
iSeries

DDS Reference: Physical and Logical Files
Version 5

ERserver

���





iSeries

DDS Reference: Physical and Logical Files
Version 5

ERserver

���



© Copyright International Business Machines Corporation 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

About DDS Reference: Physical and Logical Files. . . . . . . . . . . . . . . . . . . . v
Who should read the DDS Reference: Physical and Logical Files book . . . . . . . . . . . . . v
Conventions and terminology used in the DDS information . . . . . . . . . . . . . . . . . . v
What’s New for V5R1 in the DDS information . . . . . . . . . . . . . . . . . . . . . . v

Chapter 1. Defining physical and logical files using DDS . . . . . . . . . . . . . . . . . 1
Defining a physical file using DDS. . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Defining a logical file using DDS . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Simple and multiple format logical files in DDS . . . . . . . . . . . . . . . . . . . . . 2
Join logical files in DDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Specifying record formats in a logical file in DDS . . . . . . . . . . . . . . . . . . . . 3

Positional entries for physical and logical files (positions 1 through 44) . . . . . . . . . . . . . 4
Sequence number for physical and logical files (positions 1 through 5) . . . . . . . . . . . . 4
Form type for physical and logical files (position 6). . . . . . . . . . . . . . . . . . . . 4
Comment for physical and logical files (position 7) . . . . . . . . . . . . . . . . . . . . 4
Conditioning for physical and logical files (positions 8 through 16) . . . . . . . . . . . . . . 5
Type of name or specification for physical and logical files (position 17) . . . . . . . . . . . . 5
Reserved for physical and logical files (position 18) . . . . . . . . . . . . . . . . . . . 5
Name for physical and logical files (positions 19 through 28) . . . . . . . . . . . . . . . . 5
Reference for physical and logical files (position 29). . . . . . . . . . . . . . . . . . . 19
Length for physical and logical files (positions 30 through 34) . . . . . . . . . . . . . . . 20
Data type for physical and logical files (position 35) . . . . . . . . . . . . . . . . . . . 23
Decimal positions for physical and logical files (positions 36 and 37). . . . . . . . . . . . . 25
Usage for physical and logical files (position 38) . . . . . . . . . . . . . . . . . . . . 26
Location for physical and logical files (positions 39 through 44). . . . . . . . . . . . . . . 27

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) . . . . . . 29
ABSVAL (Absolute Value) keyword for physical and logical files . . . . . . . . . . . . . . . 30
ALIAS (Alternative Name) keyword for physical and logical files . . . . . . . . . . . . . . . 31
ALL (All) keyword—logical files only. . . . . . . . . . . . . . . . . . . . . . . . . . 31
ALTSEQ (Alternative Collating Sequence) keyword for physical and logical files . . . . . . . . . 32
ALWNULL (Allow Null Value) keyword—physical files only . . . . . . . . . . . . . . . . . 32
CCSID (Coded Character Set Identifier) keyword for physical and logical files . . . . . . . . . . 33
CHECK (Check) keyword for physical and logical files . . . . . . . . . . . . . . . . . . . 34
CHKMSGID (Check Message Identifier) keyword for physical and logical files . . . . . . . . . . 35
CMP (Comparison) keyword for physical and logical files . . . . . . . . . . . . . . . . . . 35
COLHDG (Column Heading) keyword for physical and logical files . . . . . . . . . . . . . . 36
COMP (Comparison) keyword for physical and logical files . . . . . . . . . . . . . . . . . 36

Specifying COMP at the field level . . . . . . . . . . . . . . . . . . . . . . . . . 38
Specifying COMP at the select or omit-field level . . . . . . . . . . . . . . . . . . . . 38

CONCAT (Concatenate) keyword—logical files only . . . . . . . . . . . . . . . . . . . . 39
DATFMT (Date Format) keyword for physical and logical files . . . . . . . . . . . . . . . . 41
DATSEP (Date Separator) keyword for physical and logical files . . . . . . . . . . . . . . . 43
DESCEND (Descend) keyword for physical and logical files . . . . . . . . . . . . . . . . . 44
DFT (Default) keyword—physical files only . . . . . . . . . . . . . . . . . . . . . . . 44
DIGIT (Digit) keyword for physical and logical files . . . . . . . . . . . . . . . . . . . . 46
DYNSLT (Dynamic Select) keyword—logical files only . . . . . . . . . . . . . . . . . . . 46
EDTCDE (Edit Code) and EDTWRD (Edit Word) keywords for physical and logical files . . . . . . 49
FCFO (First-Changed First-Out) keyword for physical and logical files . . . . . . . . . . . . . 50
FIFO (First-In First-Out) keyword for physical and logical files . . . . . . . . . . . . . . . . 50
FLTPCN (Floating-Point Precision) keyword for physical and logical files . . . . . . . . . . . . 51
FORMAT (Format) keyword for physical and logical files . . . . . . . . . . . . . . . . . . 51
JDFTVAL (Join Default Values) keyword—join logical files only . . . . . . . . . . . . . . . . 52

© Copyright IBM Corp. 2001 iii



JDUPSEQ (Join Duplicate Sequence) keyword—join logical files only . . . . . . . . . . . . . 53
JFILE (Joined Files) keyword—join logical files only . . . . . . . . . . . . . . . . . . . . 55
JFLD (Joined Fields) keyword—join logical files only . . . . . . . . . . . . . . . . . . . 56
JOIN (Join) keyword—join logical files only . . . . . . . . . . . . . . . . . . . . . . . 57
JREF (Join Reference) keyword—join logical files only . . . . . . . . . . . . . . . . . . . 59
LIFO (Last-In First-Out) keyword for physical and logical files . . . . . . . . . . . . . . . . 60
NOALTSEQ (No Alternative Collating Sequence) keyword for physical and logical files . . . . . . . 61
PFILE (Physical File) keyword—logical files only . . . . . . . . . . . . . . . . . . . . . 61
RANGE (Range) keyword for physical and logical files . . . . . . . . . . . . . . . . . . . 63

Specifying RANGE at the field level . . . . . . . . . . . . . . . . . . . . . . . . . 63
Specifying RANGE at the select or omit-field level . . . . . . . . . . . . . . . . . . . 64

REF (Reference) keyword—physical files only . . . . . . . . . . . . . . . . . . . . . . 64
REFACCPTH (Reference Access Path Definition) keyword—logical files only . . . . . . . . . . 65
REFFLD (Referenced Field) keyword—physical files only . . . . . . . . . . . . . . . . . . 66
REFSHIFT (Reference Shift) keyword for physical and logical files . . . . . . . . . . . . . . 67
RENAME (Rename) keyword—logical files only . . . . . . . . . . . . . . . . . . . . . 68
SIGNED (Signed) keyword for physical and logical files . . . . . . . . . . . . . . . . . . 69
SST (Substring) keyword—logical files only . . . . . . . . . . . . . . . . . . . . . . . 70
TEXT (Text) keyword for physical and logical files . . . . . . . . . . . . . . . . . . . . 71
TIMFMT (Time Format) keyword for physical and logical files . . . . . . . . . . . . . . . . 72
TIMSEP (Time Separator) keyword for physical and logical files . . . . . . . . . . . . . . . 73
TRNTBL (Translation Table) keyword—logical files only . . . . . . . . . . . . . . . . . . 73
UNIQUE (Unique) keyword for physical and logical files . . . . . . . . . . . . . . . . . . 74
UNSIGNED (Unsigned) keyword for physical and logical files . . . . . . . . . . . . . . . . 75
VALUES (Values) keyword for physical and logical files . . . . . . . . . . . . . . . . . . 76

Specifying VALUES at the field level . . . . . . . . . . . . . . . . . . . . . . . . 77
Specifying VALUES at the select or omit-field level . . . . . . . . . . . . . . . . . . . 77

VARLEN (Variable-Length Field) keyword for physical and logical files . . . . . . . . . . . . . 78
ZONE (Zone) keyword for physical and logical files . . . . . . . . . . . . . . . . . . . . 79

Appendix A. UCS-2 level 1 considerations for database files . . . . . . . . . . . . . . . 81
Length (positions 30 through 34) . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Data type (position 35) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Decimal positions (positions 36 and 37) . . . . . . . . . . . . . . . . . . . . . . . . 81
Keyword considerations (positions 45 through 80) . . . . . . . . . . . . . . . . . . . . 82

Appendix B. DBCS considerations for database files . . . . . . . . . . . . . . . . . . 83
Positional entry considerations for database files that use DBCS . . . . . . . . . . . . . . . 83

Length (positions 30 through 34) . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Data type (position 35) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Decimal (positions 36 and 37) . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Keyword considerations for database files that use DBCS . . . . . . . . . . . . . . . . . 84
CONCAT (Concatenate) keyword. . . . . . . . . . . . . . . . . . . . . . . . . . 84

Additional considerations for describing database files that contain DBCS data . . . . . . . . . . 85

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

iv OS/400 DDS Reference: Physical and Logical Files V5R1



About DDS Reference: Physical and Logical Files

This book provides the reference information you need to know for coding the data description
specifications (DDS) for physical and logical files that can be described externally.

Who should read the DDS Reference: Physical and Logical Files book
This manual is intended for programmers who use the iSeries servers.

Conventions and terminology used in the DDS information
v A keyword is a name that identifies a function.

v A parameter is an argument shown between the parentheses on a keyword that identifies a value or set
of values you can use to tailor the function the keyword specifies.

v A value is an actual value that you can use for a parameter.

v In the keyword descriptioins, this field or this record format means the field or record format you are
defining.

v The expression use this file- or record-level keyword means the keyword is valid only at the file or
record level.

v To specify a keyword means to code the keyword in the DDS for a file. This contrasts with to select a
keyword or when a keyword is in effect, which both mean that any conditioning (such as one or more
option indicators) is satisfied when an application program issues an input or output operation.

v Current source or source you are defining means the DDS that together make up the description of one
file.

v In sample displays, character fields are shown as Xs and numeric fields are shown as Ns.

v The 5250 Work Station Feature is a feature of the OS/2 communications manager that allows the
personal computer to perform like a 5250 display station and use functions of the iSeries servers.

v Logical file includes join logical files, simple logical files, and multiple-format logical files.

v Page means to move information up or down on the display. Roll means the same as page. Paging
keys are the same as roll keys. The PAGEDOWN keyword is the same as the ROLLUP keyword. The
PAGEUP keyword is the same as the ROLLDOWN keyword.

What’s New for V5R1 in the DDS information
DDS Reference book divided into separate volumes

To make it easier to download and use this information in the iSeries Information Center, the DDS
Reference has been broken into the following parts:

v DDS Reference: Concepts

v DDS Reference: Physical and Logical Files

v DDS Reference: Display Files

v DDS Reference: Printer Files

v DDS Reference: ICF Files

Technical updates to DDS Reference: Physical and Logical Files information:

The CCSID keyword was updated to describe a new conversion parameter.

The UCS2 information received numerous technical updates.

© Copyright IBM Corp. 2001 v

../dds/rbafpmst02.htm
../rzakc/rzakcmst02.htm
../rzakd/rzakdmst02.htm
../rzake/rzakemst02.htm


vi OS/400 DDS Reference: Physical and Logical Files V5R1



Chapter 1. Defining physical and logical files using DDS

This topic provides the following information regarding physical and logical files:

v Defining a physical file using DDS

v Defining a logical file using DDS

v Positional entries for physical and logical files

v Keyword entries for physical and logical files

Defining a physical file using DDS
A physical file can contain only one record format. Specify the record format in either of two ways:

v Define a new record format. Specify field and key field specifications as desired for the new record
format.

v Share an existing record format. Use the FORMAT keyword to specify that the OS/400 program is to
use a previously defined record format from another physical file. When the FORMAT keyword is used,
key field level specifications must be specified again (if a keyed access path is desired) even if they
were specified on the existing record format.

Specify the entries in the following order to define a physical file:

1. File-level entries (optional)

2. Record-level entries

3. Field-level entries

4. Key field-level entries (optional)

Note: The file name is specified through the Create Physical File (CRTPF) command, not through DDS.

You can find an explanation of file-, record-, field-, and key field-level specifications in the Describing data
attributes using DDS topic.

Refer to the DDS Reference: Concepts information for rules when specifying record or field names in
DDS.

The maximum number of fields in a record format is 8000. If any of the fields in the record format are
date, time, timestamp, variable length, or allows the null value, then the actual maximum number of fields
can be less than 8000. The maximum number of fields can vary depending on the number of fields and
combinations of fields that occur within the record format. The maximum number of bytes in a record
format is 32 766 if variable length fields are not included and 32 740 if variable length fields are included.
Table 1 on page 22 describes rules for determining the total length of the record format.

Defining a logical file using DDS
A logical file determines how data records are selected and defined when read by an application program.
A logical file can be a simple, multiple format, or join logical file. A simple logical file contains one record
format and has one file specified on the PFILE keyword. A multiple format logical file either contains more
than one record format or has more than one file specified on the PFILE keyword. A join logical file
contains one record format and has up to 32 files specified on the JFILE keyword. See “Specifying record
formats in a logical file in DDS” on page 3 for more information on specifying record formats for logical
files.

© Copyright IBM Corp. 2001 1

../dds/rbafpmstddsover.htm
../dds/rbafpmstddsover.htm
../dds/rbafpmstsyntax.htm


Simple and multiple format logical files in DDS
You must specify the PFILE keyword at the record level for simple and multiple format logical files. In a
multiple format logical file, a record format can use only the fields common to all the physical files
specified on the PFILE keyword for that record format.

Specify the entries in the following order to define a simple or multiple format logical file:

1. File-level entries (optional)

2. Record-level entries

3. Field-level entries (optional)

4. Key field-level entries (optional)

5. Select and omit-field level entries (optional)

Repeat steps 2 through 5 for each record format in the file.

Figure 1 shows a multiple format logical file coding example.

Join logical files in DDS
Join logical files combine different fields from more than one physical file into a single record. You must
specify the JFILE keyword at the record level for join logical files.

Specify the entries in the following order to define a join logical file:

1. File-level entries (optional)

2. Record-level entries

3. Join-level entries

4. Field-level entries

5. Key field-level entries (optional)

6. Select/omit-field level entries (optional)

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A* LOGICAL FILE EXAMPLE
00020A* INVENTORY FORMAT
00030A R INVFMT PFILE(INVENTORY)
00040A K ITEM
00050A*
00060A* ORDER FORMAT
00070A R ORDFMT PFILE(ORDER)
00080A TEXT(’ORDER ANALYSIS’)
00090A ITEM
00100A ORDER 10
00110A SUPPLY +2
00120A SHPDAT CONCAT(SHPMO SHPDA SHPYR)
00130A QTY 5P RENAME(QTYDUE)
00140A K ITEM
00150A K SHPYR
00160A K SHPMO
00170A K SHPDA
00180A O QTYDUE CMP(LT 1)
00190A*
00200A* ACCOUNTING FORMAT
00210A R ACTFMT PFILE(ACCOUNTS)
00220A FORMAT(ACCOUNTL)
00230A K ITEM

A

Figure 1. Multiple Format Logical File Coding Example

2 OS/400 DDS Reference: Physical and Logical Files V5R1



Because only one record format is allowed in a join logical file, specify these entries only once.

Figure 2 shows a join logical file coding example.

You can find an explanation of file-, record-, join-, field-, key field-, and select/omit field-levels in the DDS
Concepts information Describing data attributes using DDS topic.

Refer to the DDS Reference: Concepts information for rules to use when specifying keywords in DDS.

Specifying record formats in a logical file in DDS
If there is more than one record format specified in a logical file, you must specify the PFILE keyword for
each record format.

There are three ways to specify the fields in a record format:

v Specify the record format name and the PFILE keyword.

v Specify the record format name, the PFILE or JFILE keyword, and at least one individual field.

v Specify the record format name, the PFILE keyword, and the FORMAT keyword.

Figure 1 on page 2 illustrates the three ways to specify fields.

For each of the three ways to specify fields in a record format, you can have one of the following access
path specifications:

v Specify no key fields (arrival sequence access path). You cannot specify select/omit fields unless you
specify the DYNSLT keyword. You can specify only one record format with one physical file on the
PFILE keyword for the logical file.

v Specify one or more key fields (keyed sequence access path). If you specify more than one record
format in the logical file, each record format must have at least one key field specified. You can specify
select/omit fields for any of the record formats in the file.

v Specify the REFACCPTH keyword (keyed sequence access path). The access path information from
another physical or logical file is copied into the file you are defining.

The maximum number of fields in a record format is 8000. If any of the fields in the record format are
date, time, timestamp, variable length, or allows the null value, then the actual maximum number of fields
can be less than 8000. The maximum number of fields can vary depending on the number of fields and
combinations of fields that occur within the record format. The maximum number of bytes in a record
format is 32 766 if variable length fields are not included and 32 740 if variable length fields are included.
See Table 1 on page 22 for rules on determining the total length of the record format.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A* Joins fields from two physical files into one record format
00020A R RECORD1 JFILE(PF1 PF2)
00030A J JOIN(PF1 PF2)
00040A JFLD(NAME NAME)
00050A NAME JREF(1)
00060A ADDR
00070A PHONE

A

Figure 2. Join Logical File Coding Example

Chapter 1. Defining physical and logical files using DDS 3

../dds/rbafpmstddsover.htm
../dds/rbafpmstsyntax.htm


Positional entries for physical and logical files (positions 1 through 44)
This section describes how to specify the first 44 positions of the data description specifications form for
physical and logical files. To code the remainder of the form, see Chapter 2, “Keyword entries for physical
and logical files (positions 45 through 80)” on page 29.

The following positional entries are described below:

v Sequence number

v Form type

v Comment

v Conditioning

v Type of name or specification

v Reserved

v Name

v Reference

v Length

v Data type

v Decimal positions

v Usage

v Location

Figure 3 shows some positional entries for physical files.

Figure 1 on page 2 and Figure 2 on page 3 show positional entries for multiple format and join logical files.

Sequence number for physical and logical files (positions 1 through 5)
Use these positions to specify a sequence number for each line on the form. The sequence number is
optional and is used for documentation purposes only.

Form type for physical and logical files (position 6)
Type an A in this position to designate this as a DDS form. The form type is optional and is for
documentation purposes only.

Comment for physical and logical files (position 7)
Type an asterisk (*) in this position to identify this line as a comment. Use positions 8 through 80 for
comment text. A blank line (no characters specified in positions 7 through 80) is treated as a comment.
Comments can appear anywhere in DDS and are kept only in the source file. Comments are printed on
the source computer printout but not on the expanded source computer printout.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A* PHYSICAL FILE CODING EXAMPLE
00020A REF(INVENCTL/INVENTORY)
00030A UNIQUE
00040A R ORDFMT TEXT(’Format for Purchase Orders’)
00050A ORDNBR 7 0 COLHDG(’Order’ ’Number’)
00060A ITMNBR R 10
00070A SUPNBR R +2 REFFLD(SUPID SUPLIB/SUPMST)
00080A QTYORD 5B
00090A K ORDNBR
00100A K ITMNBR ABSVAL

A

Figure 3. Physical File Coding Example

4 OS/400 DDS Reference: Physical and Logical Files V5R1



Conditioning for physical and logical files (positions 8 through 16)
These positions do not apply to physical or logical files. Leave these positions blank unless you use them
for comment text.

Type of name or specification for physical and logical files (position
17)
Type a value in this position to identify the type of name or, for logical files, the type of specification. If you
specify a name type, the name is specified in positions 19 through 28.

The valid entries for physical files are:

Entry Meaning

R Record format name

Blank Field name

K Key field name

Note: Specify only one R because a physical file can contain only one record format.

The valid entries for logical files are:

Entry Meaning

R Record format name

J Join specification

Blank Field name or select/omit AND condition

K Key field name

S Select field name

O Omit field name

For more information on types of names, see “Name for physical and logical files (positions 19 through
28)”. For more information on join specifications, see “JOIN (Join) keyword—join logical files only” on
page 57.

Reserved for physical and logical files (position 18)
This position does not apply to any file type. Leave this position blank unless you use it for comment text.

Name for physical and logical files (positions 19 through 28)
Use these positions to specify names of the following:

v The record format for this physical file or formats for this logical file

v The field name or field names that make up the record format (unless you specify the FORMAT or
PFILE keyword at the record level)

v The field or fields used as key fields

v For logical files, the field or fields to be used for select/omit specifications

Note: The file name is specified through the Create Physical File (CRTPF) command, not in the DDS.

Refer to the DDS Concepts information for rules to use when specifying record or field names in DDS.

Names must begin in position 19.

Chapter 1. Defining physical and logical files using DDS 5

../dds/rbafpmstsyntax.htm


You must specify the name type in position 17, unless you are specifying a field name or select/omit AND
condition.

Figure 3 on page 4 shows how to code names for a physical file. Figure 1 on page 2 and Figure 2 on
page 3 show how to code names for logical files.

Record format
When you specify R in position 17, the name specified in positions 19 through 28 is a record format name.

Record format for physical files:

Only one record format name is allowed for a physical file. Specify the record format name in one of two
ways:

v As the name of a new record format with field names specified in this physical file. The name of the
record format can be the same as the file name specified in the Create Physical File (CRTPF)
command. However, a warning message appears if the names are not unique, because some high-level
language processors do not allow record format and file names to be the same. RPG is such a
high-level language. The record format name and field names do not have to be unique to the system;
the same names can exist in another file.

v As the name of a record format previously defined in another physical file. The FORMAT keyword must
be specified. Field names and attributes are not specified. See “FORMAT (Format) keyword for physical
and logical files” on page 51 for an explanation of the FORMAT keyword.

Record format for simple and multiple format logical files:

You can specify more than one record format name. However, each name must be unique within the file.
See the appropriate high-level language manual for exceptions.

Specify the record format name in one of three ways:

v As the record format name in the first physical file specified on the PFILE keyword. This is required if
you do not specify the FORMAT keyword and do not identify individual fields by naming them in this
record format.

v As the name of a new record format with field names specified in this logical file. Every field must be
identified by name. No unnamed physical file fields are part of this logical file record format. Physical file
fields that are parameters of RENAME and CONCAT keywords are part of the logical file record format.
Physical file fields that are parameters of SST keywords are not part of the logical file record format
unless specified elsewhere.

v As the name of a record format previously described in a physical or logical file. Field names and
attributes are not specified and the FORMAT keyword must be specified. For a description of how to
specify the FORMAT keyword, see “FORMAT (Format) keyword for physical and logical files” on
page 51.

The record format name can be the same as the file name specified in the create file command. However,
a warning message is sent if the names are not unique. Some high-level language processors, such as
RPG, do not allow record format and file names to be the same.

Use the PFILE keyword in conjunction with the record format name to specify the physical files with which
the record format is to be associated. A record format can have more than one physical file specified on
the PFILE keyword. If no fields are defined and the FORMAT keyword is not specified, the format of the
first file specified in the PFILE keyword is used as the format for all the physical files. (This format is used
for field attribute references and attribute and name checking.)

Join logical files:

6 OS/400 DDS Reference: Physical and Logical Files V5R1



Only one record format name can be specified. Specify the record format name as the name of a new
record format with field names specified in this logical file. Every field in the record format for a join logical
file must be identified by the name in positions 19 through 28. Physical file fields that are parameters of
the RENAME, CONCAT, and SST keywords are part of the logical file record format only if you specify the
field names elsewhere in the record format.

The JFILE keyword is required at the record level. It specifies the physical files that the record format
joins.

Field name
When position 17 is left blank, the name specified in positions 19 through 28 is a field name. You cannot
specify field names if you specify the FORMAT keyword.

Physical files require that each field be named. These names must be unique within the record format.
The field names appear in the physical buffer in the same order that they are specified in the DDS.

If you are describing a simple or multiple format logical file, you can use the record format as it exists in
the physical file on which this logical file is based, and you do not have to specify field names.

If you do not use the record format as it exists in the physical file, you must name each field specified in a
logical file. In a simple or multiple format logical file, each field name must be unique within the record
format and must correspond to a field in the physical file record format. The field name order is the order
in which the fields appear to programs using the logical file.

The name you give to a field in a logical file record format is usually the same as the corresponding field
name in the physical file record format. If different, the two names must be equated by using the RENAME
keyword. A field in a logical file record format can also represent the concatenation of two or more fields
from the physical file (see “CONCAT (Concatenate) keyword—logical files only” on page 39). The SST
keyword can also be used to describe a substring of a field from the physical file in the logical file format.

Note: The sequence in which the field names are specified in the logical file is important. If the same
physical field is specified more than once in a record format in the logical file (by using either
RENAME or CONCAT), the sequence in which the fields are specified in the logical file is the
sequence that the data is moved to the physical file. Thus, the value of the field the last time the
field is specified in the logical file is the value in the physical record.

Key field name
When you specify K in position 17, the name specified in positions 19 through 28 is a key field name. It
must be one of the field names within the physical file record format. The contents of this field are used to
sequence the records for retrieval from the database. Specifying a key is optional. If no key field is
specified, the default sequence is arrival sequence (the order that the records were put into the file).

Use key fields (and optionally, select/omit fields) to define a keyed sequence access path for record
formats in the logical file member. The logical file member includes the physical file members specified on
the DTAMBRS parameter on the Create Logical File (CRTLF) or Add Logical File Member (ADDLFM)
commands.

You can change the sequence of records as they are read from the file by specifying a sequencing
keyword. The sequencing keywords are ALTSEQ, NOALTSEQ, SIGNED, UNSIGNED, ABSVAL, ZONE,
DIGIT, DESCEND, FCFO, FIFO, and LIFO. Refer to the discussion of each of these keywords for more
information.

