
AS/400e™

ILE C for AS/400®

Language Reference
Version 4

SC09-2711-01

IBM

AS/400e™

ILE C for AS/400®

Language Reference
Version 4

SC09-2711-01

IBM

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page xi.

Second Edition (June 1999)

This edition applies to Version 4, Release 4, Modification Level 0, of IBM Application System/400 ILE C (Program
5769-CX2) and to all subsequent releases and modifications until otherwise indicated in new editions. Make sure you
are using the proper edition for the level of the product.

This edition replaces SC09–2711–00.

Changes or additions to the text and illustrations are indicated by a vertical line to the left of the change or addition.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

IBM welcomes your comments. You can send your comments to:

IBM Canada Ltd. Laboratory,
2G/KB7/1150/TOR
1150 Eglinton Avenue East
Toronto, Ontario, Canada. M3C 1H7

You can also send your comments by facsimile (attention: RCF Coordinator), or you can send your comments
electronically to IBM. See “How to Send Your Comments” on page xiv for a description of the methods.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 1999. All rights reserved.
US Government Users Restricted Rights – Use duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Tables . ix

Notices . xi
Programming Interface Information xii
Trademarks and Service Marks xii
Industry Standards . xii

About This Book . xiii
Who Should Use This Book . xiii

A Note About Examples . xiv
How to Send Your Comments xiv

Chapter 1. Introduction to C 1
Overview of the C Language 1
C Source Programs . 1
C Source Files . 2
Program Processing . 3
Scope . 4
Linkage . 6
Storage Duration . 7
Name Spaces . 7

Chapter 2. Lexical Elements of C 9
Character Set . 9
Trigraphs. 9
Escape Sequences . 10
Comments . 11
Identifiers . 12
Keywords . 13
Constants . 14

Integer Constants . 14
Decimal Constants . 15
Hexadecimal Constants . 15
Octal Constants . 16
Floating-Point Constants . 17
Character Constants . 18
Packed Decimal Constants 19
Strings . 20
Enumeration Constants . 22

Chapter 3. Declarations and Definitions 23
Block Scope Data Declarations 23
File Scope Data Declarations 24
Storage Class Specifiers . 25
auto Storage Class Specifier 25
extern Storage Class Specifier 28
Declaration . 28
register Storage Class Specifier 30
static Storage Class Specifier 31
Declarators . 33
volatile and const Qualifiers . 35
_Packed Qualifier . 36
Initializers . 37

© Copyright IBM Corp. 1993, 1999 iii

Types . 38
Characters . 38
Floating-Point Variables . 39
Integers . 40
Packed Decimal . 42
void Type . 43
Enumerations . 44

Declaring an Enumeration Data Type 44
Defining a Variable That Has an Enumeration Type 45
Example of Defining an Enumeration Type and Enumeration Objects . . . 45

Arrays . 47
Type Specifiers of Arrays . 47
Declarators of Arrays . 47
Initializers of Arrays . 48

Pointers . 52
Declarators of Pointers . 52
Initializers of Pointers . 53
Restrictions . 54
Using Pointers. 54
Pointer Arithmetic . 55

Structures . 57
Declaring a Structure Data Type 57
Defining a Variable That Has a Structure Data Type 58
Storage Classes of Structures 58
Initializers of Structures . 58
Example of Declaring a Structure Type and Structure Variables. 59
Declaring and Using Bit Fields 60
Declaring a Packed Structure 61

Unions . 62
Declaring a Union . 62
Example of Defining a Variable that Has Union Data Type 63
Defining a Union Type and a Union Variable. 64
Defining a Packed Union . 64

typedef . 66
Incomplete Types . 67

Chapter 4. Functions . 69
main . 69
Function Definition . 70

Function Declarator . 72
Prototype Function Declarator 72
Nonprototype Function Declarator 73
Parameter Declaration List 73
Function Body . 74

Function Declarations . 74
Calling Functions and Passing Arguments 76

Chapter 5. Expressions and Operators 79
Grouping and Evaluating Expressions 79
Lvalue. 81
Constant Expression . 82
Primary Expression . 83

Parenthesized Expression () 83
Function Call () . 84
Array Element Specification (Array Subscript) [] 85
Structure and Union Member Specification . −> 85

iv Language Reference

Unary Expression . 86
Increment ++ . 86
Decrement −− . 86
Unary Plus + . 87
Unary Minus −. 87
Logical Negation ! . 87
Bitwise Negation . 88
Address & . 88
Indirection *. 88
Cast . 89
Size of an Object. 89
Digits of an Object . 90
Precision of an Object . 90

Binary Expression . 91
Multiplication * . 92
Division / . 92
Remainder % . 93
Addition + . 93
Subtraction − . 94
Bitwise Left and Right Shift << >> 95
Relational < > <= >= . 96
Equality == != . 97
Bitwise AND &. 98
Bitwise Exclusive OR | . 99
Bitwise Inclusive OR ¦ . 99
Logical AND && . 99
Logical OR ¦¦ . 100

Conditional Expression ? : . 101
Assignment Expression . 102

Simple Assignment = . 102
Compound Assignment . 103

Comma Expression , . 104

Chapter 6. Conversions . 105
Usual Arithmetic Conversions 105
Type Conversions . 106

Assignment Conversions . 106
From Signed Integer Types 106
From Unsigned Integer Types 109
From Floating-Point Types 112
To and From Pointer Types 116
From Other Types . 117

Chapter 7. C Language Statements 119
Labels. 119
Block . 120
break . 121
continue . 123
do . 124
Expression . 125
for . 125
goto . 127
if . 128
Null Statement. 129
return . 129
switch . 131

Contents v

while . 134

Chapter 8. Preprocessor Directives 137
Preprocessor Directive Format 137
#define . 138

Object-Like Macro Definition 138
Function-Like Macro Definition 138

#undef . 140
Predefined Macros . 141
Operator . 144
Operator. 145
#error . 146
#include . 147

Using the #include Directive When Compiling Source in an Integrated File
System File . 148

Conditional Compilation . 149
#if, #elif . 150
#ifdef . 151
#ifndef. 151
#else . 151
#endif . 152

#line . 152
(Null Directive) . 153
#pragma . 154

argopt . 154
argument. 156
cancel_handler . 157
chars . 158
checkout . 158
comment . 159
convert . 159
descriptor . 160
disable_handler . 162
enumsize . 162
exception_handler . 163
inline (function) . 166
langlvl . 167
linkage . 167
linkage (function_name, builtin) 167
linkage (program_name, OS) 168
linkage (typedef_name, OS). 169
map . 169
mapinc . 170
margins . 172
noargv0 . 173
noinline (function) . 173
nomargins . 174
nosequence . 174
nosigtrunc . 174
operational descriptor . 175
page . 175
pagesize . 175
pointer . 175
sequence . 176
skip. 177
strings. 177

vi Language Reference

subtitle . 177
title . 178

Chapter 9. I/O Considerations 179
Data Management Operations on Record Files. 179
Data Management Operations on Stream Files. 179
C Streams and File Types . 179
DDS-to-C Data Type Mapping 179

Appendix. AS/400 Control Characters 181

Bibliography . 183

Index . 189

Contents vii

viii Language Reference

Tables

1. Trigraph Sequences . 9
2. Escape Sequences . 10
3. ILE C Language Keywords 13
4. Data Types for Integer Constants 14
5. Examples of Declarations and Definitions 23
6. Example Declarators . 34
7. Operator Precedence and Associativity 80
8. Intermediate Results of Packed Decimal Expressions (Without Overflow in

n or p) . 91
9. Intermediate Results with Packed Decimal Expressions (With Overflow in

n or p) . 91
10. Relational Operators. 96
11. Equality Operators . 97
12. Type of the Conditional Expression 101
13. Compound Assignment Operators. 103
14. Conversions from Signed Integer 107
15. Conversions from Unsigned Integer Types 110
16. Conversions from Floating-Point Types 113
17. Conversions from Packed Decimal Types 116
18. Processing C Stream and File Types 179
19. DDS-to-ILE C Data Type Mappings 179
20. Internal Hexadecimal Representation 181

© Copyright IBM Corp. 1993, 1999 ix

x Language Reference

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area.

Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights may be used instead. However, it is the user’s
responsibility to evaluate and verify the operation of any non-IBM product, program,
or service.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

Director of Licensing,
Intellectual Property & Licensing
International Business Machines Corporation,
North Castle Drive, MD - NC119
Armonk, New York 10504-1785,
U.S.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independent created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Canada Ltd.
Department 071
1150 Eglinton Avenue East
Toronto, Ontario M3C 1H7
Canada

© Copyright IBM Corp. 1993, 1999 xi

|
|
|
|
|
|

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Programming Interface Information

This book is intended to help you write Integrated Language Environment C for
AS/400 programs. It contains information necessary to use the Integrated Language
Environment C for AS/400 compiler. The ILE C for AS/400 Language Reference and
the ILE C for AS/400 Run-Time Library Reference primarily document general-use
programming interfaces and associated guidance information provided by the
Integrated Language Environment C for AS/400 compiler.

Trademarks and Service Marks

The following terms are trademarks of the International Business Machines
Corporation in the United States or other countries or both:

400 FORTRAN/400
AFP GDDM
AS/400 IBM
AS/400e IBMLink
Application System/400 Integrated Language Environment
C/400 OS/400
CICS/400 RPG/400
COBOL/400 SAA
DB2 SQL/400

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks
of others.

Industry Standards

The Integrated Language Environment C compiler and library are designed
according to the American National Standard Institute (ANSI) for Programming
Languages — C, ANSI/ISO 9899-1990 standard.

xii Language Reference

About This Book

This book contains reference information on:

v Elements of C

v Declarations, definitions, functions, expressions, and operators

v C language statements

v Preprocessor directives

v Input/output considerations

Use this book as a reference when you write Integrated Language Environment®
(ILE) C applications.

This guide does not describe how to program in the ILE C programming language
nor does it explain the concepts of ILE. The following are companion publications to
this book:

v ILE C for AS/400 Programmer’s Guide

v ILE C for AS/400 Run-Time Library Reference

v ILE Concepts

For information about other ILE C publications, see either of the following:

v The Publications Reference.

v The AS/400e series Softcopy Library CD-ROM.

For a list of related publications, see “Bibliography” on page 183.

Use the AS/400 Information Center as your starting point for looking up
AS/400technical information. You can access the Information Center from the
AS/400e Information Center CD-ROM (English version: SK3T-2027-01) or from one
of these Web sites:
http://www.as400.ibm.com/infocenter
http://publib.boulder.ibm.com/pubs/html/as400/infocenter.htm

The AS/400 Information Center contains important topics such as logical
partitioning, clustering, Java, TCP/IP, Web serving, and secured networks. It also
contains Internet links to Web sites such as the AS/400 Online Library and the
AS/400 Technical Studio. Included in the Information Center is a link that describes
at a high level the differences in information between the Information Center and
the Online Library.

For a softcopy version of AS/400 publications refer to the AS/400e series Softcopy
Library CD-ROM, SK3T-0118-03.

Who Should Use This Book

This book is intended for programmers who are familiar with the C programming
language and who want to write or maintain ILE C applications. This book is a
reference rather than a tutorial. You must have experience in using applicable
AS/400® menus and displays, or control language (CL) commands, and knowledge
of ILE as explained in ILE Concepts.

© Copyright IBM Corp. 1993, 1999 xiii

A Note About Examples

The examples in this book that illustrate the use of the ILE C compiler are written in
a simple style. They are intended to be instructional and do not attempt to minimize
run time, conserve storage, or check for errors. The examples do not demonstrate
all possible uses of C language constructs. Some examples are only code
fragments and do not compile without additional code.

Other examples, which are shipped with the product, appear in the ILE C for
AS/400 Run-Time Library Reference and the ILE C/C++ MI Library Reference.

How to Send Your Comments

Your feedback is important in helping to provide the most accurate and high-quality
information. IBM welcomes any comments about this book or any other AS/400
documentation.

v If you prefer to send comments by mail, use the following address:

IBM Canada Ltd. Laboratory
Information Development
2G/KB7/1150/TOR
1150 Eglinton Avenue East
Toronto, Ontario, Canada M3C 1H7

If you are mailing a readers’ comment form from a country other than the United
States, you can give the form to the local IBM branch office or IBM
representative for postage-paid mailing.

v If you prefer to send comments by FAX, use the following number:

– 1-416-448-6161

v If you prefer to send comments electronically, use one of these e-mail addresses:

– Comments on books:

torrcf@ca.ibm.com

IBMLink: to toribm(torrcf)

– Comments on the AS/400 Information Center:

RCHINFOC@us.ibm.com

Be sure to include the following:

v The name of the book

v The publication number of the book

v The page number or topic to which your comment applies.

xiv Language Reference

|

|
|

|
|
|

|

|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

Chapter 1. Introduction to C

This section introduces you to the C programming language and shows you how to
structure C language source programs.

Implementation-defined behavior is any action that is defined by the compiler and
library and not by standards.

Undefined behavior is any action by the compiler and library on an erroneous
program that does not result in any expected manner. You should not write
programs that rely on such behavior.

Unspecified behavior is any other action by the compiler and library that is not
defined.

