maximum
MBR member
MDL model
MED media
MEDDFN media definition
MEDI media information
MFS mounted file system
MGD managed
MGR migrate, migration, manager
MGTCOL management collection
MLB media library
MLM media library media
MNT minutes, maintenance
MNU menu
MOD mode, module
MODD mode description
MON monitor
MOV move
MRG merge
MSF mail server framework
MSG message
MSGD message description
MSGF message file
MSGQ message queue
MST master
M36 AS/400 Advanced 36 machine
M36CFG AS/400 Advanced 36 machine configuration
NAM name
NCK nickname
NDSCTX NetWare directory services context
NET network
NETF network file
NFS network file system
NODGRP node group
NODL node list
NTB netbios
NTF NetFinity
NTS Notes™

NTW NetWare
NWI network interface
NWS network server
NWSAPP network server application
NWSD network server description

Abbreviations of CL Commands and Keywords

Appendix E. Abbreviations of CL Commands and Keywords 421

Command Abbreviation Meaning
OBJ object
OCL operation control language
OF optical file
OFC office
OFF off
OMC object management cycle
OPC opticonnect
OPN open
OPT optical
ORD order
OUT out, outgoing, output
OUTQ output queue
OUTQD output queue description
OVL overlay
OVLU overlay utility
OVR override
OWN owner
PAG page, paginate
PAGDFN page definition
PAGS page segment
PAGSEG page segment
PARM parameter
PART part
PASTHR pass through
PC personal computer
PCD pc document
PCL protocol
PCO pc organizer
PCY policy
PDG print descriptor group
PDM programming development manager
PEX performance explorer
PF physical file
PFD printout format definition
PFM physical file member
PFR performance
PFRG performance graphics
PFRT performance tools
PFU print format utility
PFX prefix
PGM program
PGP primary group
PGR pager
PHS phase
PIN personal identification number
PJ prestart job
PJE prestart job entry
PKG package
PLI PL/I (programming language one)
PMN permission
PMT prompt
PNLGRP panel group
POF physical optical file
POL pool

Abbreviations of CL Commands and Keywords

422 CL Programming V5R1

Command Abbreviation Meaning
POP post office protocol
PORT port
POS position
PPP point-to-point protocol
PRB problem
PRC procedure
PRD product
PRF profile
PRFL profile list
PRJ project
PRM promote
PRP preparation
PRS personal
PRT print
PRTF printer file
PRTQ print queue
PSFCFG print services facility configuration
PTC portable transaction computer
PTF program temporary fix
PTP point-to-point
PTR pointer
PVD provider
PWD password
PWR power
PYM payment
QM query management
QRY query
QRYF query file
QSH Qshell interpreter
QST question
RBD rebuild
RCD record
RCL reclaim
RCV receive
RCY recovery
RDAR report/data archive and retrieval
RDB relational database
RDR reader
REF reference
REG registration
REX REXX (restructured extended executor

language)
RGP ranking group
RGPE ranking group entry
RGZ reorganize
RJE rje
RLS release
RLU report layout utility
RMC report management cycle
RMT remote
RMV remove
RNM rename
ROLL roll
RPC remote procedure call

Abbreviations of CL Commands and Keywords

Appendix E. Abbreviations of CL Commands and Keywords 423

Command Abbreviation Meaning
RPDS VM/MVS bridge (formerly Remote Spooling

Communications Subsystem (RSCS)/PROFS
distribution services)

RPG report program generator
RPL replace
RPT report
RPY reply
RPYL reply list
RQS request
RRT reroute
RSC resource
RSI remote system information
RSM resume
RST restore
RTD RouteD (TCP/IP)
RTE route entry
RTGE routing entry
RTL retail
RTLF retail file
RTN return
RTV retrieve
RUN run
RVK revoke
RWS remote work station
RXC REXEC (remote execution)
SAV save
SAVF save file
SAVRST save and restore
SBM submit, submitted
SBS subsystem
SBSD subsystem description
SCD schedule
SCDE schedule entry
SCHIDX search index
SCHIDXE search index entry
SCN screen
SDA screen design aid
SDLC synchronous data link control
SEC security
SET set
SEU source entry utility
SFW software
SHD shadow, shadowing
SHRPOOL shared pool
SIGN sign
SIT situation
SLT select, selection
SLTE selection entry
SMG system manager
SMW system manager workstation
SMTP simple mail transfer protocol
SNA systems network architecture
SND send
SNI SNA over IPX

Abbreviations of CL Commands and Keywords

424 CL Programming V5R1

Command Abbreviation Meaning
SNMP simple network management protocol
SNPT SNA pass through
SNUF SNA upline facility
SOC sphere of control
SPADCT spelling aid dictionary
SPL spooling
SPLF spooled file
SPT support
SPTN support network
SQL structured query language
SRC source
SRCF source file
SRV service
SRVPGM service program
SSN session
SSND session description
SST system service tools
STC statistics
STG storage
STGL storage link
STM stream, statement
STR start
STS status
SVR server
SWA save while active
SWL stop word list
SYS system
SYSCTL system control
SYSDIR system directory
SYSVAL system value
S34 System/34
S36 System/36
S38 System/38
TAP tape
TAPF tape file
TBL table
TBLE table entry
TCP TCP/IP (transmission control

protocol/internet protocol)
TDLC twinaxial data link control
TELN telnet
TFR transfer
TFTP trivial file transfer protocol
THD thread
THLD threshold
TIE technical information exchange
TIEF tie file
TNS transaction
TO to
TOS type of service
TPL template
TRC trace
TRG trigger
TRN token-ring network

Abbreviations of CL Commands and Keywords

Appendix E. Abbreviations of CL Commands and Keywords 425

Command Abbreviation Meaning
TRP trap
TXT text
TYPE type
T1 transport class 1
UBC Ultimedia business conference
UDFS user-defined file system
UPD update
UPG upgrade
USF Ultimedia system facilities
USG usage
USR user
USRIDX user index
USRPRF user profile
USRPRTI user print information
USRQ user queue
USRSPC user space
VAL value
VAR variable
VFY verify
VLDL validation list
VOL volume
VRY vary
VT VT100 or VT220
VWS virtual work station
WAIT wait
WLS wireless
WNT Windows NT®

WP word processing
WRK work with
WSE work station entry
WSG workstation gateway
WSO workstation object
WTR writer
X25 X.25

CL Command Keyword Abbreviations
Each command parameter has a keyword name associated with it. The keyword
name can be up to ten characters. Keyword names do not follow the same style as
command names in that they do not necessarily begin with a command verb.
Where possible, use a single word or abbreviation. For example, common keyword
names in CL commands include OBJ (Object), LIB (Library), TYPE, OPTION, TEXT,
and AUT (Authority).

Construct a keyword name whenever using more than a single word or
abbreviation to describe the parameter. Construct the keyword name by using a
combination of standard command abbreviations and short unabbreviated words.
For example, OBJTYPE is a common keyword name which combines the
abbreviation ’OBJ’ with the short word ’TYPE’.

The two primary goals for keyword names are to be recognizable and to be
consistent between commands that provide the same function. Use of simple
words and standard abbreviations helps to make the keyword names recognizable.

Abbreviations of CL Commands and Keywords

426 CL Programming V5R1

The following is a list of abbreviations that are used in CL command parameter
keyword names:

Keyword Abbreviation Meaning
A (suffix) attributes, activity, address
ABS abstract, absolute
ABN abnormal
AC autocall
ACC access, access code
ACCMTH access method
ACG accounting
ACK acknowledge, acknowledgement
ACN action
ACP accept
ACQ acquire
ACSE association control service element
ACT active, activate, activation, activity, action
ACTSNBU activate switched network backup
ADDR (or ADR) address
ADJ adjacent, adjust
ADL additional
ADM administration, Application Development

Manager
ADMD administration domain
ADP adopt, adaptive
ADPT adapter
ADR (or ADDR) address
ADV advance
AIX® AIX operating system
AJE autostart job entry
AFP advanced function printing
ALC allocate
ALM alarm
ALR alert
ALRD alert description
ALS alias
ALW allow
ANET adjacent network entity title
ANS answer
ANZ analyze
AP access path
APAR authorized program analysis report
APF advanced printer function
APPP application process
APW advanced print writer
APP application
APPC advanced program-to-program

communications
APPN advanced peer-to-peer networking
APY apply
ARA area
ARP address resolution protocol
ASC asynchronous communications
ASCII American National Standard Code for

Information Interchange
ASMT assignment

Abbreviations of CL Commands and Keywords

Appendix E. Abbreviations of CL Commands and Keywords 427

Keyword Abbreviation Meaning
ASN assigned, association
ASP auxiliary storage pool
AST assistance
ASYNC asynchronous
ATD attended
ATN (or ATTN) attention
ATR (or ATTR) attribute
ATTACH attached
ATTN (or ATN) attention key
ATTR (or ATR) attribute
AUD audit, auditing
AUT authority, authorized, authorization
AUTL authorization list
AUTO automatic
AUX auxiliary
AVG average
AVL available
BAL balance
BAS BASIC language, base
BCD barcode, broadcast data
BCH batch
BCKLT backlight
BCKUP (or BKU) backup
BDY boundary
BEX branch extender
BGU business graphics utility
BIN binary
BIO block input/output
BITS data bits
BKP breakpoint
BKT bracket, backout
BKU (or BCKUP) backup
BLDG building
BLK block
BLN blinking cursor
BND binding, bind, bound
BNR banner
BOT bottom
BRK break
BSC binary synchronous communications
BSCEL binary synchronous communications

equivalence link
BSP backspace
BUF buffer
C C language
CAB cabinet
CAL calendar
CAP capacity, capture
CB callback
CBL COBOL language
CCD call control data
CCSID coded character set identifier
CCT circuit
CDE code

Abbreviations of CL Commands and Keywords

428 CL Programming V5R1

Keyword Abbreviation Meaning
CDR call detail records
CFG configuration
CFGL configuration list
CFGLE configuration list entry
CFM confirmation, confirm
CGU character generator utility
CHAR (or CHR) character
CHG change
CHK check
CHKSUM checksum
CHKVOL check volume identifier
CHL channel
CHR (or CHAR) character
CHRSTR character string
CHT chart
CGY category
CKR checker
CKS checksum
CL control language
CLG catalog
CLN clean, cleaning, cleanup
CLNS connectionless-mode network service
CLNUP (or CLN) cleanup
CLO close
CLR clear
CLS class
CLSF class file
CLT client
CLU cluster
CMD command
CMN communications
CMNE communications entry
CMP compare
CMT commitment, comment
CNG congestion
CNL cancel
CNLMT (or CNNLMT) connection limit
CNN connection
CNNL connection list
CNNLMT connection limit
CNR container
CNS constant
CNT contact
CNTL (or CTL) control
CNTRY country
CNV conversation
COD code
CODPAG code page
CODE code, cooperative development environment
COL column, collection
COM common, community
COMPACT compact, compaction
CON confidential
CONCAT concatenation

Abbreviations of CL Commands and Keywords

Appendix E. Abbreviations of CL Commands and Keywords 429

Keyword Abbreviation Meaning
COND condition
CONS connection-mode network service
CONTIG contiguous
CONT continue
COS class-of-service
COSD class-of-service description
COSTBYTE cost per byte
COSTCNN cost per connection
COVER cover letter
CP control point
CPB change profile branch, compatibility
CPI characters per inch
CPL complete
CPP C++ language
CPR compressed, compress
CPS call progress signal
CPT component
CPU central processing unit
CPY copy
CPYRGT copyright
CRC cyclic redundancy check
CRDN credentials
CRG charges, charging, cluster resource group
CRL correlation
CRQ change request
CRQD change request description
CRSDMNK cross-domain key
CRT create
CSI communications side information
CSL console
CSR cursor
CST constraint, cost
CTG cartridge
CTL controller, control
CTLD controller description
CTN contention
CTS clear to send
CTX context
CUR current
CVN conversion
CVR cover
CVT convert, converting
CXT (or CTX) context
CYC cycle
D (suffix) description
DAP directory access protocol
DAT date
DB database
DBCS double-byte character set
DBF database file
DBG debug
DBR database relations
DCE data communications equipment, distributed

computing environment

Abbreviations of CL Commands and Keywords

430 CL Programming V5R1

Keyword Abbreviation Meaning
DCL declare
DCP decompress
DCT dictionary
DDI distributed data interface
DDM distributed data management
DDMF distributed data management file
DDS data description specification
DEC decimal
DEGREE parallel processing degree
DEL delivery
DEP dependent
DEPT department
DES data encryption standard
DEST destination
DEV device
DEVD device description
DFN definition, defined
DFR defer
DFT default
DFU data file utility
DIAG dialogue
DIF differences
DIFF differentiated
DIR directory
DKT diskette
DLC deallocate
DLO document library object
DLT delete
DLVRY delivery
DLY delay
DMN domain
DMP dump
DN distinguished name
DOC document
DPR DataPropagator Relational
DRAWER drawers
DRT direct
DRV drive
DSA directory systems agent
DSAP destination service access point
DSB disable, disabled
DSC disconnect
DSK disk
DSP display
DST dedicated service tools, distribution
DTA data
DTE data terminal equipment
DTL detail
DUP duplicate
DVL development
DWN down
E (suffix) entry
EBCDIC extended binary-coded decimal interchange

code

Abbreviations of CL Commands and Keywords

Appendix E. Abbreviations of CL Commands and Keywords 431

Keyword Abbreviation Meaning
EDT edit
EDU education
EJT eject
ELAN ethernet LAN
ELEM element
ELY early
EML emulate, emulation
ENB enable
ENC encode
ENR enrollment
ENT enter
ENV environment
EOF end of file
EOR end of record
EOV end of volume
ERR error
EST establish, established
ETH ethernet
EVT event
EXC exclude
EXCH exchange
EXD extend, extended
EXEC executive
EXIST existence
EXN extension
EXP expiration, expire
EXPR expression
EXT extract, extend, extended
F (suffix) file
Fnn function key ’nn’
FA file attributes
FAX facsimile
FCL facilities
FCN functional
FCT forms control table
FCTE forms control table entry
FEA front end application
FEA front end application
FEAT feature
FIL file
FLD field
FLG flag
FLIB files library
FLR folder
FLW flow
FMA font management aid
FMT format
FNC finance
FNT font
FORMDF form definition
FP focal point
FRAC fraction
FRC force
FRI Friday