When you do not specify any sequencing keywords for a key field, the default sequence for that key field
is ascending order. The default for character, hexadecimal, date, time, and timestamp fields is the
UNSIGNED attribute. The default for numeric fields is the SIGNED attribute, except for zoned decimal
fields (S specified in position 35) in the following cases:

Chapter 1. Defining physical and logical files using DDS 7



v When you specify ALTSEQ at the file level, all zoned decimal key fields in the file default to
UNSIGNED.

v When you specify DIGIT or ZONE for a zoned decimal key field, the field defaults to UNSIGNED.

If you specify more than one record format for a logical file or more than one physical file for the PFILE
keyword, you must specify at least one key field for all record formats of that logical file.

A key can have more than one key field. This is called a composite key. In a composite key, specify the
key field names in the order of importance (major to minor), and specify each key field name on a
separate line.

Figure 4 shows a multiple format logical file with two record formats, one of which uses a composite key.
In this example, RECORD1 has a single key field, FIELD1. RECORD2 has a composite key that includes
FIELD4 and FIELD5.

If you do not specify a key field for a logical file, the file you are defining has an arrival sequence access
path.

The number of fields that make up a key is restricted to 120. The total key length cannot exceed 2000
bytes. (If the FCFO keyword is specified, the total key length cannot exceed 1995 bytes.) The total key
length includes the length of each key field. If any of the key fields allow the null value, add 1 byte for
each key field that allows the null value. The OS/400 program uses the extra byte to determine whether
the key contains the null value. If any of the key fields is variable length, add 2 bytes for each
variable-length key field. The OS/400 program uses the extra 2 bytes to store the allocated length of the
field.

When you specify more than one record format in a logical file, an additional byte for the first *NONE key
field position is required. An additional byte also may be required for each additional key field position. The
OS/400 program uses the extra bytes when records from different physical files have duplicate key values.

For example, suppose a key consists of fields named FIELDA, FIELDB, and FIELDC (in that order). The
DDS appears as shown in Figure 5 on page 9.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RECORD1 PFILE(PF1)
00020A FIELD1
00030A FIELD2
00040A FIELD3
00050A K FIELD1
00060A*
00070A R RECORD2 PFILE(PF2)
00080A FIELD4
00090A FIELD5
00100A K FIELD4
00110A K FIELD5

A

Figure 4. Specifying a Multiple Format Logical File with Two Record Formats

8 OS/400 DDS Reference: Physical and Logical Files V5R1



The records are sequenced in the following order:

v They are sequenced according to the contents of FIELDA.

v If two or more records with the same value in FIELDA exist, the OS/400 program sequences those
records according to the values in FIELDB.

v If two or more of those records have the same value in both FIELDA and FIELDB, they are sequenced
according to the values in FIELDC.

Consider the following file:

Record FIELDA FIELDB FIELDC
1 333 99 67
2 444 10 45
3 222 34 23
4 222 12 01
5 222 23 45
6 111 06 89
7 222 23 67

Assuming ascending sequencing for all fields, the records are retrieved in this order:

Record FIELDA FIELDB FIELDC
6 111 06 89
4 222 12 01
5 222 23 45
7 222 23 67
3 222 34 23
1 333 99 67
2 444 10 45

The following information applies:

v Because records 3, 4, 5, and 7 have the same contents in FIELDA, FIELDB becomes the determining
field.

v Within those four records, 5 and 7 have the same values in FIELDB. For these two records, FIELDC
becomes the determining field.

v If FIELDC also contains duplicate values, the records are retrieved in first-in first-out (FIFO), last-in
first-out (LIFO), or first-changed first-out (FCFO) order. To guarantee the order, specify the FIFO
keyword, the LIFO keyword, or the FCFO keyword. Specify the UNIQUE keyword to prevent duplicate
key values.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A* SAMPLE COMPOSITE KEY (PHYSICAL FILE)
00020A R RECORD
00030A FIELDA 3 0
00040A FIELDB 3 0
00050A FIELDC 3 0
00060A FIELDD 3 0
00070A K FIELDA
00080A K FIELDB
00090A K FIELDC

A

Note: Lines 00070 to 00090 make up the composite key.

Figure 5. Composite Key

Chapter 1. Defining physical and logical files using DDS 9



See “SIGNED (Signed) keyword for physical and logical files” on page 69 for an example that includes a
key field with negative (−) contents.

Special restrictions apply to key field specifications when either FILETYPE(*SRC) is used on the Create
Physical File (CRTPF) command or for the Create Source Physical File (CRTSRCPF) command. .

For logical files, the following rules apply to fields that you specify as key fields:

v For simple and multiple format logical files, the following search order is used to match key field names
with defined fields:

1. Fields specified in DDS positions 19 through 28

2. Fields specified as parameters on the CONCAT or RENAME keywords

If the field name is specified more than once, the first occurrence is used.

The field name on a CONCAT or RENAME keyword and the associated field name in positions 19
through 28 cannot both be specified as key fields.

The parameter name on the SST keyword is not valid as a key field unless it is defined elsewhere in
the logical file format.

v For join logical files, the key field name you specify must be specified at the field level in positions 19
through 28 and must be a field described in the primary file (the first physical file specified on the JFILE
keyword).

Note: If you specify a field as a parameter value on the CONCAT, RENAME, or SST keyword, but do
not specify the field in positions 19 through 28 of the join logical file, you cannot specify the field
as a key field.

If you are concatenating numeric with either character or hexadecimal, you cannot specify the numeric
fields as key fields. If you are concatenating zoned decimal and fields of any other numeric data type, you
cannot specify the fields of the other data types as key fields.

Figure 6 illustrates which concatenated fields can and cannot be used as key fields.

In physical file PF1, ZFLD is zoned decimal and PFLD is packed decimal. Therefore Z is zoned decimal,
and PFLD cannot be used as a key field. ZFLD and Z can be used as key fields but not in the same
record format.

In physical file PF1, AFLD is a character field and NFLD is a numeric field. Therefore A is character, and
NFLD cannot be used as a key field. AFLD and A can be used as key fields but not in the same record
format.

DDS Access Path Keywords: You can specify one or more access path keywords to affect the way the
OS/400 program builds and uses key values. The access path keywords are:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RECORD1 PFILE(PF1)
00020A FLD1
00030A FLD2
00040A Z CONCAT(ZFLD PFLD)
00050A A CONCAT(AFLD NFLD)
00060A K ZFLD
00070A K AFLD

A

Figure 6. Correct and Incorrect Concatenated Fields

10 OS/400 DDS Reference: Physical and Logical Files V5R1



File Level Key Field Level
ALTSEQ
FCFO
FIFO
LIFO
REFACCPTH
UNIQUE

DESCEND
DIGIT
SIGNED
UNSIGNED
ZONE

Different key fields within a composite key can have different access path keywords.

DDS Logical Files with More than One Record Format: When you specify more than one record
format in a logical file, you must specify at least one key field for every record format in the logical file. It is
not necessary to specify the same number of key fields in each key. Also, key fields specified in one
record format must have the same field attributes and access path keywords as the corresponding key
fields in other record formats in the same logical file. For variable-length key fields, a variable-length key
field will not be allowed to align with a fixed-length key field, even if the field types and lengths are the
same.

A key is required for every record format so that the logical file members can have a single access path
sequencing records of each record format. When records are returned from the various members of the
physical file on which the logical file is based, they are merged according to the values of the key fields in
the access path for the logical file member.

When records of a logical file member are sequenced, the OS/400 program builds a key value for each
record by concatenating the values in its key fields. The key value is then used to build the access path
for use by your program.

Each key field in a composite key has a key position. The first key field specified is in position 1, the
second key field specified is in position 2, and so on. During I/O operations to a logical file, the OS/400
program compares the key values of the records written to or read from the database. When you create a
logical file that has more than one record format (with or without different key fields specified), the OS/400
program performs key position attribute checking. For key position attribute checking to succeed, key fields
of different record formats that are in the same key positions must have the same data type, length,
decimal positions, and access path keywords specified at the key field level. This ensures a meaningful
record sequence from the comparisons made during an I/O operation.

Floating-point fields used as key fields must have the same data type and precision but need not have the
same length and decimal positions.

In Figure 7, FIELD1, FLD1, and F1 must have the same attributes, and FIELD2, FLD2, and F2 must have
the same attributes. FIELD1, FLD1, and F1 are in key position 1; FIELD2, FLD2, and F2 are in key
position 2. One record format can have more key fields than another, and the additional fields do not need
key position attribute checking. FLD3 is such a field.

Chapter 1. Defining physical and logical files using DDS 11



For examples of key fields in a logical file with more than one record format, refer to Figure 1 on page 2. In
Figure 1 on page 2, fields named ITEM are specified in each key. For record formats INVFMT and
ACTFMT, ITEM is the only key field specified. For record format ORDFMT, a composite key is specified.
This composite key includes ITEM, SHPYR, SHPMO, and SHPDA. Each of the fields used in a key must
also exist at the field level. Therefore, ITEM must exist in the record format for the physical file
INVENTORY so that it can be copied into this logical file for INVFMT. Also, ITEM must exist in the record
format for the logical file ACCOUNTL so that it can be copied into this logical file for ACTFMT. ITEM must
also exist in physical file ACCOUNTS.

Using *NONE in the Key Field When Creating a DDS File: Two conditions occur in which key fields
having the same key position should not be compared. The two conditions are:

v The key fields do not have the same field attributes (data type, length, decimal positions, or access path
keywords at the field level).

v The key fields have the same attributes, but you do not want them to be merged and sequenced
together.

To avoid unwanted comparisons between key fields, specify *NONE in place of one of them and move the
displaced key field to the next key position. The OS/400 program compares the values of key positions
before and after *NONE, but retrieves the affected records in the order in which the record formats are
specified in the DDS for the logical file.

You can specify *NONE two or more times on the following lines to displace a key field to a key position
for which a comparison of key field attributes is relevant to your application.

Figure 8 on page 13 shows *NONE as the key field.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RECORD1 PFILE(PF1)
00020A FIELD1 5 0
00030A FIELD2 10
00040A FIELD3 10
00050A K FIELD1
00060A K FIELD2 DESCEND
00070A*
00080A R RECORD2 PFILE(PF2)
00090A FLD1 5 0
00100A FLD2 10
00110A FLD3 20
00120A K FLD1
00130A K FLD2 DESCEND
00140A K FLD3

A*
A R RECORD3 PFILE(PF3)
A F1 5 0
A F2 10
A F3 30
A K F1
A K F2 DESCEND
A
A

Figure 7. Key Field Attribute Checking

12 OS/400 DDS Reference: Physical and Logical Files V5R1



In Figure 8, the attributes for FIELD2, FLD2, and F2, must be identical. Since you specified *NONE for the
first key field of the second record, then FIELD1 and F1 (first key field of the first record and first key field
of the third record) must have identical attributes. FIELD3 and F3 must also have identical attributes; there
is no corresponding field in the second record format.

Figure 9 through Figure 12 on page 16 field.

Record Format Key Positions
�1� �2�

CLSHST EMPNBR CLSDTE
JOBHST EMPNBR JOBDTE

DDS Example 1: In Figure 9, a logical file views records of two physical files through two different record
formats: CLSHST (class history) and JOBHST (job history). In the logical file, the records from the two
physical files can be merged together and sequenced by employee identification number (EMPNBR) by
specifying EMPNBR in key position 1.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
A R RECORD1 PFILE(PF1)
A FIELD1 6A
A FIELD2 4A
A FIELD3 10A
A K FIELD1
A K FIELD2
A K FIELD3
A
A R RECORD2 PFILE(PF2)
A FLD1 3A
A FLD2 4A
A FLD3 12A
A K *NONE
A K FLD2
A
A R RECORD3 PFILE(PF3)
A F1 6A
A F2 4A
A F3 10A
A K F1
A K F2
A K F3
A

Figure 8. Specifying *NONE as the Key Field

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R CLSHST PFILE(CLSHSTP)
00020A K EMPNBR �1�
00030A K CLSDTE �2�
00040A*
00050A R JOBHST PFILE(JOBHSTP)
00060A K EMPNBR �1�
00070A K JOBDTE �2�

A

Figure 9. Specifying the Key Field (Example 1)

Chapter 1. Defining physical and logical files using DDS 13



All records that have the same key value for EMPNBR pertain to the same employee. To merge and
sequence all records for a given employee into a single history of classes and job assignments, specify
CLSDTE (date of class) and JOBDTE (date of job assignment) in key position 2 for the two record
formats, as shown in Figure 9 on page 13.

Suppose that the job assignment dates and class dates are the dates (month/year) that the class or
assignment started. Records for three students are retrieved in the following order:

EMPNBR CLSDTE JOBDTE Description
1005 3/79 Completed class
1005 4/79 Left to begin new job
1005 4/79 Completed job
1005 6/79 Completed class
1006 1/79 Completed job
1006 2/79 Completed job
1006 3/79 Completed class
1006 5/79 Transferred to new location
1007 1/79 Completed job
1007 4/79 Completed job
1007 7/79 Completed job
1007 8/79 Left because of illness

The above report provides a continuous history for each student.

DDS Example 2: In Figure 10, another logical file views the same two physical files as in Example 1, but
the second record format in the logical file has *NONE specified in key position 2.

Record Format Key Positions
�1� �2� �3�

CLSHST EMPNBR CLSDTE *NONE
JOBHST EMPNBR *NONE JOBDTE

As in Figure 9, all records from the two physical files are first merged and sequenced together on
employee number (EMPNBR). However, the records for each student are merged and sequenced first on
class date (CLSDTE) and then on job assignment date (JOBDTE). The set of records used for Figure 9
are now retrieved as follows:

EMPNBR CLSDTE JOBDTE Description
1005 3/79 Completed class
1005 4/79 Left to begin new job
1005 6/79 Completed class
1005 4/79 Completed job

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R CLSHST PFILE(CLSHSTP)
00020A K EMPNBR �1�
00030A K CLSDTE �2�
00040A*
00050A*
00060A R JOBHST PFILE(JOBHSTP)
00070A K EMPNBR �1�
00080A K *NONE �2�
00090A K JOBDTE �3�

A

Figure 10. Specifying the Key Field (Example 2)

14 OS/400 DDS Reference: Physical and Logical Files V5R1



EMPNBR CLSDTE JOBDTE Description
1006 3/79 Completed class
1006 5/79 Transferred to new location
1006 1/79 Completed job
1006 2/79 Completed job
1007 8/79 Left because of illness
1007 1/79 Completed job
1007 4/79 Completed job
1007 7/79 Completed job

When several adjacent record formats have *NONE in the same key position, they form a set, relative to
record formats specified before and after them, that functions in sequencing as an individual record format.
Key fields specified after *NONE serve to merge and sequence records of the formats within the set. The
following example shows how several record formats function as a set.

DDS Example 3: In Figure 11, consider a logical employee file over five physical files.

Record Format Key Positions
�1� �2� �3�

EMPMST EMPNBR *NONE *NONE
CLSREG EMPNBR CLSDTE *NONE
CLSHST EMPNBR CLSDTE *NONE
JOBHST EMPNBR *NONE JOBDTE
ACTHST EMPNBR *NONE ACTDTE

The records are merged and sequenced as follows:

1. All records are merged and sequenced by employee number.

2. For a given employee, records are sequenced by:

a. The master record (of the EMPMST format)

b. Records of the CLSREG and CLSHST formats, merged and sequenced together on values of
CLSDTE (key position 2)

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R EMPMST PFILE(EMPMSTP)
00020A K EMPNBR �1�
00030A*
00040A R CLSREG PFILE(CLSREGP)
00050A K EMPNBR �1�
00060A K CLSDTE �2�
00070A*
00080A R CLSHST PFILE(CLSHSTP)
00090A K EMPNBR �1�
00100A K CLSDTE �2�
00110A*
00120A R JOBHST PFILE(JOBHSTP)
00130A K EMPNBR �1�
00140A K *NONE �2�
00150A K JOBDTE �3�
00160A*
00170A R ACTHST PFILE(ACTHSTP)
00180A K EMPNBR �1�
00190A K *NONE �2�
00200A K ACTDTE �3�

A

Figure 11. Specifying the Key Field (Example 3)

Chapter 1. Defining physical and logical files using DDS 15



c. Records of the JOBHST and ACTHST formats, merged together and sequenced together on values
of JOBDTE and ACTDTE (key position 3)

Specifying *NONE in the key definitions achieves this sequencing as follows:

v *NONE and a field name, CLSDTE, appear in the second key position of the adjacent formats, CLSHST
and JOBHST. This effectively causes a split between the two formats after the preceding key position
(position 1). Records of formats above the split are merged and sequenced with records of formats
below the split only on values of EMPNBR.

v An implicit *NONE in the second key position of the format EMPMST forces a similar split.

v With *NONE in key position 2, the JOBHST and ACTHST formats form a set in which the values of
JOBDTE and ACTDTE are compared in order to merge and sequence records of these two formats
only.

The record sequence defined by the previous key specifications is totally dependent on the order in which
the formats are specified. For example, if JOBHST had been specified before CLSHST, key position 2
would read:
*NONE, CLSDTE, *NONE, CLSDTE, *NONE

Here, the values of CLSDTE within CLSREG would not have been sequenced with the values of CLSDTE
within CLSHST, and JOBDTE would not have been sequenced with ACTDTE.

DDS Example 4: In Figure 12, assume that an employee has repeated a class. To sequence two records
with the same values for EMPNBR and CLSDTE, a third key field, DATE, is specified in record format
CLSHST. However, DATE cannot be specified in the next available key position (position 3) because
JOBDTE and ACTDTE appear in that position for other formats. If DATE is specified in this position, the
attributes of DATE are compared with the attributes of CLSHST and JOBHST, and the key definitions are
rejected.

To obtain the sequencing necessary, specify *NONE before DATE, displacing DATE to key position 4.

The DATE field can be shown in position 4 as in Figure 12.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R EMPMST PFILE(EMPMSTP)
00020A K EMPNBR
00030A*
00040A R CLSREG PFILE(CLSREGP)
00050A K EMPNBR
00060A K CLSDTE
00070A*
00080A R CLSHST PFILE(CLSHSTP)
00090A K EMPNBR
00100A K CLSDTE
00110A K *NONE �1�
00120A K DATE �1�
00130A*
00140A R JOBHST PFILE(JOBHSTP)
00150A K EMPNBR
00160A K *NONE
00170A K JOBDTE
00180A*
00190A R ACTHST PFILE(ACTHSTP)
00200A K EMPNBR
00210A K *NONE
00220A K ACTDTE

A

Figure 12. Specifying the Key Field (Example 4)

16 OS/400 DDS Reference: Physical and Logical Files V5R1



Record Format Key Positions
�1� �2� �3� �4�

EMPMST EMPNBR *NONE *NONE *NONE
CLSREG EMPNBR CLSDTE *NONE *NONE
CLSHST EMPNBR CLSDTE *NONE DATE
JOBHST EMPNBR *NONE JOBDTE *NONE
ACTHST EMPNBR *NONE ACTDTE *NONE

Specifying DATE in key position 4 enables records from physical file CLSHSTP with identical values for
EMPNBR and CLSDTE to be merged and sequenced according to the value for DATE.

Note: Since values are actually placed in the keys to ensure the sequencing in the previous examples,
duplicate key values are not always predictable when *NONE is needed for logical files with more
than one record format.

Select or omit field name
Use select or omit fields to tell the OS/400 program how to select or omit records when your program
retrieves them using this record format. The only records affected are those from the physical file(s)
specified for the PFILE or JFILE keyword for this record format.

The following rules apply to select/omit fields in logical files:

v You can specify select/omit fields only if you also specify key fields or if you also specify the DYNSLT
keyword for the file. You can also specify *NONE as a key field to satisfy the requirement for a key field
when your application requires no key fields.

v For simple and multiple-format logical files, the OS/400 program uses the following search order to
match select/omit field names with defined fields:

– Fields specified in DDS positions 19 through 28

– Fields specified as parameters on the CONCAT or RENAME keywords

If the field name is specified more than once, the first occurrence is used.

The field name on a CONCAT or RENAME keyword and the associated field name in positions 19
through 28 cannot both be specified as select/omit fields.

The parameter name on the SST keyword is not valid as a select/omit field unless it is defined
elsewhere in the logical file record format.

For join logical files, the select/omit field name you specify must be specified at the field level in
positions 19 through 28.

When using the select/omit fields, specify either S or O in position 17. By specifying either S or O, the
select and omit comparison statements are ORed together. The system treats the ORed select and omit
comparison statements independently from one another. That is, if the select or omit comparison condition
is met, the record is either selected or omitted. If the condition is not met, the system proceeds to the next
comparison.

By specifying a blank in position 17, the select and omit comparison statements are ANDed together. The
combined comparisons must be met before the record is selected or omitted. See Figure 13 on page 18
and Figure 14 on page 19. In positions 19 through 28, specify a field name whose contents at processing
time determine whether the record is to be selected or omitted based on the select/omit keyword specified
for this field. The select/omit keywords are COMP, RANGE, and VALUES. The last select/omit specification
can be made with the ALL keyword, but a field name is not permitted.

Chapter 1. Defining physical and logical files using DDS 17



The field must appear in both the physical file record format and the logical file record format. Select/omit
statements must follow all field and key field level entries for the record format. You can specify both select
and omit for the same record format. The following information applies:

v If you specify both select and omit for a record format, the order in which you specify them is important.
The select/omit statements are processed in the order they are specified; if a record satisfies a
statement, the record is either selected or omitted as specified, and remaining select/omit statements
are not examined for that record. See Figure 15 on page 19.

v If you specify both select and omit statements, you can indicate whether records not meeting any of the
values specified are to be selected or omitted. See “ALL (All) keyword—logical files only” on page 31 for
more information.

v If you do not specify the ALL keyword, the action taken for the records that do not meet the values is
the converse of the type of the last statement specified. Records that do not meet selection values are
omitted, and records that do not meet omission values are selected.

There are limits to the number of select/omit statements you can specify in a single logical file. If you
specify many select/omit statements and you cannot create the file, reduce the overhead for the file
through the following changes in the specifications, in decreasing order of importance:

v Reduce the number of record formats in the file.

v Reduce the number of physical files specified on the PFILE or JFILE keyword.

v Reduce the number of fields used (single occurrences) in the select/omit specifications.

You cannot specify a floating-point field as a select/omit field.

It is possible to have an access path with select/omit and process the file in arrival sequence. For
example, CPYF can be specified with FROMRCD(1) or the high-level language may not request keyed
processing. In this case, the processing is the same as if the DYNSLT keyword had been specified.

Figure 13 shows how to specify the select/omit field using ANDed select statements.

In Figure 13, records are selected only if they satisfy two select statements: the first statement selects
records in which the value of field UPR is greater than 5.00, and the second statement selects records in
which the value of field QOH is less than 10. S is not specified in position 17 for field QOH. Therefore,
these select statements are ANDed together. For a record to be read by a program, both conditions
specified must be true.

Figure 14 on page 19 shows how to specify the select/omit field using an omit statement ORed with two
select statements ANDed together.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RECORD1 PFILE(PARTS)
00020A PNO
00030A DSC
00040A UPR
00050A QOH
00060A K PNO
00070A S UPR COMP(GT 5.00)
00080A QOH COMP(LT 10)
00090A O ALL

A

Figure 13. Specifying the Select/Omit Field (Example 1)

18 OS/400 DDS Reference: Physical and Logical Files V5R1



In Figure 14, records are supplied to the program if they pass both of the following tests:

v The DSC field is not equal to HAMMER.

v The UPR field is greater than 5.00 and the QOH field is less than 10.

Figure 15 shows several ways to specify the same select/omit logic.

In Figure 15, you want to select all the records before 1978 for a sales representative named JSMITH in
the state of New York. There are three ways to code this example.

�1� All records must be compared with the select fields ST, REP, and YEAR before they can be
selected or omitted.

�2� All records in and after 1978 are omitted in the first comparison. Then, only the records before
1978 are compared with ST and REP. Only two select fields must be satisfied. This way is more
efficient than method �1�.

�3� All records that are not associated with JSMITH in the state of New York are omitted in the first
and second comparisons. Then, all records left are compared to YEAR. This is more efficient than
method �1� or method�2�.

Reference for physical and logical files (position 29)
For a logical file, leave this position blank. All logical files automatically provide the reference capability for
all specified fields. Any attributes that are not specified explicitly in the logical file are furnished from the
corresponding field in the physical file record format.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RECORD1 PFILE(PARTS)
00020A PNO
00030A DSC
00040A UPR
00050A QOH
00060A K PNO
00070A O DSC COMP(EQ ’HAMMER’)
00080A S UPR COMP(GT 5.00)
00090A QOH COMP(LT 10)
00100A O ALL

A

Figure 14. Specifying the Select/Omit Field (Example 2)

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A S ST COMP(EQ ’NY’)
00020A REP COMP(EQ ’JSMITH’) �1�
00030A YEAR COMP(LT 78)
00040A O ALL

A
00050A O YEAR COMP(GE 78)
00060A S ST COMP(EQ ’NY’) �2�
00070A REP COMP(EQ ’JSMITH’)
00080A O ALL

A
00090A O REP COMP(NE ’JSMITH’)
00100A O ST COMP(NE ’NY’) �3�
00110A S YEAR COMP(LT 78)
00120A O ALL

A

Figure 15. Specifying the Select/Omit Field (Example 3)

Chapter 1. Defining physical and logical files using DDS 19



For a physical file, specify R in this position to refer to the attributes of a previously defined named field
(called the referenced field). You must specify the REF or the REFFLD keyword. The referenced field can
be previously defined in either the physical file you are defining or a previously created database file. The
field attributes referred to are the length, data type, and decimal positions of the field, as well as the
ALIAS, COLHDG, DATFMT, DATSEP, FLTPCN, REFSHIFT, TEXT, TIMFMT, TIMSEP, VARLEN, editing,
and validity checking keywords.

If R is not specified, you must specify the field attributes for this field.

Note: If the DATFMT keyword is overridden on a reference field to *ISO, *EUR, *USA, or *JIS, the
DATSEP keyword is not referenced.