Overview of the C Language

The C programming language is designed for a wide variety of programming tasks.
It is used for system-level code, text processing, graphics, and in many other
application areas. The language contains a concise set of statements and
numerous data types such as characters, packed decimal, integers, floating-point
numbers, and pointers — each in a variety of forms. In addition, C also supports
arrays, structures (records), unions, and enumerations. Additional functionality is
provided by the C library. This feature enables C to be flexible and efficient, as well
as highly consistent across different systems.

The C library contains functions for input and output, mathematics, exception
handling, string and character manipulation, dynamic memory management, as well
as date and time manipulation. Use of this library helps to maintain program
portability, because the underlying implementation details for the various operations
need not concern the programmer. See the ILE C for AS/400 Run-Time Library
Reference for more details.

C Source Programs

A C source program is a collection of one or more directives, declarations, and
statements that are contained in one or more source files.

Statements Specify the action to be performed.

Directives Instruct the C preprocessor to act on the text of the program.

Declarations Establish names and define characteristics such as scope, data
type, and linkage.

Definitions Declarations that allocate storage for data objects or define a body
for functions. An object definition allocates storage and may
optionally initialize the object.

A function definition includes a function body. The function body is a compound
statement that may contain declarations and statements that define what the
function does. The function definition declares the function name, its parameters,
and the data type of the value it returns.

The order and scope of declarations affect how you can use variables and functions
in statements. In particular, an identifier can be used only after it is declared.

© Copyright IBM Corp. 1993, 1999 1

|

A program must contain at least one function definition. If the program contains only
one function definition, the function must be called main(). If the program contains
more than one function definition, only one of the functions can be called main().
The main() function is the first function that is called when a program is run.

This is the source code of a simple C program:

This source program defines main() and calls the function cos(), declared in the
<math.h> library header file. It also calls the printf() function declared in the
<stdio.h> library header file. The program defines the global variables x and y,
initializes them, and declares two local variables z and w.

C Source Files

The text of a C source program is kept in one or more source files. To create an
executable program object, you can compile the source files individually and then
bind them as one program. To include other source files in a single compilation, use
the #include directive in the source file. The collection of source files that is
compiled during a single compilation is called a compilation unit .

A source file contains any combination of preprocessor directives, declarations, and
definitions. You can split items such as function definitions and large data structures
between source files, but you cannot split them between compilation units. Before
the source file is compiled, preprocessor directives are run and macro calls
expanded.

It can be useful to place variable definitions in one source file and declare
references to those variables in any source files that use them. Doing so makes
definitions easy to find and change, if necessary. You can also organize constants
and macros into separate files and include them into source files as required.

#include <stdio.h> /* standard library header which
contains I/O function declarations
such as printf used below */

#include <math.h> /* standard library header which
contains math function declarations
such as cos used below */

#define NUM 46.0 /* Preprocessor directive */

double x = 45.0; /* External variable
definitions */

double y = NUM;

int main(void) /* Function definition
for main function */

{
double z; /* Automatic variable */
double w; /* definitions */

z = cos(x); /* cos is declared in math.h as
double cos(double arg) */

w = cos(y);
printf ("cosine of x is %lf\n", z); /* Print cosine of x */
printf ("cosine of y is %lf\n", w); /* Print cosine of y */

}

2 Language Reference

Directives in a source file apply to that source file and its included files only. Each
directive applies only to the part of the file following the directive.

The following example is a C program in two source files. The main() and max()
functions are in separate files. The processing of the program begins with the
main() function.

Source file 1

Source file 2

The first source file declares the function max(), but does not define it. This is a
reference to the function in source file 2. Four statements in main() are function
calls to max().

The lines beginning with a number sign (#) are preprocessor directives. These
directives direct the preprocessor to replace the identifiers ONE, TWO, and THREE with
the digits 1, 2, and 3. The directives do not apply to the second source file.

The second source file contains the function definition for the max() function, which
is called four times in the main() function. After you compile the source files, you
can bind and run them as a single program.

Program Processing

Every program must have a User Entry Procedure (UEP). In ILE C, the UEP is the
function that is named main(). See the ILE C for AS/400 Programmer’s Guide for
more information about the UEP.

/**
* Source file 1 - main function *
**/
#define ONE 1
#define TWO 2
#define THREE 3

extern int max(int, int); /* Function declaration */

int main(int argc, char * argv[]) /* Function definition */
{

int u, w, x, y, z;

u = 5;
z = 2;
w = max(u, ONE);
x = max(w,TWO);
y = max(x,THREE);
z = max(y,z);

}

/**
* Source file 2 - max function *
**/
int max (int a,int b) /* Function definition */
{

if (a > b)
return (a);

else
return (b);

}

Chapter 1. Introduction to C 3

The main() function is the starting point for running a program. The statements
within the main() function are run sequentially. There may be calls to other
functions. A program usually stops running at the end of the main() function,
although it can stop at other points in the program.

You can make your program more modular by creating separate functions to
perform a specific task or set of tasks. The main() function calls these functions to
perform the tasks. Whenever a function call is made, the statements are run
sequentially starting with the first statement in the function. Control will return back
to the calling function when a return statement or the end of the function is
encountered.

You can declare any function to have parameters. When functions are called, they
receive values for their parameters from the arguments that are passed by the
calling functions. You can declare parameters for the main() function so you can
pass values to main() from the command line. The command line that starts the
program can pass such values as described in “main” on page 69.

Scope

An identifier becomes visible with its declaration.

The region where an identifier is visible is referred to as the identifier’s scope . The
four kinds of scope are:

v Block

v Function

v File

v Function prototype

The scope of an identifier is determined by where the identifier is declared. See
“Identifiers” on page 12 for more information on identifiers.

Block scope The identifier’s declaration is located inside a block.
A block starts with an opening brace ({) and ends
with a closing brace (}). An identifier with block
scope is visible from the point where it is declared
to the closing brace that ends the block.

You can nest block visibility. A block that is nested
inside a block can contain declarations that
redeclare variables that are declared in the outer
block. The new declaration of the variable applies
to the inner block. The original declaration is
restored when program control returns to the outer
block. A variable from the outer block is visible
inside inner blocks that do not redefine the variable.

Function scope The only identifier with function scope is a label
name. A label is implicitly declared by its
appearance in the program text. A goto statement
transfers control to the label that is specified on the
goto statement. The label is visible to any goto
statement that appears in the same function as the
label.

File scope The identifier’s declaration appears outside of any
block. It is visible from the point where it is declared

4 Language Reference

to the end of the source file. If source files are
included by #include preprocessor directives, those
files are considered to be part of the source. The
identifier will be visible to all included files that
appear after the declaration of the identifier. The
identifier can be declared again as a block scope
variable. The new declaration replaces the
file-scope declaration until the end of the block.

Function prototype scope The identifier’s declaration appears within the list of
parameters in a function prototype. It is visible from
the point where it is declared to the closing
parenthesis of the prototype declaration.

In the following example, the variable x, which is declared on line 1, is different
from the x declared on line 2. The variable that is declared on line 2 has function
prototype scope and is visible only up to the closing parenthesis of the prototype
declaration. Visibility of the variable x declared on line 1 resumes after the end of
the prototype declaration.

The following program illustrates blocks, nesting, and scope. The example shows
two kinds of scope: file and block. The main() function prints the values 1, 2, 3,
0, 3, 2, 1 on separate lines. Each instance of i represents a different variable.

1 int x = 4; /* variable x defined with file scope */
2 long myfunc(int x, long y); /* variable x has function */
3 /* prototype scope */
4 int main(void)
5 {
6 /* . . . */
7 }

#include <stdio.h>

int i = 1;

int main(int argc, char * argv[])
{

printf("%d\n", i);

{
int i = 2, j = 3;

printf("%d\n%d\n", i, j);

{
int i = 0;

printf("%d\n%d\n", i, j);
}

printf("%d\n", i);

}

printf("%d\n", i);

}

/* i defined at file scope */

/* Prints 1 */

/* i and j are defined */
/* at block scope */
/* Prints 2, 3 */

/* i is redefined in a nested block */
/* previous definitions of i are hidden */
/* Prints 0, 3 */

/* Prints 2 */

/* Prints 1 */

Figure 1. Example Illustrating Blocks, Nesting, and Scope

Chapter 1. Introduction to C 5

Linkage

The association or lack of association between two identical identifiers is known as
linkage . A C identifier can have one of the following kinds of linkage:

Internal linkage Identical identifiers within a single source file refer
to the same data object or function

External linkage Identical identifiers in separately compiled files refer
to the same data object or function

No linkage Each identifier refers to a unique object.

In Figure 2, the variable b is declared in both Source File 1 and Source File 2 as
extern and refers to the same data object. It has external linkage.

If the declaration of an identifier with file scope contains the keyword static, it has
internal linkage. In Figure 2, all references to the variable a in Source File 1 refer to
the same data object. The variable a in Source File 2 refers to a different data
object than a in Source File 1.

If the declaration of an identifier has the keyword extern and if there is a previous
declaration of the identifier at file scope, the identifier has the same linkage as the
first declaration. If a declaration of the identifier is not visible within the file scope,
the identifier has external linkage.

In Figure 3 on page 7, the variable x has internal linkage because the first
declaration of x occurs in file try.h and the storage class static is specified. The
variable y in Figure 3 on page 7 has external linkage because a previous
declaration of the identifier y is not visible within the same file scope.

Figure 2. Example of External and Internal Linkage

6 Language Reference

If an object or function is declared without a storage class specifier at file scope, it
has external linkage.

An identifier that falls into one of the following categories has no linkage:

v An identifier that does not represent an object or a function. For example, a C
label is neither an object nor a function.

v An identifier that represents a function parameter.

v An identifier declared inside a block without the keyword extern.

You can make identifiers refer to the same object or function in other source files
with appropriate extern declarations, as described in “Chapter 3. Declarations and
Definitions” on page 23.

Storage Duration

Storage duration determines how long storage for an object exists. An object has
either static storage duration or automatic storage class that depends on its
declaration.

An object with static storage duration has storage allocated for it prior to program
startup which remains available until the end of the program. All objects with file
scope have static storage duration. An object has static storage duration if it has
internal or external linkage, or if it contains the keyword static. All other objects
have automatic storage.

Storage for an object with automatic storage class is allocated and removed
according to the scope of the identifier. For example, storage for an object declared
at block scope is allocated when the block is entered and removed when the
closing brace of the block is reached. An object has automatic storage duration if it
is declared with no linkage and does not have the static storage class specifier.

Name Spaces

In any C program, identifiers refer to functions, data objects, labels, tags,
parameters, macros, and typedefs. C allows the same identifier to be used for more
than one class of identifier, as long as you follow the rules that are outlined in this
section.

Figure 3. Example of Linkage Using the Keyword extern

Chapter 1. Introduction to C 7

Name spaces are categories that are used to group similar types of identifiers.

You must assign unique names within each name space to avoid conflict. The same
identifier can be used to declare different objects as long as each identifier is
unique within its name space. The context of an identifier within a program lets the
compiler resolve its name space without ambiguity.

Identifiers in the same name space can be redefined within enclosed blocks as
described in “Scope” on page 4.

Within each of the following four name spaces, the identifiers must be unique.

v These identifiers must be unique within a single scope:

– Function names

– Variable names

– Names of function parameters

– Enumeration constants

– typedef names

v Tags of these types must be unique within a single scope:

– Enumerations

– Structures

– Unions

v Members of structures and unions must be unique within a single structure or
union.

v Statement labels have function scope and must be unique within a function.

Structure tags, structure members, and variable names are in three different name
spaces. No conflict occurs among the three items named student in the following
example:

Each occurrence of student is interpreted by its context in the program. For
example, when student appears after the keyword struct, it is a structure tag.
When student appears after either of the member selection operators . or ->, the
name refers to the structure member. (See “Chapter 5. Expressions and Operators”
on page 79 to find out how to refer to members of union or structure variables.) In
other contexts, the identifier student refers to the structure variable.

struct student /* structure tag */
{

char student[20]; /* structure member */
int class;
int id;

} student; /* structure variable */

8 Language Reference

Chapter 2. Lexical Elements of C

This chapter describes the basic elements of the C programming language.

Character Set

The following lists the basic character set that must be available at both compile
and run time:

v The uppercase and lowercase letters of the English alphabet
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

v The decimal digits 0 through 9

0 1 2 3 4 5 6 7 8 9

v The following graphic characters:
! " # % & ' () * + , - . / :
; < = > ? [\] _ { }

v The caret (|) character in ASCII (bitwise exclusive OR symbol) or the equivalent
not (¬) character in EBCDIC

v The split vertical bar (¦) character in ASCII, which may be represented by the
vertical bar (|) character on EBCDIC systems

v The space character

v The control characters that represent horizontal tab, vertical tab, form feed, and
end of string.

Uppercase and lowercase letters are treated as distinct characters. If a lowercase a
is specified as part of an identifier name, you cannot substitute an uppercase A in
its place.

For the keyboards that do not support the entire character set, you can use
trigraphs as alternative symbols to represent some characters.

Trigraphs

Some characters from the C character set are not available in all environments. You
can enter these characters into a C source program using a sequence of three
characters that is called a trigraph . The trigraph sequences are:

Table 1. Trigraph Sequences

Trigraph Character

??= #

??([

??)]

??< {

??> }

??/ \

??' |
Note: AS/400 systems translate and store this trigraph as a NOT symbol.