Abbreviations of CL Commands and Keywords

432 CL Programming V5R1

Keyword Abbreviation Meaning
FRM from, frame
FRQ frequency
FSC fiscal
FSN file sequence number
FST first
FTAM file transfer, access, and management
FTP file transfer protocol (TCP/IP)
FTR filter
GC garbage collection
GCH garbage collection heap
GDF graphics data file
GDL guideline, guidelines
GEN generate, generation
GID group identifier number
GIV give
GLB global
GNL general
GPH graph
GRP group
GRT grant
GSS graphics symbol set
GVUP give up
HCP host command processor
HDL (or HNDL) handle
HDR header
HDW hardware
HEX hexadecimal
HFS hierarchical file systems
HLD hold, held
HLL high-level language
HLP help
HLR holder
HNDL (or HDL) handle
HPCP host to printer code page
HPFCS host to printer font character set
HPR high performance routing
HRZ horizontal
HST history, historical
HTTP hypertext transfer protocol (TCP/IP)
I (suffix) information, ILE
ICF intersystem communication function
ICV initial chaining value
ID identifier
IDD interactive data definition
IDL idle
IDLC integrated data link control
IDP interchange document profile
IDX index
IE information element
IFC interface
IGC ideographic (double-byte character set)
IGN ignore
IFC interface
ILE integrated language environment

Abbreviations of CL Commands and Keywords

Appendix E. Abbreviations of CL Commands and Keywords 433

Keyword Abbreviation Meaning
IMG image
IN input
INAC (or INACT) inactivity
INACT (or INAC) inactivity
INC include
IND indirect
INF information
INFSKR Infoseeker
INH inhibit
INIT initiate
INL initial
INM intermediate
INP input
INPACING inbound pacing
INQ inquiry
INS install
INST instance
INT interactive, integer, internal
INTNET internet
INTNETA internet address
INTR intrasystem
INV invitee, inventory, invoke
INZ initialize, initialization
IP internet protocol
IPDS™ intelligent printer data stream
IPI IP over IPX
IPL initial program load
IPX internet packet exchange
ISDN integrated services digital network
IT intermediate text, internal text
ITF interactive terminal facility
ITM item
ITV interval
IW2 IPX WAN version 2 protocol
J (suffix) job
JDFT join default
JE (suffix) job entry
JFLD join field
JORDER join file order
JRN journal
JRNRCV journal receiver
JVA Java
KBD keyboard
KNW know, knowledge
KPF Kanji printer function
KWD keyword
L (suffix) list
LADN library assigned document name
LAN local area network
LANG (or LNG) language
LBL label
LCL local
LCLE local location entry
LCK lock

Abbreviations of CL Commands and Keywords

434 CL Programming V5R1

Keyword Abbreviation Meaning
LDTIME lead time
LE (suffix) list entry
LEC LAN emulation client
LECS LAN emulation configuration server
LEN length
LES LAN emulation server
LF logical file
LFM logical file member
LFT left
LGL logical
LIB library
LIBL library list
LIC licensed, license
LIFTM lifetime
LIN line, line description
LMI local management interface
LMT limit
LNG (or LANG) language
LNK link
LNR listener
LOC location
LOD load
LPI lines per inch
LRC longitudinal redundancy check
LRSP local response
LST list, last
LTR letter
LVL level
LWS local work station
LZYWRT lazy write
M (suffix) member, messages
MAC macro, medium access control
MAINT maintenance
MAJ major
MAP map, manufacturing automation protocol
MAX maximum
MBR member
MBRS members
MCA message channel agent
MCH machine
MDL model
MDM modem
MDTA message data
MED media, medium
MEDI media information
METAFILE metatable file
MFR manufacturer
MFS mounted file system
MGR manager
MGRR manager registration
MGT management
MID middle
MIN minimum
MLB media library device

Abbreviations of CL Commands and Keywords

Appendix E. Abbreviations of CL Commands and Keywords 435

Keyword Abbreviation Meaning
MLT multiplier, multiple
MM multimedia
MNG manage
MNT maintenance, mount, mounted
MNU menu
MOD mode, module
MODD mode description
MON monitor, Monday
MOV move
MQM Message Queue Manager
MRG merge
MRK mark
MRT multiple requester terminal
MSF mail server framework
MSG message
MSGS messages
MSGQ message queue
MSR measurement
MSS managed system services
MST master
MTD mounted
MTG meeting
MTU maximum transmission unit
MTH method
MULT (or MLT) multiple
M36 AS/400 Advanced 36 machine
M36CFG AS/400 Advanced 36 machine configuration
N (suffix) name, network
NAM name
NBR number
NCK nickname
NDE node
NDM normal disconnect mode
NDS NetWare directory services
NEG negative, negotiation
NEP never-ending program
NET network
NFY notify
NL network-layer
NLSP NetWare link services protocol
NML namelist
NNAM (or NCK) nickname
NOD node
NODL node list
NORM normal
NOTVLD not valid
NPRD nonproductive
NRM normal, normal response mode
NRZI non-return-to-zero-inverted
NT network termination
NTB NetBIOS
NTBD NetBIOS description
NTC notice
NTF NetFinity

Abbreviations of CL Commands and Keywords

436 CL Programming V5R1

Keyword Abbreviation Meaning
NTS Notes
NTW NetWare
NTW3 NetWare 3.12
NUM numeric, number
NWI network interface
NWID network interface description
NWS network server
NWSD network server description
NXT next
OBJ object
OBS observable information
OFC office
OFSET offset
OMT omit
OPN open
OPR operator, operating
OPT option, optical, optimum
ORD order
ORG organization, organizational
ORGUNIT organizational unit
OS operating system
OSDB object store database
OUT output
OVF overflow
OVL overlay
OVR override
OVRFLW overflow
OWN owner, owned
PAD packet assembly/disassembly
PAG page, paginate
PARM parameter
PASTHR pass-through
PBL probable
PBX private branch exchange
PC personal computer
PCD PC document
PCL protocol
PCO PC organizer
PCS personal computer support
PCT percent
PCTA personal computer text assist
PCY policy
PDG print descriptor group
PDM programming development manager
PDU protocol data unit
PENWTH pen width
PERS personal
PF physical file
PFnn program function key ’nn’
PFD printout format definition
PFM physical file member
PFVLM physical file variable-length member
PFR performance
PFX prefix

Abbreviations of CL Commands and Keywords

Appendix E. Abbreviations of CL Commands and Keywords 437

Keyword Abbreviation Meaning
PGM program
PGP primary group
PGR pager
PHCP printer to host code page
PHFCS printer to host font character set
PHS phase
PHY physical
PIN personal identification number
PJE prestart job entry
PKA public key algorithm
PKG package
PKT packet
PL presentation-layer
PLC place
PLL poll, polling
PLT plotter
PMN permission
PMP point-to-multipoint
PMT prompt
PND pending
PNL panel
PNT point
POL pool
POLL polled, polling
POP post office protocol (TCP/IP)
PORT port number
POS positive, position
PPP point-to-point protocol
PPR paper
PPW page printer writer
PRB problem
PRC procedure, procedural, process
PRD product, productive
PRJ project
PREBLT prebuilt
PRED predecessor
PREEST pre-established
PREF preferred
PREOPR pre-operation
PREREQ prerequisite
PRF profile, profiling
PRI primary
PRJ project
PRM promote, parameters
PRMD private management domain
PRN parent
PRO proposed
PROC (or PRC) procedure, processing
PROD production
PROP property/properties
PRP prepare, propagate, propagation
PRS personal
PRT print, printer
PRTQ print queue

Abbreviations of CL Commands and Keywords

438 CL Programming V5R1

Keyword Abbreviation Meaning
PRV previous
PSAP presentation-layer service access point
PSF print services facility
PSN presentation
PSTOPR post-operation
PTC protected, protection, portable transaction

computer
PTF program temporary fix
PTH path
PTN partition, partitioning
PTP point-to-point
PTR pointer
PTY priority
PUB public
PUNS punches
PVC permanent virtual circuit
PVT private
PWD password
PWR power
Q (suffix) queue
QE (suffix) queue entry
QLTY quality
QRY query
QST question
QSTDB question-and-answer database
QSTLOD question-and-answer load
QUAL qualifier
RAR route addition resistance
RBD rebuild
RCD record
RCDS records
RCL reclaim
RCMS remote change management server
RCP recipient
RCR recursion, recurs
RCV receive
RCY recovery
RDB relational database
RDN relative distinguished name
RDR reader
RDRE reader entry
REACT reactivation
REASSM reassembly
REC record
RECNN reconnect
REF reference
REINZ reinitialize
REL relations, release
REP representation
REQ (or RQS) required, request, requester
RES resident, resolution
RESYNC resynchronize
RET retention
REX REXX language

Abbreviations of CL Commands and Keywords

Appendix E. Abbreviations of CL Commands and Keywords 439

Keyword Abbreviation Meaning
RFS refuse, refused
RGS registration
RGT right
RGZ reorganize
RINZ reinitialize
RIP routing information protocol
RJE remote job entry
RLS release
RMD remind, reminder
RMT remote
RMV remove
RNG range
RNM rename
RPG RPG language
RPL replace, replacement
RPT report
RPY reply
RQS (or REQ) request, requester
RQT requisite
RRSP remote response
RRT reroute
RSC resource, resources
RSL result, resolution
RSM resume
RSP response
RSRC resource
RST restore
RSTD restricted
RTE route
RTG routing
RTL retail
RTN return, returned, retransmission
RTR router
RTT rotate
RTV retrieve
RTY retry
RU request unit
RVK revoke
RVS reverse
RWS remote work station
SAA® systems application architecture
SADL saddle
SAP service access point
SAT Saturday
SAV save
SAVF save file
SBM submit, submitted
SBS subsystem
SCD schedule, scheduled
SCH search
SCN screen
SCT sector
SDLC synchronous data link control
SDU service data unit

Abbreviations of CL Commands and Keywords

440 CL Programming V5R1

Keyword Abbreviation Meaning
SEC second, security
SEG segment
SEGMENT segmentation
SEL (or SLT) select, selection
SENSITIV sensitivity
SEP separator
SEQ sequence, sequential
SEV severity
SFW software
SGN sign-on
SHD shadow, shadowing
SHF shift
SHM short hold mode
SHR shared
SI shift-in
SIGN sign-on
SIZ size
SL session-layer
SLR selector
SLT (or SEL) select, selection
SMAE systems management application entity
SMG systems manager
SMTP simple mail transfer protocol
SMY summary
SNA systems network architecture
SNBU switched network back-up
SND send
SNG single
SNI SNA over IPX
SNP snap
SNPT SNA pass-through
SNUF SNA upline facility
SO shift-out
SOC sphere of control
SPA spelling aid
SPC space, special
SPD supplied
SPF specific
SPID service provider identifier
SPL spooled, spooling
SPR superseded
SPT support, supported
SPTN support network
SPX sequenced packet exchange
SQL structured query language
SRC source
SRCH (or SCH) search
SRM system resource management
SRQ system request
SRT sort
SRV service
SSAP source service access point, session-layer

service access point
SSCP system services control point

Abbreviations of CL Commands and Keywords

Appendix E. Abbreviations of CL Commands and Keywords 441

Keyword Abbreviation Meaning
SSN session
SSND session description
SSP suspend
SST system service tools
STAT statistical data records
STATION convenience station
STC statistics
STD standard
STG storage
STK stack
STM stream
STMF stream file
STMT statement
STN station
STP step
STPL staple
STR start, starting
STS status
STT state
STX start-of-text character
SUB substitution, subject
SUBADR subaddress
SUBALC suballocation
SUBDIR subdirectory
SUBFLR subfolder
SUBNET subnetwork
SUBPGM subprogram
SUBST substitution
SUCC successor
SUN Sunday
SURNAM surname
SVC switched virtual circuit
SVR server
SWL stop word list
SWS switches
SWT switch, switched
SWTSET switch setting
SYM symbol, symbolic
SYN syntax
SYNC synchronous
SYS system
SYSLIBL system library list
S36 System/36
TAP tape
TAPDEV tape devices
TBL table
TCID transport connection identifier
TCP TCP/IP (transmission control

protocol/internet protocol)
TCS telephony connection services
TDC telephony data collector
TDLC twinaxial data link control
TEID terminal endpoint identifier
TEL telephone

Abbreviations of CL Commands and Keywords

442 CL Programming V5R1

Keyword Abbreviation Meaning
TELN TELNET (TCP/IP)
TERM terminal
TFR transfer
TGT target
THD thread
THLD threshold
THR through, throughput
THRPUT throughput
THU Thursday
TIE technical information exchange
TIM time
TIMMRK timemark
TIMO timeout
TIMOUT (or TIMO) timeout
TKN token
TL transport-layer
TM time
TMN transmission
TMP temporary
TMR timer
TMS transmission
TMT transmit
TNS transaction
TOKN (or TKN) token
TOT total
TPDU transport-layer protocol data unit
TPL template, topology
TPT transport
TRANS transit, transaction
TRC trace
TRG trigger
TRM term
TRN token-ring network, translate
TRNSPY transparency
TRP trap
TRS transit
TRUNC truncate
TSE timeslice end
TSP timestamp
TSAP transport-layer service access point
TST test
TUE Tuesday
TWR tower
TXP transport
TXT text
TYP type
T1 transport class 1
T2 transport class 2
T4 transport class 4
UDFS user-defined file system
UDP user datagram protocol
UI user interface, unnumbered information
UID user identifier number
UNC unclassified

Abbreviations of CL Commands and Keywords

Appendix E. Abbreviations of CL Commands and Keywords 443

Keyword Abbreviation Meaning
UNPRT unprintable
UNQ unique
UOM unit of measure
UPCE universal product code type E barcode
UPD update
UPG upgrade
URL uniform resource locator
USG usage
USR user
VAL value
VAR variable
VCT virtual circuit
VDSK virtual disk
VER (or VSN) version
VFY verify
VLD valid, validity, validation
VND vendor
VOL volume
VRF verification
VRT virtual
VRY vary
VSN (or VER) version
VWS virtual work station
WAN wide area network
WDW window
WED Wednesday
WIN winner
WK week
WNT Windows NT
WP word processing
WRD word
WRK work, working
WRT write
WS workstation
WSC workstation controller
WSCST workstation customization object
WSE workstation entry
WSG workstation gateway (TCP/IP)
WSO workstation object
WTR writer
WTRE writer entry
WTRS writers
X25 X.25
X31 X.31
X400 X.400
3270 3270 display

Abbreviations of CL Commands and Keywords

444 CL Programming V5R1

Appendix F. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1997, 2001 445

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator
3605 Highway 52 N
Rochester, MN 55901-7829
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming Interface Information
This publication is intended to help you to program with CL. This publication
documents General-Use Programming Interface and Associated Guidance
Information provided by OS/400.