Position 29 must be blank at the file and record levels.

The referenced field name cannot be the same as the field you are defining if that field is in the file you
are defining. If the names are the same, specify the name of the file defining the referenced field as a
parameter value with the REF or REFFLD keyword. If the names are different, specify the name of the
referenced field with the REFFLD keyword. For more information, see “REF (Reference)
keyword—physical files only” on page 64, “REFFLD (Referenced Field) keyword—physical files only” on
page 66, and the topic ″When to specify REF and REFFLD keywords for DDS files″ in the DDS Concepts
information.

To override specific attributes of the referenced field, specify those attributes for the field you are defining.
In addition:

v If you specify Edit Code (EDTCDE) or Edit Word (EDTWRD) on the field, no editing specifications are
copied from the referenced field.

v If you specify CHECK (AB, ME, MF, M10, M10F, M11, M11F, VN, or VNE), CHKMSGID, COMP,
RANGE, or VALUES on the field, no validity checking specifications are copied from the referenced
field.

v If you specify data type, field length, or decimal positions for the field you are defining, then neither
editing nor validity checking keywords are copied from the referenced field.

Note: After the physical file is created, the referenced file can be deleted or changed without affecting the
field descriptions in the physical file. To incorporate changes made in the referenced file, delete and
re-create the physical file.

Length for physical and logical files (positions 30 through 34)
For a physical file, use these positions to specify the field length for each named field (unless you copy it
from a referenced field). Specify the number of digits for a numeric type field, or specify the number of
characters for a character type field.

For a logical file, use these positions to specify the length of a logical field. Specify the length only to
override or change the length of the corresponding field in the physical file on which this logical file is
based. If you leave this position blank, the field you are defining has the same length as the corresponding
field in the physical file(s) on which the logical file(s) is based. If the field in the physical file is variable
length and you leave the length blank, the field is also variable length in the logical file. If you do specify a
length, the field in the logical file is fixed length unless you also specify the VARLEN keyword. Additionally,
the SST (Substring) keyword may be used to control the length of a logical file field by specifying a
character string that is a subset of another field. For more information about SST keyword, see “SST
(Substring) keyword—logical files only” on page 70.

If you specify length, it must be right-justified; leading zeros are optional.

Figure 16 on page 21 shows correct and incorrect field length specifications for a physical file.

20 OS/400 DDS Reference: Physical and Logical Files V5R1

../dds/rbafpmstappa.htm


Valid length specifications are:

Data Type Valid Lengths
Character 1 through 32 766 characters
Hexadecimal 1 through 32 766 bytes
Binary 1 through 18 digits
Zoned decimal 1 through 31 digits
Packed decimal 1 through 31 digits
Floating-point
(single precision)

1 through 9 digits

Floating-point
(double precision)

1 through 17 digits

Date 6, 8, or 10 characters
Time 8 characters
Timestamp 26 characters

The length for fields with data type L (date), T (time), or Z (timestamp) is determined by the system. You
should not enter a field length in positions 30 through 34.

The field length for date and time includes the separator.

A timestamp has a fixed format that has the following form:
YYYY-MM-DD-hh.mm.ss.uuuuuu

Type in a maximum of 9 digits for single precision and 17 digits for double precision. The OS/400 program
supports a floating-point accuracy of 7 digits for single precision and 15 digits for double precision.

The total number of bytes occupied by all the fields in a record must not exceed 32 766 (in storage). See
Table 1 on page 22 for rules on determining the total length of the record format.

The system determines the number of bytes actually occupied in storage as follows:

Data Type Bytes Occupied in Storage
Character Number of characters
Hexadecimal Number of bytes
Binary
1 through 4 digits 2 bytes
5 through 9 digits 4 bytes
10 through 18 digits 8 bytes
Zoned decimal Number of digits
Packed decimal (Number of digits/2) + 1 (truncated if fractional)
Floating-point
(single precision)

4 bytes

|...+....1....+....2....+....3....+....4....+....5
00010A FIELD1 7

A
00020A FIELD2 7

A
00030A FIELD3 R +7

A

Note: FIELD1 shows the field length specified incorrectly. FIELD2 and FIELD3 show the field length
specified correctly.

Figure 16. Correct and Incorrect Length Specifications for Physical Files

Chapter 1. Defining physical and logical files using DDS 21



Data Type Bytes Occupied in Storage
Floating-point
(double precision)

8 bytes

Date 10 characters without DATFMT keyword
and 6, 8 or 10 characters with DATFMT keyword

Time 8 characters
Timestamp 26 characters

Note: The system performs arithmetic operations more efficiently for a packed decimal than for a zoned
decimal data type.

Table 1 describes the rules for determining total format length.

Table 1. Rules for Determining Total Format Length

Situation Action

Does the record format contain any variable-length fields? 1. Add an extra 24 bytes to the total format length.

2. Add an extra 2 bytes to the format length for each
field that is variable length.

Does the record format contain any fields that allow the
null value?

Divide the total number of fields in the format by 8, round
up to the next highest whole byte, then add to format
length.

To override the length of a referenced field (R in position 29) of a physical file or the length of the field in a
logical file, either specify a new value or a change in length. To increase the length, specify +n, where n is
the amount of increase. To decrease the length, specify −n, where n is the amount of decrease. For
example, type +4 to indicate that a numeric field is to be 4 digits longer than the referenced field. See
Figure 3 on page 4 for an example showing how to override the field length for a physical file. Figure 1 on
page 2 shows how to change and override the field length for a logical file.

If the corresponding field in the physical file record format has a data type of binary with decimal positions
greater than zero, the length cannot be overridden in the logical file. If the field you are describing is a
concatenation of fields from the associated physical record format, you cannot specify the length in the
logical file. The sum of the physical field lengths is calculated by the system.

If you specify a value in positions 30 through 34, your program sees the specified length. However, the
length of the field in the corresponding physical file field does not change. This can cause data conversion
errors. When attempting to add a member to a file or to open a member of a file, the OS/400 program
may send a mapping error message. The OS/400 program may also send a mapping error message to
your program in the following cases:

v When reading from a logical file that reduces the length specified in the corresponding physical file

v When writing to a logical file that increases the length specified in the corresponding physical file

For example, if the physical file field is defined as 4 characters long and the logical file field decreases the
length to 2 characters, a value of ABCD in the physical file cannot be read by the program, although a
value of AB can. In this case, the program can always write successfully. For character fields, the data is
left-justified and filled with blanks in the physical file field. For numeric fields, the data is right-justified and
filled with zeros in the physical file field.

Positions 30 through 34 are valid only for field specifications. You must leave these positions blank at the
key field, select/omit field, join, record, and file level.

Note: High-level languages can impose restrictions on the field length. Any length restrictions should be
observed for files used by these high-level languages.

22 OS/400 DDS Reference: Physical and Logical Files V5R1



Data type for physical and logical files (position 35)
For a physical file, use this position to specify the data type of the field within the database.

Specify data type in a logical file only to override or change the data type of the corresponding field in the
physical file on which this logical file is based. If you leave this position blank, the field you are defining
has the same data type as the corresponding field in the physical file(s) on which the logical file(s) is
based.

Valid data type entries are as follows:

Entry Meaning

P Packed decimal

S Zoned decimal

B Binary

F Floating-point

A Character

H Hexadecimal

L Date

T Time

Z Timestamp

Note: The data types J (only), E (either), O (open), and G (graphic) support DDS database files that use
DBCS. The G (graphic) data type also supports DDS database files that use UCS-2.

Figure 3 on page 4 and Figure 1 on page 2 show how to code the data type.

For physical files, if you do not specify a data type or duplicate one from a referenced field, the OS/400
program assigns the following defaults:

v A (character) if the decimal positions 36 through 37 are blank.

v P (packed decimal) if the decimal positions 36 through 37 contain a number in the range 0 through 31.

Notes:

1. Specify 0 in position 37 to indicate an integer numeric field for packed decimal, zoned decimal, or
binary fields.

2. Specify an F in position 35 for a single precision floating-point field. Use the FLTPCN keyword to
specify double precision or to change the precision of an already specified floating-point field.

3. Specify an H (hexadecimal) in position 35 to indicate a field whose contents are not interpreted by the
system. In most cases, hexadecimal fields are treated as character fields, except the contents of a
hexadecimal field are not translated to any character set or code page.

The following table shows what types of data conversion are valid between physical and logical files:

Physical
File Data
Type

Logical File Data Type

Character
Hexa-
decimal Zoned Packed Binary

Floating
Point Date Time

Time-
stamp

Character Valid Valid See Note
1

Not valid Not valid Not valid Not valid Not valid Not valid

Hexa-
decimal

Valid Valid See Note
1

Not valid Not valid Not valid Not valid Not valid Not valid

Chapter 1. Defining physical and logical files using DDS 23



Physical
File Data
Type

Logical File Data Type

Character
Hexa-
decimal Zoned Packed Binary

Floating
Point Date Time

Time-
stamp

Zoned See Note
1

See Note
1

Valid Valid See Note
2

Valid Not valid Not valid Not valid

Packed Not valid Not valid Valid Valid See Note
2

Valid Not valid Not valid Not valid

Binary Not valid Not valid See Note
2

See Note
2

See Note
3

See Note
2

Not valid Not valid Not valid

Floating
Point

Not valid Not valid Valid Valid See Note
2

Valid Not valid Not valid Not valid

Date See
Notes 6
and 7

Not valid See Note
6

See Note
6

Not valid Not valid Valid Not valid Not valid

Time Not valid Not valid See Note
4

Not valid Not valid Not valid Not valid Valid Not valid

Time-
stamp

Not valid Not valid Not valid Not valid Not valid Not valid See Note
5

See Note
5

Valid

Notes:

1. Valid only if the number of characters (or bytes) equals the number of digits and the character (or hexadecimal)
field is not defined as a variable-length field.

2. Valid only if the binary field has a decimal precision of zero.

3. Valid only if both fields have the same decimal precision.

4. The system generates the field length for you so do not enter a length in columns 30 through 34. The length
does not include the separator character.

5. Valid only if the field is input only.

6. You may specify a field length (columns 30 to 34) for these data types on a logical file field. If you do not specify
a length, the system will generate a default length. Valid lengths for these data types are documented with the
DATFMT keyword.

7. DBCS field types are not allowed to be mapped over DATE fields.

Converting One Numeric Data Type to Another in a DDS File
Any conversion of data types from the physical file record format is permitted within the numeric types. For
example, a binary field in the physical file can be converted to zoned decimal in the logical file.

Converting between Zoned Decimal and Character or Hexadecimal in a DDS File
You can convert zoned decimal fields to character or hexadecimal fields and the converse, provided that
the field lengths are the same. The data type of the field in your program is the data type specified in the
logical file. No error occurs in an I/O operation if the data passed contains only numeric characters (0
through 9). However, your program cannot send an I/O operation that attempts to pass characters other
than 0 through 9 from a character or hexadecimal field to a zoned decimal field. The OS/400 program
sends a message and the I/O operation cannot be completed.

For example, suppose a field is zoned decimal in the physical file. If you specify character type (A) for
presentation to your programs, you must ensure that the field contains only numeric characters (0 through
9) when it is returned through the logical file to the physical file.

In another example, suppose a field is a character field in the physical file. If you specify the field as a
zoned decimal field and as a key field in the logical file, you cannot create the logical file unless all records
in the physical file contain only numeric characters (0 through 9).

24 OS/400 DDS Reference: Physical and Logical Files V5R1



Converting from Floating Point to Packed Decimal, Zoned Decimal, or Binary in
DDS
If you are converting a floating-point field (in a physical file) to a packed decimal, zoned decimal, or binary
field (in a logical file), you must explicitly specify the length and decimal positions. When converting
floating-point data to fixed-point format make sure the values you specify for length and decimal positions
are large enough to accommodate the data. Physical file length and decimal positions are presentation
values only and do not indicate the magnitude of the number.

Converting Data Types When Concatenating Fields in DDS
If the field you are defining is a concatenation of fields from the associated physical file (specified by the
CONCAT keyword), you cannot specify the data type. The OS/400 program assigns the data type based
on the data types of the fields that are being concatenated. The general rules are:

v If the concatenation contains one or more hexadecimal (H) fields, the resulting data type is hexadecimal
(H).

v If the concatenation contains one or more character (A) fields, but no hexadecimal fields, the resulting
data type is character (A).

v If the concatenation contains only numeric (S, P, B) fields, the resulting data type is zoned decimal (S).

Converting Data Types When Substringing Fields in DDS
If the field you are defining is a substring of a field (specified by the SST keyword) from the logical file or
the associated physical file, you must specify the data type as character, and the original field must be
character, hexadecimal, or zoned (A, H, or S).

Decimal positions for physical and logical files (positions 36 and 37)
For a physical file, use these positions to specify the decimal placement within a packed decimal, zoned
decimal, binary, or floating-point field. Specify a decimal number from 0 through 31 for the number of
decimal positions to the right of the decimal point. (The number must not be greater than the number of
digits specified in the field length.) Figure 3 on page 4 shows how to code the decimal positions field. If the
field length is greater than 9 for a binary field, the decimal positions value must be 0.

The data is actually stored in the system without a decimal point. The decimal point is only implied. For
example, the value stored for 1.23 is 123. This is what appears in display or printer files if editing is not
specified.

To override the position of a referenced field (R in position 29), either specify a new value or a change in
position. To increase the position, specify +n, where n is the amount of increase. To decrease the position,
specify −n, where n is the amount of decrease. For example, an entry of +4 indicates there are 4 more
digits to the right of the decimal point than were in the referenced field. An error message is sent if the
number of decimal positions is greater than the maximum allowed.

For logical files, specify decimal positions only to override or change the decimal positions of the
corresponding field in the physical file on which this logical file is based. If you leave these positions blank,
the field you are defining has the same decimal positions as the corresponding field in the physical file on
which this logical file is based.

To override or change the placement of the decimal point within a packed decimal or zoned decimal field,
specify a number from 0 through 31 to indicate the number of decimal positions to the right of the decimal
point. The number here must not be greater than the number of digits specified in the field length. You
cannot override or change decimals when the corresponding field in the physical file is binary (data type B)
and contains decimal positions greater than zero. When the logical file field is binary and the
corresponding field in the physical file is not binary (B specified in position 35 in the logical file), the
decimal positions must be zero for the binary field.

You can override the position of the field by specifying a new value or by specifying an increase or
decrease in position. To increase the position, specify +n, where n is the amount of increase. To decrease

Chapter 1. Defining physical and logical files using DDS 25



the position, specify −n, where n is the amount of decrease. For example, an entry of +4 indicates there
are 4 more digits to the right of the decimal point than were in the referenced field.

If you specify a value in positions 36 through 37 and your program writes or retrieves data through the
logical file field to the physical file field, the OS/400 program aligns the data on the decimal point.
Depending on the case, this can cause the decimal values to be truncated, or it can cause a data
conversion error. Decimal values are truncated in the following cases:

v When reading from a logical file that reduces the number of decimal positions specified in the physical
file

v When writing to a logical file that increases the number of decimal positions specified in the physical file

For example, if the physical file field is defined as 4 digits long with 2 decimal positions, and the logical file
field decreases the decimal positions to 0 decimal positions, a value of 0.20 in the physical file becomes a
value of 0 in the logical file, and a value of 2.52 in the physical file becomes a value of 2 in the logical file.

When decimal values are truncated, the left side of the field is filled with zeros.

A data conversion error can occur in the following cases:

v When writing to a logical file that reduces the number of decimal positions specified in the physical file

v When reading from a logical file that increases the number of decimal positions specified in the physical
file

The data conversion error occurs because too many digits would be moved into the space available to the
left of the decimal point. For example, if, as in the previous example, the physical file field is defined as 4
digits long with 2 decimal positions and the logical file field decreases the decimal positions to 0 decimal
positions, a value of 3322 written to the logical file cannot fit in the physical file because only 2 digits are
allowed left of the decimal point in the physical file.

To avoid data conversion errors, increase or decrease the length (positions 30 through 34) of the logical
file field by the same amount that you increase or decrease the decimal positions.

If you specify the CONCAT keyword for the field you are defining, you cannot specify decimal positions. A
field in the physical file that contains decimal positions cannot be included in a concatenated field.

Note: High-level languages can impose specific length and value restrictions on the decimal positions.
Observe these restrictions for files used by those high-level languages.

Usage for physical and logical files (position 38)
Use this field to specify that a named field is to be an input-only, both (both input and output are allowed),
or neither field.

For physical files, you can specify the following entries:

Entry Meaning

Blank Defaults to B (both input and output allowed)

B Both input and output allowed

Because the default is the same as the only value, you do not need to make an entry in this field.

Entries in position 38 are not referred to by the REF or REFFLD keywords. Therefore, a B in position 38
for a field in a physical file has no effect when that field is referred to in a display file.

The valid entries for logical files are described as follows:

26 OS/400 DDS Reference: Physical and Logical Files V5R1



Blank (Default)
If position 38 is blank, the following occurs:

v For simple and multiple format logical files (PFILE specified at the record level), the field is a both
(B) field.

v For join logical files (JFILE specified at the record level), the field is an input-only (I) field.

B (Both)
If position 38 is B, the field is a both field and can be used for both input and output operations. That
is, your program can read data from the field and write data to the field. Both fields are not valid for
join logical files, because join logical files are read-only files.

I (Input-Only)
If position 38 is I, the field is an input-only field and can be used for input operations only. That is, your
program can read data from the field, but cannot change the field. Typical cases of input-only fields
are key fields (to reduce maintenance of access paths), sensitive fields that a user can see but not
change (such as, in employee records, salary), and fields for which the SST or TRNTBL keyword is
specified.

If your program performs a change to a record format in which you have specified input-only fields, the
input-only fields are not updated and no message is sent. If your program performs an output
operation to a record format in which you have specified input-only fields, the input-only fields take
default values (see “DFT (Default) keyword—physical files only” on page 44).

Input-only fields are not valid in physical files.

N (Neither)
If position 38 is N, the field is a neither field (neither input nor output) and is valid only for join logical
files. A neither field can be used as a join field in a join logical file, but your program cannot read a
neither field.

Use neither fields when the attributes of join fields in the physical files do not match. In this case, one
or both join fields must be redefined. However, you may not want to include the redefined fields in the
record format (that is, you may not want the application program to see the redefined fields).
Therefore, code the redefined join fields as N and they do not appear in the record format.

A field with N in position 38 does not appear in the buffer used by your program. However, the field
description is displayed with the Display File Field Description (DSPFFD) command.

Neither fields cannot be used as select/omit or key fields.

Entries in position 38 are not referred to using the REF or REFFLD keywords. Therefore, a B or an I in
position 38 for a field in a logical file has no effect when that field is referred to in a display file.

Location for physical and logical files (positions 39 through 44)
These positions do not apply to physical or logical files. Leave these positions blank unless you use them
for comment text.

Chapter 1. Defining physical and logical files using DDS 27



28 OS/400 DDS Reference: Physical and Logical Files V5R1



Chapter 2. Keyword entries for physical and logical files
(positions 45 through 80)

This section contains keyword entries valid for describing physical and logical files. They are typed in
positions 45 through 80 (functions). See the DDS Reference: Concepts information for a discussion of the
general rules for specifying keywords.

The following keywords are valid for both physical and logical files (except where noted):

ABSVAL
ALIAS
ALL (logical files only)
ALTSEQ
ALWNULL (physical files only)
CCSID (physical files only)
CHECK
CHKMSGID
CMP
COLHDG
COMP
CONCAT (logical files only)
DATFMT
DATSEP
DESCEND
DFT (physical files only)
DIGIT
DYNSLT (logical files only)
EDTCDE
EDTWRD
FCFO

FIFO
FLTPCN
FORMAT
LIFO
NOALTSEQ
RANGE
REF (physical files only)
REFFLD (physical files only)
REFSHIFT
RENAME (logical files only)
SIGNED
SST (logical files only)
TEXT
TIMFMT
TIMSEP
TRNTBL (logical files only)
UNIQUE
UNSIGNED
VALUES
VARLEN
ZONE

The following keywords are valid only for simple and multiple format logical files:

PFILEREFACCPTH

The following keywords are valid only for join logical files:

JDFTVAL
JDUPSEQ

JFILE
JFLD

JOIN
JREF

When you use DDS to describe a source file (usually created without DDS, using the CRTSRCPF
command) or when a logical file is based on a physical file to be used as a source file, you cannot use the
following keywords:

ABSVAL
ALTSEQ
DESCEND
FCFO
FIFO
LIFO

NOALTSEQ
SIGNED
UNIQUE
VARLEN
ZONE

© Copyright IBM Corp. 2001 29

../dds/rbafpmstsyntax.htm


ABSVAL (Absolute Value) keyword for physical and logical files
Use this key field level keyword to direct the OS/400 program to ignore the sign of the field when it
sequences the values associated with this numeric field. This keyword has no parameters.

The following example shows six records with a zoned decimal key field:

Record Numeric Key Field (Zoned Decimal) Hexadecimal Representation
1 98 F9F8
2 00 F0F0
3 98− F9D8
4 97 F9F7
5 20 F2F0
6 99 F9F9

If you do not specify any sequencing keywords or the ALTSEQ keyword, the default sequencing for the
key field is the SIGNED attribute. In this case, the records are sequenced in the following order:

Record Numeric Key Field (Zoned Decimal) Hexadecimal Representation
3 98− F9D8
2 00 F0F0
5 20 F2F0
4 97 F9F7
1 98 F9F8
6 99 F9F9

If you specify the ABSVAL keyword, the absolute value of the negative field is used, and the resulting
sequence is:

Record Numeric Key Field (Zoned Decimal) Hexadecimal Representation
2 00 F0D0
5 20 F2F0
4 97 F9F7
1 98 F9F8
3 98− F9D8
6 99 F9F9

The ABSVAL keyword is not valid for a character, date, time, timestamp, and hexadecimal data type field.
You cannot use this keyword with the DIGIT, SIGNED, UNSIGNED, or ZONE keywords.

ABSVAL (a key field-level keyword) causes ALTSEQ (a file-level keyword) to be ignored. If you specify
ABSVAL for a key field, NOALTSEQ is in effect for that key field, even if ALTSEQ was specified at the file
level. This occurs whether or not the NOALTSEQ keyword is specified.

Example:

The following example shows how to specify the ABSVAL keyword.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A ORDAMT 5 0
00020A K ORDAMT ABSVAL

A

Physical and Logical Files, ABSVAL

30 OS/400 DDS Reference: Physical and Logical Files V5R1



ALIAS (Alternative Name) keyword for physical and logical files
Use this field-level keyword to specify an alternative name for a field. When the program is compiled, the
alternative name is brought into the program instead of the DDS field name. The high-level language
compiler in use determines if the ALIAS name is used. Refer to the appropriate high-level language
reference manual for information about ALIAS support for that language.

The format of the keyword is:
ALIAS(alternative-name)

Refer to the DDS Concepts information for rules for ALIAS naming conventions.

The alternative name must be different from all other alternative names and from all DDS field names in
the record format. If a duplicate is found, an error message appears on the field name or alternative name.

An alternative name cannot be used within DDS or any other OS/400 function (for example, as a key field
name, as the field name specified for the REFFLD keyword, or as a field name used in the Copy File
(CPYF) command).

When you refer to a field that has the ALIAS keyword, the ALIAS keyword is copied in unless the ALIAS
keyword is explicitly specified on the referencing field.

Example:

The following example shows how to specify the ALIAS keyword.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A FIELDA 25A ALIAS(CUSTOMERNAME)

A

In the example, the alternative name for FIELDA is CUSTOMERNAME.

ALL (All) keyword—logical files only
Use this select/omit field-level keyword to specify the action to be taken after all other select/omit
specifications have been processed for this logical file. Specify ALL with S in position 17 to direct the
OS/400 program to select any records that do not meet any of the other select/omit rules. Specify O in
position 17 to direct the OS/400 program to omit any records that do not meet any of the other select/omit
rules. If specified, ALL must follow the other select/omit keywords. You cannot specify a field name with
the ALL keyword.

This keyword has no parameters.

If you do not specify the ALL keyword, the default action taken is the opposite of the last select/omit
specification you made for the file. If the last specification was a select, the default is to omit all. If the last
specification was an omit, the default is to select all.

Example:

The following example shows how to specify the ALL keyword.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A S ACT COMP(EQ 3000)
00020A S ACT COMP(GT 3100)
00030A O AMT COMP(LT 0)
00040A O ALL

A

Physical and Logical Files, ALIAS

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 31

../dds/rbafpmstsyntax.htm


ALTSEQ (Alternative Collating Sequence) keyword for physical and
logical files
Use this file-level keyword to direct the OS/400 program to use an alternative collating sequence table
when sequencing the records of a file member for retrieval, if you specified a key for this file.

The format of the keyword is:
ALTSEQ([library-name/]table-name)

The name of the alternative collating sequence table is a required parameter value. The library-name is
optional. If you do not specify the library-name, the OS/400 program uses the library list (*LIBL) at file
creation time.

The ALTSEQ keyword is not valid under the following conditions:

v When you specify FILETYPE(*SRC) on the Create Physical File (CRTPF) or Create Logical File
(CRTLF) commands.

v When key fields have a data type of packed decimal, binary, or floating-point.

v When key fields are specified with ABSVAL or SIGNED. For those fields, NOALTSEQ (a key field-level
keyword) is assumed and does not need to be specified. You can specify NOALTSEQ for any field in a
composite key that does not require the alternative sequence.

v When you specify a value other than *SRC on the SRTSEQ parameter on the Create Physical File
(CRTPF) or Create Logical File (CRTLF) command.

The ALTSEQ keyword cannot be specified with the REFACCPTH keyword.

You must have use authority to the alternative collating sequence table. The alternative collating sequence
table is created using the Create Table (CRTTBL) command.