??! |

© Copyright IBM Corp. 1993, 1999 9

|

Table 1. Trigraph Sequences (continued)

Trigraph Character

??-

Escape Sequences

An escape sequence contains a backslash (\) symbol followed by one of the
escape sequence characters: a, b, f, n, r, t, v, ', ", ?, or \ or followed by an octal
or hexadecimal number. A hexadecimal escape sequence contains an x followed by
one or more hexadecimal digits (0-9, A-F, a-f). An octal escape sequence contains
one or more octal digits (0-7). The value of the hexadecimal or octal number
specifies the value of the desired character or wide character.

You can represent any member of the character set that is used at run time by an
escape sequence . For example, you can use escape sequences to place such
characters as tab, carriage return, and backspace into an output stream. An escape
sequence has the form:

The C language escape sequences and the characters they represent are:

Table 2. Escape Sequences

Escape Sequence Character Represented

\a Alert (bell)

\b Backspace

\f Form feed (new page)

\n New-line (IFSIO changes the value to 0x25)

\r Carriage return

\t Horizontal tab

\v Vertical tab

\' Single quotation mark

\" Double quotation mark

\? Question mark

\\ Backslash

Note: \ The line continuation sequence (\ followed by a new-line character) which is used
in C language character strings to indicate that the current line continues on the next line, is
not an escape sequence. See page 137 for more information on the line continuation
character.

The value of an escape sequence represents the member of the character set that
is used at run time. For example, on a system that uses the ASCII character codes,
the escape sequence \x56 represents the letter V. On a system that uses EBCDIC
character codes, the letter V is represented by \xE5.

Notes on Usage

ÊÊ \ escape_sequence_character
octal_constant
x hexadecimal_constant

ÊÍ

10 Language Reference

You can place an escape sequence in a character constant or in a string constant.
An error message is issued if an escape sequence is not recognized.

When you want to represent the backslash in string and character sequences, use
the \\ escape sequence.

Related Information

v “Character Constants” on page 18

v “Strings” on page 20

Comments

You can use comments to document code. Comments are notes in the source
code that are replaced by one space character when the code is compiled and are
otherwise ignored.

Comments begin with the /* characters, end with the */ characters, and may span
more than one line. You can place comments anywhere the C language allows
white space. White space includes space, tab, form feed, and new-line characters.

Note: The /* or */ characters found in a character constant or string literal do not
start or end comments.

In the following program, line 6 is a comment:

Because the comment on line 6 is equivalent to a space, the output is as follows:

This program has a comment.

/*...*/ found in a string literal is not interpreted as a comment. For example, line 6
in the following program is not a comment.

The output is as follows:

This program does not have /* NOT A COMMENT */ a comment.

You cannot nest comments. Each comment ends at the first occurrence of */.

1 #include <stdio.h>
2
3 int main(void)
4 {
5 printf("This program has a comment.\n");
6 /* printf("This is a comment line and will not print.\n"); */
7 }

1 #include <stdio.h>
2
3 int main(void)
4 {
5 printf("This program does not have \
6 /* NOT A COMMENT */ a comment.\n");
7 }

Chapter 2. Lexical Elements of C 11

In the following example, the comments are shaded:

In test_function(), the compiler reads the /* in line 14 through the */ in line 17 as
a comment and line 18 as C language code, causing errors at line 18. You can use
conditional compilation preprocessor directives to cause the compiler to bypass
sections of you program to avoid commenting over comments already in the source
code. For example, instead of commenting out the above statements, change line 2
and lines 14 to 18 in the following way:

Multibyte characters can also be included within a comment.

Identifiers

Identifiers provide names for functions, data objects, labels, tags, parameters,
macros, and typedefs. An identifier has the form:

There is no limit for the number of characters in an identifier. However, only the first
several characters of an identifier may be significant. The following table shows the
minimal character lengths of identifiers that are recognized. Other compilers may
have implemented a minimum number of significant characters that is less than or
greater than 255.

1 �/*"A"program"with"nested"comments."*/�
2
3 #include <stdio.h>
4
5 int main(void)
6 {
7 test_function();
8 }
9

10 int test_function(void)
11 {
12 int number;
13 char letter;
14 �/*�
15 �number"="55;�
16 �letter"="'A';�
17 �/*"number"="44;"*/�
18 */
19 return 999;
20 }

2 #define TEST_FUNCTION 0
...

14 #if TEST_FUNCTION
15 number = 55;
16 letter = 'A';
17 /*number = 44;*/
18 #endif /* TEST_FUNCTION */

ÊÊ letter
_

·
letter
digit
_

ÊÍ

12 Language Reference

Identifier Minimum Number of Significant Characters

Static data objects 255

Static function names 255

External data objects 255

External function names 255

For identifiers, uppercase and lowercase letters are viewed as different symbols.
Thus, PROFIT and profit represent different identifiers.

Note: For complete portability, never use different case representations to refer to
the same object.

Avoid creating identifiers that begin with an underscore (_) for function names and
variable names. Identifiers that begin with an underscore that is followed by an
uppercase letter, or beginning with two underscores are always reserved. Other
than member names, identifiers with file scope that begin with an underscore are
reserved.

Although the names of system calls and library functions are not reserved words if
you do not include the appropriate header files, avoid using them as identifiers.
Duplication of a predefined name can lead to confusion for your code maintainers
and can cause errors at bind time or run time. If you include a library in a program,
be aware of the function names in that library to avoid name duplications.

You should always include the appropriate header files when using standard library
functions.

Keywords

The C language reserves some words for special usage, known as keywords . You
cannot use these words as identifiers. Although you can use them for macro
names, it is not recommended that you do so. Only the exact spellings of the words
as specified below are reserved. For example, auto is reserved, but AUTO is not.

The following table lists the C language keywords:

Table 3. ILE C Language Keywords

_Packed
auto
break
case
char
const
continue
default
decimal1

digitsof1

do
double
else
enum
extern
float
for
goto

if
int
long
precisionof1

register
return
short
signed
sizeof

static
struct
switch
typedef
union
unsigned
void
volatile
while

Note: 1 The ILE C compiler recognizes _Decimal, __digitsof and __precisionof as
keywords. However, decimal, digitsof and precisionof are defined as macros in the
<decimal.h> header file for compatibility with other C compilers.

Chapter 2. Lexical Elements of C 13

Constants

The ILE C language contains the following types of constants:

v Integer

v Floating-Point

v Character

v Decimal

v Packed Decimal

v String

v Enumeration.

A constant is data with a value that does not change during the processing of a
program. The value of any constant must be in the range of representable values
for its type.

For more information on data types, see “Types” on page 38.

Integer Constants

Integer constants can be either decimal, octal, or hexadecimal values. The
following diagram lists these forms:

Data Types for Integer Constants

The data type of an integer constant is determined by the constant’s value. The
following table describes the integer constant and a list of possible data types for
that constant. The smallest data type in the list that can contain the constant value
will be associated with the constant.

Table 4. Data Types for Integer Constants

Constant Data Type

unsuffixed decimal int, long int, unsigned long int

unsuffixed octal int, unsigned int, long int, unsigned long int

unsuffixed hexadecimal int, unsigned int, long int, unsigned long int

suffixed by u or U unsigned int, unsigned long int

suffixed by l or L long int, unsigned long int

suffixed by both u or U, and l
or L

unsigned long int

suffixed by both l or L, and l
or L

long long int, unsigned long long int

ÊÊ decimal_constant
octal_constant
hexadecimal_constant

l
L l u

L U
u
U l l

L L

ÊÍ

14 Language Reference

Table 4. Data Types for Integer Constants (continued)

Constant Data Type

suffixed by all (u or U, l or L,
and l or L) or (l or L, lor L,
and u or U)

unsigned long long int

A plus (+) or minus (-) symbol can precede the constant. It is treated as a unary
operator rather than as part of the constant value.

Related Information

v “Decimal Constants”

v “Octal Constants” on page 16

v “Hexadecimal Constants”

v “Integers” on page 40

v See the ILE C for AS/400 Run-Time Library Reference for more information on
the <limits.h> header file.

Decimal Constants

A decimal constant contains any of the digits 0 through 9. The first digit cannot be
0. A decimal constant has the form:

Integer constants that begin with the digit 0 are interpreted as an octal constant,
rather than as a decimal constant.

Data Type

See Table 4 on page 14 for a complete description of the data types of decimal
constants.

Examples
485976
433132211
20
5

Related Information

v “Integer Constants” on page 14

v “Octal Constants” on page 16

v “Hexadecimal Constants”

v “Integers” on page 40

Hexadecimal Constants

A hexadecimal constant begins with the 0 digit that is followed by either an x or X.
After the 0x, you can place any combination of the digits 0 through 9 and the letters

ÊÊ digit_1_to_9 · digit_0_to_9 ÊÍ

Chapter 2. Lexical Elements of C 15

a through f or A through F. When used to represent a hexadecimal constant, the
lowercase letters are equivalent to their corresponding uppercase letters. A
hexadecimal constant has the form:

Data Type

See Table 4 on page 14 for a complete description of the data types of hexadecimal
constants.

Examples
0x3b24
0XF96
0x21
0x3AA
0X29b
0X4bD

Related Information

v “Integer Constants” on page 14

v “Decimal Constants” on page 15

v “Octal Constants”

v “Integers” on page 40

Octal Constants

An octal constant begins with the digit 0 and contains any of the digits 0 through 7.
An octal constant has the form:

Data Type

See Table 4 on page 14 for a complete description of the data types of octal
constants.

Examples

The following are examples of octal constants:
0
0125
034673
03245

Related Information

v “Integer Constants” on page 14

ÊÊ 0x
0X

· digit_0_to_F ÊÍ

ÊÊ 0 ·
digit_0_to_7

ÊÍ

16 Language Reference

v “Decimal Constants” on page 15

v “Hexadecimal Constants” on page 15

v “Integers” on page 40

Floating-Point Constants

A floating-point constant consists of an integral part, a decimal point, a fractional
part, an exponent part, and an optional suffix. Both the integral and fractional parts
are made up of decimal digits. You can omit either the integral part or the fractional
part, but not both. You can omit either the decimal point or the exponent part (but
not both). A floating-point constant has the form:

The exponent part consists of e or E, followed optionally by a sign and a decimal
number. An exponent has the form:

Value

The floating-point constant 8.45e+3 evaluates as follows:
8.45 * 103 = 8450.0

If a floating-point constant is too large or too small, the result is undefined.

Data Type

The suffix f or F indicates a type of float, and the suffix l or L indicates a type of
long double. If a suffix is not specified, the floating-point constant has a type
double.

A plus (+) or minus (-) symbol can precede a floating-point constant. However, it is
not part of the constant; it is interpreted as a unary operator.

Examples

Floating-Point Constant Value

5.3876e4 53,876

ÊÊ · ·

·

·

. digit
digit

digit
exponent

digit exponent

f
F
l
L

ÊÍ

ÊÊ ·e digit
E +

-

ÊÍ

Chapter 2. Lexical Elements of C 17

Floating-Point Constant Value

4e-11 0.00000000004

1e+5 100,000

7.321E-3 0.007321

3.2E+4 32,000

0.5e-6 0.0000005

0.45 0.45

6.e10 60,000,000,000

Related Information

v “Floating-Point Variables” on page 39

Character Constants

A character constant contains a sequence of characters or escape sequences that
are enclosed in single quotation mark symbols. A character constant has the form:

At least one character or escape sequence must appear in the character constant.
It can contain any character from the C character set, excluding the single quotation
mark, backslash, and new-line symbols. The prefix L indicates a wide character
constant. A character constant must appear on a single source line.

Value

The value of a character constant that contains a single character is the numeric
representation of the character in the character set that is used at run time. The
value of a wide character constant containing a single multibyte character is the
code for that character, as defined by the mbtowc() function (see the ILE C for
AS/400 Run-Time Library Reference). If the character constant contains more than
one character, the last 4 bytes represent the character constant.

Data Type

A character constant has type int. A wide character constant is represented by a
double-byte character of type wchar_t, as defined in the <stddef.h> include file.
Multibyte characters represent character sets that go beyond the single byte
character set. Each multibyte character can contain up to 4 bytes.

Restrictions

You can represent the double quotation mark symbol by itself. However, you must
use the backslash symbol followed by a single quotation mark symbol (\' escape
sequence) to represent the single quotation mark symbol. You can represent the
new-line character by the \n new-line escape sequence. You can represent the
backslash character by the \\ backslash escape sequence.

Examples

ÊÊ '
L

· character
escape_sequence

' ÊÍ

18 Language Reference

'a' '\'

'0' '('

'x' '\n'

'7' '\117'

'b' L'b' (character b stored a wide character)

Related Information

v “Strings” on page 20

v “Escape Sequences” on page 10

v “Integers” on page 40

Packed Decimal Constants

A packed decimal constant has a numeric part and a suffix that specifies its type.
Each packed decimal constant has the attributes number of digits (size) and
number of decimal places (precision). No leading or trailing zeros are stripped off
when determining the size and the precision. A packed decimal constant has the
form:

The fractional constant has the form:
The decimal-suffix has the form:

The digit sequence is made up of any decimal digits 0 through 9.

Value

The fractional-constant is a component of the numeric part. It may include a digit
sequence that represents the integral part, followed by a decimal point(.), followed
by a digit sequence that represents the fractional part. Either the integral part or the
fractional part shall be present, or both. The decimal-suffix d or D identifies the
constant as a packed decimal constant.