General-Use programming interfaces allow the customer to write programs that
obtain the services of the OS/400 licensed program.

446 CL Programming V5R1

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

ADSTAR
Advanced 36
AFP
AIX
APL2
Application System/400
APPN
AS/400
CallPath
CICS
CICS/400
Client Access
COBOL/400
C/400
DataPropagator
DB2
e (Stylized)
IBM
Integrated Language Environment
IPDS
iSeries
iSeries 400MQSeries
Operating System/2
Operating System/400
OS/2
OS/400
RPG/400
SAA
SystemView
System/36
System/38
VisualGen
VisualInfo
400

Domino, Notes, and Lotus are trademarks of Lotus Development Corporation in
the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix F. Notices 447

448 CL Programming V5R1

Bibliography

The following is a list of the additional books and
a description of the information in each book.

For information about operating the iSeries server
and its display stations, see:
v The Getting Started with iSeries topic in the

System Overview, Planning, and Installation
category of the iSeries Information Center
provides general information about how to run
the system, how to send and receive messages
and use the display station function keys.

For more information about OS/400
programming, see:

v Application Display Programming
This guide provides information about using
DDS to create and maintain displays, creating
and working with display files, creating online
help information, using UIM to define displays,
and using panel groups, records, and
documents.

v Backup and Recovery
This guide provides information about the
different media available to save and protect
system data.

v ILE Concepts
This book explains concepts and terminology
pertaining to the Integrated Language
Environment (ILE) architecture of the OS/400
licensed program. Topics covered include
creating modules, binding, running programs,
debugging programs, and handling exceptions.

v The Globalization topic in the System overview,
planning, and installation category of the
iSeries Information Center provides the data
processing manager, system operator and
manager, application programmer, end user,
IBM marketing representative, and system
engineer with information required to
understand and use the globalization function
on the iSeries server. This book prepares the
user for planning, installing, configuring, and
using globalization and multilingual support of
the iSeries server. It also provides an
explanation of the database management of

multilingual data and application
considerations for a multilingual system.

v Printer Device Programming
This guide provides specific information on
printing elements and concepts of the iSeries
server, printer file and print spooling support,
and printer connectivity.

v Security - Reference
This book discusses general security concepts
and planning for security on the system. It also
includes information for all users about
resource security.

v Tape and Diskette Device Programming
This guide provides information to help users
develop and support programs that use tape
and diskette drives for I/O. This includes
information on device files and descriptions for
tape and diskette devices, as well as spooling
for diskette devices.

v The Systems Management category of
information in the iSeries Information Center
provides information about creating and
changing the work management environment,
working with system values, collecting and
using performance data to improve system
performance.

For detailed information about API’s, see:
v The Programming category of information in

the iSeries Information Center
The CL and APIs topic provides information
for experienced application and system
programmers who want to use the OS/400
application programming interfaces (APIs). This
book provides getting started examples to help
the programmer use APIs.

For more information about OS/400 utilities
mentioned in this book, see:

v ADTS/400: Character Generator Utility
This guide provides information about using
the character generator utility (CGU) to create
and maintain a double-byte character set on the
iSeries server.

© Copyright IBM Corp. 1997, 2001 449

c4157150.pdf
c4153045.pdf
c4156065.pdf
c4157134.pdf
c4153025.pdf
c4157161.pdf
c0917690.pdf

v ADTS/400: Programming Development

Manager
This book provides information about using the
programming development manager (PDM) to
work with lists of libraries, objects, members,
and user-defined options.

For more information about a RPG Multimedia
Tutorial, see:
v Experience RPG IV Tutorial

This is an interactive self-study program
explaining the differences between RPG III and
RPG IV and how to work within the new ILE
environment. An accompanying workbook
provides additional exercises and doubles as a
reference upon completion of the tutorial. ILE
RPG/400 code examples are shipped with the
tutorial and run directly on the AS/400. Dial
1-800-IBM-CALL to order the tutorial.

450 CL Programming V5R1

c0917710.pdf
c0917710.pdf

Index

Special Characters
/* (comment) delimiter 30
* (asterisk)

comments in programs 30
OUTPUT (output) parameter 115

%BIN (binary) function 41
%BINARY (binary) built-in function

description 41
%SST (substring) function

description 43
processing qualified name 313

%SUBSTRING (substring) built-in
function

description 43
processing qualified name 313

%SWITCH (switch) function 45
*ALL authority 110
*AND operator 37
*CHANGE authority 110
*EXCL (exclusive) lock state 137
*EXCLRD (exclusive allow read) lock

state 137
*EXCLUDE authority 110
*INT2 value 338
*INT4 value 338
*LDA value

local 90
*NOT operator 37
*OR operator 37
*SHRNUP (shared-no-update) lock

state 137
*SHRRD (shared-for-read) lock state 137
*SHRUPD (shared-for-update) lock

state 137
*UINT2 338
*UINT4 338
*USE authority 110

A
abnormal job end 177
activation program 373
add authority 110
Add Breakpoint (ADDBKP) command

description 375
example 376

Add Library List Entry (ADDLIBLE)
command 105

Add Message Description (ADDMSGD)
command

example 193
file name 184
FMT (format) parameter 187
specifying information 181

Add Program (ADDPGM)
command 372

Add Trace (ADDTRC) command 380
example 381

ADDBKP (Add Breakpoint) command
description 375
example 376

adding
adding to program 379
breakpoint to program 375
library list entry 105
message description

ADDMSGD (Add Message
Description) command 194

example 193
file 184
FMT (format) parameter 187
value 181

program objects to debug
session 351

trace to program 379
ADDLIBLE (Add Library List Entry)

command 105
ADDMSGD (Add Message Description)

command
example 193
file name 184
FMT (format) parameter 187
specifying information 181

ADDPGM (Add Program)
command 372

ADDTRC (Add Trace) command 380
example 381

alert identifier
specifying 193

allocating
resource 137

Allow alerts
alerts

using allow alerts 201
ALROPT code

entry size 184
specifying 193

API (application programming interface)
days used count 128

application programming interface (API)
days used count 128

asterisk (*)
comments in programs 30
OUTPUT (output) parameter 115

attribute
basic 117
command 327
default for newly created object 113
displaying module 60
displaying program 60
full 117
message queue 200
object description 117
retrieving 178
service 117

authority
*ALL 110
*CHANGE 110
*EXCLUDE 110
*USE 110
add 110
combined 110

authority (continued)
data 110
default for newly created object 111
defined command 286
delete 110
execute 110
library 106, 109
object 109
object existence 109
object management 109
object operational 109
read 110
update 110

automatic decompression 135
automatic variable

program 384

B
batch entry 13
batch job

breakpoint program 376
debugging job not started from job

queue 386
submitted to a job queue,

debugging 385
batch job log

consideration 275
binary function 41
branching

unconditional 30
break delivery of message 200
break-handling program 202, 242, 243
break message

sending 181, 207
breakpoint

characteristics 356
conditional

add 378
description 356
example 360
removing 358
setting 358

function 356
removing

conditional 358
description 361
from program 356
unconditional 357

resuming program processing 376
setting

conditional 358
description 356
unconditional 357

unconditional
description 356
removing 357
setting 357

breakpoint program
batch job 376

built-in function 14

© Copyright IBM Corp. 1997, 2001 451

C
calculation 17, 37

CHGVAR (Change Variable)
command 14

call
description 373
level

description 373
nesting 373
stack 373

CALL (Call Program) command
description 65
function 17
using 71

Call Procedure (CALLPRC) command
description 66

Call Program (CALL) command
description 65
function 17
using 71

call stack
description 373
displaying testing information 383
entry identification

on SNDPGMMSG 214
relationship to CALL command 66
relationship to CALLPRC

command 67
removing call 66, 67
removing request in error 374
TFRCTL (Transfer Control)

command 391
call stack entry message queue 204
calling procedure

CALLPRC command description 66
CALLPRC command example 78

calling program
CALL command description 65
using the CALL command 71

Callprc (CALL PROCEDURE)
command 17

CALLPRC (Call Procedure)
command 17

description 66
example 78

canceling
request while testing 374

CCSID 209
messages

using CCSID 201
CEELOCT program 51
century digit

parameter value to CPP (command
processing program)

date 289
change authority 110
Change Command (CHGCMD)

command 332
Change Current Library (CHGCURLIB)

command 105
Change Data Area (CHGDTAARA)

command 17, 93
Change Debug (CHGDBG)

command 372
Change Job (CHGJOB) command 266
Change Library List (CHGLIBL)

command 24, 105

Change Message Description
(CHGMSGD) command 185, 198

Change Message Queue (CHGMSGQ)
command 200, 203

Change Program Variable
(CHGPGMVAR) command 384

Change System Library List
(CHGSYSLIBL) command 105

Change Variable (CHGVAR) command
definition 17
example 27, 213

changing
CL program at run time 167
command 332
command definition effect on

program 332
current library 105
data area 17, 93
debug 372
job 266
library list 24, 105
message description 185, 198
message queue 200, 203
module object 354, 355
program variable 384
system library list 105
variable

CL procedure 14, 17
example 27, 213

variable value
in program 384

character
lowercase

variable 25
character length error 77
Check Object (CHKOBJ) command 17,

145
checking

object 17, 145
program validity 284

CHGCMD (Change Command)
command 332

CHGCURLIB (Change Current Library)
command 105

CHGDBG (Change Debug)
command 372

CHGDTAARA (Change Data Area)
command 17, 93

CHGJOB (Change Job) command 266
CHGLIBL (Change Library List)

command 24, 105
CHGMSGD (Change Message

Description) command 185, 198
CHGMSGQ (Change Message Queue)

command 200, 203
CHGPGMVAR (Change Program

Variable) command 384
CHGSYSLIBL (Change System Library

List) command 105
CHGVAR (Change Variable) command

%SWITCH setting 46
CL procedure 14
definition 17
example 27, 213

CHKOBJ (Check Object) command 17,
145

choice for parameter 316

CL command 17
CL procedure

advantages for using 11
batch entry 13
command

logging 55
used 17

compiler listing 56
controlling processing 21, 30
creating

CRTCLMOD command 17
using CRTCLMOD command 13,

55
using source statements 13

description 2
example 15
interactive entry 13
introduction 11
obtaining dump 59
overriding database file 158
overriding display file 154
parts 14
procedure creation 13
purpose 11
referring to file 149
source creation 13
using 18
variable, command to work with 17
working with 55, 143
working with file 146
writing comment 29

CL program
creating 13
display formatting 146
files supported 146
receiving data 151
sending data 151
substring built-in function

(%SUBSTRING)
used to process qualified

name 313
CL variable

declaring 14, 17
Clear Library (CLRLIB) command 113
Clear Trace Data (CLRTRCDTA)

command 379, 381
clearing

library 113
trace data 379

CLRLIB (Clear Library) command 113
CLRTRCDTA (Clear Trace Data)

command 379
CMD (command) parameter 17
CMD (Command) statement

defining 286
example 340

combined authority 110
command 283

debug 348
description 1
equating a name 368
STEP debug 362

command, CL 14, 17, 30, 31, 33, 34, 36,
68, 156, 306, 328

Add Breakpoint (ADDBKP) 375
Add Library List Entry

(ADDLIBLE) 105

452 CL Programming V5R1

command, CL 14, 17, 30, 31, 33, 34, 36,
68, 156, 306, 328 (continued)

Add Message Description
(ADDMSGD) 184

defining substitution
variables 187

example 193
Add Program (ADDPGM) 372
Add Trace (ADDTRC) 380
ADDBKP (Add Breakpoint) 375
ADDLIBLE (Add Library List

Entry) 105
ADDMSGD (Add Message

Description)
defining substitution

variables 187
example 193

ADDPGM (Add Program) 372
ADDTRC (Add Trace) 380
attribute 327
CALL (Call Program) 65, 71
Call Procedure (CALLPRC) 66
Call Program (CALL) 65, 71
calling

description 78
CALLPRC (Call Procedure) 66, 78
Change Command (CHGCMD) 332
Change Current Library

(CHGCURLIB) 105
Change Data Area

(CHGDTAARA) 17, 93
Change Debug (CHGDBG) 372
Change Job (CHGJOB) 266
Change Library List (CHGLIBL) 24,