ALTSEQ causes zoned key fields to default to unsigned sequence. You can override the default by
specifying the SIGNED keyword for individual key fields.

Example:

The following example shows how to specify the ALTSEQ keyword for a logical file.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A ALTSEQ(TABLELIB/TABLE1)
00020A R RECORD1 PFILE (PF1)
00030A :
00040A :
00050A :
00060A NAME 20
00070A :
00080A :
00090A K NAME

A

Records with format RECORD1 are sequenced by key NAME according to the alternative collating
sequence table (TABLE1 in library TABLELIB).

ALWNULL (Allow Null Value) keyword—physical files only
Use this field-level keyword to define this field to allow the null value.

This keyword has no parameters.

Physical and Logical Files, ALTSEQ

32 OS/400 DDS Reference: Physical and Logical Files V5R1



When you specify the ALWNULL keyword, the maximum length you can specify in positions 30 to 34 is 32
765 bytes (32 739 if the field is also variable length).

For physical files, when you specify the DATFMT keyword with values of *JOB, *MDY, *DMY, *YMD, or
*JUL and the field allows null value, you must specify a valid date on the DFT keyword for this field.

Example:

The following example shows how to specify the ALWNULL keyword.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RECORD1
00020A FIELD1 75A ALWNULL
00030A FIELD2 100A
00040A FIELD3 L ALWNULL
00050A DATFMT(*MDY)
00060A DFT(’12/25/93’)

A

FIELD1 is defined to allow the null value. The default value of FIELD1 is the null value. FIELD2 is defined
to not allow the null value. The default value of FIELD2 is blanks.

CCSID (Coded Character Set Identifier) keyword for physical and
logical files
Use this file- or field-level keyword on physical files and this field-level keyword on logical files to specify a
coded character set identifier for character fields.

The format of the keyword is:
CCSID(value [field-display-length]

[*CONVERT | *NOCONVERT])

The value is a number up to 5 digits long that identifies a specific set of encoding scheme identifiers,
character set identifiers, code page identifiers, and other relevant information that uniquely identifies the
coded graphic character representation used for the data in the field.

For logical files the following characteristics must be true before the CCSID keyword is allowed on a
logical file field.

v If the specified value on the logical file CCSID keyword uses the UCS-2 Level 1 encoding scheme, then
the field data type must be G. Also, the corresponding physical file field must be of types A or G.

v If the specified value on the logical file CCSID keyword does not use the UCS-2 Level 1 encoding
scheme, then the field data type must be A, O, or G. Also, the corresponding physical file field must be
a G type field and have the CCSID keyword specified with a value using the UCS-2 Level 1 encoding
scheme.

The field-display-length parameter is optional and is only used when the field is referenced by a field in a
display file. The parameter is only valid when the value parameter uses the UCS-2 Level 1 encoding
scheme. The field-display-length allows the user to control the field size according to the type of data
stored in the UCS-2 Level 1 encoding scheme. See the description of the CCSID keyword for display files
for more information.

The *CONVERT parameter is optional. It is used in the physical file only when the field is referred to by a
field in a printer file DDS record format. The parameter specifies that, when the field prints, the UCS-2
data is converted to the target CCSID specified on the CHRID command parameter on the CRTPRTF,
CHGPRTF, or OVRPRTF command. If you do not specify this parameter, the keyword defaults to
*CONVERT. If you specify *NOCONVERT, the UCS-2 data will be not converted to the target CCSID.

Physical and Logical Files, ALWNULL

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 33

../rzakc/rzakcmstdfusc2.htm


When specified at the file level for physical files, the CCSID keyword applies to each character field in the
file except those character fields that also have the CCSID keyword specified. If a CCSID value on the
physical file field used the UCS-2 encoding scheme, the data type of this field must be type G.

If the CCSID keyword is not specified at the file level and not all character fields have the CCSID keyword
specified, then the fields are assigned the job’s default CCSID when the file is created.

For a list of the valid CCSIDs, see the Globalization topic of the System overview, planning, and
installation category of the Information Center.

Example 1:

The following example shows how to specify the CCSID keyword for physical files.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A CCSID(285)
00020A R RECORD1
00030A FIELD1 75G CCSID(13488)
00040A FIELD2 150A
00050A FIELD3 20A

A

FIELD1 is assigned a UCS-2-ccsid value of 13488. FIELD2 and FIELD3 are assigned a CCSID value of
285.

Example 2:

The following example shows how to specify the CCSID keyword on a corresponding logical file.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00000A
00010A R RECORD1
00020A FIELD1 75A CCSID(37)
00030A FIELD2 150G CCSID(13488 80)
00040A FIELD3 20A

A

The logical file’s FIELD1 is assigned a SBCS CCSID value of 37. Conversion occurs between the physical
file and the logical file for FIELD1 since the physical file field contains UCS-2 data. The logical file’s
FIELD2 is assigned a UCS-2-ccsid value of 13488. Conversion occurs between the physical file and the
logical file for FIELD2 since the logical file contains UCS-2 data. A CCSID is not specified for FIELD3.

CHECK (Check) keyword for physical and logical files
Use this field-level keyword to specify validity checking in display files.

The format of the keyword is:
CHECK(edit-check-code [. . .])

CHECK does not affect the physical or logical file being defined. When you define an input-capable field in
a display file, refer to the field you are now defining by specifying R in position 29 and using the REF or
REFFLD keyword. At display file creation, the OS/400 program copies the CHECK keyword and other field
attributes from the field in the physical or logical file into the field in the display file. You can override the
CHECK keyword (as well as all other validity-checking keywords and the CHKMSGID keyword) by
specifying any validity checking keyword for the field in the display file. See the Reference for display files
topic for details.

The rules for specifying this keyword in a physical or logical file are similar to those for a display file.
However, only the following codes are allowed in physical or logical files:

Physical and Logical Files, CCSID

34 OS/400 DDS Reference: Physical and Logical Files V5R1

../nls/rbagsglobalmain.htm
../rzakc/rzakcmstpos29.htm


Code Meaning

AB Allow blank

ME Mandatory enter

MF Mandatory fill

M10 IBM* Modulus 10 self-check algorithm

M10F IBM Modulus 10 self-check algorithm

M11 IBM Modulus 11 self-check algorithm

M11F IBM Modulus 11 self-check algorithm

VN Validate name

VNE Validate name extended

You cannot specify the CHECK(AB), CHECK(VN), CHECK(VNE), CHECK(M10), CHECK(M11),
CHECK(M10F), or CHECK(M11F) keywords on a floating-point field (F in position 35). You cannot specify
the CHECK keyword on a hexadecimal field (H in position 35). Do not specify the CHECK keyword on a
date, time, or timestamp field (L, T, or Z in position 35).

See the CHECK keyword for display files for more information and an example that shows how to specify
the keyword.

CHKMSGID (Check Message Identifier) keyword for physical and
logical files
Use this field-level keyword to identify an error message that is associated with validity checking keywords.
If the CHKMSGID keyword is not specified, a system-supplied message is used. If the CHKMSGID
keyword is specified and the field you are now defining is referred to later during display file creation, the
validity checking information and the CHKMSGID keyword are copied into the display file. If a validity
checking error is found while checking input from the screen, the error message specified on the
CHKMSGID keyword is displayed on the message line.

CHKMSGID does not affect the physical or logical file you are defining.

The format of the keyword is:
CHKMSGID(message-id [library/]message-file [message-data-field])

If the message-data-field parameter is specified, the field it identifies does not need to be defined in the
physical or logical file. However, if the field containing the CHKMSGID keyword is referred to during
display file creation, the message data field must be defined in the display file (in the same record format
as the field with the CHKMSGID keyword).

CHKMSGID is allowed only on fields that also contain a VALUES, RANGE, CMP, COMP, CHECK(M10),
CHECK(M11), CHECK(VN), or CHECK(VNE) keyword.

See the description for the CHKMSGID keyword for display files for more information and an example that
shows how to specify the keyword.

CMP (Comparison) keyword for physical and logical files
This keyword is equivalent to the COMP keyword.

The format of the keyword is:
CMP(relational-operator value)

Physical and Logical Files, CHECK

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 35

../rzakc/rzakcmstdfcheck.htm
../rzakc/rzakcmstdfchkme.htm


The COMP keyword is preferred. See “COMP (Comparison) keyword for physical and logical files” for an
explanation of how to use these keywords.

COLHDG (Column Heading) keyword for physical and logical files
Use this field-level keyword to specify column headings used as a label for this field by text management,
the query utility, the data file utility (DFU), and the screen design aid (SDA).

The format of the keyword is:
COLHDG(’line-1’ [’line-2’ [’line-3’]])

A maximum of three lines of 20 characters each is allowed. Each line of the column heading must be
enclosed in apostrophes. Use double apostrophes (’ ’) to specify apostrophes within column headings.
Use one or more blanks to separate the first column heading line from the second and the second from
the third.

For a physical file, if you do not specify COLHDG and it is not retrieved from a referenced field, the field
name is used. If you do not specify COLHDG for a logical file, the column heading from the physical file is
used, except when the field is a concatenation of fields; in this case, the default is the field name.

If you specify COLHDG but do not specify TEXT, 50 positions of column heading information are used as
text. For example, COLHDG(’Order’ ’Date’) is equivalent to TEXT(’Order Date’).

Example:

The following example shows how to specify the COLHDG keyword for a physical file.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00150A ORDDAT 5 0 COLHDG(’Order’ ’Date’)
00160A NAME 20 COLHDG(’Customer’’s Name’)
00170A CITY 20 COLHDG(’Customer’ ’City’ ’Field’)

A

Decimal positions or data type must be specified for ORDDAT since Order Date is a numeric field
(denoted by NNNNN below).

The following display illustrates how the column headings can appear when running text management,
query, DFU, or SDA.

Customer
Order City
Date Customer’s Name Field
NNNNN XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX

COMP (Comparison) keyword for physical and logical files
Use this field-level keyword to specify validity checking for the field you are defining when it is referred to
later during display file creation. For logical files, you can also specify this keyword at the select/omit-field
level. COMP is equivalent to CMP.

The format of the keyword is:
COMP(relational-operator value)

At the select/omit-field level, the format of the keyword is:
COMP(relational-operator field-name)

Valid relational operators are:

Physical and Logical Files, CMP

36 OS/400 DDS Reference: Physical and Logical Files V5R1



Relational Operator
Meaning

EQ Equal to

NE Not equal to

LT Less than

NL Not less than

GT Greater than

NG Not greater than

LE Less than or equal to

GE Greater than or equal to

Specify the value parameter at either the field level or the select/omit field level. Specify the field name
parameter only at the select/omit field level.

Example 1:

The following example shows how to specify the COMP keyword for character and numeric strings.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RECORD PFILE(PF1)
00020A
00030A FIELDA 1 0 COMP(NE O) �1�
C0040A FIELDB 1 COMP(NE ’A’) �1�
00050A FIELDC
00060A FIELDD
00070A FIELDE
00080A K FIELDB
00090A S FIELDC COMP(EQ FIELDD) �2�
00100A S FIELDA COMP(NE O) �2�
00110A S FIELDE COMP(NE *NULL) �2�
00120A O FIELDB COMP(GE ’A’) �2�

A

�1� COMP is specified for FIELDA and FIELDB as a validity checking keyword for display files that
refer to FIELDA and FIELDB.

�2� COMP is specified as a select/omit keyword for FIELDC, FIELDA, FIELDB, and FIELDE. Records
from the physical file PF1 are retrieved through this logical file record format depending on the
following comparisons:

v FIELDC: Records are selected when FIELDC equals FIELDD.

v FIELDA: Records not meeting FIELDC test are selected only when FIELDA is not equal to zero.

v FIELDE: Records not meeting FIELDA test are selected only when FIELDE is not the null value.

Example 2:

The following example specifies the COMP keyword using a hexadecimal character string.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RCD1 PFILE(PF1)
00020A CODEA
00030A FLD1
00040A FLD2
00050A K FLD1
00060A S CODEA COMP(EQ X’51’)

A

Physical and Logical Files, COMP

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 37



COMP is specified as a select/omit keyword for CODEA (which is a 1-byte field). Records from physical
file PF1 are retrieved through this record format only if the value of field CODEA is hex 51.

Specifying COMP at the field level
At the field level, COMP does not affect the physical or logical file you are describing. However, when you
describe an input-capable field in a display file, you can refer to the field you are now describing by
specifying R in position 29 and the REF or REFFLD keyword. During display file creation, the OS/400
program copies the COMP keyword and other field attributes from the field in the logical file into the field
in the display file. You can override the COMP keyword (as well as all other validity-checking keywords
and the CHKMSGID keyword) by specifying any validity checking keyword for the field in the display file.
See the Reference for display files topic for details.

You cannot specify a field name as a parameter value for a field-level COMP keyword.

You cannot specify *NULL as a parameter value for a field level COMP keyword.

You cannot specify the COMP keyword on a floating-point field (F in position 35) or a hexadecimal field (H
in position 35). Do not specify the COMP keyword on a date, time, or timestamp field (L, T, or Z in position
35).

The rules for specifying this keyword in a physical or logical file are the same as for a display file. See the
COMP keyword for display files for more information and an example that shows how to specify the
keyword.

Defining a numeric field for physical and logical files:

When a work station user types in data, the OS/400 program aligns the characters typed in according to
the number of decimal positions in the field. Leading and trailing blanks are filled with zeros when the field
is passed to your program. If you do not type a decimal character, the OS/400 program places a decimal
character to the right of the farthest right character typed. For example, for a numeric field with a length of
5 (specified in position 34) and 2 decimal positions (specified in position 37), 1.2 is interpreted as 001.20,
and 100 is interpreted as 100.00.

Specifying COMP at the select or omit-field level
At the select/omit-field level, you can specify a field name, a value, or *NULL for the parameter.

If you specify a value, the following rules apply:

v If you are defining a character field, specify a character constant or a hexadecimal character string.

Specify character strings with apostrophes (see example 1 above).

Specify hexadecimal character strings as an X followed by a combination of the digits 0 through 9 and
the letters A through F, enclosed in apostrophes. The number of hexadecimal digits in apostrophes must
be exactly twice the specified length of the field (see example 2 above).

v If you are defining a numeric field, specify a numeric string (digits 0 through 9 specified without
apostrophes) as shown in example 2.

v If you are defining a date field, specify a valid date in the same format specified on the DATFMT
keyword and use the same separator as specified on the DATSEP keyword. For example, COMP(EQ
’12/15/91’) is the default value if *MDY is specified for DATFMT and ‘/’ is specified for DATSEP.

v If you are defining a time field, specify a valid time in the same format specified on the TIMFMT
keyword and use the same separator as specified on the TIMSEP keyword. For example, COMP(EQ
’11.00.00’) is the default value if *ISO is specified for TIMFMT. The default separator for *ISO is a
period (.).

v If you are defining a timestamp field, you must specify the default value in the following format:
COMP(EQ ’YYYY-MM-DD-HH.MM.SS.UUUUUU’)

Physical and Logical Files, COMP

38 OS/400 DDS Reference: Physical and Logical Files V5R1

../rzakc/rzakcmstpos29.htm
../rzakc/rzakcmstdfcomp.htm


If you specify *NULL, the relational operator must be EQ or NE.

COMP selects or omits records retrieved from the physical file on which this logical file is based when your
program sends an input operation to the record format you are defining. The OS/400 program selects or
omits records as a result of testing the value of the select/omit fields against the value you specify, the
value of the field whose name you specify, or the null value (if *NULL was specified).

CONCAT (Concatenate) keyword—logical files only
Use this field-level keyword when you want to combine two or more fields from the physical file record
format into one field in the logical file record format you are defining. The name of this concatenated field
must appear in positions 19 through 28.

The format of the keyword is:
CONCAT(field-1 field-2...)

Specify the physical file field names in the order in which you want them to be concatenated, and separate
them by blanks.

If the same physical field is specified more than once in a record format in the logical file (that is, by using
either RENAME or CONCAT), the sequence in which the fields are specified in the logical file is the
sequence in which the data is moved to the physical file on an update or insert operation. Thus, the value
in the last occurrence of the physical field is the value that is put in the physical record and is the value
that is used for all keys built over that physical field. All previous values of the same field are ignored.

If you want to use a field defined using the CONCAT keyword or a field specified as a parameter value on
the CONCAT keyword as a key field, see “Key field name” on page 7.

You cannot include a field containing decimal positions other than zero in a concatenated field. You can
include a field having decimal positions of zero in which case the field is treated as an integer field.

The OS/400 program assigns the length of the concatenated field as the sum of the lengths (digits and
characters) of the fields included in the concatenation.

The OS/400 program assigns the field to be fixed length or variable length based on the fields that are
concatenated. The general rules are:

v Concatenation of a variable-length field to either a fixed-length field or another variable-length field
results in a variable-length field.

v Concatenation of a fixed-length field to a fixed-length field results in a fixed-length field unless the
VARLEN keyword is also specified on the same field as the CONCAT keyword.

Note: If the result of the concatenation is a variable-length field or a field that allows the null value, the
CONCAT field must be input only (I in position 38). If a logical file record format contains a
concatenation, it cannot contain any fields that allow the null value from the physical file record
format of the based-on file.

The OS/400 program assigns the data type based on the data types of the fields that are being
concatenated. The general rules are:

v If the concatenation contains one or more hexadecimal (H) fields, the resulting data type is hexadecimal
(H).

v If the concatenation contains one or more character (A) fields, but no hexadecimal fields, the resulting
data type is character (A).

v If the concatenation contains only numeric (S, P, B) fields, the resulting data type is zoned decimal (S).

Physical and Logical Files, COMP

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 39



When concatenating numeric fields, the sign of the farthest right field in the concatenation is used as the
sign of the concatenated field. The signs of the other fields are ignored; however, they are present in the
concatenated field. Therefore, if a negative value appears in a field other than the last, you must take
appropriate action to delete the embedded signs (such as converting the concatenated field to packed
decimal).

The maximum length of a concatenated field varies, depending on the data type of the concatenated field
and the length of the fields being concatenated. If the concatenated field is zoned decimal (S), its total
length cannot exceed 31 bytes. If the field is character (A) or hexadecimal (H), its total length cannot
exceed 32 766 bytes. If the concatenated field is a variable length field, its total length cannot exceed
32 740 (32 739 if the field also allows the null value).

You cannot include a floating-point, date, time, or timestamp field in a concatenated field.

In join logical files, the fields to be concatenated must be from the same physical file. The first field
specified on the CONCAT keyword identifies which physical file is used. The first field must, therefore, be
unique among the physical files the join logical file is based on, or you must also specify the JREF
keyword following the CONCAT keyword to specify which physical file to use.

Examples:

The following examples show how to specify the CONCAT keyword.

Example 1:

MTH, DAY, and YEAR are fields in the physical file that are concatenated into one field DATE in the logical
file, as shown in the following example.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RECORD1 PFILE(PF1)
00020A DATE CONCAT(MTH DAY YEAR)

A

Example 2:

In the following example, if the program changes DATE from 01 03 81 to 02 05 81, the value placed in the
physical record does not change because the fields specified last are MTH (value 01), DAY (value 03),
and YEAR (value 81). However, if MTH, DAY, and YEAR are changed to new values, the value of DATE in
the physical record also changes.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RECORD2 PFILE(PF1)
00020A DATE CONCAT(MTH DAY YEAR)
00030A MTH
00040A DAY
00050A YEAR

A

Example 3:

In the following example, fields from the physical file are concatenated into more than one field in the
logical file.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RECORD3 PFILE(PF1)
00020A DATE CONCAT(MTH DAY YEAR)
00030A CMPDAT CONCAT(DAY MTH YEAR)

A

Example 4:

Physical and Logical Files, CONCAT

40 OS/400 DDS Reference: Physical and Logical Files V5R1



In the following example, if the fields from PF1 are:

v FIXED1 is a fixed length field.

v FIXED2 is a fixed length field.

v VARLEN1 is a variable length field.

The resulting fields are:

v FIELD1 is a variable length field.

v FIELD2 is a fixed length field.

v FIELD3 is a variable length field.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RECORD4 PFILE(PF1)
00020A FIELD1 CONCAT(FIXED1 VARLEN1)
00030A FIELD2 CONCAT(FIXED1 FIXED2)
00040A FIELD3 CONCAT(FIXED1 FIXED2)
00050A VARLEN

A

DATFMT (Date Format) keyword for physical and logical files
Use this field-level keyword to specify the format of a date field. This keyword is valid only for date fields
(data type L) or for logical file zoned fields (data type S), packed fields (data type P), or character fields
(data type A) whose corresponding physical file fields are date fields (data type L).

The format of the keyword is:
DATFMT(date-format)

The date-format parameter specifies the format for the date. The following table describes the valid date
formats and their default separator values for physical file fields.

Format Name
Date-Format
Parameter

Date Format
and
Separator

Field
Length Example

Job Default *JOB1

Month/Day/Year *MDY1 mm/dd/yy 8 06/21/90
Day/Month/Year *DMY1 dd/mm/yy 8 21/06/90
Year/Month/Day *YMD1 yy/mm/dd 8 90/06/21
Julian *JUL1 yy/ddd 6 90/172
International
Standards Organization

*ISO yyyy-mm-dd 10 1990-06-21

IBM USA Standard *USA mm/dd/yyyy 10 06/21/1990
IBM European Standard *EUR dd.mm.yyyy 10 21.06.1990
Japanese Industrial
Standard Christian Era

*JIS yyyy-mm-dd 10 1990-06-21

Notes:

1. If this format is specified and the field allows the null value, you must specify a valid date for the DFT keyword for
this field.

Other attributes of the DATFMT keyword for physical file fields are:

v You may specify only the DATFMT keyword on the date (L) data type.

v If you do not specify the DATFMT keyword, the default is *ISO.

v Field length values and decimal position values must be blank.

The following table describes the valid date formats and their default separator values for logical files.

Physical and Logical Files, CONCAT

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 41



Format Name Date Format
Parameter

Date
Format

Zoned or
Character
Field
Length

Zoned or
Character
Example

Packed
Field
Length

Packed
Example (in
Hex)

Job Default *JOB

Month/Day/Year *MDY mmddyy 6,0 062196 6,0 or 7,0 ’0062196F’X

Day/Month/Year *DMY ddmmyy 6,0 210696 6,0 or 7,0 ’0210696F’X

Year/Month/Day *YMD yymmdd 6,0 960621 6,0 or 7,0 ’0960621F’X

Month/Day/Year (4 digit
year)

*MDYY1 mmddyyyy 8,0 06211996 8,0 or 9,0 ’006211996F’X

Day/Month/Year (4 digit
year)

*DMYY1 ddmmyyyy 8,0 21061996 8,0 or 9,0 ’021062006F’X

Year/Month/Day (digit
year)

*YYMD1 yyyymmdd 8,0 19960621 8,0 or 9,0 ’019960621F’X

Julian *JUL yyddd 5,0 96172 5,0 ’96172F’X

Julian (4 digit year) *LONGJUL1 yyyyddd 7,0 1996172 7,0 ’1996172F’X

Century/Day/Month/Year *CMDY1 cmmddyy 7,0 0062196 7,0 ’0062196F’X

Century/Day/Month/Year *CDMY1 cddmmyy 7,0 1210696 7,0 ’1210696F’X

Century/Year/Month/Day *CYMD1 cyymmdd 7,0 1960621 7,0 ’1960621F’X

Month/Year *MY1,2 mmyy 4,0 0696 4,0 or 5,0 ’00696F’X

Year/Month *YM1,2 yymm 4,0 9606 4,0 or 5,0 ’09606F’X

Month/Year (4 digit year) *MYY1,2 mmyyyy 6,0 061996 6,0 or 7,0 ’0061996F’X

Year/Month (4 digit year) *YYM1,2 yyyymm 6,0 199606 6,0 or 7,0 ’0199606F’X

International Standards
Organization

*ISO yyyymmdd 8,0 19960621 8,0 or 9,0 ’019960621F’X

IBM USA Standard *USA mmddyyyy 8,0 19960621 8,0 or 9,0 ’006211996F’X

IBM European Standard *EUR ddmmyyyy 8,0 21061996 8,0 or 9,0 ’021061996F’X

Japanese Industrial
Standard Christian Era

*JIS yyyymmdd 8,0 19960621 8,0 or 9,0 ’019960621F’X

Notes:

1. These DATFMTs are not valid for the date (L) type field. They are only valid on logical file zoned, packed, or
character types having a physical file based on date type fields.

2. DATFMTs that do not have any ″days″ specified are implied to be day 1 of the specified month.

Other attributes of the DATFMT keyword specified for logical file fields are:

v The packed (P), zoned (S), character (A), and date (L) data types for logical file fields allow the
DATFMT keyword.

v Field length may be specified for packed, character, and zoned logical file fields, but must be a valid
value listed in the table.

v If you do not specify the DATFMT keyword and the data type is L, the default is the date format and
field length from the corresponding physical file field.

v For packed and zoned data types, the decimal positions (positions 36 and 37) must be blank.

v For the packed data type, two lengths are sometimes allowed for a particular format. The larger length
is better from a performance perspective. If you do not specify a length, the smaller length is used as
the default.

Physical and Logical Files, DATFMT

42 OS/400 DDS Reference: Physical and Logical Files V5R1



Attributes of the DATFMT keyword that apply to both physical file fields and logical file fields include the
following:

v If you specify *JOB, the default is the job attribute and the field length and is based on the job attribute
without separators.

v If the DFT keyword is not specified, the default value is the current date.

v If you specify the *ISO, *USA, *EUR, or *JIS value, you cannot specify the DATSEP keyword. These
date formats have a fixed separator.

v The DATFMT keyword overrides the job attribute for a date field. It does not change the system default.