Data Type

A packed decimal constant has the type decimal(n,p), where n represents the
number of digits of the packed decimal constant, and p is the number of digits in
the fractional part.

Examples

The following example shows you some packed decimal constants and their
corresponding attributes:

ÊÊ fractional-constant decimal-suffix ÊÍ

ÊÊ digit-sequence
.

digit-sequence
. digit sequence

ÊÍ

ÊÊ D
d

ÊÍ

Chapter 2. Lexical Elements of C 19

Packed Decimal Constant (Size,Precision)

1234567890123456D (16,0)

12345678.12345678D (16,8)

12345678.d (8,0)

.1234567890d (10,10)

12345.99d (7,2)

000123.990d (9,3)

0.00D (3,2)

You can use packed decimal constants to define macros such as the following:
#define x (12345.67d)

You can initialize a packed decimal variable with a packed decimal constant. For
example:

Strings

A string constant or literal contains a sequence of characters or escape
sequences that are enclosed in double quotation mark symbols.

A string constant has the form:

Value

A null (\0) character is appended to each string. For a wide character string (a
string that is prefixed by the letter L), the value 0 of type wchar_t is appended. By
convention, programs recognize the end of a string by finding the null character.

If you want to continue a string on the next line, use the line continuation sequence
(\ symbol immediately followed by a new-line character).

Another way to continue a string is to have two or more consecutive strings.
Adjacent string literals are concatenated to produce a single string. (The null
character of the first string will no longer exist after the concatenation.) You cannot
concatenate a wide string constant with a character string constant.

Multiple spaces that are contained within a string constant are held.

Data Type

A character string constant has type array of char, and static storage duration. A
wide character constant has type array of wchar_t, and static storage duration.

#include <decimal.h>
decimal(5,2) x = 123.45d;
decimal(DEC_DIG, DEC_PRECISION) a =.0000000000000000000000000000005d;
decimal(6,2) b[] = {1.2d, 2d, 1234.56d, -33d};
decimal(28,20) a = -12.123456789d;

ÊÊ "
L

·

.

character
escape_sequence

" ÊÍ

20 Language Reference

Restrictions

You can use the escape sequence \n to represent a new-line character as part of
the string.

You can use the escape sequence \\ to represent a backslash character as part of
the string.

You can represent the single quotation mark symbol by itself ', but you use the
escape sequence \" to represent the double quotation mark symbol.

In ILE C, string literals are stored in static storage, and can be changed like any
other storage location. ILE C has the concept of readonly and writeable strings.
This deals with how multiple occurrences of strings are stored rather than whether
or not the strings can be changed.

When a string literal appears more than once in the program source, how that string
is stored depends on whether strings are readonly or writeable. If strings are
readonly, then only one location will be allocated for that string, and all occurrences
will refer to that one location. If strings are writeable, then each occurrence of the
string will have a separate, distinct storage location.

By default, the ILE C compiler will consider strings to be writeable. You can change
this using the #pragma strings preprocessor directive. Caution should be used with
readonly strings since the single instance of the string could be modified
inadvertently as is shown in the following simple example.

The output from this example would be:
p2: aBC

If the #pragma strings directive had not been used at all or it was used to specify
writeable strings, then ’p2’ would be pointing to a different copy of ″ABC″ which
would not have been affected by the change made using the ’p1’ pointer. Therefore,
the output in this case would be:

p2: ABC

Example
char titles[] = "Bach's \"Jesu, Joy of Man's Desiring\"";
char *mail_addr = "Last Name First Name MI Street Address \

City Province Postal code ";
char *temp_string = "abc" "def" "ghi"; /* *temp_string = "abcdefghi\0" */

#pragma strings(readonly)
#include <stdio.h>
/* Since "readonly" strings are being used, the string literal */
/* "ABC" will only be allocated in storage once. The address of */
/* that location will be stored in both 'p1' and 'p2'. */
char *p1 = "ABC";
char *p2 = "ABC";

main() {
/* change the first character */

p1 = 'a'; / pointed to by 'p1' */
/* output the string pointed to */

printf("p2: %3.3s \n", p2); /* by 'p2' to see that it has */
/* also changed. */

}

Chapter 2. Lexical Elements of C 21

Related Information

v “Character Constants” on page 18

v “Escape Sequences” on page 10

v “Characters” on page 38

v “Arrays” on page 47

Enumeration Constants

When you define an enumeration data type, you specify a set of identifiers that the
data type represents. Each identifier in this set is an enumeration constant .

Value

Each enumeration constant has an integer value. You can use an enumeration
constant anywhere an integer constant is allowed. The value of the constant is
determined in the following way:

1. An equal sign (=) and a constant expression after the enumeration constant give
an explicit value to the constant. The identifier represents the value of the
constant expression.

2. If no explicit value is assigned, the leftmost constant in the list receives the
value zero (0).

3. Identifiers with no explicitly assigned values receive the integer value that is one
greater than the value that is represented by the previous identifier.

Data Type

An enumeration constant has type int.

Examples

The following data type declarations list oats, wheat, barley, corn, and rice as
enumeration constants. The number under each constant shows the integer value.
enum grain { oats, wheat, barley, corn, rice };

/* 0 1 2 3 4 */
enum grain { oats=1, wheat, barley, corn, rice };

/* 1 2 3 4 5 */
enum grain { oats, wheat=10, barley, corn=20, rice };

/* 0 10 11 20 21 */

It is possible to associate the same integer with two different enumeration
constants. For example, the following definition is valid. The identifiers suspend and
hold have the same integer value.
enum status { run, delete=5, suspend, resume, hold=6 };

Related Information

v “Enumerations” on page 44

v “Integers” on page 40

22 Language Reference

Chapter 3. Declarations and Definitions

This chapter describes the C language definitions and declarations for data objects
and functions. A declaration establishes the names and characteristics of data
objects and functions used in a program. A definition is a declaration that allocates
storage for data objects or specifies the body for a function.

The following table shows examples of declarations and definitions. The identifiers
that are declared in the first column do not allocate storage; they refer to a
corresponding definition. In the case of a function, the corresponding definition is
the code or body of the function. The identifiers that are declared in the second
column allocate storage; they are both declarations and definitions.

Table 5. Examples of Declarations and Definitions

Declarations Declarations and Definitions

extern double pi; double pi = 3.14159265;

float square(float x); float square(float x) { return x*x; }

struct payroll; struct payroll {
char *name;
float salary;

} employee;

The declaration for a data object can include the following components:

v Storage class, described in “Storage Class Specifiers” on page 25

v Type, described in “Types” on page 38

v Qualifier and Declarator, described in “Declarators” on page 33

v Initializer, described in “Initializers” on page 37.

The “Chapter 4. Functions” on page 69 describes the function declarations.

Declarations determine the following properties of data objects and their identifiers:

v Scope, which describes the visibility of an identifier in a block or source file. For
a complete description of scope, see “Scope” on page 4.

v Storage duration, which describes when the system allocates and frees storage
for a data object.

v Linkage, which describes the association between two identical identifiers. See
“Linkage” on page 6 for more information.

v Type, which describes the kind of data the object is to represent.

Block Scope Data Declarations

A block scope data declaration can only be placed at the beginning of a block. It
describes a variable and makes that variable accessible to the current block. All
block scope declarations that do not have the extern storage class specifier are
definitions and allocate storage for that object.

You can define a data object with block scope with any one of the following storage
class specifiers:

v auto v register v static v extern

© Copyright IBM Corp. 1993, 1999 23

If you do not specify a storage class specifier in a block-scope data declaration, the
default storage class specifier auto is used. If you specify a storage class specifier,
you can omit the type specifier. If you omit the type specifier, all variables that are
declared in that declaration will have the type int.

Initialization

You cannot initialize a variable that is declared in a block scope data declaration
and has the extern storage class specifier.

The types of variables you can initialize and the values that uninitialized variables
receive vary for each storage class specifier.

Storage

Declarations with the auto or register storage class specifier result in automatic
storage duration. Declarations with the extern or static storage class specifier
result in static storage duration.

Related Information

v “auto Storage Class Specifier” on page 25

v “register Storage Class Specifier” on page 30

v “extern Storage Class Specifier” on page 28

v “static Storage Class Specifier” on page 31

v “Declarators” on page 33

v “Initializers” on page 37

v “Types” on page 38

File Scope Data Declarations

A file scope data declaration appears outside any block. It describes a variable
and makes that variable accessible to all functions that are in the same file and
whose definitions appear after the declaration.

A file scope data definition is a data declaration at file scope that also causes the
system to allocate storage for that variable. All objects whose identifiers are
declared at file scope have static storage duration.

You can use a file scope data declaration to declare variables that you want several
functions to access.

The only storage class specifiers you can place in a file scope data declaration are
static and extern.

If you specify static, all variables that are defined in it have internal linkage. If you
do not specify static, all variables that are defined in it have external linkage.

If you specify the storage class static or extern, you can omit the type specifier. If
you omit the type specifier, all variables that are defined in that declaration receive
the type int.

24 Language Reference

Initialization

You can initialize any object with file scope. If you do not initialize a file scope
variable, its initial value is zero of the appropriate type. If you do initialize it, the
initializer must be described by a constant expression. Or it must reduce to the
address of a previously declared variable at file scope, possibly modified by a
constant expression. Initialization of all variables at file scope takes place before the
main() function begins processing.

Storage

All objects with file scope data declarations have static storage duration. The
system allocates memory for all file scope variables when the program begins
processing and frees it when the program is finished processing.

Related Information

v “extern Storage Class Specifier” on page 28

v “static Storage Class Specifier” on page 31

v “Declarators” on page 33

v “Initializers” on page 37

v “Types” on page 38

Storage Class Specifiers

This section describes C language object declarations and the storage durations
that are associated with the objects and the linkage of their identifiers. The storage
class specifier that is used within the declaration determines the following:

v Whether the object has internal, external, or no linkage.

v Whether the object has static class (storage for the object is maintained
throughout program execution) or automatic class (storage for the object is
maintained only during the execution of the block in which the identifier of the
object is defined) storage duration.

v Whether the object is stored in memory or in a register, if available.

v Whether the object receives the default initial value 0 or an indeterminate default
initial value.

For a function, the storage class specifier determines the function’s linkage.

auto Storage Class Specifier

The auto storage class specifier enables you to define a variable with automatic
storage; its use and storage are restricted to the current block. The storage class
keyword auto is optional in a data declaration and is forbidden in a parameter
declaration. A variable that has the auto storage class specifier must be declared
within a block. It cannot be used for file scope declarations.

The following example lines declare variables that have the auto storage class
specifier:
auto int counter;
auto char letter = 'k';

Chapter 3. Declarations and Definitions 25

Initialization

You can initialize any auto variable except parameters. If you do not initialize an
automatic object, its value is undefined. If you provide an initial value, the
expression that represents the initial value can be any valid C expression. For
aggregates or unions, the initial value must be a valid constant expression. The
object is then set to that initial value each time the program block that contains the
object’s definition is entered.

Note: If you use the goto statement to jump into the middle of a block, automatic
variables within that block are not initialized.

Storage

Objects with the auto storage class specifier have automatic storage duration. Each
time a block is entered, the storage for auto objects defined in that block is made
available. When the block is exited, the objects are no longer available for use.

If an auto object is defined within a function that is recursively called, memory is
allocated for the object at each call of the block.

Usage

Declaring variables with the auto storage class specifier can decrease the amount
of memory that is required for program processing. This occurs because auto
variables require storage only while they actually are needed. Generally, it is not a
good idea to use automatic storage for large objects. The operating system will take
time to allocate or deallocate large amounts of storage.

Examples

The following program shows the scope and initialization of auto variables. The
function main() defines two variables, each named auto_var. The first definition
occurs on line 8. The second definition occurs in a nested block on line 11. While
the nested block runs, only the auto_var created by the second definition is
available. During the rest of the program, only the auto_var created by the first
definition is available.
1 /* program to illustrate auto variables */
2
3 #include <stdio.h>
4
5 int main(void)
6 {
7 void call_func(int passed_var);
8 auto int auto_var = 1; /* first definition of auto_var */
9

10 {
11 int auto_var = 2; /* second definition of auto_var */
12 printf("inner auto_var = %d\n", auto_var);
13 }
14 call_func(auto_var);
15 printf("outer auto_var = %d\n", auto_var);
16 }
17
18 void call_func(int passed_var)
19 {

26 Language Reference

20 printf("passed_var = %d\n", passed_var);
21 passed_var = 3;
22 printf("passed_var = %d\n", passed_var);
23 }

This program produces the following output:

inner auto_var = 2
passed_var = 1
passed_var = 3
outer auto_var = 1

The following example uses an array that has the storage class auto to pass a
character string to the function sort. The C language views an array name that
appears without subscripts (for example, string instead of string[0]) as a pointer.
Thus, the sort() function receives the address of the character string, rather than
the contents of the array. The address enables the sort function to change the
values of the elements in the array.
/* Sorted string program */
#include <stdio.h>
int main(void)
{

void sort(char *array, int n);
char string[75];
int length;
printf("Enter letters:\n");
scanf("%74s", string);
length = strlen(string);
sort(string,length);
printf("The sorted string is: %s\n", string);

}
void sort(char *array, int n)
{

int gap, i, j, temp;
for (gap = n / 2; gap > 0; gap /= 2)

for (i = gap; i < n; i++)
for (j = i - gap; j >= 0 && array[j] > array[j + gap];

j -= gap)
{

temp = array[j];
array[j] = array[j + gap];
array[j + gap] = temp;

}
}

When the program is run, interaction with the program could produce:

Output Enter letters:

Input zyfab

Output The sorted string is: abfyz

Related Information

v “register Storage Class Specifier” on page 30

v “Block Scope Data Declarations” on page 23

v “Address &” on page 88

Chapter 3. Declarations and Definitions 27

extern Storage Class Specifier

The extern storage class specifier enables you to declare objects and functions that
several source files can use. All object declarations that occur outside a function
and that do not contain a storage class specifier declare identifiers with external
linkage. All function definitions that do not specify a storage class define functions
with external linkage.