105
Change Message Description

(CHGMSGD) 185, 198
Change Message Queue

(CHGMSGQ) 200, 203
Change Program Variable

(CHGPGMVAR) 384
Change System Library List

(CHGSYSLIBL) 105
Change Variable (CHGVAR) 14, 27
changing 332
changing program control

command 17
Check Object (CHKOBJ) 17, 145
CHGCMD (Change Command) 332
CHGCURLIB (Change Current

Library) 105
CHGDBG (Change Debug) 372
CHGDTAARA (Change Data

Area) 17, 93
CHGJOB (Change Job) 266
CHGLIBL (Change Library List) 24,

105
CHGMSGD (Change Message

Description) 185, 198
CHGMSGQ (Change Message

Queue) 200, 203
CHGPGMVAR (Change Program

Variable) 384
CHGSYSLIBL (Change System Library

List) 105
CHGVAR (Change Variable) 14, 27
CHKOBJ (Check Object) 17, 145

command, CL 14, 17, 30, 31, 33, 34, 36,
68, 156, 306, 328 (continued)

Clear Library (CLRLIB) 113
Clear Trace Data (CLRTRCDTA) 379,

381
CLRLIB (Clear Library) 113
CLRTRCDTA (Clear Trace Data) 379,

381
CMD (Command) statement 287
command processing program

(CPP) 285
Convert Date (CVTDAT) 17, 49
CREATE BOUND CONTROL

LANGUAGE (Create Bound CL) 17
Create Bound Control Language

(CRTBNDCL) 17
Create Command (CRTCMD) 284,

327
Create Control Language Module

(CRTCLMOD) 17, 55
Create Data Area (CRTDTAARA) 17,

92
Create Duplicate Object

(CRTDUPOBJ) 131
Create Library (CRTLIB) 109
Create Message File (CRTMSGF) 183,

184
Create Message Queue

(CRTMSGQ) 200
CREATE PROGRAM 17
Create Program (CRTPGM) 17
CREATE SERVICE PROGRAM 17
Create Service Program

(CRTSRVPGM) 17
creating

definition 284
process 327
steps 283

CRTCLMOD (Create Control
Language Module) 17, 55

CRTCMD (Create Command) 284,
327

CRTDTAARA (Create Data Area) 17,
92

CRTDUPOBJ (Create Duplicate
Object) 131

CRTLIB (Create Library) 109
CRTMSGF (Create Message File) 183,

184
CRTMSGQ (Create Message

Queue) 200
CVTDAT (Convert Date) 17, 49
DCL (Declare CL Variable) 14, 17
DCLF (Declare File)

description 14
using 150
variables 22

Deallocate Object (DLCOBJ) 139
Declare CL Variable (DCL) 14, 17
Declare File (DCLF)

description 14
using 150
variables 22

defined, authority needed 286
defining

dependent relationship 315
description 283

command, CL 14, 17, 30, 31, 33, 34, 36,
68, 156, 306, 328 (continued)

defining (continued)
error encountered 330
example 340
instructions 286
list within list 308
mixed list 306
qualified name 312
source list 328
validity checking 339

Delete Command (DLTMCD) 328
Delete Data Area (DLTDTAARA) 17
Delete File (DLTF) 14
Delete Library (DLTLIB) 113
Delete Program (DLTPGM) 17
Display Breakpoints (DSPBKP) 383
Display Command (DSPCMD) 331
Display Data Area

(DSPDTAARA) 17, 93
Display Debug (DSPDBG) 383
Display Job (DSPJOB) 140
Display Job Log (DSPJOBLOG) 272
Display Library (DSPLIB) 114
Display Library Description

(DSPLIBD) 115
Display Log (DSPLOG) 276
Display Message Descriptions

(DSPMSGD) 185, 194
Display Messages (DSPMSG) 200
Display Object Description (DSPOBJD)

common attributes 97
log-version selection 276
use 117

Display Program Variable
(DSPPGMVAR) 383

Display Spooled File (DSPSPLF) 272
Display Trace (DSPTRC) 383
Display Trace Data

(DSPTRCDTA) 381, 382
displaying 331
DLCOBJ (Deallocate Object) 139
DLTCMD (Delete Command) 328
DLTDTAARA (Delete Data Area) 17
DLTF (Delete File) 14
DLTLIB (Delete Library) 113
DLTPGM (Delete Program) 17
DSPBKP (Display Breakpoints) 383
DSPCMD (Display Command) 331
DSPDBG (Display Debug) 383
DSPDTAARA (Display Data

Area) 17, 93
DSPJOB (Display Job) 140
DSPJOBLOG (Display Job Log) 272
DSPLIB (Display Library) 114
DSPLIBD (Display Library

Description) 115
DSPLOG (Display Log) 276
DSPMSG (Display Messages) 200
DSPMSGD (Display Message

Descriptions) 185, 194
DSPOBJD (Display Object Description)

common attributes 97
log-version selection 276
use 117

DSPPGMVAR (Display Program
Variable) 383

Index 453

command, CL 14, 17, 30, 31, 33, 34, 36,
68, 156, 306, 328 (continued)

DSPSPLF (Display Spooled File) 272
DSPTRC (Display Trace) 383
DSPTRCDTA (Display Trace

Data) 381, 382
effect of changing definition 332
End Do (ENDDO) 17, 33
End Program (ENDPGM) 14, 17
End Receive (ENDRCV) 156, 157,

158
End Request (ENDRQS) 374
ENDDO (End Do) 17, 33
ENDPGM (End Program) 14, 17
ENDRCV (End Receive) 156, 157,

158
ENDRQS (End Request) 374
example of creating 340
frequently used in CL procedure 17
functions 17
GOTO (Go To) 17, 30
Load and Run Media Program

(LODRUN) 179
LODRUN (Load and Run Media

Program) 179
logging CL procedure 55
Merge Message File

(MRGMSGF) 183, 185
Monitor Message (MONMSG) 46,

236
MONMSG (Monitor Message) 46,

236
Move Object (MOVOBJ) 129
MOVOBJ (Move Object) 129
MRGMSGF (Merge Message

File) 183, 185
online help information,

providing 285
Override with Database File

(OVRDBF) 14
Override with Message File

(OVRMSGF) 195
OVRDBF (Override with Database

File) 14
OVRMSGF (Override with Message

File) 195
Print Command Usage

(PRTCMDUSG) 17
processing program (CPP)

definition 4
writing 336

PRTCMDUSG (Print Command
Usage) 17

RCLRSC (Reclaim Resources) 373
RCVF (Receive File) 148, 157
RCVMSG (Receive Message) 228, 229
Receive File (RCVF) 148, 157
Receive Message (RCVMSG) 228, 229
Reclaim Resources (RCLRSC) 373
Remove Breakpoint (RMVBKP) 379
Remove Library List Entry

(RMVLIBLE) 105
Remove Message (RMVMSG) 17, 235
Remove Message Description

(RMVMSGD) 185
Remove Program (RMVPGM) 372
Rename Object (RNMOBJ) 133

command, CL 14, 17, 30, 31, 33, 34, 36,
68, 156, 306, 328 (continued)

Resume Breakpoint (RSMBKP) 376
Retrieve Configuration Source

(RTVCFGSRC) 17, 51
Retrieve Configuration Status

(RTVCFGSTS) 17, 51
Retrieve Data Area

(RTVDTAARA) 17, 93
Retrieve Job Attributes

(RTVJOBA) 17, 52
Retrieve Library Description

(RTVLIBD) 115
Retrieve Member Description

(RTVMBRD) 17, 54
Retrieve Message (RTVMSG) 17, 234
Retrieve Network Attributes

(RTVNETA) 51
Retrieve Object Description

(RTVOBJD) 53, 120
Retrieve System Value

(RTVSYSVAL) 17, 48
Retrieve User Profile

(RTVUSRPRF) 17, 53
RMVBKP (Remove Breakpoint) 379
RMVLIBLE (Remove Library List

Entry) 105
RMVMSG (Remove Message) 17, 235
RMVMSGD (Remove Message

Description) 185
RMVPGM (Remove Program) 372
RNMOBJ (Rename Object) 133
RSMBKP (Resume Breakpoint) 376
RTVCFGSRC (Retrieve Configuration

Source) 17, 51
RTVCFGSTS (Retrieve Configuration

Status) 17, 51
RTVDTAARA (Retrieve Data

Area) 17, 93
RTVJOBA (Retrieve Job

Attributes) 17, 52
RTVLIBD (Retrieve Library

Description) 115
RTVMBRD (Retrieve Member

Description) 17, 54
RTVMSG (Retrieve Message) 17, 234
RTVNETA (Retrieve Network

Attributes) 51
RTVOBJD (Retrieve Object

Description) 53, 120
RTVSYSVAL (Retrieve System

Value) 17, 48
RTVUSRPRF (Retrieve User

Profile) 17, 53
selective prompting 168
Send Break Message

(SNDBRKMSG) 207
Send File (SNDF) 148, 157
Send Message (SNDMSG) 207
Send Program Message

(SNDPGMMSG) 14, 208
Send/Receive File (SNDRCVF) 148,

151
Send Reply (SNDRPY) 17, 235
Send User Message

(SNDUSRMSG) 17, 209

command, CL 14, 17, 30, 31, 33, 34, 36,
68, 156, 306, 328 (continued)

setting CL procedure limits
command 17

SNDBRKMSG (Send Break
Message) 207

SNDF (Send File) 148, 157
SNDMSG (Send Message) 207
SNDPGMMSG (Send Program

Message) 14, 208
call stack entry 214

SNDRCVF (Send/Receive File) 148,
151

SNDRPY (Send Reply) 17, 235
SNDUSRMSG (Send User

Message) 17, 209
specifying prompt override program

when changing 324
when creating 324

Start Debug (STRDBG) 372, 379
Start Programmer Menu

(STRPGMMNU) 172
STRDBG (Start Debug) 372, 379
STRPGMMNU (Start Programmer

Menu) 172
TFRCTL (Transfer Control) 391, 392
Transfer Control (TFRCTL) 391, 392
used frequently in CL procedure 17
used in CL procedure 17
using the prompter 168
Work with Object Locks

(WRKOBJLCK) 140
WRKOBJLCK (Work with Object

Locks) 140

command (CMD) parameter 17

Command (CMD) statement

defining 286
example 340

command, Display Audit Journal Entries

DSPAUDJRNE 111

command analyzer exit points 173

command default

changing 333

command definition 288, 292, 301, 306,
312, 313, 315, 328, 330, 331, 332, 340,
341, 344

data type parameter restriction 293
defining

simple list 301
displaying 331
effect of changing 332
example 313

creating a command to call an
application program 340

creating a command to display an
output queue 341

creating a command to substitute
default value 341

creating abbreviated
commands 344

defining a parameter 292
introduction 4
mixed list with 306
object 284
parameter combination, valid 301

454 CL Programming V5R1

command definition 288, 292, 301, 306,
312, 313, 315, 328, 330, 331, 332, 340,
341, 344 (continued)

processing
qualified name in a CL

program 313
prompt text for parameter 288
required parameter for 288
return value for parameter 288
simple list with 301
source list 328
statement

DEP 315
description 284
ELEM 306
error during processing 330
QUAL 312

usage 4
use of qualified name 312
valid parameter by parameter

type 301
Command Entry display 267
command processing procedure

writing REXX 338
command processing program (CPP)

definition 4
description 285
example 341
writing 336

command usage
printing 17

comment delimiter (/*) 30
communicate

between procedure 89
using data area 89

compiler, CL
installing support for 63

compiler error 58
compiler listing

CL procedure 56
sample program 57

compiling
source programs 62

completion message 183, 210
compressing

object 134
object table 134

conditional breakpoint
adding 378
example 360
removing 358
setting 358

conditional processing of command 30
conditional prompting 317
configuration source

retrieving 17, 51
configuration status

retrieving 17, 51
constant value

defining for parameter 288
control

transferring
description 391
use 392

control language (CL) 283
command

definition 1

control language (CL) 283 (continued)
command (continued)

entering 1
syntax 2

menu
using CL program to control 152

procedure
creating 17, 55
description 2
monitoring for message 236
parts 14
referring to object 143
used within CL 2

program
allowing user changes at run

time 167
controlling flow between

programs 65
controlling menu 152
controlling processing 21
DBCS data 174
description 11
display file, using 146
display formatting 146
example 15
example program 175
files supported 146
introduction 11
message handling 202
message subfile 166
receiving data 151
receiving message 228
sending data 151
sending message 208
substring built-in function

(%SUBSTRING) 313
control processing with CL command 21
controlling

logic flow in CL procedure 30
processing in CL procedure 30

Convert Date (CVTDAT) command 17,
49

converting
date 17, 49
date format 49

CPP (command processing program)
definition 4
description 285
example 341
writing 336

create
creating 17

Create Bound Control Language
(CRTBNDCL) command 17

Create Command (CRTCMD) command
CL program 283
example 341
parameters 327
processing 284
relationship 337

Create Control Language Module
(CRTCLMOD) command 17, 55

Create Data Area (CRTDTAARA)
command 17, 92

Create Duplicate Object (CRTDUPOBJ)
command 131

Create Library (CRTLIB) command 109

Create Message File (CRTMSGF)
command 183, 184

Create Message Queue (CRTMSGQ)
command 200

Create Program (CRTPGM)
command 17

Create Service Program (CRTSRVPGM)
command 17

creating
CL procedure 17, 55
command

attribute 327
description 284, 327
example 286, 340

create 17
data area 17, 92
duplicate object 131
information for object 122
library 109
message file 183, 184
message queue 200
online help information 285
valid type 92