Example:

The following example shows how to specify the DATFMT keyword.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A
00020A R RECORD
00030A DATFLD1 L DATFMT(*JUL)
00040A DATFLD2 L DATFMT(*EUR)

A

If the current date is June 21, 1990, the current system date format value is MDY, and the current system
separator is /, DATFLD1 contains 90/172 (the 172nd day of the year 1990). DATFLD2 contains
21.06.1990.

DATSEP (Date Separator) keyword for physical and logical files
Use this field-level keyword to specify the separator character for a date field. This keyword is valid only
for date fields (data type L).

The format of the keyword is:
DATSEP(*JOB | ’date-separator’)

The date separator parameter specifies the separator character that appears between the year, month,
and day. Valid values are a slash (/), dash (–), period (.), comma (,) or blank ( ). The parameter must be
enclosed in apostrophes.

If you specify *JOB, the default is the job attribute.

For physical files, if you do not specify the DATSEP keyword, the default is the job attribute.

For logical files, if you do not specify the DATSEP keyword, the default is the date separator from the
physical file. If you did not specify the DATSEP keyword for the physical file field (*ISO, *USA, *EUR, or
*JIS was specified on the DATFMT keyword), the default for DATSEP is the job attribute.

If you specify the *ISO, *USA, *EUR, or *JIS date format value on the DATFMT keyword, you cannot
specify the DATSEP keyword. These formats have a fixed date separator.

The DATSEP keyword overrides the job attribute. It does not change the system default.

Example:

The following example shows how to specify the DATSEP keyword.

Physical and Logical Files, DATFMT

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 43



|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A
00020A R RECORD1
00030A DATFLD2 L DATFMT(*DMY) DATSEP(’-’)
00040A DATFLD4 L DATSEP(’ ’)

A

If the current date is June 21, 1990, the current system date format value is MDY, and the system date
separator value is '/', DATFLD2 contains 21-06-90. DATFLD4 contains 06 21 90.

DESCEND (Descend) keyword for physical and logical files
Use this key field-level keyword to specify that the values of this character, hexadecimal, or numeric key
field are retrieved in descending sequence. The default is ascending sequence. See “SIGNED (Signed)
keyword for physical and logical files” on page 69 for an example of data sorted using the DESCEND
keyword.

This keyword has no parameters.

Example:

The following example shows how to specify the DESCEND keyword for a logical file.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A K ITEM
00020A K BALDUE DESCEND

A

DFT (Default) keyword—physical files only
Use this field-level keyword to specify a default value for a field.

The format of the keyword is:
DFT(’value’ | numeric-value | X’hexadecimal-value’ | *NULL)

Without this keyword, character and hexadecimal fields default to blanks and numeric fields default to
zeros. However, if you specify the ALWNULL keyword for the field, then the character, hexadecimal, and
numeric fields default to the null value.

The following rules apply to the specified value:

v If the field being defined is a character field, specify a character constant, hexadecimal value, or *NULL.
Specify character strings within apostrophes. If the field is variable length (VARLEN), then the length of
the string must be less than or equal to the allocated length.

Specify hexadecimal values as an X followed by a combination of the digits 0 through 9 and the letters
A through F. Enclose the combination in apostrophes. The number of hexadecimal digits in apostrophes
must be exactly twice the specified length of the field. If the field is variable length (VARLEN), then the
number of hexadecimal digits in apostrophes must be exactly twice the allocated length.

v If the field being defined is a hexadecimal field, specify a character constant, hexadecimal value, or
*NULL.

Note: If a character constant is specified, the hexadecimal representation of the character constant is
the default value.

Specify character strings within apostrophes. If the field is variable length (VARLEN), then the length of
the string must be less than or equal to the allocated length.

Physical and Logical Files, DATSEP

44 OS/400 DDS Reference: Physical and Logical Files V5R1



Specify hexadecimal values as an X followed by a combination of the digits 0 through 9 and the letters
A through F. Enclose the combination in apostrophes. The number of hexadecimal digits in apostrophes
must be exactly twice the specified length of the field. If the field is variable length (VARLEN), then the
number of hexadecimal digits in apostrophes must be exactly twice the allocated length.

v If you are defining a numeric field, specify a numeric value (digits 0 through 9 specified without
apostrophes) or *NULL. For a value other than zero in positions 36 and 37, specify the decimal
character with a numeric constant in the appropriate position in the DDS.

v If you specify *NULL, then you must also specify the ALWNULL keyword on the field.

v If you do not specify any value (DFT('')), this indicates a default of a 0 length string and is valid only
when the field is variable length (the VARLEN keyword must also be specified).

v If you are defining a date field, specify a valid date in the same format specified on the DATFMT
keyword and use the same separator as specified on the DATSEP keyword. For example,
DFT(’12/15/91’) is the default value if *MDY is specified for DATFMT and ‘/’ is specified for DATSEP.

If the DFT keyword is not specified, the default value is the current date.

v If you are defining a time field, specify a valid time in the same format specified on the TIMFMT
keyword and use the same separator as specified on the TIMSEP keyword. For example,
DFT(’11.00.00’) is the default value if *ISO is specified for TIMFMT. The default separator for *ISO is a
period (.).

If the DFT keyword is not specified, the default value is the current time.

v If you are defining a timestamp field, you must specify the default value in the following format:
DFT(’YYYY-MM-DD-HH.MM.SS.UUUUUU’)

If the DFT keyword is not specified, the default value is the current time.

The value specified is assigned to the field in the following cases:

v When the program does an output operation to a logical file based on this physical file and the record
format in the logical file does not name this field.

v When you use the Initialize Physical File Member (INZPFM) command for a member in this file.

v When you use the Copy File (CPYF) command with FMTOPT(*MAP) specified and a field in the to-file
is not in the from-file.

The specified value is supplied to the program when the program does an input operation to a join logical
file and all of the following are true:

v You specify the JDFTVAL keyword for the join logical file.

v The file being defined is specified as a secondary file in the join logical file.

v When the input operation occurs and the link to the secondary file produces no records.

This keyword does not affect the physical file on input operations.

Example:

The following example shows how to specify the DFT keyword.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RECORD1
00020A CHARFLD1 20A DFT(’Sample field’)
00030A CHARFLD2 5A DFT(X’D985955185’)
00040A HEXFLD1 3H DFT(’ABC’)
00050A HEXFLD2 3H DFT(X’C1C2C3’)
00060A NUMFLD1 5S 0 DFT(99999)
00070A NUMFLD2 5S 2 DFT(999.99)
00080A NUMFLD3 5S 2 DFT(999)
00090A NUMFLD4 5S 2 DFT(*NULL)
00100A ALWNULL
00110A NUMFLD5 5S 2 DFT(999.99)

Physical and Logical Files, DFT

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 45



00120A ALWNULL
00130A DATFLD1 L DATFMT(*MDY) DATSEP(’-’)
00140A DFT(’12-31-91’)
00150A TIMFLD1 T DFT(’11.15.00’)

A

The default value for CHARFLD1 is ‘Sample field’. The default value for CHARFLD2 is hex D985955185.
The default value for HEXFLD1 is C1C2C3 (the hexadecimal representation of the character constant).
The default value for HEXFLD2 is C1C2C3. The default value for NUMFLD1 is 99999 (no decimal
character is required because the field has zero decimal positions). The default value for NUMFLD2 is
999.99. The default value for NUMFLD3 is 999 (no decimal character is required if you do not need to
specify decimal values). The default value for NUMFLD4 is the null value (ALWNULL is a required
keyword for the field if DFT(*NULL) is specified). The default value for NUMFLD5 is 999.99; the field also
allows the null value. The default value for DATFLD1 is 12-31-91. The default value for TIMFLD1 is
11.15.00 (*ISO format).

DIGIT (Digit) keyword for physical and logical files
Use this key field-level keyword to specify that only the digit portion (farthest right 4 bits) of each byte of
the key field is used when constructing a value associated with this key field. The zone portion is
zero-filled.

This keyword has no parameters.

The DIGIT keyword is applied against the entire key field (not just a position within the field). It is valid
only for character, hexadecimal, or zoned decimal type fields.

You cannot use this keyword with the ABSVAL, SIGNED, or ZONE keywords.

If you specify DIGIT for a key field, the value of the field is treated as a string of unsigned binary data,
rather than signed data, which is the default for zoned decimal fields.

Example:

The following example shows how to specify the DIGIT keyword.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00040A K ORDTYP DIGIT

A

If ORDTYP is a 3-byte field, the values of the field for three different records could be as follows:

Values Hexadecimal Digits Used for Key
C4J C3F4D1 341
CMA D3D4C1 341
3D1 F3C4F1 341

DYNSLT (Dynamic Select) keyword—logical files only
Use this file-level keyword to indicate that the selection and omission tests specified in the file (using
select/omit specifications) are done at processing time. This keyword specifies dynamic select/omit rather
than access path select/omit.

This keyword has no parameters.

As your program does input operations to a logical file with the DYNSLT keyword specified, all the records
in the associated physical file are tested by the system to see if they satisfy the select/omit values. Only

Physical and Logical Files, DFT

46 OS/400 DDS Reference: Physical and Logical Files V5R1



those records that satisfy the values are supplied to your program. The testing of each record can result in
slower I/O performance, but may be more efficient than maintaining an access path for the file. This is
particularly likely for files read only occasionally, especially when the physical files they are based on are
updated frequently. Using dynamic select/omit is probably also more efficient for files with a high
percentage of selected records.

In keyed sequence access files, an access path is created at file creation time and is maintained for the
file according to the MAINT parameter on the Create Logical File (CRTLF) or Change Logical File
(CHGLF) command. The DYNSLT keyword does not affect the maintenance of access paths for keyed
sequence access files.

For all single-format logical files with a DYNSLT keyword, you do not need to specify key fields in order to
specify select/omit fields. However, for all multiple-format logical files with a DYNSLT keyword, you do
need to specify at least one key field. You can specify *NONE for this key field.

You must use the DYNSLT keyword when you want to select or omit fields and any of the following are
true:

v The logical file has arrival sequence (no key fields are specified). See example 1 below.

v The logical file is a join logical file with the JDFTVAL keyword specified.

v The logical file is a join logical file, select/omit fields come from more than one of the physical files the
logical file is based on, and one of the following is true:

– The select/omit fields are on the same select or omit statement. See example 3 below.

– The select/omit fields are on a mixture of select and omit statements. See example 4 below.

– The select/omit fields are on select statements that are ORed together.

– The select/omit fields are on omit statements that are ANDed together.

You cannot specify the DYNSLT keyword with the REFACCPTH keyword.

For a join logical file, the select/omit fields can occur in any of the physical files specified on the JFILE
keyword. Use the JREF keyword in join logical files to qualify the origin of the field and resolve any
ambiguities.

Examples:

The following examples show how to specify the DYNSLT keyword.

Example 1:

The following example shows how to specify dynamic select with arrival sequence.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A DYNSLT
00020A R RECORD1 PFILE(PF1)
00030A FLD1
00040A FLD2
00050A S FLD1 COMP(GT 2)

The DYNSLT keyword is required because there are no key fields.

The logical file supplies records to your program in arrival sequence. Assume that physical file PF1 has
the following records:

FLD1 FLD2

1 aaaa

2 dddd

Physical and Logical Files, DYNSLT

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 47



3 jjjj

4 bbbb

As your program does input operations, the system tests the first two records according to the select/omit
values, but does not supply them to your program. Your program only sees the last two records:

FLD1 FLD2

3 jjjj

4 bbbb

Example 2:

The following example shows how to specify dynamic select with keyed sequence access path.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A DYNSLT
00020A R RECORD1 PFILE(PF1)
00030A FLD1
00040A FLD2
00050A K FLD1
00060A S FLD2 COMP(GT ’bbbb’)

A

In this example, the DYNSLT keyword is not required. The logical file supplies records to your program in
keyed sequence. Assume that physical file PF1 has the following records:

FLD1 FLD2

1 aaaa

2 dddd

3 jjjj

4 bbbb

When your program requests a record, the system tests the value of FLD2 for that record according to the
select/omit values. Your program only sees the following records:

FLD1 FLD2

2 dddd

3 jjjj

Example 3:

The following example shows how to specify a join logical file with select/omit comparing fields from two
physical files.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A DYNSLT
00020A R RECORD1 JFILE(PF1 PF2)
00030A J JFLD(FLD1 FLD3)
00040A FLD1 JREF(PF1)
00050A FLD2 JREF(PF1)
00060A FLD3 JREF(PF2)
00070A FLD4 JREF(PF2)
00080A S FLD1 COMP(GT FLD4)

A

Physical and Logical Files, DYNSLT

48 OS/400 DDS Reference: Physical and Logical Files V5R1



FLD1 and FLD2 come from the primary file (PF1), and FLD3 and FLD4 come from the secondary file
(PF2). The select specification compares FLD1 from the primary file with FLD4 from the secondary file.
Therefore, the DYNSLT keyword is required.

Example 4:

The following example shows how to specify a join logical file with select and omit using fields from more
than one physical file.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A DYNSLT
00020A R JREC JFILE(PF1 PF2)
00030A J JOIN(PF1 PF2)
00040A JFLD(FLD1 FLD2)
00050A FLD1 JREF(PF1)
00060A FLD2 JREF(PF1)
00070A FLD3 JREF(PF2)
00080A K FLD1
00090A S FLD1 COMP(GT 0)
00100A O FLD3 COMP(GT 4)

A

FLD1 and FLD3 come from different physical files and are specified in a mixture of select and omit
statements. Therefore, the DYNSLT keyword is required.

EDTCDE (Edit Code) and EDTWRD (Edit Word) keywords for physical
and logical files
Use these field-level keywords to specify editing for the field you are defining when the field is referenced
later during display or printer file creation. The EDTCDE and EDTWRD keywords do not affect the
physical or logical file.

The format of the EDTCDE keyword is:
EDTCDE(edit-code [* | floating-currency-symbol])

The format of the EDTWRD keyword is:
EDTWRD(’edit-word’)

When defining an input-capable field in a display file, refer to the field you are now defining by specifying
the letter R in position 29 and the REF or REFFLD keyword. At display file creation, the OS/400 program
copies the EDTCDE or EDTWRD keyword and other field attributes from the field in the physical or logical
file into the field in the display file. You can override the EDTCDE or EDTWRD keyword by specifying new
editing keywords in the display or printer file. Specifying the DLTEDT keyword in the display or printer file
deletes all editing for the field. See the Reference for display files topic for details.

You cannot specify the EDTCDE or EDTWRD keyword on a floating-point field (F in position 35) or a
hexadecimal field (H in position 35). Do not specify the EDTCDE or EDTWRD keywords on a date, time,
or timestamp field (L, T, or Z in position 35).

The rules for specifying these keywords in a physical or logical file are the same as for a display file. For
more information on specifying these keywords, see the description of the EDTCDE or EDTWRD
keywords for display files.

Example:

The following example shows how to specify the EDTCDE and EDTWRD keywords for a physical file.

Physical and Logical Files, DYNSLT

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 49

../rzakc/rzakcmstpos29.htm
../rzakc/rzakcmstdfedtcd.htm
../rzakc/rzakcmstdfedwrd.htm


|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
A R RECORD
A
A PRICE 5 2 EDTCDE(J)
A
A SALES 7 2 EDTCDE(K $)
A
A SALARY 8 2 EDTCDE(1 *)
A
A BALANCE 7 2 EDTWRD(’$ 0. &CR’)
A
A DATE 6 0 EDTCDE(Y)
A

The fields PRICE, SALES, SALARY, and DATE have editing specified. No new editing needs be specified
when they are referred to by a display or printer file. This standardizes the editing of these fields for
applications that refer to these fields.

FCFO (First-Changed First-Out) keyword for physical and logical files
Use this file-level keyword to specify that if records with duplicate key values are retrieved from the same
physical or logical file member, the record with the key value that was changed first is the first record
retrieved. This is a first-changed first-out (FCFO) order.

This keyword has no parameters.

FCFO is not allowed with an FIFO, LIFO, UNIQUE, or REFACCPTH keyword.

If you do not specify FCFO, LIFO, FIFO, or UNIQUE, records with duplicate key values are retrieved in
first-in first-out (FIFO), last-in first-out (LIFO), or first-changed first-out (FCFO) order, but the order in which
they are retrieved is not guaranteed.

With the FCFO keyword, the records are ordered by when the record key value is changed. With the FIFO
and LIFO keywords, the records are ordered by the relative record number.

At least one key field must be specified in the file containing the FCFO keyword. The FCFO keyword is
not valid when you specify FILETYPE(*SRC) on the Create Physical File (CRTPF) or Create Logical File
(CRTLF) command.

Example:

The following example shows how to specify the FCFO keyword for a physical file.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A FCFO
00020A R CUSREC TEXT(’CUSTOMER RECORD’)
00030A CUSNAMEF 10A
00040A CUSNAMEM 1A
00050A CUSNAMEL 10A
00060A K CUSNAMEL

A

FIFO (First-In First-Out) keyword for physical and logical files
Use this file-level keyword to specify that if records with duplicate key values are retrieved from the same
physical or logical file member, they are to be retrieved in a first-in first-out (FIFO) order.

This keyword has no parameters.

FIFO is not allowed with an FCFO, LIFO, UNIQUE, or REFACCPTH keyword.

Physical and Logical Files, EDTCDE and EDTWRD

50 OS/400 DDS Reference: Physical and Logical Files V5R1



If you do not specify FCFO, LIFO, FIFO, or UNIQUE, records with duplicate key values are retrieved in
first-in first-out (FIFO), last-in first-out (LIFO), or first-changed first-out (FCFO) order, but the order in which
they are retrieved is not guaranteed.

At least one key field must be specified in a file containing the FIFO keyword. The FIFO keyword is not
valid when you specify FILETYPE(*SRC) on the Create Physical File (CRTPF) or Create Logical File
(CRTLF) command.

Example:

The following example shows how to specify the FIFO keyword for a physical file.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A FIFO
00020A R CUSREC TEXT(’CUSTOMER RECORD’)
00030A CUSNAMEF 10A
00040A CUSNAMEM 1A
00050A CUSNAMEL 10A
00060A K CUSNAMEL

A

FLTPCN (Floating-Point Precision) keyword for physical and logical
files
Use this field-level keyword to specify the precision of a floating-point field.

The format of the keyword is:
FLTPCN(*SINGLE | *DOUBLE)

where *SINGLE is single precision and *DOUBLE is double precision. This keyword is valid for
floating-point fields only (data type F).

If you do not specify the FLTPCN keyword, the default is single precision. A single precision field can be
up to 9 digits; a double precision field can be up to 17 digits. If you specify a field length greater than 9
(single precision) or 17 (double precision), an error message is sent and the file is not created.

Example:

The following example shows how to specify the FLTPCN keyword.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00090A FIELDA 17F 4 FLTPCN(*DOUBLE)

A

FIELDA is a floating-point field with double precision.

FORMAT (Format) keyword for physical and logical files
Use this record-level keyword to specify that this record format is to share the field specifications for a
previously defined record format. The name of the record format you are defining must be the name of the
previously defined record format.

The format of the keyword is:
FORMAT([library-name/]database-file-name)

The database-file-name parameter is required. It is the name of the physical or logical file from which the
previously defined record format is taken.

Physical and Logical Files, FIFO

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 51



The library-name is optional. If you do not specify the library-name, the library list (*LIBL) in effect at file
creation time is used.

If you specify the FORMAT keyword, you cannot specify field specifications for this record format. Specify
key specifications and, if necessary, select/omit specifications if you want them to be in effect for this file.
(They can be the same as or different from the previously defined record format.)

The FORMAT keyword is not valid in join logical files and you cannot specify a join logical file as the
parameter value on the FORMAT keyword.

If the database file from which you are using the record format is deleted, the record format remains in
existence as long as some file is using the record format. For example, RECORD in FILE2 uses the
FORMAT keyword to share the specifications of RECORD in FILE1. Both files have been created. If FILE1
is deleted and then re-created with different DDS, RECORD still exists in FILE2. It can be referred to for
the original record format by other files using the FORMAT keyword.

You cannot specify a distributed data management (DDM) file on this keyword.

Example:

The following example shows how to specify the FORMAT keyword for a logical file.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RECORD PFILE(FILE2)
00020A FORMAT(FILE1)

A

The record format for this logical file is the same as the previously specified record format in file FILE1.
The name of this record format (RECORD) must be the same as the name of the record format in FILE1.

JDFTVAL (Join Default Values) keyword—join logical files only
Use this file-level keyword in a join logical file so the system provides default values for fields when a join
to a secondary file does not produce any records. JDFTVAL is valid only for join logical files.

This keyword has no parameters.

The default values for the system are blanks for character and hexadecimal fields and zeros for numeric
fields. You can change the default for specific fields by specifying the DFT keyword for the fields in the
physical file (see “DFT (Default) keyword—physical files only” on page 44).

If you specify JDFTVAL, your program retrieves records for which a secondary file does not have a
corresponding record. If you do not specify JDFTVAL, a record in the primary file for which there is no
corresponding record in a secondary file is skipped.

If you are joining three or more files, and you specify the JDFTVAL keyword for fields used as join fields,
default values of fields missing in secondary files are used in the same way that a field value is used. For
example, records are selected and omitted based on the default value. Also, if this field is used as a join
field to join to other secondary files, records from the other secondary files are returned to your program
based on the default value.

Example:

The following example shows how to specify the JDFTVAL keyword.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A JDFTVAL
00020A R RECORD1 JFILE(PF1 PF2)
00030A J JOIN(PF1 PF2)

Physical and Logical Files, FORMAT

52 OS/400 DDS Reference: Physical and Logical Files V5R1



00040A JFLD(NAME NAME)
00050A NAME JREF(1)
00060A ADDR
00070A BAL

A

PF1 is the primary file and PF2 is a secondary file. Assume that PF1 and PF2 have the following records:

PF1 NAME ADDR PF2 NAME BAL
Anne 120 1st St. Anne 5.00
Doug 40 Pillsbury Doug 6.50
Mark 2 Lakeside Dr. Sue 2.00
Sue 120 Broadway

With JDFTVAL specified in the join logical file, the program reads the following records (shown in arrival
sequence):

NAME ADDR BAL
Anne 120 1st St. 5.00
Doug 40 Pillsbury 6.50
Mark 2 Lakeside Dr. 0.00
Sue 120 Broadway 2.00

Without JDFTVAL specified in the join logical file, the program can read only three records (no record is
found for Mark).

In this example, if you specified JREF(2) instead of JREF(1), the records returned to the program would
be different, as follows:

NAME ADDR BAL
Anne 120 1st St. 5.00
Doug 40 Pillsbury 6.50

2 Lakeside Dr. 0.00
Sue 120 Broadway 2.00

JDUPSEQ (Join Duplicate Sequence) keyword—join logical files only
Use this join-level keyword to specify the order in which records with duplicate join fields are presented
when your program reads a join logical file.

The format of the keyword is:
JDUPSEQ(sequencing-field-name [*DESCEND])

This keyword has no effect on the ordering of unique records. If you do not specify the keyword, the
system does not guarantee the order in which records with duplicate join fields are presented.

If more than one JDUPSEQ keyword is specified in one join specification, the order in which you specify
the JDUPSEQ keywords determines the order of presentation of duplicate records. This is similar to
specifying an additional key field, in that it determines the order in which records with duplicate keys are
presented.

This keyword is valid only for join logical files.

In a single join specification, the total length of fields specified as to fields on the JFLD keyword and fields
specified on the JDUPSEQ keyword cannot exceed 120 bytes.

Physical and Logical Files, JDFTVAL

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 53



The sequencing field name must be a field that (1) exists in the to file for this join specification and (2) has
not been specified as a to field on the JFLD keyword for this join specification. The sequencing field name
can be a concatenated field or a SST field. The sequencing field name need not be specified in the record
format for the join logical file.

Optionally, you can specify *DESCEND to change the order in which duplicate records are presented.
Without *DESCEND, duplicate records are presented in the following default sequences:

v Ascending signed order for a numeric sequencing field

v Ascending order for a character sequencing field

Example 1:

The following example shows how to specify the JDUPSEQ keyword.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R JREC JFILE(PF1 PF2)
00020A J JOIN(PF1 PF2)
00030A JFLD(NAME1 NAME2)
00040A JDUPSEQ(PHONE)
00050A NAME1
00060A ADDR
00070A PHONE

This example assumes that PF1 and PF2 have the following records:

PF1 NAME1 ADDR PF2 NAME2 TELEPHONE
Anne 120 1st St. Anne 555-1111
Doug 40 Pillsbury Anne 555-6666
Mark 2 Lakeside Dr. Anne 555-2222

Doug 555-5555

There are three records for Anne in PF2, showing three telephone numbers. With JDUPSEQ specified as
shown, the records are returned as follows:

NAME ADDR TELEPHONE
Anne 120 1st St. 555-1111
Anne 120 1st St. 555-2222
Anne 120 1st St. 555-6666
Doug 40 Pillsbury 555-5555

The JDUPSEQ keyword only affects the order of records when duplicates exist.

Example 2:

This example assumes the logical file is based on the same physical files as example 1. There are three
records for Anne in PF2, showing three telephone numbers.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R JREC JFILE(PF1 PF2)
00020A J JOIN(PF1 PF2)
00030A JFLD(NAME1 NAME2)
00040A JDUPSEQ(PHONE *DESCEND)
00050A NAME1
00060A ADDR
00070A PHONE

A

Physical and Logical Files, JDUPSEQ

54 OS/400 DDS Reference: Physical and Logical Files V5R1



When you specify JDUPSEQ with *DESCEND, the records are returned as follows:

NAME1 ADDR TELEPHONE
Anne 120 1st St. 555-6666
Anne 120 1st St. 555-2222
Anne 120 1st St. 555-1111
Doug 40 Pillsbury 555-5555

The list shows Anne’s telephone numbers in descending order.

JFILE (Joined Files) keyword—join logical files only
Use this record-level keyword to identify the physical files containing the data to be accessed through the
join logical file you are defining.