You can distinguish an extern declaration from an extern definition by the presence
of the keyword extern and the absence of an initial value. If the keyword extern is
absent or if there is an initial value, the declaration is also a definition; otherwise, it
is just a declaration. An extern definition can appear only outside a function
definition. Only one declaration of the variable without the keyword extern can be
used. That declaration is the definition of the storage for the variable.

If a declaration for an identifier already exists at file scope, any extern declaration
of the same identifier found within a block refers to that same object. If no other
declaration for the identifier exists at file scope, the identifier has external linkage.

Declaration

An extern declaration can appear outside a function or at the beginning of a block.
If the declaration describes a function or appears outside a function and describes
an object with external linkage, the keyword extern is optional.

If you choose not to specify a storage class specifier, the function will have external
linkage. So if you include a declaration for the same function with the storage class
specifier static before the declaration with no storage class specifier, an error will
be noted because of the incompatible declarations. If you had included the extern
storage class specifier on the original declaration, there would be no error, and the
function would have internal linkage.

Initialization of Variables

You can initialize any object with the extern storage class specifier at file scope.
You can initialize an extern object with an initializer that must either:

v Appear as part of the definition and the initial value must be described by a
constant expression.

v Reduce to the address of a previously declared object with static storage
duration. This object may be changed by a constant expression.

If you do not initialize an extern variable, its initial value is zero of the appropriate
type. By the start of program processing, initialization of an extern object is
completed.

Storage for Objects

extern objects have static storage duration. Memory is allocated for extern objects
before the main() function begins processing. When the program finishes
processing, the storage is freed.

Examples

The following program shows the linkage of extern objects and functions. The
extern object total is declared on line 12 of File 1 and on line 11 of File 2. The

28 Language Reference

definition of the external object total appears in File 3. The extern function
tally() is defined in File 2. The function tally() can be placed in the same file
as main() or in a different file. Because main() precedes these definitions and main
uses both total and tally(), main() declares tally() on line 11 and total on line
12. Each file needs to be compiled using CRTCMOD and then bound using
CRTPGM.

File 1
1 /**
2 ** This program receives the price of an item, adds the **
3 ** tax, and prints the total cost of the item. **
5 **/
6
7 #include <stdio.h>
8
9 int main(void)

10 { /* begin main */
11 void tally(void); /* declaration of function tally */
12 extern float total; /* first declaration of total */
13
14 printf("Enter the purchase amount: \n");
15 tally();
16 printf("\nWith tax, the total is: %.2f\n", total);
17 } /* end main */

File 2
1 /**
2 ** This file defines the function tally **
3 **/
4 #include <stdio.h>
5
6 #define tax_rate 0.05
7
8 void tally(void)
9 { /* begin tally */

10 float tax;
11 extern float total; /* second declaration of total */
12
13 scanf("%f", &total);
14 tax = tax_rate * total;
15 total += tax;
16 } /* end tally */

File 3
1 float total;

The following program shows extern variables that are used by two functions.
Because both functions main() and sort() can access and change the values of
the extern variables string and length, the main() function does not have to pass
parameters to sort().
/* Sorted string program */
#include <stdio.h>
char string[75];
int length;

int main(void)
{

void sort(void);
printf("Enter letters:\n");
scanf("%s", string);
length = strlen(string);
sort();

Chapter 3. Declarations and Definitions 29

printf("The sorted string is: %s\n", string);
}

void sort(void)
{

int gap, i, j, temp;
for (gap = length / 2; gap > 0; gap /= 2)

for (i = gap; i < length; i++)
for (j = i - gap;

j >= 0 && string[j] > string[j + gap];
j -= gap)

{

temp = string[j];
string[j] = string[j + gap];
string[j + gap] = temp;

}
}

When this program is run, interaction with it could produce:

Output Enter letters:

Input zyfab

Output The sorted string is: abfyz

The following program shows a static variable var1 which is defined at file scope
and then declared with the storage class specifier extern. The second declaration
refers to the first definition of var1, and so it has internal linkage.
static int var1;...
extern int var1;

Related Information

v “File Scope Data Declarations” on page 24

v “Function Definition” on page 70

v “Function Declarator” on page 72

v “Constant Expression” on page 82

register Storage Class Specifier

The register storage class specifier indicates to the compiler within a file scope
data definition or a parameter declaration that the object being described will be
heavily used (such as a loop control variable). If possible, the compiler will place
the object into a machine register for fast access storage. The storage class
keyword register is required in a data definition and in a parameter declaration
that describes an object that has the register storage class. An object that has the
register storage class specifier must be defined within a block or declared as a
parameter to a function.

The following example lines define automatic storage duration objects that use the
register storage class specifier:
register int score1 = 0, score2 = 0;
register unsigned char code = 'A';
register int *element = &order[0];

30 Language Reference

Initialization

You can initialize any register object except parameters. If you do not initialize an
automatic object, its value is undefined. If you provide an initial value, the
expression that represents the initial value can be any valid C expression. For
aggregates or unions, the initial value must be a valid constant expression. The
variable is then set to that initial value each time the program block that contains
the object’s definition is entered.

Storage

Objects with the register storage class specifier have automatic storage duration.
Each time a block is entered, storage for register objects that are defined in that
block is made available. When the block is exited, the objects are no longer
available for use.

If a register object is defined within a function that is recursively invoked, the
system allocates memory for the variable at each invocation of the block.

The register storage class specifier indicates that the object is heavily used. It also
indicates to the compiler that the value of the object should reside in a machine
register. Not all register variables are actually placed in registers.

If the compiler does not allocate a machine register for a register object, the object
is treated as having the storage class specifier auto. Because of the limited size
and number of registers available on most systems, few variables can be stored in
registers at the same time. In C programs, even if a register variable is treated as
a variable with storage class auto, the address of the variable cannot be taken.

Restrictions

You cannot use the register storage class specifier on file scope data declarations.

Related Information

v “auto Storage Class Specifier” on page 25

v “Block Scope Data Declarations” on page 23

v “Parameter Declaration List” on page 73

v “Address &” on page 88

static Storage Class Specifier

The static storage class specifier enables you to define objects with static storage
duration and internal linkage, or to define functions with internal linkage.

An object that has the static storage class specifier can be defined within a block
or at file scope. If the definition occurs within a block, the object has no linkage. If
the definition occurs at file scope, the object has internal linkage.

Initialization of Variables

You can initialize any static object. If you do not provide an initial value, the object
receives the value of zeros of the appropriate type. If you initialize a static object,

Chapter 3. Declarations and Definitions 31

a constant expression must describe the initializer. Otherwise, the initializer must
reduce to the address of a previously declared extern or static object, possibly
changed by a constant expression.

Storage for Object

Objects with the static storage class specifier have static storage duration. The
storage for a static variable is made available when the program begins
processing. When the program finishes running, the memory is freed.

Restrictions

You cannot declare a static function at block scope.

Usage

You can use static variables when you need an object that retains its value from
one execution of a block to the next. Using the static storage class specifier keeps
the system from reinitializing the object each time the block in which the object is
defined is run.

Examples

The following program shows the linkage of static identifiers at file scope. This
program uses two different external static identifiers that are named stat_var. The
first definition occurs in file 1. The second definition occurs in file 2. The main()
function references the object defined in file 1. The var_print() function
references the object defined in file 2:

File 1
/**
** Program to illustrate file scope static variables **
**/
#include <stdio.h>
extern void var_print(void);
static stat_var = 1;
int main(void)
{

printf("file1 stat_var = %d\n", stat_var);
var_print();
printf("FILE1 stat_var = %d\n", stat_var);

}

File 2
#include <stdio.h>
static int stat_var = 2;
void var_print(void)
{

printf("file2 stat_var = %d\n", stat_var);
}

The preceding program produces the following output:
file1 stat_var = 1
file2 stat_var = 2
FILE1 stat_var = 1

32 Language Reference

The following program shows the linkage of static identifiers with block scope. The
function test() defines the static variable stat_var. stat_var keeps its storage
throughout the program, even though test() is the only function that can refer to
stat_var.
/**
** Program to illustrate block scope static variables **
**/
#include <stdio.h>
int main(void)
{

void test(void);
int counter;
for (counter = 1; counter <= 4; ++counter)

test();
}
void test(void)
{

static int stat_var = 0;
auto int auto_var = 0;
stat_var++;
auto_var++;
printf("stat_var = %d auto_var = %d\n", stat_var, auto_var);

}

The preceding program produces the following output:

stat_var = 1 auto_var = 1
stat_var = 2 auto_var = 1
stat_var = 3 auto_var = 1
stat_var = 4 auto_var = 1

Related Information

v “Block Scope Data Declarations” on page 23

v “File Scope Data Declarations” on page 24

v “Function Definition” on page 70

v “Function Declarator” on page 72

Declarators

A declarator designates a data object or function. Declarators appear in all data
definitions and declarations and in some type definitions. A declarator has the form:

A qualifier is one of: const, volatile, or _Packed.

You cannot declare or define a volatile or const function.

ÊÊ

·
·

·

identifier
(declarator) ()

*
subscript_declarator

identifier
qualifier (subdeclarator) subscript_declarator

*

ÊÍ

Chapter 3. Declarations and Definitions 33

A declarator can contain a subdeclarator . A subdeclarator has the form:

A subscript declarator describes the number of dimensions in an array and the
number of elements in each dimension.

A subscript declarator has the form:

A simple declarator consists of an identifier, which names a data object. For
example, the following block scope data declaration uses initial as the declarator:
auto char initial;

The data object initial has the storage class auto and the data type char.

You can define or declare an aggregate by using a declarator containing an
identifier to name the data object, and some combination of symbols and identifiers
to describe the data types represented by the object. An aggregate is a structure,
union, or array. The following declaration uses compute[5] as the declarator:
extern long int compute[5];

Examples

The following table describes some declarators:

Table 6. Example Declarators

Example Description

int owner owner is an int data object.

int *node node is a pointer to an int data object.

int names[126] names is an array of 126 int elements.

int *action() action is a function returning a pointer to an int.

volatile int min min is an int that has the volatile qualifier.

int * volatile volume volume is a volatile pointer to an int.

volatile int * next next is a pointer to a volatile int.

volatile int * sequence[5] sequence is an array of five pointers to volatile int
objects.

extern const volatile int
op_system_clock

op_system_clock is a constant and volatile integer
with static storage duration and external linkage.

ÊÊ

·

identifier
(subdeclarator)

*
volatile
const

Ê

Ê
subscript_declarator

ÊÍ

ÊÊ []
constant_expression

· [constant_expression]

ÊÍ

34 Language Reference

Table 6. Example Declarators (continued)

Example Description

_Packed struct struct_type s s is a packed structure of type struct_type.

Related Information

v “volatile and const Qualifiers”

v “_Packed Qualifier” on page 36

v “Chapter 3. Declarations and Definitions” on page 23

v “Arrays” on page 47

v “Enumerations” on page 44

v “Pointers” on page 52

v “Structures” on page 57

v “Unions” on page 62

volatile and const Qualifiers

The volatile qualifier maintains the intent of the original expression with respect to
stores and fetches of volatile objects. The volatile qualifier is useful for data
objects that have values that may be changed in ways unknown to your program
(such as the system clock). Portions of an expression that refer to volatile objects
are not to be changed or removed.

The const qualifier explicitly declares a data object as a data item that cannot be
changed. Its value is set at initialization. You cannot use const data objects in
expressions that requires a modifiable lvalue. For example, a const data object
cannot appear on the left-hand side of an assignment statement.

For a volatile or const pointer, you must place the keyword between the * and the
identifier. For example:

For a pointer to a volatile or const data object, you must place the keyword
before the type specifier. For example:

You can assign a value to the int * const y but not to const int * y.

For other types of volatile and const variables, the position of the keyword within
the definition (or declaration) is less important. For example:

This definition provides the same storage as:

int * volatile x; /* x is a volatile pointer to an int */
int * const y = &z; /* y is a const pointer to the int variable z */

volatile int *x; /* x is a pointer to a volatile int */
const int *y; /* y is a pointer to a const int */

volatile struct omega {
int limit;
char code;

} group;

Chapter 3. Declarations and Definitions 35

In both examples, only the structure variable group receives the volatile qualifier.
Similarly, if you specified the const keyword instead of volatile, only the structure
variable group receives the const qualifier. The const and volatile qualifiers when
applied to a structure or union also apply to the members of the structure or union.

Although enumeration, structure, and union variables can receive the volatile or
const qualifier, enumeration, structure, and union tags do not carry the volatile or
const qualifier. For example, the blue structure does not carry the volatile
qualifier:

The keyword volatile or const cannot separate the keywords enum, struct, and
union from their tags.