CRTBNDCL (Create Bound Control
Language) command 17

CRTCLMOD (Create Control Language
Module) command 17, 55

CRTCMD (Create Command) command
CL program 283
example 341
parameters 327
processing 284
relationship 337

CRTDTAARA (Create Data Area)
command 17, 92

CRTDUPOBJ (Create Duplicate Object)
command 131

CRTLIB (Create Library) command 109
CRTMSGF (Create Message File)

command 183, 184
CRTMSGQ (Create Message Queue)

command 200
CRTPGM (Create Program)

command 17
CRTSRVPGM (Create Service Program)

command 17
current library

changing 105
CVTDAT (Convert Date) command 17,

49

D
data area 92

changing 17, 93
communicate 89
creating 17, 92
deleting 17
description 89
displaying 17, 93
example of retrieving 93
group 90
initial value 89
retrieving 17, 93

data area, command to work with 17
data authority 110
data queue

allocating 83

Index 455

data queue (continued)
communicating between

programs 78
creating 83
example 84
managing storage 83
sending data 83
using 84

data type error 74
database file 158

overriding 14
receiving data area 158
referring to output file 159
using as data queue 82

date
conversion 17
converting format 49

DBCS (double-byte character set)
defining message 194
designing application program 174
sending message 191
using QCMDEXC with 164
writing CL program with DBCS

data 174
DCL (Declare CL Variable)

command 14, 17
DCLF (Declare File) command

CL procedure 14, 17
declaring

variable 150
description 22

Deallocate Object (DLCOBJ)
command 139

deallocating
object 139

debug
changing 372
command 348
displaying 383
session

adding program object 351
prepare program object 349
removing program object 352

starting 379
debug command

BREAK 359
CLEAR 359

debugger
ILE source 347

debugging 371
batch job not started from job

queue 386
batch job submitted to a job

queue 385
considerations for one job from

another job 387
from another job 385
ILE program 347
ILE source debugger commands 350
interactive job 387
machine interface level 388
running job 386
starting 372
starting ILE source debugger 350
testing applications 371

decimal length error 76

Declare CL Variable (DCL)
command 14, 17

Declare File (DCLF) command
CL procedure 14, 17
declaring

variable 24, 150
description 22

declaring
CL variable 14

decompressing
object 134

default delivery of message 201
default handling 240

unmonitored, default handling 374
unmonitored message while

testing 374
default program

used in testing 372
default value

changing command 333
defining for parameter 292
message 191
reply 191

default value table 292
defining

CL command table 284
command

authority 286
definition 283
parameter 316
statements 286

element in list
simple list 302

list for parameter 301
list within list 308
optional parameter 288
parameter 288
prompt text for a parameter 288
qualified name 312
required parameter 288
restricted value for parameter 288
return value for parameter 288
simple list 302
substitution variable 187
valid parameter 288

definition object, command 284
definition statement, command 284
delete authority 110
Delete Command (DLTCMD)

command 328
Delete Data Area (DLTDTAARA)

command 17
Delete File (DLTF) command 14
Delete Library (DLTLIB) command 113
Delete Program (DLTPGM)

command 17
deleting

command 328
data area 17
file 14
file member 345
HLL programs 345
library 113
object 136
program 17
program object 345
QHST file 281

deleting (continued)
source member 345

DEP (Dependent) statement
command definition 286
example 315
use 315

detailed message
description 268

detecting unused object on system 123
diagnostic message 183, 210
display 377

breakpoint 377
Command Entry 13
menu, using for command entry 13
programmer menu 16, 172
trace data 381
unmonitored message

breakpoint 374
Display Audit Journal Entries

(DSPAUDJRNE) command 111
Display Breakpoints (DSPBKP)

command 383
Display Call Stack display 232
Display Command (DSPCMD)

command 331
Display Data Area (DSPDTAARA)

command 17, 93
Display Debug (DSPDBG)

command 383
display file

creating 150
receiving 148, 151
referring to 149
sending 151
using in CL program 146
using multiple device displays 155

Display History Log Contents
display 276

Display Job (DSPJOB) command 140
Display Job Log (DSPJOBLOG)

command 272
Display Library (DSPLIB) command 114
Display Library Description (DSPLIBD)

command 115
Display Log (DSPLOG) command 276
Display Message Descriptions

(DSPMSGD) command 185, 194
Display Messages (DSPMSG)

command 200
Display Object Description (DSPOBJD)

command
description 97
log-version selection 276
use 117

Display Program Variable (DSPPGMVAR)
command 383

Display Spooled File (DSPSPLF)
command 272

Display Trace (DSPTRC) command 383
Display Trace Data (DSPTRCDTA)

command 381, 382
displaying 275

batch job log 276
breakpoint 383
command 331
command definition 331
data area 17, 93

456 CL Programming V5R1

displaying 275 (continued)
debug information 383
history log (QHST) 276
job 140
job log 272
library 114
library description 115
log 276
message 200, 343
message description 185, 194
module attribute 60
object description

common attributes 97
log-version selection 276
use 117

object in library 114
object lock 140
program attribute 60
program variable 383
QHST log 276
spooled file 272
testing information 383
trace 383
trace data 381, 382
value of variable in a program 383

DLCOBJ (Deallocate Object)
command 139

DLTCMD (Delete Command)
command 328

DLTDTAARA (Delete Data Area)
command 17

DLTF (Delete File) command 14
DLTLIB (Delete Library) command 113
DLTPGM (Delete Program)

command 17
DO (Do) command 17, 33
DO group 33
documentation aid

listing CL command 56
double-byte character set (DBCS)

defining message 194
designing application program 174
sending message 191
using QCMDEXC with 164
writing CL program with DBCS

data 174
double-byte data

defining double-byte message 194
designing application program 174
how to send immediate 191
prompting for in CL program 164
prompting for using QCMDEXC

program 164
sending message that contains

double-byte characters 191
using in CL program 174

double-byte message 194
DSPAUDJRNE 111
DSPBKP (Display Breakpoints)

command 383
DSPCMD (Display Command)

command 331
DSPDBG (Display Debug)

command 383
DSPDTAARA (Display Data Area)

command 17, 93
DSPJOB (Display Job) command 140

DSPJOBLOG (Display Job Log)
command 272

DSPLIB (Display Library) command 114
DSPLIBD (Display Library Description)

command 115
DSPLOG (Display Log) command 276
DSPMSG (Display Messages)

command 200
DSPMSGD (Display Message

Descriptions) command 185, 194
DSPOBJD (Display Object Description)

command
description 97
log-version selection 276
use 117

DSPPGMVAR (Display Program Variable)
command 383

DSPSPLF (Display Spooled File)
command 272

DSPTRC (Display Trace) command 383
DSPTRCDTA (Display Trace Data)

command 381, 382
duplicate object

creating 131

E
element

defining in a list 306
Element (ELEM) statement

command definition 286
example 306, 309
use 306

ELSE (Else) command 17, 34
embedded IF (If) command 36
end, abnormal 177
End Do (ENDDO) command 17, 33
End Program (ENDPGM) command

CL procedure 14, 17
example 167

End Receive (ENDRCV) command
multiple device display files 156,

157, 158
End Request (ENDRQS) command 374
ENDDO (End Do) command 17, 33
ending

program 14, 17
receive 156, 157, 158
request 374

ENDPGM (End Program) command
CL procedure 14, 17
example 167

ENDRCV (End Receive) command
multiple device display files 156,

157, 158
ENDRQS (End Request) command 374
entry

batch 13
interactive 13

error
calling program 74
character length 77
command definition statement 330
compiler 58
data type 74
decimal length 76
precision 76

error (continued)
procedure 74

escape message
CPF2469 195
definition 183
monitoring 236
sending 211

example
*BCAT value 212
adding

breakpoint to program 376
trace to program 379

ADDMSGD (Add Message
Description) command 193

attribute of variable 367
BIN function 41
binary function 41
break-handling program 243
CALL command 65
CALLPRC command 66
change variable

character 367
decimal 367
logical 366

changing
lock state 139
message 211
variable value 27

CL procedure
control processing 21
simple 15
typical 13, 18

CL program
processing qualified name 313

command processing program 341
compiler listing 57
conditional breakpoint 360
controlling menu 152
converting system value 49
creating

CL procedure 16
command 286, 340, 341
command to call application

program 340
command to display output

queue 341
command to substitute default

value 341
creating abbreviated

commands 344
CRTMSGF (Create Message File)

command 184
data queue 84
DBCS data in CL programs 174
DDS

display file 150
declaring display file 150
defining

parameter 293, 340
prompt text for command

name 340
deleting QHST file 281
describing

message 193
display character variable 365
display decimal variable 365
display file 150

Index 457

example (continued)
display logical variable 364
displaying variables in hexadecimal

format 365
DO command 33
ENDDO command 33
GOTO command 30
IF (If) command 31
initial program 106
logging message in job log 267
logical expression 37
message 193
message handling program 202
monitoring

message for specific
command 237

message within procedures 239
moving object 130
nested Do group 33
object

qualified name 6
overriding message file 197
passing

control to procedure 66
control to program 65
parameter 74

processing
qualified name in CL

program 313
prompt override program 324
QINSTAPP program 179
qualified name of object 6
receiving message from

QSYSMSG 260
replacing library list 106
retrieving

data area 93
job attribute 52
network attribute 52
object description 122
system value 49
user profile 54

runtime call stack 216, 226
sample CL program 175
sample default message program 192
saving library list 106
sending

message 211
program message 210

SST function 43
substring function 43
switch function 45
TOPGMQ(*PRV*) 217
Transfer Control (TFRTCL)

command 392
using *CTLBDY 227
using *PGMBDY 222, 223, 224
using complex name 220
using simple name 219

exception message
using the RMV keyword 229

exclusive (*EXCL) lock state 137
exclusive allow read (*EXCLRD) lock

state 137
execute authority 110
expression

equating a name 368

expression (continued)
logical 37
relational 37

F
field definition

QMHCID 399
QMHCRP 401
QMHCSP 401
QMHDAT 397
QMHJBN 403
QMHJDT 396, 402
QMHJOB 401
QMHJTM 396
QMHJTS 402
QMHLIN 403
QMHLNN 403
QMHLSP 402
QMHMDT 401
QMHMF 397
QMHMID 397
QMHMKS 402
QMHMRK 396
QMHPRL 399
QMHRLB 401
QMHRMD 400
QMHRPG 400
QMHRPR 400
QMHRPY 397
QMHRQS 398
QMHRSN 399
QMHRTM 401
QMHRTY 398
QMHSEV 397
QMHSID 403
QMHSLB 400
QMHSMD 399
QMHSPG 400
QMHSPR 399
QMHSSN 398
QMHSTM 400
QMHSTY 398
QMHSYN 403
QMHSYS 401
QMHTID 402
QMHTIM 397
QMHTTY 403
QMHTYP 396

file 288
CL procedure

overriding database file 158
overriding display file 154
referring to 149
working with 146

database
closing 149
declaring 149
opening 149

declaring
in CL program 150
name 22
to program 17
variable 14

deleting 14, 344
display

closing 149

file 288 (continued)
display (continued)

declaring 149
opening 149

name
using as parameter value 288

receiving
data 148, 157
record 17, 151

sending
CL procedure 17
data 148, 157
subfile records 151

file member
deleting 345

filtering
description 267
messages

using severity code filter (SEV)
parameter 201

format of date
converting 49

frequently-used objects
description 136

function
CL commands 17
testing

description 8

G
general purpose library (QGPL) 114
generic name

description 107
Get Current Local Time (CEELOCT) 51
GOTO (Go To) command 17, 30

H
handling

default 240
help information 285
help panel group

online help information 285
high-level language (HLL) program 165

mixed list 307
QCMDEXC program 161

history log (QHST)
description 275
format 278
format table 278
version 275

HLL (high-level language) program
mixed list 307
QCMDEXC program 161

hold delivery of message 201

I
If (IF) command

CL procedure 17
IF (If) command 17

description 17
embedded 36
example 31
using %SWITCH with 45

458 CL Programming V5R1

ILE (Integrated Language Environment)
model

CL program
debugging 347

message queue
call stack entry 204

notify message 211
procedure

receiving 271
sending 271

source debugger 347
starting source debugger 350

immediate message 181
impromptu message 7
informational message 181, 209
initializing

library list 105
input field length 292
inquiry message 181, 209
installing

CL compiler support 63
instruction, stepping 382
Integrated Language Environment (ILE)

model
message queue

call stack entry 204
notify message 211
procedure

receiving 271
sending 271

Integrated Language Environment (ILE)
procedure

call stack entry message queue 204
receiving 271
sending 271

interactive
entry 13
job

debugging another 387
job log

consideration 274

J
job

batch
testing functions 371

changing 266
displaying 140
interactive

testing functions 371
submitting 177

job attribute
retrieving 17, 52

job log
consideration for interactive 274
description 266
directing 395
displaying 272
model for primary 395
output file 395
preventing production of 273
suggestions when using 273

job message queue 200, 203
job queue

debugging batch job not started
from 386

job queue (continued)
debugging batch job submitted

to 385

K
key parameter

defining 288
identifying 321
using 320

L
label

in CL procedure 30
language

feature code 115
using different 115

LDA (local data area) 90
length of parameter value table 291
library

allocating resource 137
authority 109
clearing 113
creating 109
definition 5
deleting 113
description 98
displaying

library list 107
names and contents 114
object 114
object description 117

grouping 6
grouping object 108
placing object in 113
previous-release 62
production 109
renaming consideration 133
retrieving object description 53, 120
security 109
test 109

library description
displaying 115
retrieving 115

library list
*CURLIB value 99
accessing object 100
changing 24, 105
comparison with qualified name 102
current library 99, 104
displaying 107
entry

adding 105
removing 105

initializing
QSYSLIBL system value 105
QUSRLIBL system value 105

job 104
part of

current library 99
product library 99
system part description 99
user part 99

product library 104
saving 106

library list (continued)
search order 100
setting up 106
system part 104
user part 104