The format of the keyword is:
JFILE([library-name/]physical-file-name [..32])

This keyword is similar to the PFILE keyword except it identifies this file as a join logical file. The JFILE
keyword is not allowed with the PFILE keyword.

The JFILE keyword is required at the record level in a join logical file. The JFILE keyword requires a
minimum of two physical file names. You can specify the same file name more than once.

The first file is called the primary file, which is the file from which the join will begin. All other files are
called secondary files. Up to 31 secondary files can be specified (32 total files on the JFILE keyword).

Distributed data management (DDM) files are allowed on the JFILE keyword only when the logical file is
being created on a remote system. See the Distributed data management information for more information.

The following considerations apply to the order in which you specify physical files on the JFILE keyword:

v If the physical files have a different number of records, specify physical files with fewer records toward
the left on the JFILE keyword. The primary file should have as many or fewer records than the
secondary files. This can improve performance when reading files.

v Primary and secondary files specified in join specifications must be in a specific order. This order
depends on the order in which the files are specified on the JFILE keyword. See example 3 in the JOIN
(Join) keyword—join logical files only keyword description.

v The JOIN and JREF keywords can use relative file numbers to identify files specified by the JFILE
keyword. The first file specified on the JFILE keyword has relative file number 1, the second file has
relative file number 2, and so on up to 32. If you use relative file numbers instead of file names on the
JOIN and JREF keywords, the order of files on the JFILE keyword can affect the way the JOIN and
JREF keywords are specified.

Note: If the names in the physical file are not unique, you must specify relative file numbers.

Examples:

The following examples show how to specify the JFILE keyword.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R JREC JFILE(PF1 PF2)
00020A J JOIN(PF1 PF2)
00030A JFLD(NAME1 NAME2)

A

In the join logical file, PF1 is the primary file and PF2 is the secondary file.

Physical and Logical Files, JDUPSEQ

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 55

../ddm/rbae5mst02.htm


|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R JREC JFILE(MYLIBA/PHYSICAL1 +
00020A MYLIBB/PHYSICAL2 MYLIBC/PHYSICAL3)
00030A J JOIN(1 2)
00040A JFLD(FIELD1 FIELD2)
00050A J JOIN(1 3)
00060A JFLD(FIELD1 FIELD2)

A

In the join logical file, file PHYSICAL1 in library MYLIBA is the primary file. File PHYSICAL2 in library
MYLIBB and file PHYSICAL3 in library MYLIBC are secondary files.

JFLD (Joined Fields) keyword—join logical files only
Use this join-level keyword to identify the from and to fields whose values are used to join physical files in
a join logical file. These fields are both referred to as join fields.

The format of the keyword is:
JFLD(from-field-name to-field-name)

The join fields must correspond to fields in the physical files identified on the JOIN keyword for this join
specification. The name you specify on the JFLD keyword must be the same as the name specified in the
physical file unless it was renamed in the join logical file. If you do not specify a JOIN keyword, then the
JFILE keyword is used.

This keyword is valid only for join logical files.

At least one JFLD keyword is required for each join specification. A join specification is identified by J in
position 17. Since at least one join specification is required in a join logical file, you must have at least one
JFLD keyword specified in a join logical file.

These fields need not also be specified as fields in the record format for a join logical file.

To specify additional join fields to use when joining physical files, specify more than one JFLD keyword.

The field names you specify on the JFLD keyword must either be specified at the field level in the join
record format or in one of the physical files, which are specified on the JFILE keyword.

The OS/400 program uses the following search order to match join field names with defined fields:

1. Fields specified in the join logical file at the field level in positions 19 through 28.

Note: Fields that specify the CONCAT, RENAME, or SST keywords are valid as join fields; fields that
are specified on CONCAT, RENAME, or SST keywords cannot be join fields.

2. Fields in the physical file specified on the JOIN keyword.

The rules for specifying join fields are as follows:

v The from field must be found in the from file specified on the JOIN keyword.

v The to field must be found in the to file specified on the JOIN keyword.

v Join fields are not required to be defined in the join record format.

v From and to fields must have the same field attributes (length, data type, and decimal positions) but
need not have the same name. When the joined fields in the physical files have different definitions, you
must redefine one or both fields. If you redefine fields, there is a possibility of data conversion errors.
See “Length for physical and logical files (positions 30 through 34)” on page 20, “Data type for physical
and logical files (position 35)” on page 23, “Decimal positions for physical and logical files (positions 36
and 37)” on page 25, and “Usage for physical and logical files (position 38)” on page 26.

Physical and Logical Files, JFILE

56 OS/400 DDS Reference: Physical and Logical Files V5R1



Note: Character fields need not have the same length. The shorter join field is padded with blanks to
equal the length of the longer join field.

v In a single join specification, the total length of fields specified as to fields on the JFLD keyword and
fields specified on the JDUPSEQ keyword can be up to 120 bytes.

Examples:

The following examples show how to specify the JFLD keyword.

Example 1:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R JREC JFILE(PF1 PF2)
00020A J JOIN(PF1 PF2)
00030A JFLD(NAME1 NAME2)

A

In the join logical file, the JFLD keywords specify that NAME1 in physical file PF1 is used to join to
NAME2 in physical file PF2.

Example 2:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R JREC JFILE(PF1 PF2)
00020A J JOIN(PF1 PF2)
00030A JFLD(NAME1 NAME2)
00040A JFLD(ADDR1 ADDR2)

A

In the join logical file, the JFLD keywords specify that NAME1 and ADDR1 in physical file PF1 are used to
join to NAME2 and ADDR2 in physical file PF2.

JOIN (Join) keyword—join logical files only
Use this join-level keyword to identify which pair of files are joined by the join specification in which you
specify this keyword.

The format of the keyword is:
JOIN(from-file to-file)

This keyword is valid only for join logical files.

You can use file names or relative file numbers to indicate which files are to be joined. You must specify a
relative file number if the same file is specified more than once on the JFILE keyword.

If you specify file names, you must select files that you have specified only once on the JFILE keyword.
On each JFILE keyword, the from file must occur before the to file.

If you specify numbers, they correspond to the files specified on the JFILE keyword. The following are the
valid values:

File Valid Values

From-file number
1 through 31

To-file number
2 through 32

The from-file number must always be less than the to-file number.

Physical and Logical Files, JFLD

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 57



Special rules apply to the order in which you specify from and to files. See example 3 below for details.

In a join logical file, each secondary file can be a to file only once.

Join specifications for physical and logical files:

To describe a join specification do the following:

v Specify J in position 17 immediately after the record level (before the first field name in positions 19
through 28). J in position 17 indicates the beginning of a join specification.

v Specify the JOIN keyword. The JOIN keyword is optional when only two files are specified on the JFILE
keyword. When more than two physical files are specified on the JFILE keyword, one JOIN keyword is
required for each secondary file.

v Specify the JFLD keyword at least once for each join specification.

v The end of the join specification is indicated by another J in position 17 or by a field name specified in
positions 19 through 28.

There must be one join specification for each secondary file specified on the JFILE keyword. Therefore, at
least one join specification is required in a join logical file.

You can specify the JOIN keyword only once within a join specification.

Examples:

The following examples show how to specify the JOIN keyword.

Example 1:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RECORD1 JFILE(PFA PFB PFC)
00020A J JOIN(PFA PFB)
00030A JFLD(NAME1 NAME2)
00040A J JOIN(PFA PFC)
00050A JFLD(NAME1 NAME3)
00060A NAME1

A

In this example, PFA is joined to PFB and also to PFC.

Example 2:

The following example shows how to specify JOIN using relative file numbers.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RECORD1 JFILE(PFA PFB PFC)
00020A J JOIN(1 2)
00030A JFLD(NAME1 NAME2)
00040A J JOIN(1 3)
00050A JFLD(NAME1 NAME3)
00060A NAME1

A

Example 2 is equivalent to example 1. PFA is the first physical file specified on the JFILE keyword and has
relative file number 1. PFB and PFC are the second and third files specified on the JFILE keyword and
have relative file numbers 2 and 3, respectively.

Example 3:

The following example shows the order of associated physical files.

Physical and Logical Files, JOIN

58 OS/400 DDS Reference: Physical and Logical Files V5R1



|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R J3 JFILE(VENDORS PARTS PARTWARE +
00020A WAREHOUSE
�1�
00030A J JOIN(1 2) �2�
00040A JFLD(VNBR VNUM)
00050A J JOIN(2 3) �3�
00060A JFLD(PNBR PNBR)
00070A J JOIN(3 4) �3�
00080A JFLD(WNBR WNBR)
00090A VNAME
00100A VAD1
00110A VAD2
00120A PNBR JREF(2)
00130A WNBR JREF(4)
00140A BIN
00150A QOH

A

The join logical file in this example is based on four physical files. The VENDORS file, which is specified
first on the JFILE keyword, is the primary file and has relative file number 1. The PARTS, PARTWARE,
and WAREHOUSE files, which are secondary files, have relative file numbers 2, 3, and 4, respectively.

Notice the pattern of numbers specified on the JOIN keywords:

�1� The first parameter value on the first JOIN keyword (the first from file) must be the primary file.

�2� The second parameter values specified on the JOIN keywords (to files) must reflect the same
order as the secondary files on the JFILE keyword. If file names were specified instead of relative
file numbers, they would have to be specified in the following order:
J JOIN(VENDORS PARTS)
J JOIN(PARTS PARTWARE)
J JOIN(PARTWARE WAREHOUSE)

�3� On each JOIN keyword, the from and to files must be specified in ascending order.

Note: A file can be specified as a from file more than once. For example, the parameters on the JOIN
keywords above could have been specified as follows:
J JOIN(1 2)
J JOIN(2 3)
J JOIN(2 4)

However, a file can be specified as a to file only once.

JREF (Join Reference) keyword—join logical files only
Use this field-level keyword in join logical files for fields whose names are specified in more than one
physical file. This keyword identifies which physical file contains the field.

The format of the keyword is:
JREF(file-name | relative-file-number)

You can specify either the physical file name or its relative file number. If a physical file is named twice on
the JFILE keyword, then you must specify the relative file number. The relative file number corresponds to
the physical file name specified on the JFILE keyword. For example, specifying JREF(1) associates a field
with the first physical file specified on the JFILE keyword. Specifying JREF(2) associates a field with the
second physical file specified on the JFILE keyword. See example 2 below.

This keyword is valid only in a join logical file.

Physical and Logical Files, JOIN

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 59



Join logical files are based on two or more physical files (up to 32). Field names specified in the record
format in a join logical file must uniquely identify only one field from the physical files on which the join
logical file is based. For example, if the join logical file is based on two physical files, and each physical
file has the field named NAME, you must specify the JREF keyword to identify which physical file the field
comes from.

When a field name is unique among the physical files specified on the JFILE keyword, this keyword is
optional. For example, if the join logical file is associated with two physical files, and only one of the
physical files has a field named NAME1, you do not need to specify the JREF keyword.

If the join logical file is associated with only one physical file (the JFILE keyword names the same file
twice), you must specify the JREF keyword on every field.

Examples:

The following examples show how to specify the JREF keyword.

Example 1:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R JOINREC JFILE(PFA PFB PFC)
00020A :
00030A :
00040A :
00050A NAME JREF(PFB)

A

In this example, the JREF keyword is specified with the file name, and NAME occurs in both PFA and
PFB. Specifying JREF (PFB) associates this field with PFB.

Example 2:

The following example shows how to use the file reference numbers to specify JREF.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R JOINREC JFILE(PFA PFB PFC)
00020A :
00030A :
00040A :
00050A NAME JREF(2)

A

Example 2 is equivalent to example 1. In example 2, NAME occurs in both PFA and PFB. Specifying
JREF(2) associates this field with PFB (the second of the physical files specified on the JFILE keyword).

LIFO (Last-In First-Out) keyword for physical and logical files
Use this file-level keyword to specify that records with duplicate key values from the same physical file
member are retrieved in a last-in first-out (LIFO) order.

This keyword has no parameters.

LIFO is not allowed with an FCFO, FIFO, UNIQUE, or REFACCPTH keyword.

If you do not specify FCFO, FIFO, LIFO, or UNIQUE, records with duplicate key values are retrieved in
first-in first-out (FIFO), last-in first-out (LIFO), or first-changed first-out (FCFO) order, but the order in which
they are retrieved is not guaranteed.

Physical and Logical Files, JREF

60 OS/400 DDS Reference: Physical and Logical Files V5R1



At least one key field must be specified in a file containing the LIFO keyword. The LIFO keyword is not
valid when you specify FILETYPE(*SRC) on the Create Physical File (CRTPF) or Create Logical File
(CRTLF) command.

Example:

The following example shows how to specify the LIFO keyword for a physical file.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A LIFO
00020A R CUSREC TEXT(’CUSTOMER RECORD’)
00030A CUSNAMEF 10A
00040A CUSNAMEM 1A
00050A CUSNAMEL 10A
00060A K CUSNAMEL

A

NOALTSEQ (No Alternative Collating Sequence) keyword for physical
and logical files
Use this key field-level keyword to specify that the ALTSEQ keyword specified at the file level does not
apply to this key field. If you specify ABSVAL or SIGNED for a key field, NOALTSEQ is automatically in
effect whether or not the NOALTSEQ keyword is specified for that key field.

This keyword has no parameters.

Example:

The following example shows how to specify the NOALTSEQ keyword.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A ALTSEQ(TABLELIB/TABLE1)
00020A R DSTR
00030A :
00040A :
00050A CODE 1
00060A NAME 20
00070A :
00080A :
00090A K CODE
00100A K NAME NOALTSEQ

A

Records with the record format DSTR are sequenced by the composite keys CODE and NAME. CODE is
sequenced by the alternative collating sequence (TABLE1 in TABLELIB). NAME is sequenced by the
EBCDIC collating sequence. NOALTSEQ prevents the sequence of the NAME field from being altered.

PFILE (Physical File) keyword—logical files only
Use this record-level keyword to identify the physical file(s) containing the data to be accessed through the
record format you are now defining.

The format of the keyword is:
PFILE([library-name/]physical-file-name [.32])

The PFILE keyword is required on every record format in a simple or multiple format logical file. This
keyword is similar to the JFILE keyword except it identifies this file as a simple or multiple format logical
file; the PFILE keyword is not allowed with the JFILE keyword. Up to 32 physical file names can be
specified on PFILE keywords in a logical file. If the maximum is being used, 32 physical file names can be
specified on one record format (using one PFILE keyword) or 32 physical file names can be distributed

Physical and Logical Files, LIFO

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 61



among 32 record formats; or, file names can be unevenly distributed among record formats. In any case,
the maximum number of physical file names allowed is 32. For restrictions on specifying multiple physical
files when creating a logical file, see the appropriate high-level language manual.

For each physical-file-name, a library-name is optional. If the library-name is omitted, the library list (*LIBL)
that is in effect at file creation time is used.

If you specify more than one physical file name for one record format in a multiple format logical file, all
fields in the record format for the logical file must exist in all physical files specified. This type of file cannot
be externally described in RPG because it results in duplicate format names. If your program requires
access to fields that occur in one or more of the physical files specified on the PFILE keyword, but not in
all of them, you can do one of the following:

v Specify a join logical file. If you do this, use the JFILE keyword instead of the PFILE keyword.

v Specify a separate logical file record format that includes fields not in the first physical file.

For instance, if FLD1 and FLD2 occur in physical files PF1, PF2, and PF3, but FLD3 occurs only in
PF3, you cannot specify FLD3 in a logical file record format based on PF1 and PF2. To provide access
to FLD3, either specify a second logical file record format that includes FLD3 or use a join logical file.

You cannot use a simple or multiple format logical file to bring together into one record format fields
from separate physical files. Use a join logical file to accomplish this. A record read through the use of a
record format in a simple or multiple format logical file can contain data from only one physical file, and
a record written through the use of a record format in a logical file can be stored only in one physical
file.

Distributed Data Management (DDM) files are allowed on the PFILE keyword only when the logical file is
being created on a remote system.

Examples:

The following examples show how to specify the PFILE keyword.

Example 1:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R LOGRCD1 PFILE(PF1)

A

In this example, LOGRCD1 can use fields only in PF1.

Example 2:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R LOGRCD2 PFILE(PF1 PF2)

A :
A :

00020A R LOGRCD3 PFILE(PF1 PF2 PF3)
A :
A :
A

In this example, LOGRCD2 must use fields common to PF1, and PF2, and LOGRCD3 must use fields
common to PF1, PF2, and PF3.

Example 3:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R LOGRCD4 PFILE(PF1)

A :
A :

00020A R LOGRCD5 PFILE(PF2)

Physical and Logical Files, PFILE

62 OS/400 DDS Reference: Physical and Logical Files V5R1



A :
A :

00030A R LOGRCD6 PFILE(LIB1/PF6)
A

In this example, LOGRCD4, LOGRCD5, and LOGRCD6 can have unique fields. LOGRCD6 specifies a
qualified physical-file name.

RANGE (Range) keyword for physical and logical files
Specify this keyword at the field level, the select- or omit-field level, or both.

The format of the keyword is:
RANGE(low-value high-value)

Example 1:

The following example shows how to specify character and numeric strings for the RANGE keyword.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RECORD PFILE(PF1)

A
00020A FIELDA 1 0 RANGE(2 5) �1�
00030A FIELDB 1 RANGE(’2’ ’5’)
00040A FIELDC
00050A K FIELDD
00060A S FIELDA RANGE(1 4) �2�

A

In this example, RANGE (�1�) is specified for FIELDA and FIELDB as a validity checking keyword for
display files that refer to FIELDA and FIELDB. In the display file, RANGE requires that the work station
user type only 2, 3, 4, or 5 in FIELDA or FIELDB. FIELDA is a numeric field and FIELDB is a character
field. The type of field you specify depends on the high-level language the program is written in.

RANGE (�2�) is specified as a select/omit keyword for FIELDA. Records from the physical file PF1 are
retrieved through this logical file record format only if the value of FIELDA is 1, 2, 3, or 4.

Example 2:

The following example uses hexadecimal character strings when specifying the RANGE keyword.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RCD1 PFILE(PF1)
00020A CODEA
00030A FLD1
00040A FLD2
00050A K FLD1
00060A S CODEA RANGE(X’51’ X’54’)

A

RANGE is specified as a select/omit keyword for CODEA (which is a 1-byte field). Records from physical
file PF1 are retrieved through this record format only if the value of field CODEA is from hex 51 through
hex 54.

Specifying RANGE at the field level
At the field level, this keyword specifies validity checking for the field you are defining when it is referred to
later during display file creation.

RANGE does not affect the physical or logical file you are defining. When you define an input-capable field
in a display file, you can refer to the field you are now defining by specifying R in position 29 and the REF

Physical and Logical Files, PFILE

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 63



or REFFLD keyword. During display file creation, the OS/400 program copies the RANGE keyword and
other field attributes from the field in the physical or logical file into the field in the display file. You can
override the RANGE keyword (as well as all other validity-checking keywords and the CHKMSGID
keyword) by specifying any validity checking keyword for the field in the display file. See the Reference for
display files topic for details.

The rules for specifying this keyword in a physical or logical file are the same as for a display file. See the
RANGE keyword for display files for more information and an example that shows how to specify the
keyword.

You cannot specify the RANGE keyword on a floating-point field (F in position 35) or a hexadecimal field
(H in position 35). Do not specify the RANGE keyword on a date, time, or timestamp field (L, T, or Z in
position 35).

Specifying RANGE at the select or omit-field level
At the select/omit-field level, this keyword selects or omits records retrieved from the physical file(s) when
your program sends an input operation using the record format in which the select/omit field is specified.

The following rules apply:

v If the field you are defining is a character field, you must specify character strings or hexadecimal
character strings.

Specify character strings enclosed in apostrophes (see example 1 above).

Specify hexadecimal character strings as an X followed by a combination of the digits 0 through 9 and
the letters A through F, enclosed in apostrophes. The number of hexadecimal digits in apostrophes must
be exactly twice the specified length of the field. See example 2.

v If you are defining a numeric field, you must specify a numeric value (digits 0 through 9 specified
without apostrophes). See example 1.

v If you are defining a date field, specify a valid date in the same format specified on the DATFMT
keyword and use the same separator as specified on the DATSEP keyword. For example,
RANGE(’12/15/91’ ’12/31/91’) is the default value if *MDY is specified for DATFMT and ‘/’ is specified
for DATSEP.

v If you are defining a time field, specify a valid time in the same format specified on the TIMFMT
keyword and use the same separator as specified on the TIMSEP keyword. For example,
RANGE(’11.00.00’ ’12.00.00’) is the default value if *ISO is specified for TIMFMT. The default
separator for *ISO is a period (.).

v If you are defining a timestamp field, you must specify the default value in the following format:
RANGE(’YYYY-MM-DD-HH.MM.SS.UUUUUU’ ’YYYY-MM-DD-HH.MM.SS.UUUUUU’)

REF (Reference) keyword—physical files only
Use this file-level keyword to specify the name of the file from which field descriptions are retrieved.

The format of the keyword is:
REF([library-name/]database-file-name [record-format-name])

REF supplies the field attributes from a previously defined record format. Specify the file name once in the
REF keyword instead of on several REFFLD keywords if each field description refers to the same file. To
refer to more than one file, use the REFFLD keyword. You can specify the REF keyword only once.

The database-file-name is a required parameter value for this keyword. The library-name and the
record-format-name are optional.

Physical and Logical Files, RANGE

64 OS/400 DDS Reference: Physical and Logical Files V5R1

../rzakc/rzakcmstpos29.htm
../rzakc/rzakcmstdfrange.htm


If you do not specify the library-name, the library list (*LIBL) in effect at file creation time is used. Specify a
record-format-name as a parameter value for this keyword if there is more than one record format. If you
do not specify the record-format-name, each record format is searched sequentially. The first occurrence
of the field name is used. For information on how the choice of REF and REFFLD keywords controls these
searches, see the topic ″When to specify REF and REFFLD keywords for DDS files″ in the DDS
Reference: Concepts information..

You can specify a Distributed Data Management (DDM) file on this keyword.

When using a DDM file, the database-file-name and library-name are the DDM file and library names on
the source system. The record-format-name is the record format name in the remote file on the target
system.

Note: IDDU files cannot be used as reference files.

Example 1:

The following example shows how to specify the REF keyword.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A REF(FILE1)
00020A R RECORD
00030A FLD1 R

A

FLD1 has the same attributes as the first (or only) FLD1 in FILE1.

Example 2:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A REF(LIB1/FILE1 RECORD2)
00020A R RECORD
00030A FLD1 R

A

FLD1 has the same attributes as FLD1 in RECORD2 in FILE1 in LIB1.

REFACCPTH (Reference Access Path Definition) keyword—logical files
only
Use this file-level keyword to specify that the access path information for this logical file is to be copied
from another physical or logical file. The access path information includes key information, select and omit
information, alternative collating sequence information, dynamic select information, and key sequencing
information (specified in the FCFO, FIFO, LIFO, and UNIQUE keywords).

The format of the keyword is:
REFACCPTH([library-name/]database-file-name)

The name of the file defining the access path is the parameter value for the keyword.

The file containing the REFACCPTH keyword cannot contain key, select, or omit fields.

The record format(s) in the file you are defining can contain fewer or more fields than the record format(s)
in the physical file on which this logical file is based.

If the file specified on the REFACCPTH keyword is a simple or multiple format logical file, it and the file
containing the REFACCPTH keyword must have the same physical files specified in the same order on the
PFILE keyword.

Physical and Logical Files, REF

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 65

../dds/rbafpmstappa.htm


The REFACCPTH keyword is not allowed in join logical files. You can specify a join logical file as the
parameter value on the REFACCPTH keyword only if all the following are true:

v The file you are creating is a simple logical file.

v The physical file specified on the PFILE keyword is the first file specified on the JFILE keyword in the
join logical file.

v The join logical file has key fields specified and does not have select and omit fields specified.

You cannot specify a Distributed Data Management (DDM) file on this keyword.

You cannot specify the REFACCPTH keyword with the DYNSLT, ALTSEQ, FCFO, FIFO, LIFO, or UNIQUE
keywords.

Example:

The following example shows how to specify the REFACCPTH keyword.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00030A* ORDER HEADER LOGICAL FILE (ORDHDR11)
00040A REFACCPTH(DSTLIB/ORDHDRL)
00050A R ORDHDR PFILE(ORDHDRP)

A

REFFLD (Referenced Field) keyword—physical files only
Use this field-level keyword to refer to a field under one of these three conditions:

v When the name of the referenced field is different from the name in positions 19 through 28

v When the name of the referenced field is the same as the name in positions 19 through 28, but the
record format, file, or library of the referenced field is different from that specified with the REF keyword

v When the referenced field occurs in the same DDS source file as the referencing field

The format of the keyword is:
REFFLD([record-format-name/]referenced-field-name
[{*SRC | [library-name/]database-file-name}])

The referenced-field-name is required even if it is the same as the name of the field being defined. Use
the record-format-name when the referenced file contains more than one record format. Use *SRC (rather
than the database-file-name) when the field name being referred to is in the same DDS source file as the
field being defined. *SRC is the default value when the database-file-name and the library-name are not
specified.

Note: When you refer to a field in the same DDS source file, the field being referred to must precede the
field being defined.

Specify the database-file-name (with its library-name, if necessary) to search a particular database file.

An R must be in position 29. Some keywords specified with the field being referred to are not included on
the field being defined. For more information, see “Reference for physical and logical files (position 29)” on
page 19.

If you specify REF at the file level and REFFLD at the field level in the same DDS source file, the
REFFLD specification is used. The search sequence depends on both the REF and REFFLD keywords.
For more information, see the topic ″When to specify REF and REFFLD keywords for DDS files″ in the
DDS Concepts information.

You can specify a Distributed Data Management (DDM) file on this keyword.