You cannot declare or define a volatile or const function. However, you can define
or declare a function that returns a pointer to a volatile or const object.

You can place more than one qualifier on a declaration, but you cannot specify the
same qualifier more than once on a declaration.

These type qualifiers are only meaningful on expressions that are lvalues.

_Packed Qualifier

The _Packed qualifier removes padding between members of structures and unions,
whenever possible. However, the storage that is saved using packed structures and
unions may come at the expense of run-time performance. Most machines access
data more efficiently if it is aligned on appropriate boundaries. With packed
structures and unions, members are generally not aligned on natural boundaries.
The result is that member-accessing operations (using the . and -> operators) are
slower.

Note: Pointers are always aligned on their natural boundaries, 16 bytes, even in
_Packed structures and unions.

_Packed can only be used with structs or unions. If you use _Packed with other
types, an error message is generated, and the qualifier has no effect on the
declarator that it qualifies. Packed and nonpacked structures and unions have
different storage layouts. However, a packed structure or union can be assigned to
a nonpacked structure or union of the same type. A nonpacked structure or union
can be assigned to a packed structure or union. Comparisons between packed and
nonpacked structures, or packed structures and unions of the same type are
prohibited.

struct omega {
int limit;
char code;

} volatile group;

volatile struct whale {
int weight;
char name[8];

} killer;
struct whale blue;

_Packed struct struct_type s /* s is a packed structure of type struct_type */

36 Language Reference

If you specify the _Packed qualifier on a structure or union that contains a structure
or union as a member, the qualifier is not passed on to the contained structure or
union.

Related Information

v “Arrays” on page 47

v “Enumerations” on page 44

v “Pointers” on page 52

v “Structures” on page 57

v “Unions” on page 62

Initializers

An initializer is an optional part of a data declaration that specifies a data object’s
initial value.

An initializer has the form:

The initializer consists of the = symbol that is followed by an initial expression or a
braced list of initial expressions that are separated by commas. The number of
initializers should not be more than the number of elements to be initialized. The
initial expression evaluates to the first value of the data object.

To assign a value to a scalar object, use the simple initializer: = expression. For
example, the following data definition uses the initializer = 3 to set the initial value of
group to 3:
int group = 3;

For unions and structures, the set of initial expressions must be enclosed in braces
({ }). If the initializer of a character string is a string literal, the { } are optional.
Commas must separate the individual expressions. Groups of expressions can be
enclosed in braces and separated by commas. The number of initializers must be
less than or equal to the number of initialized objects. In the following example, only
the first eight elements of the array grid are explicitly initialized. The remaining four
elements that are not explicitly initialized are initialized as if you explicitly initialized
them to zero.
static short grid[3] [4] = {0, 0, 0, 1, 0, 0, 1, 1};

The initial values of grid are:

Element Value Element Value

grid[0] [0] 0 grid[1] [2] 1

ÊÊ

·

· ·

= expression
,

{ expression }
,

,

{ expression }

ÊÍ

Chapter 3. Declarations and Definitions 37

Element Value Element Value

grid[0] [1] 0 grid[1] [3] 1

grid[0] [2] 0 grid[2] [0] 0

grid[0] [3] 1 grid[2] [1] 0

grid[1] [0] 0 grid[2] [2] 0

grid[1] [1] 0 grid[2] [3] 0

Initialization considerations for each data type are described in the section for that
data type.

Types

The ILE C data types are:

v Characters

v Floating-Point Numbers

v Integers

v Packed Decimal

From these types, you can derive the following:

v Arrays

v Pointers

v Enumerations

v Structures

v Unions

Characters

The C language contains three basic character data types: char, signed char, and
unsigned char. These data types provide enough storage to hold any member of
the character set that is used at run time.

An unsigned char represents a char . For information on changing this default, see
“chars” on page 158. If it does not matter whether a char data object is signed or
unsigned, you can declare the object as having the data type char. Otherwise,
explicitly declare signed char or unsigned char. When a char (that is signed or
unsigned) is widened to an int, its value is preserved.

To declare a data object that have a character data type, place a char specifier in
the type specifier position of the declaration. The char specifier has the form:

The declarator for a simple character declaration is an identifier. You can initialize a
simple character with a character constant or with an expression that evaluates to
an integer.

Examples

ÊÊ
unsigned
signed

char ÊÍ

38 Language Reference

The following example defines the identifier end_of_string as a constant object of
type char that has the initial value \0 (the null character):
const char end_of_string = '\0';

The following example defines the unsigned char variable switches as having the
initial value 3:
unsigned char switches = 3;

You can use the char specifier in variable definitions to define such variables as:
arrays of characters, pointers to characters, and arrays of pointers to characters.

The following example defines string_pointer as a pointer to a character:
char *string_pointer;

The following example defines name as a pointer to a character. After initialization,
name points to the first letter in the character string "Johnny":
char *name = "Johnny";

The following example defines a one-dimensional array of pointers to characters.
The array has three elements. Initially they are a pointer to the string "Venus", a
pointer to "Jupiter", and a pointer to "Saturn":
static char *planets[] = { "Venus", "Jupiter", "Saturn" };

Related Information

v “Arrays” on page 47

v “Pointers” on page 52

v “Character Constants” on page 18

v “Assignment Expression” on page 102

Floating-Point Variables

The C language defines three types of floating-point variables: float, double, and
long double.

The storage size of a float variable is less than or equal to the storage size of a
double variable. The storage size of a double is equal to the storage size of a long
double variable. Thus, the following expression always evaluates to 1 (true):
sizeof(float) <= sizeof(double) && sizeof(double) == sizeof(long double)

The size of a float is 4 bytes. The size of double and long double is 8 bytes. The
size of float, double, and long double may vary for different compilers.

To declare a data object that has a floating-point type, use the float specifier . The
float specifier has the form:

The declarator for a simple floating-point declaration is an identifier. You can
initialize a simple floating-point variable with a float constant or with a variable or

ÊÊ float
double
long double

ÊÍ

Chapter 3. Declarations and Definitions 39

expression that evaluates to an integer or floating-point number. (The storage class
of a variable determines how you can initialize the variable.)

Examples

The following example defines the identifier pi for an object of type double:
double pi;

The following example defines the float variable real_number with the initial value
100.55:
static float real_number = 100.55;

The following example defines the float variable float_var with the initial value
0.0143:
float float_var = 1.43e-2;

The following example declares the long double variable maximum:
extern long double maximum;

The following example defines the array table with 20 elements of type double:
double table[20];

Related Information

v “Floating-Point Constants” on page 17

v “Assignment Expression” on page 102

v “Integers”

Integers

The C language supports eight types of integer variables:

v short int, short, signed short, or signed short int

v signed, signed int, or int (In some cases, no type specifier is needed; see
“Block Scope Data Declarations” on page 23 and “File Scope Data Declarations”
on page 24.)

v long int, long, signed long, or signed long int

v unsigned short int or unsigned short

v unsigned or unsigned int

v unsigned long int or unsigned long

v long long int, long long, signed long long, or signed long long int

v unsigned long long int or unsigned long long

The storage size of a short type is less than or equal to the storage size of an int
variable. The storage size of an int variable is equal to the storage size of a long
variable. The storage size of a long variable is less than or equal to the storage
size of a long long variable. Thus, the following expression always evaluates to 1
(true):

sizeof(short) <= sizeof(int)
&& sizeof(int) == sizeof(long)
&& sizeof(long) <= sizeof(long long)

40 Language Reference

ILE C provides three sizes for integer data types. Objects that have type short are
two bytes of storage in length. Objects that have type long are four bytes of storage
in length. Objects that have type long long are eight bytes of storage in length. An
int requires four bytes of storage.

The unsigned prefix indicates that the value of the object is a nonnegative integer.
Each unsigned type provides the same size storage as its signed equivalent. For
example, int reserves the same storage as unsigned int. Because a signed type
reserves a sign bit, an unsigned type can hold a larger positive integer than the
equivalent signed type.

Note: A program that uses long long integer data type will only compile with one
of the following:

1. The keyword LANGLVL(*EXTENDED) on the CRTCMOD command

2. No #pragma langlvl directive in the program source and the keyword
LANGLVL(*SOURCE) on the CRTCMOD command (the default setting)

3. #pragma langlvl(EXTENDED) in the program source and the keyword
LANGLVL(*SOURCE) on the CRTCMOD command

The long long integer data type is not currently a universal standard. Its use
may restrict portability to some other platforms.

To declare a data object that has an integer data type, place an int specifier in the
type specifier position of the declaration. The int specifier has the form:

The declarator for a simple integer definition or declaration is an identifier. You can
initialize a simple integer definition with an integer constant or with an expression
that evaluates to a value that can be assigned to an integer. (The storage class of a
variable determines how you can initialize the variable.)

Examples

The following example defines the short int variable flag:
short int flag;

The following example defines the int variable result:
int result;

The following example defines the unsigned long int variable ss_number as having
the initial value 438888834:
unsigned long ss_number = 438888834ul;

The following example defines the unsigned long long int variable temp as having
the initial value 4388888344294967296:
unsigned long long temp = 4388888344294967296ULL;

ÊÊ int
unsigned short
signed int

long
long int

signed
unsigned

ÊÍ

Chapter 3. Declarations and Definitions 41

The following example defines the identifier sum for an object of type int. The initial
value of sum is the result of the expression a + b:
extern int a, b;
auto sum = a + b;

Related Information

v “Integer Constants” on page 14

v “Decimal Constants” on page 15

v “Octal Constants” on page 16

v “Hexadecimal Constants” on page 15

Packed Decimal

The size of a packed decimal type can vary from 1 byte to 16 bytes. Each packed
decimal digit occupies half a byte. In addition, half a byte is used for the sign. The
number of bytes used by decimal(n,p) is the smallest whole number greater than or
equal to (n+1)/2. For example, sizeof(decimal(n,p)) > = ceil((n+ 1)/2).

To declare a data object that has a packed decimal data type, include the
<decimal.h> header file in the C source. Use a packed decimal specifier in the type
specifier position of the declaration. The packed decimal specifier has form:

The constant_expression is evaluated as a positive integral constant expression.
The second constant_expression is optional; the default value is 0.

The type specifier decimal(n,p) is used to declare variables of packed decimal data
type.

decimal(n,p) designates a packed decimal number with n digits and p decimal
places. n is the number of digits for the integral part and the fractional part. p is the
number of digits for the decimal (fractional) part. The maximum number of digits n
and the maximum precision p is 31 digits. For example, decimal(5,2) represents a
number such as 123.45 where n=5 and p=2.

n and p have a range of allowed values according to the following rules:
1 ≤ n ≤ 31
0 ≤ p ≤ n

The range applies to packed decimal constants and variables. n and p can be
integral constant expressions, integral constants, hexadecimal constants, or octal
constants.

The type specifiers that are long, short, signed, and unsigned cannot be used with
decimal(n,p).

Examples

ÊÊ decimal (constant_expression)
,constant_expression

ÊÍ

42 Language Reference

The following example shows how to declare a variable of packed decimal data
type:

In this example, x can have values between -99999999.99D to +99999999.99D;
yand zcan have values between -99999D to +99999D. ptr is a pointer to type
decimal(18,10), and arr is an array of 100 elements, where each element is of type
decimal(8,2).

Related Information

v “Packed Decimal Constants” on page 19

void Type

The void data type always represents an empty set of values. The keyword for this
type is void. When a function does not return a value, you should use void as the
type specifier in the function definition and declaration. Only a pointer can be
declared with the type specifier void.

Examples

On line 4 of the following example, the function find_max() is declared as having
type void. Lines 12 through 23 contain the complete definition of find_max().

Note: The use of the sizeof operator in line 10 is a standard method of
determining the number of elements in an array.

1 #include <stdio.h>
2
3 /* declaration of function find_max */
4 extern void find_max(int x[], int j);
5
6 int main(void)
7 {
8 static int numbers[] = { 99, 54, -102, 89 };
9

10 find_max(numbers, (sizeof(numbers) / sizeof(numbers[0])));
11 }
12 void find_max(int x[], int j)
13
14 { /* begin definition of function find_max */
15 int i, temp = x[0];
16
17 for (i = 1; i < j; i++)
18 {
19 if (x[i] > temp)
20 temp = x[i];
21 }
22 printf("max number = %d\n", temp);
23 } /* end definition of function find_max */

Related Information

v “Cast” on page 89

#include <decimal.h> decimal(10,2) x;
decimal(5,0) y; /* p is optional. p is specified as 0. */
decimal(5) z; /* p is optional. p is not specified. The default is 0. */
decimal(18,10) *ptr;
decimal(8,2) arr[100];

Chapter 3. Declarations and Definitions 43

Enumerations

An enumeration data type represents a set of values that you declare. You can
define an enumeration data type and all variables that have that enumeration type
in one statement. As well, you can separate the declaration of the enumeration data
type from all variable definitions. The identifier that is associated with the data type
(not an object) is a tag.

Declaring an Enumeration Data Type

An enumeration type declaration contains the enum keyword that is followed by an
identifier (the enumeration tag) and a brace-enclosed list of enumerators. A comma
separates each enumerator. An enumeration type declaration has the form:

The keyword enum that is followed by the identifier, names the data type (like the tag
on a struct data type). The list of enumerators provides the data type with a set of
values. Each enumerator represents an integer value. To conserve space,
enumerations may be stored in spaces smaller than that of an int. By default the
size of an enumeration is the minimum that is required to represent all the values of
the enumeration. For example, if all the values of the enumeration can be
represented with one byte, the size of that enumeration will be one byte. An
enumeration type can have a size of 1, 2, or 4 bytes, depending on the values in
the enumeration.