library name
specifying 98

list
CL or HLL for list within 309
CL or HLL for mixed 307
CL or HLL for simple 303
command definition 328
defining 301
REXX

mixed 308
simple 305
within 311

variable to specify 24
list of parameter value

defining 301
elements

using Element (ELEM)
statement 306

simple 301
list within list 308

using CL or HLL for 309
using REXX for 311

listing view
using 350

Load and Run Media Program
(LODRUN) command 179

local data area 90
lock state

*EXCL (exclusive) 137
*EXCLRD (exclusive allow read) 137
*SHRNUP (shared-no-update) 137
*SHRRD (shared-for-read) 137
*SHRUPD (shared-for-update) 137
combination table 137
exclusive (*EXCL) 137
exclusive allow read (*EXCLRD) 137
object type table 137
shared-for-read (*SHRRD) 137
shared-for-update (*SHRUPD) 137
shared-no-update (*SHRNUP) 137

log
consideration for batch job 275
displaying 276
displaying system 275
history 275
job 266
QHST (history) 275

logging CL procedure command 55
logic control command 14
logical expression 37

M
member

source
deleting 344

member description
retrieving 17, 54

menu
introduction 4
programmer 172

Merge Message File (MRGMSGF)
command 183, 185

Index 459

merging
message file 183, 185

message 199, 275

adding to file 184
assigning message identifier 185
assigning severity code 186
break delivery 200
break-handling program 202
changing delivery mode 203
completion 183
default handling while testing 374
default value 191
defining

description 186
help 186
substitution variable 187

definition 7
delivery 200
describing predefined 184
description

definition 8
diagnostic 183
displaying

break delivery 200
command options 181

double-byte
defining 194

escape
definition 183
description 236
purpose 210

example
changing 211
sending 211

file
IBM-supplied 181

filtering
description 267

handling 181
IBM-supplied message file 181
immediate 7, 181
informational 181, 209
inquiry 181, 209
job message queue 203
logging in history log 265
logging on job log 265
monitoring

description 236
example 17
numeric subtype code 186
use 46

notify 183, 241
online help information 186
overriding message file 195
parameters 46
predefined

description 7
IBM-supplied file 181
message queue 181

QHST (history log) file 279
queue 8
receiving

CL procedure 17, 228
CL program 228

removing
CL procedure 17
from message queue 235

message 199, 275 (continued)
reply 183
request 183, 230
retrieving

CL procedure 17
from CL procedure 234
in CL procedure 234

sample program to receive from
QSYSMSG 260

sending 181, 207
sending from CL program 208
sending to system user 207
sent to QSYSMSG message queue

CPD4070 245
CPF0907 245
CPF1269 246
CPF1393 246
CPF1397 246
CPF510E 246
CPF5167 247
CPF5244 247
CPF5248 247
CPF5250 247
CPF5251 247
CPF5257 248
CPF5260 248
CPF5274 248
CPF5341 248
CPF5342 248
CPF5344 249
CPF5346 249
CPF5355 249
CPF8AC4 245
CPF9E7C 245
CPI091F 249
CPI0948 249
CPI0949 250
CPI0950 250
CPI0953 250
CPI0954 250
CPI0955 250
CPI0964 250
CPI0965 250
CPI0966 250
CPI0970 250
CPI0988 250
CPI0989 251
CPI0998 251
CPI0999 251
CPI099C 251
CPI099D 252
CPI099E 252
CPI099F 253
CPI1117 251
CPI1136 254
CPI1138 254
CPI1139 254
CPI1153 254
CPI1154 254
CPI1159 254
CPI1160 255
CPI1161 255
CPI1162 255
CPI1165 255
CPI1166 255
CPI1167 255
CPI1168 255

message 199, 275 (continued)
sent to QSYSMSG message queue

(continued)
CPI1169 255
CPI116A 253
CPI116B 253
CPI116C 253
CPI1171 255
CPI1468 256
CPI2283 256
CPI2284 256
CPI8898 256
CPI8A13 256
CPI8A14 256
CPI9014 256
CPI9490 256
CPI94A0 257
CPI94CE 257
CPI94CF 257
CPI94FC 257
CPI96C0 257
CPI96C1 257
CPI96C2 257
CPI96C3 257
CPI96C4 257
CPI96C5 258
CPI96C6 258
CPI96C7 258
CPP0DD9 257
CPP0DDA 258
CPP0DDB 258
CPP0DDC 258
CPP0DDD 258
CPP0DDE 258
CPP0DDF 258
CPP29B0 259
CPP29B8 259
CPP29B9 259
CPP29BA 259
CPP951B 259
CPP9522 259
CPP955E 259
CPP9575 259
CPP9576 259
CPP9589 259
CPP9616 259
CPP9617 260
CPP9618 260
CPP961F 260
CPP9620 260
CPP9621 260
CPP9622 260
CPP9623 260
CPP962B 260

size of message file 184
status

definition 183
description 241
using 211

subfile
using 166

text 186
type 181
using system reply list 262
validity checking 189
working with 181, 207

message, immediate 7

460 CL Programming V5R1

message description
adding 181

example 193
substitution variable 187
to a file 184
value 181

changing 181, 185, 198
definition 7
displaying 185, 194
removing 181, 185
working with 181

message file
changing 181
creating 181, 183, 184
merging 183, 185
overriding with 195
specifying entry size 184
specifying maximum size 183

message help 186
message identifier

specifying 185
message logging levels

detailed 267
high-level 267

message queue
amount of storage 200
call stack entry 204
changing 200, 203
creating 181, 200
QSYSMSG 245
QSYSOPR 202
sending message from program

to 208
sending message to 207
work station 202
working with 181

message queue type table 209
message reference key 228
message subfile 166
message type table 209
mixed list

defining 306
description 306
element in list

mixed list 306
passing to CPP 306
using CL or HLL for 307
using REXX for 308

model for primary job log 395
module

description 1
module attribute

displaying 60
module object

changing view 354, 355
Monitor Message (MONMSG) command

in CL procedure 236
use 46

monitoring
message

in CL procedure 236
program level 237
specific command level 237
use 46

MONMSG (Monitor Message) command
in CL procedure 236
use 46

Move Object (MOVOBJ) command 129
moving

object from one library to
another 129

MOVOBJ (Move Object) command 129
MRGMSGF (Merge Message File)

command 183, 185

N
National Language Sort Sequence

(NLSS) 359
national language support 115
National Language Support 368
national language version

definition 115
nested Do group

example 33
nesting

description 373
network attribute

retrieving 51
notify delivery of message 200
notify message

defining 183
monitoring 236, 241
sending 211

number of
number of statement ranges for 380
programs that can be debugged

simultaneously 372
statement ranges for trace 380
values in list 288

numeric parameter value
replacing 26
variable replacing 17

O
object

accessing
with library list 99
with qualified name 98

allocating 137
authority verification 97
checking 17, 145
CL procedure

working with 143
command definition 284
common attribute 97
common function table 98
compressing

restriction 134
table 134
use 134

creating 131
information 122
providing description 117
using variable 22

damage detection and notification 97
deallocating 139
decompressing

after operating system
installation 135

restrictions 134
temporarily 135

default auditing attribute 113

object (continued)
default public authority 111
definition 4
deleting 136
describing 117
description 97
detecting unused 123
displaying in library 114
duplicate 131
function performed on 97, 98
generic name 107
grouping 6
library 98
lock enforcement 97
lock state 137
module

changing 354
changing view 355

moving
restriction 129

moving between libraries 129
moving from test library to

production 176
naming 5
placing in library 113
program

adding to debug session 351
prepare for debug session 349
removing from debug session 352

qualified name
description 6
example 6

referring to
in CL procedure 143
object 143

renaming 133
renaming object

restriction 133
restriction

duplicating 131
saving specific 176
searching for multiple 108
searching for single 108
security 109, 111
specific functions 98
TEXT (text) parameter 117
type 97

updating 123
type verification 97
types 5
usage information 123

object authority 109
object description

displaying
log-versions 276
online help 97
use 117

retrieving 53, 120
object existence (*OBJEXIST)

authority 109
object lock

working with 140
object management (*OBJMGT)

authority 109

object operational (*OBJOPR)
authority 109

Index 461

obtaining
program dump 59

online help information
command 285
help panel group for 285
providing for command 285

operator
arithmetic 37
character 37
logical 37
relational 37

OPM (original program model)
sending or receiving 271

OPM (original program model) program
message queue

call stack entry 204
optional parameter

defining 288
original program model (OPM)

sending or receiving 271
original program model (OPM) program

message queue
call stack entry 204

OS/400 language support 115
Override with Database File (OVRDBF)

command 14
Override with Message File (OVRMSGF)

command 195
overriding

database file 14
message file 195

OVRDBF (Override with Database File)
command 14

OVRMSGF (Override with Message File)
command 195

P
parameter 289

CMD (command) 17
defining 288

consideration 288
constant value 288
default value 292
description 288
determining valid value 288
example 293
keyword, naming 289
optional 288
passing attribute information 288
required 288
restricted value 288
return value 288
type 289
using qualified name 312
valid by parameter type 301
valid combination 301
valid value 288
value length 291
with list within list 308
with mixed list 306
with simple list 301

EXITPGM (exit program) 173
identifying key 321
key 320
order of 68
passing 72, 392
passing attribute information 288

parameter 289 (continued)
passing between programs 68
possible choice and value 316
receiving 72
restricted value for parameter 288
RQSDTA (request data) 17
RTNCDE (return code) 37
specifying

length returned with value 288
prompt text 288
value length 288

TEXT (text) 117
trailing blanks 28
type

character (*CHAR) 289
decimal (*DEC) 289
generic name (*GENERIC) 289
integer (*INTn) 289
logical (*LGL) 289
name (*NAME) 289
null (*NULL) 289
path name (*PNAME) 289
statement label 289
valid parameter combination 301
variable name (*VARNAME) 289

valid parameter 288
value

length 291
valid 288

Parameter (PARM) command definition
statement

description 286
example 340
use 288

Parameter (PARM) statement
example 293
use 288

parameter combination table 293
parameter value

list of
defining 301
mixed 306
simple 302

replacing 26
PARM (Parameter) command definition

statement
description 286
example 340
use 288

PARM (Parameter) statement
example 293
use 288

passing 289
attribute information for a

parameter 288
parameter value to CPP 289

character value 289
decimal value 289
generic name 289
list 301
logical value 289
name 289
path name value 289
qualified name 312
variable 289

type
date (*DATE) 289

passing 289 (continued)
type (continued)

time (*TIME) 289
percolate 211
performance

benefit
using TFRCTL command 391

consideration 82
data queue advantage 82
message queue 82

performing
calculation

arithmetic 37
character 37
relational 37

PGM (Program) command 14, 17
placing object in library 113
PMTCTL (Prompt Control) command

definition statement 286
precision error 76
predefined message 7, 181
prepare

program object for debug
session 349

preventing
display of status message 242
job log 273
production of job log 273
update to files while testing 372

previous release
compiling source programs for 62
install compiler support 63

Print Command Usage (PRTCMDUSG)
command 17

printing
command usage 17

procedure
calling

description 66
CL 2
control language (CL) introduction 2
description 1
parts of CL

description 14
working with object 143

receiving message 228
procedure command

logging 55
procedure control command 14
processing

using CL command 21
within CL procedure 30

production library 109, 176
program 336, 339

activation 373
adding 372
adding breakpoint to 375
adding trace to 379
break-handling 243
breakpoint 375
call 373
calling

CL procedure 17
description 65
use 71

controlling program logic
command 17

462 CL Programming V5R1

program 336, 339 (continued)
creating CL 55
default, in testing 372
deleting 17
description 2
dump 59
ending 14, 17
number that can be debugged

simultaneously 372
placing in debug mode 372
program logic command 17
prompt override program 285
QCMDCHK 165
QCMDEXC 167
removing 372
removing breakpoint from 379
removing trace from 382
service 2
variable

displaying 383
writing command processing

procedure 336
writing command processing

program 336
writing prompt control 317
writing prompt override 321
writing validity checking 336, 339

Program (PGM) command 14, 17
program attribute

displaying 60
program control command 14
program dump

obtaining 59
program flow 65, 66
program initialization parameter (PIP)

data area
program initialization parameter

(PIP) 91
program message

changing 181
sending

CL procedure 14
message queue 17, 208

program object
adding to debug session 351
deleting 345
prepare for debug session 349
removing from debug session 352
step into 362
step over 362
stepping into 363
stepping through 361

program source
viewing 354

program variable
changing 384
displaying 383

programmer menu
starting 172
using 172

prompt
text

defining for parameter 288
prompt control 317
prompt override program

allowing for errors 323
CL sample, using 324

prompt override program (continued)
description 285
information passed to 321
information returned 322
procedure for using 321
specifying when creating or changing

command 324
using key parameter 320
writing 321

prompt parameter 287
prompter

help 13
using 167

prompting
character description table 171
character table 169
conditional 317
for command 168
for double-byte data in a CL

program 164
for using QCMDEXC 164
in CL procedure

using 167
with QCMDEXC 171

selective 168
protecting

file from unintentional modification,
testing 372

PRTCMDUSG (Print Command Usage)
command 17

PRV 62

Q
QBATCH subsystem 275
QCMDCHK program 165
QCMDEXC program

call prompter 167, 171
process command string 106
prompting for double-byte data 164
run command from program 161

QGPL library 114
QHST (history log)

format table 278
message queue 275, 278
processing 279

QHST (history log) file
deleting 281
job completion message 279
job start message 279