Physical and Logical Files, REFACCPTH

66 OS/400 DDS Reference: Physical and Logical Files V5R1

../dds/rbafpmstappa.htm


When using a DDM file, the database-file-name and library-name are the DDM file and library names on
the source system. The referenced-field-name and the record-format-name are the field name and the
record format name in the remote file on the target system.

Note: IDDU files cannot be used as reference files.

Example:

The following example shows how to code the REFFLD keyword.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R FMAT1
00020A ITEM 5
00030A ITEM1 R REFFLD(ITEM)
00040A ITEM2 R REFFLD(FMAT1/ITEM)
00050A ITEM3 R REFFLD(ITEM FILEX)
00060A ITEM4 R REFFLD(ITEM LIBY/FILEX)
00070A ITEM5 R REFFLD(FMAT1/ITEM LIBY/FILEX)
00080A ITEM6 R REFFLD(ITEM *SCR)

A

The default for lines 00030 and 00040 is to search the DDS source file where they are specified because
the REF keyword is not specified. In line 00080, the parameter *SRC explicitly specifies this source file.
See the topic ″When to specify REF and REFFLD keywords for DDS files″ in the DDS Reference:
Concepts information for explanations of the various specifications.

REFSHIFT (Reference Shift) keyword for physical and logical files
Use this field-level keyword to specify a keyboard shift for a field when the field is referred to in a display
file or DFU operation.

The format of the keyword is:
REFSHIFT(keyboard-shift)

When defining an input-capable field in a display file, refer to the field you are now defining by specifying
the letter R in position 29 and the REF or REFFLD keyword. At display file creation, the OS/400 program
copies the REFSHIFT keyword and other field attributes from the field in the logical file into the field in the
display file. You can override the editing specified in the display or printer file by specifying new editing
keywords. Specifying the DLTEDT keyword deletes all editing for the field. See the Reference for display
files topic for details.

The keyboard shift in the display file (position 35) becomes the parameter value specified on this keyword
instead of the data type specified in the database file. When you refer to a field with the REFSHIFT
keyword from a physical or logical file, the REFSHIFT keyword is copied into the new field. However, if the
field attributes (such as data type) specified for the new field are not compatible with the keyboard shift
specified on the REFSHIFT keyword, the keyword is ignored.

This keyword is valid for fields with data types A, S, B, or P. Choose any keyboard shift that is compatible
with the data type as a parameter value. The following parameters apply to the data types:

v Character field (A): REFSHIFT(A | X | W | N | I | D | M)

v Numeric fields (S, B, P): REFSHIFT(S | Y | N | I | D)

Refer to the description of the data type/keyboard shift positional entry for display files for more information
on the parameters.

Example 1:

The following example shows how to specify the REFSHIFT keyword for a physical file.

Physical and Logical Files, REFFLD

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 67

../dds/rbafpmstappa.htm
../rzakc/rzakcmstpos29.htm
../rzakc/rzakcmstdfdt.htm


|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RECORD
00020A FIELDA 5 REFSHIFT(X)
00030A FIELDN 4P REFSHIFT(N)

A

Fields FIELDA and FIELDN in the file (FILE1) have the REFSHIFT keyword specified as shown. The
REFSHIFT keyword is used when the fields are referred to from a display file.

Example 2:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A REF(FILE1)
00020A R RECORD
00030A FIELDA R 1 2

A FIELDN R 2 2
A

The display file references FILE1 (REF keyword). Fields FIELDA and FIELDN in this display file reference
fields FIELDA and FIELDN in FILE1. When the REFSHIFT keyword is specified for the fields in FILE1, the
keyboard shift specified with the REFSHIFT keyword is used in the display file, and the fields have the
following attributes:

v FIELDA has keyboard shift X in position 35.

v FIELDN has keyboard shift N in position 35.

RENAME (Rename) keyword—logical files only
Use this field-level keyword when you want a field name in the logical record format you are defining to be
different from its corresponding physical file field name.

The format of the keyword is:
RENAME(physical-file-field-name)

The name as it appears in the physical file record format is the parameter value for this keyword. One field
in the physical file record format can be renamed to more than one field in the record format being
described.

You would rename fields in situations similar to the following:

v You want to use programs that were written using a different name for the same field.

v You want to map one field in a physical file record format to two or more fields in a logical file record
format.

v You are using a high-level language (such as RPG III) that does not permit two fields having different
names to have only one data storage area. By specifying the RENAME keyword, you allow both fields
to access the same data storage area.

If you specify the same physical field more than once in a record format in the logical file (that is, by using
either RENAME or CONCAT), the sequence in which the fields are specified in the logical file is the
sequence in which the data is moved to the physical file on an update or insert operation. Thus, the value
in the last occurrence of the physical field is the value that is put in the physical record and is the value
that is used for all keys built over that physical field. All previous values of the same field are written over
and have no effect.

Examples:

The following examples show how to specify the RENAME keyword.

In the following example, the QTYDUE field in the physical file (PF1) is renamed QTY in the logical file.

Physical and Logical Files, REFSHIFT

68 OS/400 DDS Reference: Physical and Logical Files V5R1



|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00050A R RCD1 PFILE(PF1)
00060A QTY RENAME(QTYDUE)

A

In the following example, the renamed field in the logical file (QTY) is used as a key field.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00050A R RCD2 PFILE(PF2)
00060A :

A :
00130A QTY RENAME(QTYDUE)
00140A K QTY

A

SIGNED (Signed) keyword for physical and logical files
Use this key field-level keyword to specify that when sequencing the values associated with this numeric
key field, the OS/400 program is to consider the signs of the values (negative versus positive values).

This keyword has no parameters.

The following example shows six records with a zoned decimal key field:

Record Numeric Key Field (Zoned Decimal) Hexadecimal Representation
1 98 F9F8
2 00 F0F0
3 98− F9D8
4 97 F9F7
5 20 F2F0
6 99 F9F9

By default (with no sequencing keywords specified and without the ALTSEQ keyword), the key field has
the SIGNED attribute. The records are sequenced in the following order:

Record Numeric Key Field (Zoned Decimal) Hexadecimal Representation
3 98− F9D8
2 00 F0F0
5 20 F2F0
4 97 F9F7
1 98 F9F8
6 99 F9F9

If both SIGNED and DESCEND are specified, the records are sequenced in this order:

Record Numeric Key Field (Zoned Decimal) Hexadecimal Representation
6 99 F9F9
1 98 F9F8
4 97 F9F7
5 20 F2F0
2 00 F0F0
3 98− F9D8

This keyword is not valid for a character, date, time, timestamp, or hexadecimal data type field. You cannot
use it with the ABSVAL, DIGIT, UNSIGNED, or ZONE keywords.

Physical and Logical Files, RENAME

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 69



SIGNED (a key field-level keyword) causes ALTSEQ (a file-level keyword) to be ignored. If you specify
SIGNED for a key field, NOALTSEQ is automatically in effect for that key field even if ALTSEQ is specified
at the file level. This occurs whether or not NOALTSEQ is specified.

Example:

The following example shows how to specify the SIGNED keyword for a physical file.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RECORD
00020A FLDA 7S 2
00030A FLDB
00040A K FLDA SIGNED

A

SST (Substring) keyword—logical files only
Use this field-level keyword to specify a character string that is a subset of an existing character,
hexadecimal, zoned field, or graphic.

The format of the keyword is:
SST(field-name starting-position [length])

The field-name parameter specifies the name of the field from which the substring is taken. This field must
be defined in the same logical file format prior to the SST field (which is the field you are defining) or it
must exist in the physical file specified on the PFILE or JFILE keyword. To find the field, the system
searches for a matching field name as follows:

1. First, the system searches the field names specified in positions 19 to 28 in the logical file format prior
to the SST field.

2. If no matching field name is found in positions 19 to 28 in the logical file format, the system searches
for the field name in the physical file specified on the PFILE or JFILE keyword, according to the
following rules:

v If the logical file is a simple or multiple format logical file, the field must exist in all files specified on
the PFILE keyword.

v If the logical file is a join logical file and the JREF keyword is specified on the SST field, the field
must exist in the JFILE referred to by the JREF keyword.

v If the logical file is a join logical file and the JREF keyword is not specified on the SST field, the field
must exist in exactly one JFILE.

The substring begins at the starting position you specify on the SST keyword. Specify its length either as
the third parameter on the keyword or on the field length (DDS positions 30 through 34). The starting
position is a required parameter; the length is optional.

Note: Both the starting position and length values must be positive integer values and the defined
substring must not be greater than the length of the field specified on the SST keyword.

The following rules apply:

v If the field on the SST keyword is hexadecimal, the resulting field is hexadecimal; otherwise, the
resulting field is always character. If the data type is not specified in DDS, a default of H or A is
assigned.

v The use of the resulting field must be either input-only (I) or neither (N).

v The length of the resulting field is optional. You must specify either the field length or the length
parameter on the keyword. If you specify both, they must be equal. If the field length is not specified, it
is assigned the length parameter on the keyword.

v You cannot specify this keyword on the same field with the CONCAT, RENAME, or TRNTBL keywords.

Physical and Logical Files, SIGNED

70 OS/400 DDS Reference: Physical and Logical Files V5R1



v The field specified on this keyword cannot be defined with the CONCAT, TRNTBL, or SST keywords.

Examples:

The following examples show how to specify the SST keyword.

The following example shows how to specify the SST keyword on a join logical file.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R RECORD1 JFILE(PF1 PF2)
A J JOIN(1 2)
A JFELD(CITY CITY)
A ADDRESS JREF(2)
A CITY I SST(ADDRESS 21 10)
A JREF(2)
A SYEAR I SST(SALESDATE 5)
A NAME JREF(1)
A CUSTNAME I SST(NAME 11 10) JREF(2)
A K SYEAR
A

This example shows:

v CITY is a substring of ADDRESS from the logical format and is joined with CITY from PF1.

v CUSTNAME is a substring of NAME from PF2, since NAME in the logical file format has a different
JREF.

v Since SYEAR is a key field, the unique field name SALESDATE must exist in PF1.

v The usage (position 38) for a field with the SST keyword must be I (input only). Since this is a join
logical file, the usage default is I.

The following example shows how to specify the SST keyword on a simple or multiple format logical file.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R REC1 PFILE(PFA)
A LASTNAME I SST(NAME 10 10)
A K LASTNAME
A

The LASTNAME field is a substring of NAME from PFA. The usage I in position 38 must be specified for
SST fields in simple or multiple format logical files.

TEXT (Text) keyword for physical and logical files
Use this record- or field-level keyword to supply a text description (or comment) for the record format or
field that is used for program documentation.

The format of the keyword is:
TEXT(’description’)

The text must be enclosed in apostrophes. If the length of the text is greater than 50 positions, only the
first 50 characters are used by the high-level language compiler.

Note: If the TEXT keyword is specified for a logical file and no fields are specified, the text keyword for
the physical file is used (if specified).

Example:

The following example shows how to specify the TEXT keyword at the record and field levels.

Physical and Logical Files, SST

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 71



|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R CUSMST TEXT(’Customer Master Record’)
00020A FLD1 3 0 TEXT(’ORDER NUMBER FIELD’)

A

TIMFMT (Time Format) keyword for physical and logical files
Use this field-level keyword to specify the format of a time field. This keyword is valid for either time fields
(data type T) or zoned fields (data type S) whose corresponding physical file fields are time fields (data
type T).

The format of the keyword is:
TIMFMT(time-format)

The following table describes the valid time formats and their default separators.

Format Name
Time Format
Parameter

Time Format and
Separator Field Length Example

Hours:Minutes:Seconds *HMS hh:mm:ss 8 14:00:00
International
Standards Organization

*ISO hh.mm.ss 8 14.00.00

IBM USA Standard *USA hh:mm AM or
hh:mm PM

8 2:00 pm

IBM European Standard *EUR hh.mm.ss 8 14.00.00
Japanese Industrial
Standard Christian Era

*JIS hh:mm:ss 8 14:00:00

If you do not specify the TIMFMT keyword for a physical file, the default is *ISO.

If you do not specify the TIMFMT keyword for a logical file, the default is the time format from the physical
file.

If you specify the time-format parameter value *ISO, *USA, *EUR, or *JIS, you cannot specify the TIMSEP
keyword. These formats have a fixed separator.

The TIMFMT keyword overrides the job attribute for a time field. It does not change the system default.

Example:

The following example shows how to specify the TIMFMT keyword.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A
00020A R RECORD
00030A TIMFLD1 T TIMFMT(*ISO)
00040A TIMFLD2 T TIMFMT(*USA)

A

If the current time is 2 o’clock p.m., the system time format is hhmmss, and the system time separator is
':', TIMFLD1 contains 14.00.00. TIMFLD2 contains 2:00 PM.

Physical and Logical Files, TEXT

72 OS/400 DDS Reference: Physical and Logical Files V5R1



TIMSEP (Time Separator) keyword for physical and logical files
Use this field-level keyword to specify the separator character used for a time field. This keyword is valid
only for time fields (data type T).

The format of the keyword is:
TIMSEP(*JOB | ’time-separator’)

The time-separator parameter specifies the separator character that appears between the hour, minute,
and second values. Valid values are a colon (:), period (.), a comma (, ), and blank ( ). The parameter
must be enclosed in apostrophes.

If you specify *JOB, the default is the job attribute.

For physical files, if you do not specify the TIMSEP keyword, the default is the job attribute.

For logical files, if you do not specify the TIMSEP keyword, the default is the separator character from the
physical file. If you did not specify the TIMSEP keyword for the physical file field (*ISO, *USA, *EUR, or
*JIS was specified on the TIMFMT keyword), the default is the job attribute.

If you specify *ISO, *USA, *EUR, or *JIS time format on the TIMFMT keyword, you cannot specify the
TIMSEP keyword. These formats have a fixed separator.

If the DFT keyword is not specified, the default value is the current time.

The TIMSEP keyword overrides the job attribute for a time field. It does not change the system default.

Example:

The following example shows how to specify the TIMSEP keyword.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A
00020A R RECORD
00030A TIMFLD1 T TIMSEP(’ ’)
00040A TIMFLD2 T TIMSEP(’.’)

If the current time is 2 o’clock p.m., the system time format is hhmmss, and the system time separator is
':', TIMFLD1 contains 14 00 00. TIMFLD2 contains 14.00.00.

TRNTBL (Translation Table) keyword—logical files only
Use this field-level keyword to specify the name of a translation table to be used when passing this field
between the physical file on the PFILE or JFILE keyword and your program. The field must be a character
field and its length cannot be redefined in the logical file. If the TRNTBL keyword is specified with the
CONCAT keyword, the fields specified on the CONCAT keyword must all be character fields.

The format of the keyword is:
TRNTBL([library-name/]translation-table-name)

The translation-table-name is a required parameter value; the library-name is optional. If you do not
specify the library-name, the OS/400 program uses the library list (*LIBL) that is in effect at file creation
time.

This keyword is valid only for character fields that are input-only (I specified in position 38) or neither (N
specified in position 38) fields.

Physical and Logical Files, TIMSEP

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 73



You cannot specify the TRNTBL keyword on a hexadecimal field (H in position 35). Do not specify the
TRNTBL keyword on a date, time, or timestamp field (L, T, or Z in position 35).

You can specify as many as 99 different translation tables for different fields in the same logical file.

Translation occurs when the field is read from the physical file. Therefore, all functions specified in the
logical file (such as key field sequencing, select/omit processing, and joining of records) depend on the
translated version of the data.

The TRNTBL keyword changes the data in the records returned from the logical file. The ALTSEQ keyword
changes only the order of the records returned from the logical file.

The TRNTBL keyword is similar to the CHRID keyword, except for the following:

v The TRNTBL keyword names the translation table to be used; the CHRID keyword does not.

v The TRNTBL keyword changes data on input to the program when your program is reading a logical
file. The CHRID keyword changes the data for display or printing on a specific device. Use the TRNTBL
keyword when your program will use the changed data (for example, in an IF-THEN-ELSE statement or
a COBOL SORT statement). If your program is handling data that comes only from a logical file, you do
not need to specify the CHRID keyword in display or printer files used by the program.

The TRNTBL keyword is not valid when you specify FILETYPE(*SRC) on the Create Logical File (CRTLF)
command.

Notes:

1. When you use the TRNTBL keyword, the length of the field in the logical file must be the same as the
length of the corresponding field in the physical file.

2. At file creation time, you must have use authority to the translation table. The translation table is
created using the Create Table (CRTTBL) command.

3. The translation table specified in the TRNTBL keyword is referred to only when the logical file is
created. Therefore, a change to a translation table does not affect the logical file until the logical file is
re-created.

Example:

The following example shows how to specify the TRNTBL keyword.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RECORD1 PFILE(PF1)
00020A CHAR1 I TRNTBL(LIB1/TBL1)
00030A CHAR2 A I TRNTBL(LIB2/TBL2)
00040A NUM1
00050A NUM2

A

Field CHAR1 is translated using table TBL1 in library LIB1. Field CHAR2 is translated using table TBL2 in
library LIB2. Field CHAR2 was redefined in the logical file as a character field (A in position 35) to allow
the TRNTBL keyword to be specified. Fields NUM1 and NUM2 are numeric fields in the physical file PF1
and cannot have the TRNTBL keyword specified for them.

UNIQUE (Unique) keyword for physical and logical files
Use this file-level keyword to specify that records with duplicate key values are not allowed within a
member of this physical or logical file. You can specify whether null key values are to be considered as
duplicates using the parameter. Any inserts or additions of new records, or updates to existing records,
that would result in a duplicate key are rejected. The application program issuing the write or the update

Physical and Logical Files, TRNTBL

74 OS/400 DDS Reference: Physical and Logical Files V5R1



operation receives an error message. When a work station user is using DFU, a message is displayed at
the work station. A copy file command that would copy records with duplicate keys in this file is not
completed.

The format of this keyword is:
UNIQUE[(*INCNULL | *EXCNULL)]

The parameter is optional. When specified, it determines whether null key values cause duplicates.
*INCNULL is the default and indicates to include null values when determining duplicates. *EXCNULL,
when specified, indicates to exclude null values when determining duplicates.

When a logical file based on a physical file has the UNIQUE keyword, the physical file member or
members cannot have duplicate key values.

When you specify the UNIQUE keyword for a physical or logical file, you must specify the
MAINT(*IMMED) parameter value on the Create Physical File (CRTPF) or Create Logical File (CRTLF)
command that creates the file. This means that the access path is maintained immediately as changes are
made.

If you do not specify the UNIQUE keyword, records with duplicate key values are sequenced in the order
you specify. If you specify the FIFO keyword, they are sequenced in first-in first-out order. If you specify
the LIFO keyword, they are sequenced in last-in first-out order. If you specify the FCFO keyword, they are
sequenced in first-changed first-out order. If you do not specify FIFO, LIFO or FCFO, the order in which
the records are sequenced is not guaranteed.

You cannot specify the UNIQUE keyword with the FIFO, LIFO, FCFO, or REFACCPTH keywords.

Example:

The following example shows how to specify the UNIQUE keyword for a logical file.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A*
00020A* SAMPLE LOGICAL FILE (CUSMSTL)
00030A*
00040A UNIQUE
00050A R CUSREC PFILE(CUSMSTP)
00060A TEXT(’Logical File Master Record’)
00070A CUST
00080A NAME
00090A ADDR
00100A K CUST

A

UNSIGNED (Unsigned) keyword for physical and logical files
Use this key field-level keyword to specify that numeric fields are sequenced as a string of unsigned binary
data. Character, date, time, timestamp, and hexadecimal fields default to unsigned values.

This keyword has no parameters.

UNSIGNED is valid on key fields in physical or logical files regardless of the data type of the key field. The
UNSIGNED keyword is not allowed with the SIGNED and ABSVAL keywords.

The UNSIGNED keyword will be the default in the following situations:

v When you specify ALTSEQ at the file level for a zoned key field

v When you specify ZONE or DIGIT for a zoned key field

v For all character and hexadecimal fields

Physical and Logical Files, UNIQUE

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 75



Note: You can specify UNSIGNED for floating point fields, but the results cannot be predicted.

The following figure shows six records with a zoned decimal key field:

Record Numeric Key Field (Zoned Decimal) Hexadecimal Representation
1 98 F9F8
2 00 F0F0
3 98− F9D8
4 97 F9F7
5 20 F2F0
6 99 F9F9

If you specify UNSIGNED, the records are sequenced in this order:

Record Numeric Key Field (Zoned Decimal) Hexadecimal Representation
2 00 F0F0
5 20 F2F0
3 98− F9D8
4 97 F9F7
1 98 F9F8
6 99 F9F9

Example:

The following example shows how to specify the UNSIGNED keyword for a physical file.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RECORDA
00020A FLDA 7S 2
00030A FLDB 5
00040A K FLDA UNSIGNED

A

VALUES (Values) keyword for physical and logical files
Specify this keyword at the field level, the select/omit-field level, or both.

The format of the keyword is:
VALUES(value-1 [value-2...[value-100]])

Examples:

The following examples show how to specify the VALUES keyword.

The following example uses character and numeric values.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RECORD1 PFILE(PF1)
00020A FIELDA 1 0 VALUES(1 6 9) �1�
00030A FIELDB 1 VALUES(’A’ ’B’ ’C’) �1�
00040A K FIELDA
00050A S FIELDB VALUES(’A’ ’B’) �2�
00060A S FIELDA VALUES(1 6) �2�

A

�1� VALUES is specified for FIELDA and FIELDB as a validity checking keyword for display files that
refer to FIELDA and FIELDB.

Physical and Logical Files, UNSIGNED

76 OS/400 DDS Reference: Physical and Logical Files V5R1



�2� VALUES is also specified for FIELDA and FIELDB as a select/omit keyword. Records from the
physical file PF1 are retrieved through this logical file record format depending on the values of the
following fields:

v FIELDB: Records are selected only when FIELDB equals A or B.

v FIELDA: Records not already selected are selected when FIELDA equals 1 or 6.

The following example uses hexadecimal values.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RCD1 PFILE(PF1)
00020A CODEA
00030A FLD1
00040A FLD2
00050A K FLD1
00060A S CODEA VALUES(X’51’ X’54’ X’AE’)

A

VALUES is specified as a select/omit keyword for CODEA (which is a 1-byte field). Records from physical
file PF1 are retrieved through this record format only if the value of field CODEA is hex 51, hex 54, or hex
AE.

Specifying VALUES at the field level
At the field level, this keyword specifies validity checking for the field you are defining when it is referred to
later during display file creation.

VALUES does not affect the physical or logical file you are defining. When you define an input-capable
field in a display file, you can refer to the field you are now defining by specifying R in position 29 and the
REF or REFFLD keyword. During display file creation, the OS/400 program copies the VALUES keyword
and other field attributes from the field in the physical or logical file into the field in the display file. You can
override the VALUES keyword (as well as all other validity-checking keywords and the CHKMSGID
keyword) by specifying any validity checking keyword for the field in the display file. See the Reference for
display files topic for details.

The rules for specifying this keyword in a physical or logical file are the same as for a display file. See the
VALUES keyword for display files for more information and an example that shows how to specify the
keyword.

You cannot specify the VALUES keyword on a floating-point field (F in position 35) or a hexadecimal field
(H in position 35). Do not specify the VALUES keyword on a date, time, or timestamp field (L, T, or Z in
position 35).

Specifying VALUES at the select or omit-field level
At the select/omit-field level, this keyword selects or omits records retrieved from the physical file(s) when
your program sends an input operation using the record format in which the select/omit field is specified.

The following rules apply:

v If the field you are defining is a character field, you must specify character strings or hexadecimal
character strings.

Specify character strings enclosed in apostrophes (see example 1 above).

Specify hexadecimal character strings as an X followed by a combination of the digits 0 through 9 and
the letters A through F, enclosed in apostrophes. The number of hexadecimal digits in apostrophes must
be exactly twice the specified length of the field. See example 2 above.

v If the field you are defining is a numeric field, you must specify a numeric value (digits 0 through 9
specified without apostrophes). See example 1 above.

Physical and Logical Files, VALUES

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 77

../rzakc/rzakcmstpos29.htm
../rzakc/rzakcmstdfval.htm


v If you are defining a date field, specify a valid date in the same format specified on the DATFMT
keyword and use the same separator as specified on the DATSEP keyword. For example,
VALUES(’12/15/91’ ’12/31/91’) is the default value if *MDY is specified for DATFMT and ‘/’ is specified
for DATSEP.

v If you are defining a time field, specify a valid time in the same format specified on the TIMFMT
keyword and use the same separator as specified on the TIMSEP keyword. For example,
VALUES(’11.00.00’ ’12.00.00’) is the default value if *ISO is specified for TIMFMT. The default
separator for *ISO is a period (.).

v If you are defining a timestamp field, you must specify the default value in the following format:
VALUES(’YYYY-MM-DD-HH.MM.SS.UUUUUU’ ’YYYY-MM-DD-HH.MM.SS.UUUUUU’)

VARLEN (Variable-Length Field) keyword for physical and logical files
Use this field-level keyword to define this field as a variable-length field. Variable-length fields are useful
for improving storage when the data for the field typically fits within a certain length, but can occasionally
be longer. Specify the maximum length of the field in positions 30 to 34. You can specify the allocated
length (or typical length) in the parameter.

The format of the keyword is:
VARLEN[(allocated-length)]

The allocated-length parameter is optional. Use it to specify the number of bytes (two byte characters in
the case of graphic fields) allocated for the field in the fixed portion of the file. If you do not specify the
allocated-length parameter, the data for this field is stored in the variable length portion of the file.

Valid values for the allocated-length parameter are 1 to the maximum length of the field specified in
positions 30 to 34.

The VARLEN keyword has no parameters for a logical file.

The VARLEN keyword is valid only on character fields and graphic fields.

When you specify the VARLEN keyword, the maximum length you can specify in positions 30 to 34 is
32 740 (32 739 if the field allows the null value). If the field is a graphic field, the maximum length you
can specify is 16 370.