Note: The #pragma enumsize directive can be used to change the size that is
used by the ILE C compiler to represent enumerations.

An enumerator has the form:

An enumeration constant is the identifier in an enumerator. You can use an
enumeration constant anywhere an integer constant is allowed. The following rules
determine the value of an enumeration constant:

1. If an = (equal sign) and a constant expression follow the identifier, the identifier
represents the value of the constant expression.

2. If the enumerator is the leftmost value in the list, the identifier represents the
value 0.

3. Otherwise, the identifier represents the integer value that is one greater than the
value that is represented by the preceding enumerator.

The following example declares the enumeration tag status:
enum status { run, create, delete=5, suspend };

ÊÊ enum
identifier

·

,

{ enumerator } ÊÍ

ÊÊ identifier
= integral_constant_expression

ÊÍ

44 Language Reference

The data type status represents the following values:

Enumeration Constant Integer Representation

run 0

create 1

delete 5

suspend 6

Each enumeration identifier must be unique within the block or the file where the
enumeration data type is declared. In the following example, the declarations of
average on line 4 and of poor on line 5 cause compiler error messages:
1 func()
2 {
3 enum score { poor, average, good };
4 enum rating { below, average, above };
5 int poor;
6 }

Defining a Variable That Has an Enumeration Type

An enumeration variable definition contains a storage class specifier (optional), a
type specifier, a declarator, and an initializer (optional). The type specifier contains
the keyword enum that is followed by the name of the enumeration data type. You
must declare the enumeration data type before you can define a variable that has
that type.

The first line of the following example declares the enumeration tag grain. The
second line defines the variable g_food and gives g_food the initial value of barley
(2). The type specifier enum grain indicates that the value of g_food is a member of
the enumerated data type grain:
enum grain { oats, wheat, barley, corn, rice };
enum grain g_food = barley;

The initializer for an enumeration variable contains the = symbol that is followed by
an expression. The expression must evaluate to an int value.

Example of Defining an Enumeration Type and Enumeration Objects

You can place a type definition and a variable definition in one statement by placing
a declarator and an optional initializer after the type definition. If you want to specify
a storage class specifier for the variable, you must place the storage class specifier
at the beginning of the declaration. For example:
register enum score { poor=1, average, good } rating = good;

This example is equivalent to the following two declarations:
enum score { poor=1, average, good };
register enum score rating = good;

Both examples define the enumeration data type score and the variable rating.
rating has the storage class specifier register, the data type enum score, and the
initial value 3 (or good).

If you combine a data type definition with the definitions of all variables that have
that data type, you can leave the data type unnamed. For example:

Chapter 3. Declarations and Definitions 45

enum { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday } weekday;

This example defines the variable weekday, which can be assigned any of the
specified enumeration constants.

Example

The following program receives an integer as input. The output is a sentence that
gives the French name for the weekday that is associated with the integer. If the
integer is not associated with a weekday, the program prints "C'est le mauvais
jour."

#include <stdio.h>
enum days {

Monday=1, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday

} weekday;
void french(enum days);
int main(void)
{

int num;
printf("Enter an integer for the day of the week. "

"Mon=1,...,Sun=7\n");
scanf("%d", &num);
weekday=num;
french(weekday);

}
void french(enum days weekday)
{

switch (weekday)
{

case Monday:
printf("Le jour de la semaine est lundi.\n");
break;

case Tuesday:
printf("Le jour de la semaine est mardi.\n");
break;

case Wednesday:
printf("Le jour de la semaine est mercredi.\n");
break;

case Thursday:
printf("Le jour de la semaine est jeudi.\n");
break;

case Friday:
printf("Le jour de la semaine est vendredi.\n");
break;

case Saturday:
printf("Le jour de la semaine est samedi.\n");
break;

case Sunday:
printf("Le jour de la semaine est dimanche.\n");
break;

default:
printf("C'est le mauvais jour.\n");

}
}

Related Information

v “Enumeration Constants” on page 22

v “Constant Expression” on page 82

v “Identifiers” on page 12

46 Language Reference

v “enumsize” on page 162

Arrays

An array is an ordered group of data objects. Each object is called an element . All
elements within an array have the same data type.

Type Specifiers of Arrays

You can use any type specifier in an array definition or declaration. Thus, array
elements can be of any data type, except function. You can, however, declare an
array of pointers to functions.

Declarators of Arrays

The declarator contains an identifier followed by a subscript declarator . An
identifier can be preceded by an asterisk (*) to declare an array of pointers.

The subscript declarator describes the number of dimensions in the array and the
number of elements in each dimension. A subscript declarator has the form:

Each bracketed expression describes a different dimension. The constant
expression must have an integral value. The value of the constant expression
determines the number of elements in that dimension. The following example
defines a one-dimensional array that contains four elements that have type char:
char list[4];

The first subscript of each dimension is 0. Thus, the array list contains the
elements:
list[0]
list[1]
list[2]
list[3]

The following example defines a two-dimensional array that contains six elements
of type int:
int roster[3][2];

Multidimensional arrays are stored in row-major order; when elements are referred
in order of increasing storage location, the last subscript varies the fastest. For
example, the elements of array roster are stored in the order:
roster[0][0]
roster[0][1]
roster[1][0]
roster[1][1]
roster[2][0]
roster[2][1]

ÊÊ []
constant_expression

· [constant_expression]

ÊÍ

Chapter 3. Declarations and Definitions 47

In storage, the elements of roster would be stored as:

You can leave the first (and only the first) set of subscript brackets empty in array
definitions that contain initializations, extern declarations, and parameter
declarations.

In array definitions that leave the first set of subscript brackets empty, the compiler
uses the initializer to determine the number of elements in the first dimension. In a
one-dimensional array, the number of initialized elements becomes the total number
of elements. In a multidimensional array, the compiler compares the initializer to the
subscript declarator to determine the number of elements in the first dimension.

Initializers of Arrays

The initializer contains the = symbol that is followed by a brace-enclosed
comma-separated list of constant expressions. You do not need to initialize all
elements in an array. Elements that are not initialized (in extern and static
definitions only) receive the value 0.

The following definition shows a completely initialized one-dimensional array:
static int number[3] = { 5, 7, 2 };

The array number contains the following values:

Element Value

number[0] 5

number[1] 7

number[2] 2

The following definition shows a partially initialized one-dimensional array:
static int number1[3] = { 5, 7 };

The values of number1 are:

Element Value

number1[0] 5

number1[1] 7

number1[2] 0

Instead of an expression in the subscript declarator that defines the number of
elements, the following one-dimensional array definition defines one element for
each initializer specified:
static int item[] = { 1, 2, 3, 4, 5 };

The compiler gives item the five initialized elements:

48 Language Reference

Element Value

item[0] 1

item[1] 2

item[2] 3

item[3] 4

item[4] 5

You can initialize a one-dimensional character array by specifying:

v A brace-enclosed comma-separated list of constants, each of which can be
contained in a character.

v A string constant. Braces that surround the constant are optional.

If you specify a string constant, the null character (\0) is placed at the end of the
string if there is room or if the array dimensions are not specified.

The following definitions show character array initializations:
static char name1[] = { 'J', 'a', 'n' };
static char name2[] = { "Jan" };
static char name3[4] = "Jan";

These definitions create the following elements:

Element Value Element Value Element Value

name1[0] J name2[0] J name3[0] J

name1[1] a name2[1] a name3[1] a

name1[2] n name2[2] n name3[2] n

name2[3] \0 name3[3] \0

Note that the following definition would result in the null character being lost:
static char name[3]="Jan";

You can initialize a multidimensional array by:

v Listing the values of all elements you want to initialize, in the order that the
compiler assigns the values. The compiler assigns values by increasing the
subscript of the last dimension fastest. This form of a multidimensional array
initialization looks like a one-dimensional array initialization. The following
definition completely initializes the array month_days:

static month_days[2][12] =
{
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,
31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31

};

v Using braces to group the values of the elements you want initialized. You can
place braces around each element, or around any nesting level of elements. The
following definition contains two elements in the first dimension. (You can
consider these elements as rows.) The initialization contains braces around each
of these two elements:

static int month_days[2][12] =
{
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }

};

Chapter 3. Declarations and Definitions 49

You can use nested braces to initialize dimensions and elements in a dimension
selectively.

The following definition explicitly initializes six elements in a 12-element array:
static int matrix[3][4] =

{
{1, 2},
{3, 4},
{5, 6}

};

The initial values of matrix are:

Element Value Element Value

matrix[0][0] 1 matrix[1][2] 0

matrix[0][1] 2 matrix[1][3] 0

matrix[0][2] 0 matrix[2][0] 5

matrix[0][3] 0 matrix[2][1] 6

matrix[1][0] 3 matrix[2][2] 0

matrix[1][1] 4 matrix[2][3] 0

Note: You should place braces around each dimension (fully braced). Otherwise,
only use one set of braces to enclose the entire set of initializers
(unbraced). Avoid putting braces around some elements and not others.

An unsubscripted array name (for example, region instead of region[4]) represents
a pointer whose value is the address of the array’s first element. For more
information, see “Primary Expression” on page 83.

Whenever an array is used in a context (such as a parameter) where it cannot be
used as an array, the identifier is treated as a pointer. The two exceptions are when
an array is used as an operand of the sizeof or the address (&) operator.

You cannot have more initializers than the number of elements in the array.

Examples

The following example shows a parameter declaration for a one-dimensional array:
test(int y[])
{

.

.

.
}

The following program defines a floating-point array that is called prices.
/* Example of one-dimensional arrays. */
#include <stdio.h>
#define ARR_SIZE 5
int main(void)
{
static float const prices[ARR_SIZE] = { 1.41, 1.50, 3.75, 5.00, .86 };
auto float total;
int i;
for (i = 0; i < ARR_SIZE; i++)
{
printf("price = $%.2f\n", prices[i]);

50 Language Reference

}
printf("\n");
for (i = 0; i < ARR_SIZE; i++)
{
total = prices[i] * 1.05;
printf("total = $%.2f\n", total);

}
}

The first for statement prints the values prices’s elements. The second for
statement adds five percent to the value of each element of prices, and assigns
the result to total, and prints the value of total. The example produces the
following output:

price = $1.41
price = $1.50
price = $3.75
price = $5.00
price = $0.86
total = $1.48
total = $1.57
total = $3.94
total = $5.25
total = $0.90

The following program defines the multidimensional array salary_tbl. A for loop
prints the values of salary_tbl.
/* example of a multidimensional array */
#include <stdio.h>
#define NUM_ROW 3
#define NUM_COLUMN 5
int main(void)
{
static int salary_tbl[NUM_ROW][NUM_COLUMN] =
{
{ 500, 550, 600, 650, 700 },
{ 600, 670, 740, 810, 880 },
{ 740, 840, 940, 1040, 1140 }

};
int grade , step;
for (grade = 0; grade < NUM_ROW; ++grade)
for (step = 0; step < NUM_COLUMN; ++step)
{
printf("salary_tbl[%d] [%d] = %d\n", grade, step,

salary_tbl[grade] [step]);
}

}

The preceding program produces the following output:
salary_tbl[0] [0] = 500
salary_tbl[0] [1] = 550
salary_tbl[0] [2] = 600
salary_tbl[0] [3] = 650
salary_tbl[0] [4] = 700
salary_tbl[1] [0] = 600
salary_tbl[1] [1] = 670
salary_tbl[1] [2] = 740
salary_tbl[1] [3] = 810
salary_tbl[1] [4] = 880
salary_tbl[2] [0] = 740
salary_tbl[2] [1] = 840
salary_tbl[2] [2] = 940
salary_tbl[2] [3] = 1040
salary_tbl[2] [4] = 1140

Chapter 3. Declarations and Definitions 51

Related Information

v “Pointers”

v “Array Element Specification (Array Subscript) []” on page 85

v “Strings” on page 20

v “Declarators” on page 33

v “Initializers” on page 37

v “Chapter 6. Conversions” on page 105

Pointers

A pointer type variable holds the address of a data object or a function. 1 A pointer
can refer to an object of any one data type but cannot point to an object having the
register storage class specifier or to a bit field. Some common uses for pointers
are:

v To pass the address of a variable to a function. By refering to a variable through
its address, a function can change the contents of that variable. See “Calling
Functions and Passing Arguments” on page 76.

v To access dynamic data structures such as linked lists, trees, and queues.

v To access elements of an array or members of a structure.

v To access an array of characters as a string.

Declarators of Pointers

The following example declares pcoat as a pointer to an object that has type long:
extern long *pcoat;

If the keyword volatile appears before the *, the declarator describes a pointer to
a volatile object. If the keyword volatile comes between the * and the identifier,
the declarator describes a volatile pointer.

The keyword const operates in the same manner as the volatile keyword that is
described in the preceding paragraph. In the following example, pvolt is a constant
pointer to an object that has type short:
short * const pvolt;

The following example declares pnut as a pointer to an int object that have the
volatile qualifier:
extern int volatile *pnut;

The following example defines psoup as a volatile pointer to an object that have
type float:
float * volatile psoup;

The following example defines pfowl as a pointer to an enumeration object of type
bird:
enum bird *pfowl;

1. AS/400 pointers can hold addresses of more than just data objects or functions. See the ILE C for AS/400 Programmer’s Guide for
more information about using AS/400 pointers.