QHST (history log) message queue 276,
278

QPJOBLOG (job log) file 272
QRECOVERY library 114
QSYS library 104
QSYSMSG

message queue
CPF0907 245
CPF1269 246
CPF1393 246
CPF1397 246
CPF8AC4 245
CPF9E7C 245
CPI091F 249
CPI0948 249
CPI0949 250
CPI0950 250
CPI0953 250

QSYSMSG (continued)
message queue (continued)

CPI0954 250
CPI0955 250
CPI0964 250
CPI0965 250
CPI0966 250
CPI0970 250
CPI0988 250
CPI0989 251
CPI0998 251
CPI0999 251
CPI099C 251
CPI099D 252
CPI099E 252
CPI099F 253
CPI1117 251
CPI1136 254
CPI1138 254
CPI1139 254
CPI1153 254
CPI1154 254
CPI1159 254
CPI1160 255
CPI1161 255
CPI1162 255
CPI1165 255
CPI1166 255
CPI1167 255
CPI1168 255
CPI1169 255
CPI116A 253
CPI116B 253
CPI116C 253
CPI1171 255
CPI1468 256
CPI2283 256
CPI2284 256
CPI8898 256
CPI8A13 256
CPI8A14 256
CPI9014 256
CPI9490 256
CPI94A0 257
CPI94CE 257
CPI94CF 257
CPI94FC 257
CPI96C0 257
CPI96C1 257
CPI96C2 257
CPI96C3 257
CPI96C4 257
CPI96C5 258
CPI96C6 258
CPI96C7 258
CPP0DD9 257
CPP0DDA 258
CPP0DDB 258
CPP0DDC 258
CPP0DDD 258
CPP0DDE 258
CPP0DDF 258
CPP29B0 259
CPP29B8 259
CPP29B9 259
CPP29BA 259
CPP951B 259

Index 463

QSYSMSG (continued)
CPP9522 259
CPP955E 259
CPP9575 259
CPP9576 259
CPP9589 259
CPP9616 259
CPP9617 260
CPP9618 260
CPP961F 260
CPP9620 260
CPP9621 260
CPP9622 260
CPP9623 260
CPP962B 260
definition 245

sample program 245
QSYSOPR message queue 200
QUAL (Qualifier) statement

definition 286
example 312, 343
use 312

qualified name
accessing object 98
defining 312
example of defining for

command 343
passing to CPP 313, 315
processing in CL program 313
specifying 24
specifying with prompting 98
syntax for 98
using CL or HLL 313
using REXX 315

qualifier (QUAL) statement
example 312

Qualifier (QUAL) statement
definition 286
example 343
use 312

queue
changing message queue delivery

type 203
external message (*EXT) 203
job message queue 203
message 8, 199
QSYSMSG 245
receiving message from 228
removing message from 235

R
RCLRSC (Reclaim Resources)

command 373
RCVF (Receive File) command 148, 157
RCVMSG (Receive Message)

command 228, 229
read authority 110
receive

ending 156, 157, 158
Receive File (RCVF) command 148, 157
Receive Message (RCVMSG)

command 228, 229
receiving

database file 17, 148
display data 148

receiving (continued)
file

example 151, 157
message

function 17
in CL procedure 228
in CL program 228
information placement 229

user reply 17
Reclaim Resources (RCLRSC)

command 373
reclaiming

resources 373
recovery

after abnormal system end 177
reference key

message 228
relational expression 37
relationship

PARM statement and DCL
command 337

part of command definition 337
remote data areas

remote data areas 91
remote data queues

remote data queues 81
Remove Breakpoint (RMVBKP)

command 379
Remove Library List Entry (RMVLIBLE)

command 105
Remove Message (RMVMSG)

command 17, 235
Remove Message Description

(RMVMSGD) command 185
Remove Program (RMVPGM) command

breakpoint program 382
traced program 382
using 372

Remove Trace (RMVTRC) command 382
removing

breakpoint 356, 361, 379
breakpoint from program 379
library list entry 105
message 17, 235
message description 185
message from message queue 235
program 372
program object from debug

session 352
trace data from system 382
trace from program 382

Rename Object (RNMOBJ)
command 133

renaming
object 133

reply
sending 17, 235

reply message 183
reply to message 189
request

ending 374
request data (RQSDTA) parameter 17
request message 183, 230
request-processing procedure

writing 231
request processor program

determining existence 232

required parameter 288
reserved parameter value

replacing 26
variable replacing 17

resource
allocating 137
reclaiming 373

restriction
CL procedure 11
compressing object 134
duplicating objects 131
moving object 129

Resume Breakpoint (RSMBKP)
command 376

resuming
breakpoint 376

Retrieve Configuration Source
(RTVCFGSRC) command 17, 51

Retrieve Configuration Status
(RTVCFGSTS) command 17, 51

Retrieve Data Area (RTVDTAARA)
command 17, 93

Retrieve Job Attributes (RTVJOBA)
command 17, 52

Retrieve Library Description (RTVLIBD)
command 115

Retrieve Member Description
(RTVMBRD) command 17, 54

Retrieve Message (RTVMSG)
command 17, 234

Retrieve Network Attributes (RTVNETA)
command 51

Retrieve Object Description (RTVOBJD)
command 53, 120

Retrieve System Value (RTVSYSVAL)
command 17, 48

Retrieve User Profile (RTVUSRPRF)
command 17, 53

retrieving
configuration source 17, 51
configuration status 17, 51
data area 17, 93
job attribute 17, 52
library description 115
member description 17, 54
message 17, 234
message in CL procedure 234
network attribute 51
object description 53, 120
program attribute 178
program creation commands 17
system value 17, 48
user profile 17, 53
user profile attribute 53

Return (RETURN) command 17, 68
RETURN (Return) command 17, 68
return code

BASIC program 37
CL procedure 37
parameter 37
Pascal program 37
PL/I program 37
RPG IV program 37
summary 37, 61

return code (RTNCDE) parameter 37
REXX procedure

list within list 311

464 CL Programming V5R1

REXX procedure (continued)
using

for mixed list 308
for qualified name 315
for simple list 305

writing command processing
procedure 338

RMVBKP (Remove Breakpoint)
command 379

RMVLIBLE (Remove Library List Entry)
command 105

RMVMSG (Remove Message)
command 17, 235

RMVMSGD (Remove Message
Description) command 185

RMVPGM (Remove Program) command
breakpoint program 382
traced program 382
using 372

RMVTRC (Remove Trace) command 382
RNMOBJ (Rename Object)

command 133
root source view

using 349
RQSDTA (request data) parameter 17
RSMBKP (Resume Breakpoint)

command 376
RTNCDE (return code) parameter 37
RTVCFGSRC (Retrieve Configuration

Source) command 17, 51
RTVCFGSTS (Retrieve Configuration

Status) command 17, 51
RTVDTAARA (Retrieve Data Area)

command 17, 93
RTVJOBA (Retrieve Job Attributes)

command 17, 52
RTVLIBD (Retrieve Library Description)

command 115
RTVMBRD (Retrieve Member

Description) command 17, 54
RTVMSG (Retrieve Message)

command 17, 234
RTVNETA (Retrieve Network Attributes)

command 51
RTVOBJD (Retrieve Object Description)

command 53, 120
RTVSYSVAL (Retrieve System Value)

command 17, 48
RTVUSRPRF (Retrieve User Profile)

command 17, 53
run time

allowing user changes to CL
commands 167

S
sample program to receive message from

QSYSMSG 260
searching

for object 107
securing

object 109
security

for object 111
see=’breakpoint’.debug mode 372, 383,

388
see=’breakpoint’.trace 379, 380, 381

see=’breakpoint’.trace 379, 380, 381
(continued)

description 379
removing from a program 382
removing information from

system 382
see=’breakpoint

program’.breakpointdisplaying 383
using breakpoint within trace 382

see=’breakpoint
program’.breakpoint 376, 377, 379

adding to program 375
using within trace 382

see=’member’.database file
preventing, update in production

library 372
see=’message queue’.message 374
see=’testing’.debug mode 383, 388

adding program 372
placing program 372

see=’trace’.breakpoint 375, 376, 377, 382
displaying location 383
removing from program 379

see=’trace’.debug mode 372
security consideration 388

see=’user profile’.security
debugging consideration 388

selective prompting
character description table 171
character table 169
description 168

Send Break Message (SNDBRKMSG)
command 207

Send File (SNDF) command
canceling request for input 157
CL procedure 17
function 148

Send Message (SNDMSG) command 207
Send Message (SNDMSG) display 164
Send Program Message (SNDPGMMSG)

command
CL procedure 14, 17
use 208

Send/Receive File (SNDRCVF) command
CL procedure 17
function 148
use 151

Send Reply (SNDRPY) command 17,
235

Send User Message (SNDUSRMSG)
command 17, 209

sending
break message 207
data to display 148
display file 17, 148
file

data 151
example 157

message 207, 211
message to system user 207
program message 14, 208
reply 17, 235
user message 17, 209

service program 2
session

debug
adding program object 351

session (continued)
debug (continued)

removing program object 352
setting

breakpoint 356
severity code 186
shared-for-read (*SHRRD) lock state 137
shared-for-update (*SHRUPD) lock

state 137
shared-no-update (*SHRNUP) lock

state 137
simple list

parameter value
defining 302
description 302
passing to CPP 302

using CL or HLL for 303
using REXX for 305

skip value
definition 378

SNDBRKMSG (Send Break Message)
command 207

SNDF (Send File) command
canceling request for input 157
CL procedure 17
function 148

SNDMSG (Send Message) command 207
SNDPGMMSG (Send Program Message)

command
CL procedure 14, 17
use 208

SNDRCVF (Send/Receive File) command
CL procedure 17
function 148
use 151

SNDRPY (Send Reply) command 17,
235

SNDUSRMSG (Send User Message)
command 17, 209

source debugger
ILE

starting 350
source list

command definition 328
source member

deleting 344
source view

working with 369
spooled file

displaying 272
stack, call

description 373
displaying testing information 383
relationship to CALL command 66
relationship to CALLPRC

command 67
removing call 66, 67
removing request in error 374

Start Debug (STRDBG) command
adding program 372
example 371
preventing update to file 372

start position for compare date 263
Start Programmer Menu (STRPGMMNU)

command 172
starting

debug 372, 379

Index 465

starting (continued)
ILE source debugger 350
programmer menu 172

statement
command definition 284

statement combination table 296
statement view

using 350
static variable

description 384
status message

definition 183
monitoring 241
preventing display 242
receiving 236
sending 211

step into debug command 363
step over debug command 362
STRDBG (Start Debug) command

adding program 372
example 371
preventing update to file 372

STRPGMMNU (Start Programmer Menu)
command

using 172
subfile

message 166
submitting

job 177
substitution variable 187
substring function

description 43
processing qualified name 313

switch function 45
syntax

command 2
syntax checking 165
system library (QSYS) 104, 114
system library list

changing 105
system log

naming version 276
system operator (QSYSOPR) message

queue 200, 203
system reply list 262
system user

sending messages to 207
system value

retrieving 17, 48

T
test library 109, 176
testing

canceling request during 374
debug mode 371
default program 372

testing function
description 8

TFRCTL (Transfer Control)
command 391, 392

timing out 178
trace

displaying 383
trace data

clearing 379
displaying 381

trailing blank
command parameter 28
example 28

Transfer Control (TFRCTL)
command 391, 392

transferring
control 391, 392

U
unconditional branching 30
unconditional breakpoint

removing 357
setting 357

unmonitored message
breakpoint display 374
handling 374

update authority
update 110

updating
usage information 123

usage information
no updating 128
table 123
updating 123

user message
sending

CL procedure 17
function 181
informational 209
inquiry 209

user profile attribute
retrieving 17, 53

using
listing view 350
QCMDCHK program 165
root source view 349
statement view 350

V
validity checking

program 284
reply 189
writing 339

value
parameter 316

variable
changing

CL procedure 14, 17
example 27, 213
value in program 384
value of 27, 366

creating object 22
declaring

description 24
for field 150
for file 150

definition 22
displaying 363
displaying value in program 383
equating a name 368
indicator declared as variable 149
lowercase character in 25
replacing parameter value 26
retrieving system value 48

variable (continued)
specifying list 24
specifying qualified name 24
substitution 187
value used as 48
working with 22

view
program source 354

W
Wait (WAIT) command 17, 156
WAIT (Wait) command 17, 156
work station message queue 200
Work with Object Locks (WRKOBJLCK)

command 140
working with

messages 207
object locks 140

working with message 17
writing

comment in CL procedure 29
request-processing procedure 231
REXX command processing

procedure 338
WRKOBJLCK (Work with Object Locks)

command 140

466 CL Programming V5R1

Readers’ Comments — We’d Like to Hear from You

iSeries
CL Programming
Version 5

Publication No. SC41-5721-04

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC41-5721-04

SC41-5721-04

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM CORPORATION
ATTN DEPT 542 IDCLERK
3605 HWY 52 N
ROCHESTER MN 55901-7829

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC41-5721-04

	Contents
	Figures
	About CL Programming (SC41-5721)
	Who should read this book
	Prerequisite and related information
	Operations Navigator

	How to send your comments

	Chapter 1. Introduction
	Control Language
	Procedure
	Module
	Program
	Service Program
	Command Syntax

	CL Procedures
	Command Definition
	Menus
	Objects and Libraries
	Objects
	Libraries

	Messages
	Message Descriptions
	Message Queues

	Testing Functions

	Chapter 2. CL Programming
	Creating a CL Program
	Interactive Entry
	Batch Entry
	Parts of a CL Procedure
	Example of a Simple CL Program

	Commands Used in CL Procedures
	Commands Entered on the RQSDTA and CMD Parameters
	CL Commands

	Using CL Procedures
	Working with Variables
	Declaring a Variable
	Using Variables to Specify a List or Qualified Name
	Lowercase Characters in Variables
	Variables Replacing Reserved or Numeric Parameter Values
	Changing the Value of a Variable
	Trailing Blanks on Command Parameters
	Writing Comments in CL Procedures