If you specify the DFT keyword for a variable-length field, the length of the default value must be less than
or equal to the allocated length for the field. If the default value is longer than the allocated length, an error
message is issued when the file is created.

If you specify a hexadecimal value as the default value for a variable-length field, the number of
hexadecimal characters must be equal to two times the allocated length for the field.

The DFT keyword is not allowed on the same field as a VARLEN keyword unless you specify a value for
the allocated-length parameter.

Do not specify the VARLEN keyword on a date, time, or timestamp field (L, T, or Z in position 35).

Example:

The following example shows how to specify the VARLEN keyword for a physical file.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A R RECORD1
00020A FIELD1 100A VARLEN(30)
00030A FIELD2 200A VARLEN

A

Physical and Logical Files, VALUES

78 OS/400 DDS Reference: Physical and Logical Files V5R1



FIELD1 is defined as a variable-length field with a maximum length of 100 and an allocated length of 30.
FIELD2 is defined as a variable-length field with a maximum length of 200 and no allocated length.

ZONE (Zone) keyword for physical and logical files
Use this key field-level keyword to specify that only the zone portion (farthest left 4 bits) of each byte of
the key field is used when constructing a value associated with this key field. The digit portion is filled with
zeros.

This keyword has no parameters.

This keyword is applied against the entire key field (not just a position within the field) and is valid only for
character, hexadecimal, or zoned decimal type fields.

ZONE is not allowed with the ABSVAL, SIGNED, or DIGIT keywords.

If you specify ZONE for a key field, the value of the field is treated as a string of unsigned binary data
rather than signed (which is the default for zoned decimal fields).

Example:

The following example shows how to specify the ZONE keyword.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
00010A K CODE ZONE

A

If CODE is a 1-byte field, the values of the field for three different records could be as follows:

Values Hexadecimal Digits Used for Key
A C1 C
B C2 C
E C5 C

Physical and Logical Files, VARLEN

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 79



Physical and Logical Files, ZONE

80 OS/400 DDS Reference: Physical and Logical Files V5R1



Appendix A. UCS-2 level 1 considerations for database files

This appendix describes Universal Coded Character Set 2 Level 1 (UCS-2 Level 1) considerations for the
positional entries and keyword entries for database (physical and logical) files.

The functions described in this appendix are supported on both DBCS and non-DBCS systems.

Positional and keyword entry considerations for database files that use UCS-2:

The following topics describe how to specify DDS position 30 through 37 and position 45 through 80 for
describing database files. Positions not mentioned have no special considerations for UCS-2 Level 1.

v Length

v Data type

v Decimal positions

v Keyword considerations

Length (positions 30 through 34)
Specify the length of the field in these positions. The length of a field containing UCS-2 Level 1 data can
range from 1 through 16 383 characters.

When determining the program length of a field containing UCS-2 Level 1 data, consider the following:

v Each UCS-2 Level 1 character is 2 bytes long.

v The length of the field is specified in number of UCS-2 Level 1 characters. For example, a field
containing 3 UCS-2 Level 1 characters has 6 bytes of data.

v After converting between UCS-2 Level 1 data and EBCDIC, the resulting data may be equal to, longer
or shorter than the original length data before the conversion. For example, 1 UCS-2 character is
composed of 2 bytes of data. That character may convert to 1 SBCS character composed of 1 byte of
data, 1 graphic-DBCS character composed of 2 bytes of data, or 1 bracketed DBCS character
composed of 4 bytes of data.

On a logical file, if the length is not specified and a UCS-2 to EBCDIC conversion will be taking place, the
length of the corresponding physical file field will be taken except in the following case.

v If the physical file field is UCS-2 capable and the logical file field has a data type of O then the length of
the logical file field will be 2 times the field size of the physical file field.

Data type (position 35)
The only valid data type for UCS-2 Level 1 data is the G (Graphic) data type.

G (Graphic)
Type G in combination with the CCSID keyword to specify this field contains UCS-2 Level 1 data.

Normally, by specifying G, the field contains graphic-DBCS data. In combination with the CCSID
keyword, the field now contains UCS-2 Level 1 data. When conversion is necessary between a
corresponding fields in a physical and logical file, data will be mapped between the characters of
the UCS-2 CCSID and the CCSID of the corresponding field.

Decimal positions (positions 36 and 37)
Leave these positions blank when using UCS-2 Level 1 data.

© Copyright IBM Corp. 2001 81



Keyword considerations (positions 45 through 80)
The CCSID keyword is used to enable a G-type field to contain UCS-2 Level 1 data. The CCSID
parameter must have a CCSID using the UCS-2 Level 1 encoding scheme. This keyword is enabled for
both physical and logical files.

For logical files the following characteristics must be true before the CCSID keyword is allowed on a
logical file field.

v If the specified value on the logical file CCSID keyword uses the UCS-2 Level 1 encoding scheme, then
the field data type must be G. Also the corresponding physical file field must be of types A or G. If the
CCSID keyword is specified on the physical file field, it must contain a value other than 65535.

v If the specified value on the logical file CCSID keyword does not use the UCS-2 Level 1 encoding
scheme, then the field data type must be A, O, or G. Also, the corresponding physical file field must be
a G-type field and have the CCSID keyword specified with a value using the UCS-2 Level 1 encoding
scheme. The CCSID keyword specified on the logical file field must contain a value other than 65535.

The DFT keyword may contain SBCS, bracketed-DBCS or bracketed-DBCS-graphic character strings
when specified on a UCS-2 capable field.

You can use the COMP keyword only to compare data in another UCS-2 capable field.

You can specify a character literal on a select or omit field that is tagged with a UCS2 CCSID on the
COMP, RANGE, and VALUES keywords. The maximum length of the literal is equal to the number of
UCS-2 characters that is defined in positions 30 to 34 of the DDS specification.

82 OS/400 DDS Reference: Physical and Logical Files V5R1



Appendix B. DBCS considerations for database files

This topic describes the DBCS considerations for the positional entries and keyword entries for physical
and logical files, along with general considerations for database files.

See the DDS Reference: Concepts information for additional general information relating to the use of the
double-byte character set (DBCS) with DDS.

The functions described in this appendix are supported on both DBCS and non-DBCS systems.

Positional entry considerations for database files that use DBCS
The following topics describe DBCS considerations for the length, data type, and decimal positional entries
on database files. Positional entries that are not mentioned have no special considerations for DBCS.

Length (positions 30 through 34)
The length of a field containing bracketed-DBCS data can range from 4 through 32 766 bytes (4 through
32 740 bytes if the field is variable length). The length of a DBCS-graphic field can range from 1 through
16 383 characters (1 through 16 370 characters if the field is variable length).

When determining the length of a field containing DBCS data, consider the following:

v Each DBCS character is 2 bytes long.

v For DBCS-graphic fields, the length of the field is specified in number of DBCS characters.

v Include both shift-control characters in the length of the field for fields with a data type of J, E, or O.
Together, these characters are 2 bytes long.

v Fields specified with the J or E data types must have an even length.

For example, a bracketed-DBCS field that contains up to 3 DBCS characters, 1 shift-in character, and 1
shift-out character, has 8 bytes of data:
(3 characters x 2 bytes) + (shift-out + shift-in) = 8

A DBCS-graphic field that contains up to 3 DBCS characters has 6 bytes of data:
(3 characters x 2 bytes) = 6

Data type (position 35)
You can use one of the following DBCS data types:

J (Only)
Fields can contain only DBCS data.

E (Either)
Fields can contain either DBCS or alphanumeric data.

O (Open)
Fields can contain both DBCS and alphanumeric data. Distinguish DBCS data from alphanumeric
data with shift-control characters.

G (Graphic)
Fields can contain only DBCS data with no shift-control characters.

Decimal (positions 36 and 37)
Leave these positions blank when using DBCS data.

© Copyright IBM Corp. 2001 83

../dds/rbafpmstgendbcs.htm


Keyword considerations for database files that use DBCS
Do not specify DDS keywords intended for use with numeric data for fields containing DBCS data. The
system treats DBCS data the same as character data, and, therefore, cannot perform arithmetic operations
on it.

For additional information on the keywords for database files, refer to the keyword descriptions in the
physical and logical files topics.

Do not use the following DDS keywords with DBCS data fields (the data type specified in position 35 is O,
J, E, or G):

ABSVAL
ALTSEQ
CHECK(M10)
CHECK(M10F)
CHECK(M11)
CHECK(M11F)
CHECK(VN)

CHECK(VNE)
DATFMT
DATSEP
DIGIT
EDTCDE
EDTWRD
FLTPCN

REFSHIFT
SIGNED
SST
TIMFMT
TIMSEP
TRNTBL
ZONE

Notes:

1. The SST keyword is allowed on fields with a data type of G.

2. The REFSHIFT keyword is allowed on fields with a data type of O, J, or E.

The CONCAT keyword can be used as described below.

CONCAT (Concatenate) keyword
Use this field-level keyword when you want to combine two or more fields from the physical file record
format into one field in the logical file record format you are describing. The name of this concatenated
field must appear in positions 19 through 28. Specify the physical file field names in the order in which you
want them to be concatenated, and separate them by blanks.

The following rules and restrictions apply:

v The OS/400 program assigns the length of the concatenated field as the sum of the lengths (digits and
characters) of the fields that are included in the concatenation.

Note: For fields with data type J, the shift-out and shift-in pairs between the concatenated fields are
removed from the resulting field. If the resulting data type is hexadecimal, the shift-out and
shift-in pairs are eliminated for DBCS fields that precede the first hexadecimal fields.

v A DBCS-graphic field can be concatenated only with another graphic data type field.

v The OS/400 program assigns the data type based on the data types of the fields that are being
concatenated. When bracketed-DBCS fields are included in a concatenation, the general rules are:

– If the concatenation contains one or more hexadecimal (H) fields, the resulting data type is
hexadecimal (H).

– If all fields in the concatenation are DBCS-only (J), the resulting data type is DBCS-only (J).

– If the concatenation contains one or more DBCS (O, E, J) fields, but no hexadecimal fields, the
resulting data type is DBCS-open (O).

v The OS/400 program assigns the field to be fixed length or variable length based on the fields that are
being concatenated. The general rules are:

– Concatenation of a variable length field to either a fixed length field or another variable length field
results in a variable length field.

– Concatenation of a fixed length field to a fixed length field results in a fixed length field unless the
VARLEN keyword is also specified on the same field as the CONCAT keyword.

84 OS/400 DDS Reference: Physical and Logical Files V5R1



v The maximum length of a concatenated field varies depending on the data type of the concatenated
field and the length of the fields being concatenated. If the concatenated field is zoned decimal (S), its
total length cannot exceed 31 bytes; if it is character (A) or DBCS(O, J), its total length cannot exceed
32 766 bytes. If the concatenated field is variable length, its total length cannot exceed 32 740 bytes
(32 739 if the field also allows the null value).

If the concatenated field is a DBCS-graphic (G) field, its total length cannot exceed 16 383 characters.
If the concatenated field is variable length, its total length cannot exceed 16 370 characters.

v In join logical files, the fields to be concatenated must be from the same physical file. The first field
specified on the CONCAT keyword identifies which physical file is used. The first field must, therefore,
be unique among the physical files on which the logical file is based, or you must also specify the JREF
keyword to specify which physical file to use.

v When one or more of the fields being concatenated are DBCS fields, none of the fields on the CONCAT
keyword can be specified as a key, select, or omit field unless the field name is also specified in
positions 19 through 28 or on a RENAME or CONCAT keyword specified before the DBCS
concatenation.

v The usage of a concatenated field must be I (input only).

v REFSHIFT cannot be specified on a concatenated field that has been assigned a data type of O or J.

Example:

The following example shows how to specify the CONCAT keyword on the DDS coding form.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R RECORD 1 PFILE(PF1)
A FLD1 I CONCAT(PFLD1 PFLD2)
A FLD2 I CONCAT(PFLD1 PFLD2 PFLD3)
A FLD3 I CONCAT(PFLD4 PFLD5)
A

In the example, if the fields from PF1 are:

v PFLD1 with data type J

v PFLD2 with data type J

v PFLD3 with data type E

v PFLD4 and PFLD5 with data type G

Then the resulting fields are:

v FLD1 with data type J

v FLD2 with data type O

v FLD3 with data type G

Additional considerations for describing database files that contain
DBCS data
Consider the following when describing a database file that contains DBCS fields:

v If you describe DBCS fields in the DDS, the system treats the file as a DBCS file. You do not have to
specify IGCDTA(*YES) on the file creation command to identify the file as DBCS.

v The data type of a field in a physical file may be changed as follows when you refer to that field in a
logical file:

Physical File Data
Type Logical File Data Type
J J, O, E, H, G
O O, H
E O, E, H

Appendix B. DBCS considerations for database files 85



Physical File Data
Type Logical File Data Type
A A, O, E, H
H J, O, E, A, H
G G, O, J, E

Note: When the physical file data type is character (A) or hexadecimal (H), and the logical file data
type is DBCS-only (J) or DBCS-either (E), the physical file field length (columns 30 through 34)
must be an even number greater than or equal to 4.

v DDS treats DBCS key fields as character fields (the data type specified in position 35 is O).

v DDS uses the EBCDIC collating sequence to sort DBCS data.

v Any key field sequencing keywords that can be used with character fields can be used with DBCS
fields, except the following keywords:

ALTSEQ
DIGIT
ZONE

v Use bracketed-DBCS data anywhere that comments and character strings are allowed. See the DBCS
character strings topic in the DDS Reference: Concepts for instructions.

v Any bracketed-DBCS field except a field with data type J can be compared with a character field (data
type A).

v A DBCS-graphic field can be compared only with another graphic field.

v The following validity checking keywords may be specified on DBCS fields:

COMP
RANGE
VALUES

v When specifying the VARLEN keyword in a physical file, the minimum allowed length for the allocated
length is 4 for a bracketed-DBCS field. The minimum allowed length for the allocated length is 1 for a
DBCS-graphic field.

86 OS/400 DDS Reference: Physical and Logical Files V5R1

../dds/rbafpmstidlit.htm
../dds/rbafpmstidlit.htm


Index

Special Characters
*NONE key field 8, 12

A
Absolute Value (ABSVAL) keyword 30
ABSVAL (Absolute Value) keyword 30
ALIAS (Alternative Name) keyword 31
ALL (All) keyword 31
Allow Null (ALWNULL) keyword 32
Alternative Collating Sequence (ALTSEQ) keyword 32
Alternative Name (ALIAS) keyword 31
ALTSEQ (Alternative Collating Sequence) keyword 32
ALWNULL (Allow Null) keyword 32

C
CCSID (Coded Character Set Identifier) keyword 33
Change Logical File (CHGLF) command 47
CHECK (Check) keyword 34
Check Message Identifier (CHKMSGID) keyword 35
CHGLF (Change Logical File) command 47
CHKMSGID (Check Message Identifier) keyword 35
CMP (Comparison) keyword 35
Coded Character Set Identifier (CCSID) keyword 33
COLHDG (Column Heading) keyword 36
Column Heading (COLHDG) keyword 36
commands

Create Physical File (CRTPF) command 1
comment 4
COMP (Comparison) keyword 36
Comparison (CMP) keyword 35
CONCAT (Concatenate) keyword 39, 84
conditioning 5
converting between zoned decimal and hexadecimal

data types 24
converting data types 24

when substringing fields 25
converting data types when concatenating fields 25
converting floating point

to binary 25
to packed decimal 25
to zoned decimal 25

Copy File (CPYF) command 45
copying

file 45
CPYF (Copy File) command 45
Create Logical File (CRTLF) command 47
Create Physical File (CRTPF) command 1
CRTLF (Create Logical File) command 47
CRTPF (Create Physical File) command 1

D
data type 23

data types
converting between zoned decimal and hexadecimal

data types 24
converting floating point to packed, zoned, and

binary data types 25
converting in DDS files 24
converting when concatenating fields 25
converting when substringing fields 25

Date Format (DATFMT) keyword 41
Date Separator (DATSEP) keyword 43
DATFMT (Date Format) keyword 41
DATSEP (Date Separator) keyword 43
DBCS considerations for database files 83
DDS file considerations

UCS-2 Level 1 81
decimal positions 25
Default (DFT) keyword 44
defining a logical file 1
defining a physical file 1
DESCEND (Descend) keyword 44
DFT (Default) keyword 44
DIGIT (Digit) keyword 46
Dynamic Select (DYNSLT) keyword 46
DYNSLT (Dynamic Select) keyword 46

E
Edit Code (EDTCDE) keyword 49
EDTCDE (Edit Code) keyword 49

F
FCFO (First-Changed First-Out) keyword 50
field name 7
FIFO (First-In First-Out) keyword 50
First-Changed First-Out (FCFO) keyword 50
First-In First-Out (FIFO) keyword 50
Floating-Point Precision (FLTPCN) keyword 51
FLTPCN (Floating-Point Precision) keyword 51
form type 4
FORMAT (Format) keyword 51

I
Initialize Physical File Member (INZPFM) command 45
initializing

physical file member 45
INZPFM (Initialize Physical File Member) command 45

J
JDFTVAL (Join Default Values) keyword 52
JDUPSEQ (Join Duplicate Sequence) keyword 53
JFILE (Joined Files) keyword 55
JFLD (Joined Fields) keyword 56
JOIN (Join) keyword 57
Join Default Values (JDFTVAL) keyword 52

© Copyright IBM Corp. 2001 87



Join Duplicate Sequence (JDUPSEQ) keyword 53
join logical files 2
Join Reference (JREF) keyword 59
Joined Fields (JFLD) keyword 56
Joined Files (JFILE) keyword 55
JREF (Join Reference) keyword 59

K
key field name 7
keyword entries for physical and logical files 29

L
Last-In First-Out (LIFO) keyword 60
length 20
LIFO (Last-In First-Out) keyword 60
location 27
logical files

*NONE key field 8, 12
comment 4
conditioning 5
data type 23
DBCS considerations 83
decimal positions 25
field name 7
form type 4
join 2
key field name 7
keyword entries 29
length 20
location 27
multiple format 2
multiple record formats 11
name 5
name type 5
positional entries 4
record format for simple and multiple format 6
record format in join logical files 6
record format name 6
reference 19
reserved 5
select/omit field name 17
sequence number 4
simple 2
specification type 5
specifying record formats 3
UCS-2 Level 1 81
usage 26

M
multiple format logical files 2

N
name 5
name type 5
No Alternative Collating Sequence (NOALTSEQ)

keyword 61

NOALTSEQ (No Alternative Collating Sequence)
keyword 61

P
PFILE (Physical File) keyword 61
Physical File (PFILE) keyword 61
physical files

comment 4
conditioning 5
data type 23
DBCS considerations 83
decimal positions 25
field name 7
form type 4
key field name 7
keyword entries 29
length 20
location 27
name 5
name type 5
positional entries 4
record format name 6
reference 19
reserved 5
sequence number 4
specification type 5
UCS-2 Level 1 81
usage 26

positional entries for physical and logical files 4

R
RANGE (Range) keyword 63
record format 6
record format name 6
record formats in logical files 3
REF (Reference) keyword 64
REFACCPTH (Reference Access Path Definition)

keyword 65
reference 19
Reference Access Path Definition (REFACCPTH)

keyword 65
Reference Shift (REFSHIFT) keyword 67
Referenced Field (REFFLD) keyword 66
REFFLD (Referenced Field) keyword 66
REFSHIFT (Reference Shift) keyword 67
RENAME (Rename) keyword 68
reserved 5

S
select or omit-field level

specifying COMP 38
select/omit field name 17
sequence number 4
SIGNED (Signed) keyword 69
simple logical files 2
specification type 5
specifying COMP at the select or omit-field level 38
specifying record formats in logical files 3

88 OS/400 DDS Reference: Physical and Logical Files V5R1



SST (Substring) keyword 70
Substring (SST) keyword 70

T
TEXT (Text) keyword 71
Time Format (TIMFMT) keyword 72
Time Separator (TIMSEP) keyword 73
TIMFMT (Time Format) keyword 72
TIMSEP (Time Separator) keyword 73
Translation Table (TRNTBL) keyword 73
TRNTBL (Translation Table) keyword 73

U
UCS-2 Level 1

DDS file considerations 81
physical and logical files 81

UNIQUE (Unique) keyword 74
UNSIGNED (Unsigned) keyword 75
usage 26

V
VALUES (Values) keyword 76
Variable-Length Field (VARLEN) keyword 78
VARLEN (Variable-Length Field) keyword 78

Z
ZONE (Zone) keyword 79

Index 89



90 OS/400 DDS Reference: Physical and Logical Files V5R1





����

Printed in U.S.A.


	Contents
	About DDS Reference: Physical and Logical Files
	Who should read the DDS Reference: Physical and Logical Files book
	Conventions and terminology used in the DDS information
	What's New for V5R1 in the DDS information

	Chapter 1. Defining physical and logical files using DDS
	Defining a physical file using DDS
	Defining a logical file using DDS
	Simple and multiple format logical files in DDS
	Join logical files in DDS
	Specifying record formats in a logical file in DDS

	Positional entries for physical and logical files (positions 1 through 44)
	Sequence number for physical and logical files (positions 1 through 5)
	Form type for physical and logical files (position 6)
	Comment for physical and logical files (position 7)
	Conditioning for physical and logical files (positions 8 through 16)
	Type of name or specification for physical and logical files (position 17)
	Reserved for physical and logical files (position 18)
	Name for physical and logical files (positions 19 through 28)
	Record format
	Field name
	Key field name
	Select or omit field name

	Reference for physical and logical files (position 29)
	Length for physical and logical files (positions 30 through 34)
	Data type for physical and logical files (position 35)
	Converting One Numeric Data Type to Another in a DDS File
	Converting between Zoned Decimal and Character or Hexadecimal in a DDS File
	Converting from Floating Point to Packed Decimal, Zoned Decimal, or Binary in DDS
	Converting Data Types When Concatenating Fields in DDS
	Converting Data Types When Substringing Fields in DDS

	Decimal positions for physical and logical files (positions 36 and 37)
	Usage for physical and logical files (position 38)
	Location for physical and logical files (positions 39 through 44)


	Chapter 2. Keyword entries for physical and logical files (positions 45 through 80)
	ABSVAL (Absolute Value) keyword for physical and logical files
	ALIAS (Alternative Name) keyword for physical and logical files
	ALL (All) keyword—logical files only
	ALTSEQ (Alternative Collating Sequence) keyword for physical and logical files
	ALWNULL (Allow Null Value) keyword—physical files only
	CCSID (Coded Character Set Identifier) keyword for physical and logical files
	CHECK (Check) keyword for physical and logical files
	CHKMSGID (Check Message Identifier) keyword for physical and logical files
	CMP (Comparison) keyword for physical and logical files
	COLHDG (Column Heading) keyword for physical and logical files
	COMP (Comparison) keyword for physical and logical files
	Specifying COMP at the field level
	Specifying COMP at the select or omit-field level

	CONCAT (Concatenate) keyword—logical files only
	DATFMT (Date Format) keyword for physical and logical files
	DATSEP (Date Separator) keyword for physical and logical files
	DESCEND (Descend) keyword for physical and logical files
	DFT (Default) keyword—physical files only
	DIGIT (Digit) keyword for physical and logical files
	DYNSLT (Dynamic Select) keyword—logical files only
	EDTCDE (Edit Code) and EDTWRD (Edit Word) keywords for physical and logical files
	FCFO (First-Changed First-Out) keyword for physical and logical files
	FIFO (First-In First-Out) keyword for physical and logical files
	FLTPCN (Floating-Point Precision) keyword for physical and logical files
	FORMAT (Format) keyword for physical and logical files
	JDFTVAL (Join Default Values) keyword—join logical files only
	JDUPSEQ (Join Duplicate Sequence) keyword—join logical files only
	JFILE (Joined Files) keyword—join logical files only
	JFLD (Joined Fields) keyword—join logical files only
	JOIN (Join) keyword—join logical files only
	JREF (Join Reference) keyword—join logical files only
	LIFO (Last-In First-Out) keyword for physical and logical files
	NOALTSEQ (No Alternative Collating Sequence) keyword for physical and logical files
	PFILE (Physical File) keyword—logical files only
	RANGE (Range) keyword for physical and logical files
	Specifying RANGE at the field level
	Specifying RANGE at the select or omit-field level

	REF (Reference) keyword—physical files only
	REFACCPTH (Reference Access Path Definition) keyword—logical files only
	REFFLD (Referenced Field) keyword—physical files only
	REFSHIFT (Reference Shift) keyword for physical and logical files
	RENAME (Rename) keyword—logical files only
	SIGNED (Signed) keyword for physical and logical files
	SST (Substring) keyword—logical files only
	TEXT (Text) keyword for physical and logical files
	TIMFMT (Time Format) keyword for physical and logical files
	TIMSEP (Time Separator) keyword for physical and logical files
	TRNTBL (Translation Table) keyword—logical files only
	UNIQUE (Unique) keyword for physical and logical files
	UNSIGNED (Unsigned) keyword for physical and logical files
	VALUES (Values) keyword for physical and logical files
	Specifying VALUES at the field level
	Specifying VALUES at the select or omit-field level

	VARLEN (Variable-Length Field) keyword for physical and logical files
	ZONE (Zone) keyword for physical and logical files

	Appendix A. UCS-2 level 1 considerations for database files
	Length (positions 30 through 34)
	Data type (position 35)
	Decimal positions (positions 36 and 37)
	Keyword considerations (positions 45 through 80)

	Appendix B. DBCS considerations for database files
	Positional entry considerations for database files that use DBCS
	Length (positions 30 through 34)
	Data type (position 35)
	Decimal (positions 36 and 37)

	Keyword considerations for database files that use DBCS
	CONCAT (Concatenate) keyword

	Additional considerations for describing database files that contain DBCS data

	Index