	Controlling Processing within a CL Procedure
	Using the GOTO Command and Labels
	Using the IF Command
	Using the DO Command and DO Groups
	Using the ELSE Command
	Using Embedded IF Commands
	Using the *AND, *OR, and *NOT Operators
	Using the %BINARY Built-In Function
	Using the %SUBSTRING Built-In Function
	Using the %SWITCH Built-In Function
	%SWITCH with the IF Command
	%SWITCH with the CHGVAR Command

	Using the Monitor Message (MONMSG) Command

	Values That Can Be Used as Variables
	Retrieving System Values
	System Value QTIME
	System Value QDATE

	Retrieving Configuration Source
	Retrieving Configuration Status
	Retrieving Network Attributes
	RTVNETA Example

	Retrieving Job Attributes
	RTVJOBA Example

	Retrieving Object Descriptions
	Retrieving User Profile Attributes
	RTVUSRPRF Example

	Retrieving Member Description Information
	RTVMBRD Example

	Working with CL Procedures
	Logging CL Procedure Commands
	CL Module Compiler Listings
	Errors Encountered during Compilation
	Obtaining a Procedure Dump
	Displaying Module Attributes
	Displaying Program Attributes
	Return Code Summary

	Compiling Source Programs for a Previous Release
	Previous-Release (*PRV) Libraries
	Installing CL Compiler Support for a Previous Release

	Chapter 3. Controlling Flow and Communicating betweenPrograms and Procedures
	CALL Command
	CALLPRC Command
	RETURN Command
	Passing Parameters between Programs and Procedures
	Using the CALL Command
	Common Errors When Calling Programs and Procedures
	Date Type Errors Using the CALL Command
	Data Type Errors
	Decimal Length and Precision Errors
	Character Length Errors

	Using Data Queues to Communicate between Programs andProcedures
	Remote Data Queues
	Comparisons with Using Database Files as Queues
	Similarities to Message Queues
	Prerequisites for Using Data Queues
	Managing the Storage Used by a Data Queue
	Allocating Data Queues
	Examples Using a Data Queue
	Example 1: Waiting up to 2 Hours to Receive Data from DataQueue
	Example 2: Waiting for Input from a Display File and an ICF File
	Example 3: Waiting for Input from a Display File and a DataQueue

	Creating Data Queues Associated with an Output Queue
	Sample Data Queue Entry

	Using Data Areas to Communicate between Procedures and Programs
	Local Data Area
	Group Data Area
	Program Initialization Parameter (PIP) Data Area
	Remote Data Areas
	Creating a Data Area
	Data Area Locking and Allocation
	Displaying a Data Area
	Changing a Data Area
	Retrieving a Data Area
	Retrieve Data Area Examples
	Example 1
	Example 2
	Example 3

	Changing and Retrieving a Data Area Example

	Chapter 4. Objects and Libraries
	Object Types and Common Attributes
	Functions Performed on Objects
	Functions the System Performs Automatically
	Functions You Can Perform Using Commands

	Libraries
	Library Lists
	A Job's Library List
	Changing the Library List
	Considerations for Setting Up a Library List

	Displaying a Library List
	Using Generic Object Names
	Searching for Multiple Objects or a Single Object

	Using Libraries
	Creating a Library
	Specifying Authority for Libraries
	Object Authority
	Data Authority
	Combined Authority

	Security Considerations for Objects
	Display Audit Journal Entries (DSPAUDJRNE) Command

	Default Public Authority for Newly Created Objects
	Default Auditing Attribute for Newly Created Objects
	Placing Objects in Libraries
	Deleting and Clearing Libraries
	Displaying Library Names and Contents
	Displaying and Retrieving Library Descriptions

	OS/400 Globalization
	Describing Objects
	Displaying Object Descriptions
	Retrieving Object Descriptions
	RTVOBJD Example

	Creation Information for Objects
	Detecting Unused Objects on the System
	Moving Objects from One Library to Another
	Creating Duplicate Objects
	Renaming Objects
	Compressing or Decompressing Objects
	Compression of Objects
	Temporarily Decompressed Objects
	Automatic Decompression of Objects

	Deleting Objects
	Allocating Resources
	Displaying the Lock States for Objects

	Chapter 5. Working with Objects in CL Procedures andPrograms
	Accessing Objects in CL Programs
	Exceptions: Accessing Command Definitions, Files, andProcedures
	Accessing Command Definitions
	Accessing Files
	Accessing Procedures

	Checking for the Existence of an Object

	Working with Files in CL Procedures
	Referring to Files in a CL Procedure
	Opening and Closing Files in a CL Procedure
	Declaring a File
	Sending and Receiving Data with a Display File
	Writing a CL Program to Control a Menu
	Overriding Display Files in a CL Procedure
	Working with Multiple Device Display Files
	Receiving Data from a Database File
	Overriding Database Files in a CL Procedure or Program
	Referring to Output Files from Display Commands

	Chapter 6. Advanced Programming Topics
	Using the QCAPCMD Program
	Using the QCMDEXC Program
	Using the QCMDEXC Program with DBCS Data

	Using the QCMDCHK Program
	Using Message Subfiles in a CL Program or Procedure
	Allowing User Changes to CL Commands at Run Time
	Using the Prompter within a CL Procedure or Program
	Selective Prompting for CL Commands
	QCMDEXC with Prompting in CL Procedures and Programs

	Using the Programmer Menu
	Uses of the Start Programmer Menu (STRPGMMNU) Command
	The EXITPGM Parameter

	Command Analyzer Exit Points
	Application Programming for DBCS Data
	Designing DBCS Application Programs
	Converting Alphanumeric Programs to Process DBCS Data

	Using DBCS Data in a CL Program
	Sample CL Programs
	Initial Program for Setup (Programmer)
	Moving an Object from a Test Library to a Production Library(Programmer)
	Saving Specific Objects in an Application (System Operator)
	Example

	Recovery from Abnormal End (System Operator)
	Submitting a Job (System Operator)
	Timing Out While Waiting for Input from a Device Display
	Retrieving Program Attributes

	Loading and Running an Application from Tapes or Diskettes
	Responsibilities of the Application Writer

	Chapter 7. Defining Messages
	Creating a Message File
	Determining the Size of a Message File

	Adding Messages to a File
	Assigning a Message Identifier
	Defining Messages and Message Help
	Assigning a Severity Code
	Defining Substitution Variables
	Specifying Validity Checking for Replies
	Sending an Immediate Message and Handling a Reply
	Sending Immediate Messages with Double-Byte Characters

	Defining Default Values for Replies
	Specifying Default Message Handling for Escape Messages
	Example of a Default Program
	Specifying the Alert Option

	Example of Describing a Message
	Defining Double-Byte Messages

	System Message File Searches
	Searching for a Message File
	Overriding Message Files
	Example of Overriding a Message File

	Types of Message Queues
	Creating or Changing a Message Queue
	Break-Handling Program
	Example of Changing the Delivery Mode

	Job Message Queues

	Chapter 8. Working with Messages
	Sending Messages to a System User
	Sending Messages from a CL Program
	Messages
	Inquiry and Informational Messages
	Completion and Diagnostic Messages
	Status Messages
	Escape and Notify Messages

	Examples of Sending Messages
	Call Stack Entry Identification on SNDPGMMSG
	Receiving Messages in a CL Procedure or Program
	Request Messages
	Writing Request-Processing Procedures and Programs
	Determining if a Request-Processor Exists

	Retrieving Messages in a CL Procedure
	Removing Messages from a Message Queue

	Monitoring for Messages in a CL Program or Procedure
	Default Handling
	Notify Messages
	Status Messages
	Preventing the Display of Status Messages

	Break-Handling Programs
	QSYSMSG Message Queue
	Messages Sent to QSYSMSG Message Queue
	Sample Program to Receive Messages from QSYSMSG

	Using the System Reply List
	Message Logging
	Job Log
	Sending or Receiving Program or Procedure
	Additional Message Filtering
	Displaying the Job Log
	Preventing the Production of Job Logs
	Job Log Considerations
	Considerations for Interactive Job Logs
	Considerations for Batch Job Logs

	QHST History Log
	Format of the History Log
	Processing the QHST File
	QHST Job Start and Completion Messages
	Deleting QHST Files

	Chapter 9. Defining Commands
	Overview of How to Define Commands
	Step Description
	Command Definition Statements
	Create Command (CRTCMD) Command
	Command Definition Object
	Validity Checking
	Prompt Override Program
	Providing Help Information for Commands
	Command Processing Program

	Authority Needed for the Commands You Define
	Example of Creating a Command

	How to Define Commands
	Using the CMD Statement
	Defining Parameters
	Naming the Keyword for the Parameter
	Parameter Types
	Length of Parameter Value
	Default Values
	Example of Defining a Parameter

	Data Type and Parameter Restrictions
	Defining Lists for Parameters
	Defining a Simple List
	Using CL or HLL for Simple Lists
	Using REXX for Simple Lists

	Defining a Mixed List
	Using CL or HLL for Mixed Lists
	Using REXX for Mixed Lists

	Defining Lists within Lists
	Using CL or HLL for Lists within Lists
	Using REXX for Lists within Lists

	Defining a Qualified Name
	Using CL or HLL for a Qualified Name
	Using REXX for a Qualified Name

	Defining a Dependent Relationship
	Possible Choices and Values

	Using Prompt Control
	Conditional Prompting
	Additional Parameters

	Using Key Parameters and a Prompt Override Program
	Procedure for Using Prompt Override Programs
	Identifying Key Parameters
	Writing a Prompt Override Program
	Specifying the Prompt Override Program When Creating orChanging Commands

	CL Sample for Using the Prompt Override Program
	Sample Command Source
	Sample Prompt Override Program

	Creating Commands
	Command Definition Source Listing
	Errors Encountered when Processing Command DefinitionStatements

	Displaying a Command Definition
	Effect of Changing the Command Definition of a Command in aProcedure or Program
	Changing Command Defaults
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	Writing a Command Processing Program or Procedure
	Writing a CL or HLL Command Processing Program
	Writing a REXX Command Processing Procedure

	Writing a Validity Checking Program
	Examples of Defining and Creating Commands
	Calling Application Programs
	Substituting a Default Value
	Displaying an Output Queue
	Displaying Messages from IBM Commands More Than Once
	Creating Abbreviated Commands
	Example 1
	Example 2

	Deleting Files and Source Members
	Deleting Program Objects

	Chapter 10. Debugging ILE Programs
	The ILE Source Debugger
	Debug Commands
	Preparing a Program Object for a Debug Session
	Using a Root Source View
	Using a Listing View
	Using a Statement View

	Starting the ILE Source Debugger
	Adding Program Objects to a Debug Session
	Removing Program Objects from a Debug Session
	Viewing the Program Source
	Changing a Module Object
	Changing the View of a Module Object
	Setting and Removing Breakpoints
	Setting and Removing Unconditional Breakpoints
	Setting and Removing Conditional Breakpoints
	Using the Work with Breakpoints Display
	Using the BREAK and CLEAR Debug Commands
	National Language Sort Sequence (NLSS)
	Conditional Breakpoint Examples

	Removing All Breakpoints

	Stepping through the Program Object
	Using F10 or F22 on the Display Source Display
	Using the STEP Debug Command
	Step Over and Step Into

	Stepping over Program Objects
	Using F10(Step)
	Using the Step Over Debug Command

	Stepping into Program Objects
	Using F22(Step Into)
	Using the Step Into Debug Command

	Displaying Variables
	Using F11(Display Variable)
	Display logical variable example
	Display character variable examples
	Display decimal variable example
	Displaying Variables as Hexadecimal Values

	Changing the Value of Variables
	Change logical variable examples
	Change character variable examples
	Change decimal variable examples

	Attributes of a Variable Examples
	Equating a Name with a Variable, Expression, or Command
	Source Debug National Language Support for ILE CL
	Working with *SOURCE View
	Using COPY, SAVE, RESTORE, CRTDUPOBJ, and CHKOBJITGwhile Debugging

	Appendix A. Debugging OPM Programs
	Debug Mode
	Adding Programs to Debug Mode
	Preventing Updates to Database Files in Production Libraries

	The Call Stack
	Program Activations

	Handling Unmonitored Messages
	Breakpoints
	Adding Breakpoints to Programs
	Conditional Breakpoints
	Removing Breakpoints from Programs

	Traces
	Adding Traces to Programs
	Instruction Stepping
	Using Breakpoints within Traces
	Removing Trace Information from the System
	Removing Traces from Programs

	Display Functions
	Displaying the Values of Variables
	Changing the Values of Variables
	Using a Job to Debug Another Job
	Debugging Batch Jobs Submitted to a Job Queue
	Debugging Batch Jobs Not Started from Job Queues
	Debugging a Running Job
	Debugging Another Interactive Job
	Considerations When Debugging One Job from Another Job

	Debugging at the Machine Interface Level
	Security Considerations
	Using COPY, SAVE, RESTORE, CRTDUPOBJ, and CHKOBJITGwhile Debugging

	Appendix B. TFRCTL Command
	Using the TFRCTL Command
	Passing Parameters

	Appendix C. Job Log Output Files
	Directing a Job Log
	Model for the Primary Job Log

	Appendix D. IBM-Supplied Libraries in Licensed Programs(LP)
	IBM-Supplied Libraries for the OS/400 Licensed Program
	IBM-Supplied Libraries for Other iSeries Licensed Programs

	Appendix E. Abbreviations of CL Commands and Keywords
	CL Command Verb Abbreviations
	CL Command Abbreviations
	CL Command Keyword Abbreviations

	Appendix F. Notices
	Programming Interface Information
	Trademarks

	Bibliography
	Index
	Readers’ Comments — We'd Like to Hear from You