52 Language Reference

The next example declares x as a pointer to a function that returns a char object:
char (*x)(void);

Initializers of Pointers

When you use pointers in an assignment operation, you must ensure that the types
of the pointers in the operation are compatible.

The following example shows compatible declarations for the assignment operation:
float subtotal;
float * sub_ptr;

.

.

.
sub_ptr = &subtotal;
printf("The subtotal is %f\n", *sub_ptr);

The next example shows incompatible declarations for the assignment operation:
double league;
int * minor;

.

.

.
minor = &league; /* error */

The initializer is an = (equal sign) followed by the expression that represents the
address that the pointer is to contain. The following example defines the variables
time and speed as having type double and amount as having type pointer to a
double. The pointer amount is initialized to point to total:
double total, speed, *amount = &total;

The compiler converts an unsubscripted array name to a pointer to the first element
in the array. You can assign the address of an array’s first element to a pointer by
specifying the name of the array. The following two sets of definitions are
equivalent. Both define the pointer student and initialize student to the address of
the first element in class:
int class[80];
int *student = class;

This definition is equivalent to:
int class[80];
int *student = &class[0];

You can assign the address of the first character in a string constant to a pointer by
specifying the string constant in the initializer. The following example defines the
pointer variable string and the string constant "abcd". The pointer string is set to
point to the character a in the string "abcd".
char *string = "abcd";

The following example defines weekdays as an array of pointers to string constants.
Each element points to a different string. The object weekdays[2], for example,
points to the string "Tuesday".
static char *weekdays[] =

{
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"

};

Chapter 3. Declarations and Definitions 53

A pointer can also be initialized to the integer constant 0. Such a pointer is a NULL
pointer that does not point to any object.

Restrictions

You cannot use pointers to refer to bit fields or objects that have the register
storage class specifier.

A pointer to a packed structure or union is incompatible with a pointer to a
corresponding nonpacked structure or union. This is because packed and
nonpacked objects have different memory layouts. As a result, comparisons and
assignments between pointers to packed and nonpacked objects are not valid.

You can, however, perform these assignments and comparisons with type casts.
Consider the following example:
int main(void)
{

_Packed struct ss *ps1;
struct ss *ps2;

.

.

.
ps1 = (_Packed struct ss *)ps2;

.

.

.
}

In the preceding example, the cast operation allows you to compare the two
pointers. However, you must be aware that ps1 still points to a nonpacked object.

Using Pointers

Two operators are commonly used in working with pointers, the & (address)
operator, and the * (indirection) operator. You can use the & operator to refer to the
address of an object. For example, the following statement assigns the address of x
to the variable p_to_x. The variable p_to_x has been defined as a pointer.
int x, *p_to_x;

p_to_x = &x;

The * (indirection) operator enables you to access the value of the object to which
a pointer refers. The following statement assigns to y the value of the object to
which p_to_x points:
float y, *p_to_x;
.
.
.

y = *p_to_x;

The following statement assigns the value of y to the variable that *p_to_x refers to
:
char y ,

*p_to_x,
.
.
.

*p_to_x = y;

54 Language Reference

Pointer Arithmetic

You can perform a limited number of arithmetic operations on pointers. 2These
operations are:

v Increment and decrement

v Addition and subtraction

v Comparison

v Assignment.

The ++ (increment) operator increases the value of a pointer by the size of the data
object to which the pointer refers. For example, if the pointer refers to the second
element in an array, the ++ makes the pointer refer to the third element in the array.

The -- (decrement) operator decreases the value of a pointer by the size of the
data object to which the pointer refers. For example, if the pointer refers to the
second element in an array, the -- makes the pointer refer to the first element in
the array.

If the pointer p points to the first element in an array, the following expression
causes the pointer to point to the third element in the same array:
p = p + 2;

If you have two pointers that point to the same array, you can subtract one pointer
from the other. This operation supplies the number of elements in the array that
separate the two addresses to which the pointers refer.

You can compare two pointers with the following operators: ==, !=, <, >, <=, and >=.
See “Chapter 5. Expressions and Operators” on page 79 for more information on
these operators.

Pointer comparisons are defined only when the pointers point to elements of the
same array. You can assign to a pointer the address of a data object, the value of
another compatible pointer, or the NULL pointer.

Consider the following example of pointer arithmetic:
ptr = ptr + i - j;

ptr + i

must fall within the bounds of allocated memory. If the value of i causes the
intermediate value ptr to be outside the valid range, parenthesis must be added as
follows:
ptr = ptr + (i - j);

Examples

The following program contains pointer arrays:
/**
** Program to search for the first occurrence of a specified **
** character string in an array of character strings. **
**/
#include <stdio.h>

2. There are restrictions on pointer arithmetic for AS/400 pointers. See the ILE C for AS/400 Programmer’s Guide for more
information about using AS/400 pointers.

Chapter 3. Declarations and Definitions 55

#include <stdlib.h>
#include <string.h>
#define SIZE 20
int main(void)
{

static char *names[] = { "Jim", "Amy", "Mark", "Sue", NULL };
char * find_name(char **, char *);
char new_name[SIZE], *name_pointer;
printf("Enter name to be searched.\n");
scanf("%s", new_name);
name_pointer = find_name(names, new_name);
printf("name %s%sfound\n", new_name,

(name_pointer == NULL) ? " not " : " ");
exit(EXIT_FAILURE);

} /* End of main */
/**
** Function find_name. This function searches an array of **
** names to see if a given name already exists in the array. **
** It returns a pointer to the name or NULL if the name is **
** not found. **
**/
/* char **arry is a pointer to arrays of pointers (existing names) */
/* char *strng is a pointer to character array entered (new name) */
char * find_name(char **arry, char *strng)
{

for (; *arry != NULL; arry++) /* for each name */
{

if (strcmp(*arry, strng) == 0) /* if strings match */
return(*arry); /* found it! */

}
return(*arry); /* return the pointer */

} /* End of find_name */

Interaction with the preceding program could produce the following sessions:

Output Enter name to be searched.

Input Mark

Output name Mark found

or:

Output Enter name to be searched.

Input Bob

Output name Bob not found

Related Information

v “Address &” on page 88

v “Indirection *” on page 88

v “Declarators” on page 33

v “volatile and const Qualifiers” on page 35

v “Initializers” on page 37

56 Language Reference

Structures

A structure contains an ordered group of data objects. Unlike the elements of an
array, the data objects within a structure can have varied data types. Each data
object in a structure is a member or field .

You can use structures to group logically related objects. For example, if you want
to allocate storage for the components of one address, you can define the following
variables:

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

To allocate storage for more than one address, you can group the components of
each address. This can be done by defining a structure data type and defining
several variables having the structure data type:

1 struct address {
2 int street_no;
3 char *street_name;
4 char *city;
5 char *prov;
6 char *postal_code;
7 };
8 struct address perm_address;
9 struct address temp_address;

10 struct address *p_perm_address = &perm_address;

Lines 1 through 7 declare the structure tag address. Line 8 defines the variable
perm_address, and line 9 defines the variable temp_address. Both of which are
instances of the structure address. Both perm_address and temp_address contain the
members described in lines 2 through 6. Line 10 defines a pointer p_perm_address,
which points to a structure of address. p_perm_address is set to point to
perm_address.

You can refer to a member of a structure by specifying the structure variable name
with the . (dot operator) or a pointer with the -> (arrow operator) and the member
name. For example, both of the following:
perm_address.prov = "Ontario";
p_perm_address -> prov = "Ontario";

assign a pointer to the string "Ontario" to the pointer prov that is in the structure
perm_address.

All references to structures must be fully qualified. Therefore, in the preceding
example, you cannot refer to the fourth field by prov alone. You must refer to this
field by perm_address.prov.

You cannot declare a structure with members of incomplete types. See “Incomplete
Types” on page 67 for more information.

Declaring a Structure Data Type

A structure type declaration does not allocate storage. It describes the members
that are part of the structure.

Chapter 3. Declarations and Definitions 57

A structure type declaration contains the struct keyword that is followed by an
optional identifier (the structure tag) and a brace-enclosed list of members.

A structure declaration has the form:

The keyword struct followed by the identifier (tag) names the data type. If you do
not provide a tag, you must place all variable definitions that refer to that data type
within the statement that defines the data type.

The list of members provides the data type with a description of the values that can
be stored in the structure.

A member has the form:

A member that does not represent a bit field can be of any data type and can have
the volatile or const qualifier. If a : (colon) and a constant expression follow the
declarator, the member represents a bit field .

Identifiers that are used as aggregate or member names can be redefined to
represent different objects in the same scope without conflicting. You cannot use
the name of a member more than once in a structure type. However, you can use
the same member name in another structure type that is defined within the same
scope.

You cannot declare a structure type that contains itself as a member. However, you
can declare a structure type that contains a pointer to itself as a member.

Defining a Variable That Has a Structure Data Type

A structure variable definition contains an optional storage class keyword, the
struct keyword, a structure tag, a declarator, and an optional identifier. The
structure tag indicates the data type of the structure variable.

Storage Classes of Structures

The ILE C compiler ignores register storage class for structures, unions, and their
members. Other C compilers may treat unions that are declared with the register
storage class differently.

Initializers of Structures

The initializer contains an = (equal sign) followed by a brace-enclosed
comma-separated list of values. You do not have to initialize all members of a
structure. You can not initialize unnamed bit fields.

ÊÊ
qualifier

struct identifier identifier · { member ; } ÊÍ

ÊÊ type_specifier ·

,

declarator
: constant_expression

declarator

ÊÍ

58 Language Reference

The following definition shows a completely initialized structure:
struct address {

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

};
static struct address perm_address =

{ 9876, "Goto St.", "Cville", "Ontario", "X9X 1A1"};

The values of perm_address are:

Member Value

perm_address.street_no 9876

perm_address.street_name address of string "Goto St."

perm_address.city address of string "Cville"

perm_address.prov address of string "Ontario"

perm_address.postal_code address of string "X9X 1A1"

The following definition shows a partially initialized structure:
struct address {

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

};
struct address temp_address =

{ 321, "Aggregate Ave.", "Structown", "Ontario" };

The values of temp_address are:

Member Value

temp_address.street_no 321

temp_address.street_name address of string "Aggregate Ave.″

temp_address.city address of string "Structown"

temp_address.prov address of string "Ontario"

temp_address.postal_code value depends on the storage class.

Note: The initial value of temp_address.postal_code depends on the storage class
associated with the member. See “Storage Class Specifiers” on page 25 for
details on the initialization of different storage classes.

Example of Declaring a Structure Type and Structure Variables

You can place a type definition and a variable declaration in one statement by
placing a declarator and an initializer (optional) after the type definition. If you want
to specify a storage class specifier for the variable, you must place the storage
class specifier at the beginning of the statement. For example:
static struct {

int street_no;
char *street_name;
char *city;

Chapter 3. Declarations and Definitions 59

char *prov;
char *postal_code;

} perm_address, temp_address;

The preceding example does not name the structure data type. Thus, perm_address
and temp_address are the only structure variables that will have this data type. If an
identifier is placed after struct, additional variable definitions of this data type can
be made later in the program.

The structure type (or tag) cannot have the volatile qualifier, but a member or a
structure variable can be defined as having the volatile qualifier. For example:
static struct class1 {

char descript[20];
volatile long code;
short complete;

} volatile file1, file2;
struct class1 subfile;

This example gives the volatile qualifier to the structures file1 and file2, and to
the structure member subfile.code.

Declaring and Using Bit Fields

A structure can contain bit fields that allow you to access individual bits. You can
use bit fields for data that requires just a few bits of storage. A bit field declaration
contains a type specifier that is followed by an optional declarator, a colon, a
constant expression, and a semicolon.

The constant expression specifies how many bits the field reserves. A bit field that
is declared as having a length of 0 causes the next field to be aligned on the next
integer boundary. For a _Packed structure, a bit field of length 0 causes the next
field to be aligned on the next byte boundary. Bit fields with a length of 0 must be
unnamed.

For portability, do not use bit fields greater than 32 bits in size.

You cannot define an array of bit fields, or take the address of a bit field.

You can declare a bit field as type int, signed int, or unsigned int. Bit fields of
the type int are equivalent to those of type unsigned int.

If a series of bit fields does not add up to the size of an int, padding can take
place. The amount of padding is determined by the alignment characteristics of the
structure’s members. In some instances, bit fields can cross word boundaries.

The following example declares the identifier kitchen to be of type struct on_off:
struct on_off {

unsigned light : 1;
unsigned toaster : 1;
int count;
unsigned ac : 4;
unsigned : 4;
unsigned clock : 1;
unsigned : 0;
unsigned flag : 1;

} kitchen ;

60 Language Reference

The structure kitchen contains eight members. The following table describes the
storage that each member occupies:

Member Name Storage Occupied

light 1 bit

toaster 1 bit, and padding to next int boundary

count The size of an int

ac 4 bits

4 bits (unnamed field)

clock 1 bit and padding to next int boundary (unnamed field with size 0)

flag 1 bit

All references to structure fields must be fully qualified. Therefore, you cannot refer
to the second field by toaster. You must refer to this field by kitchen.toaster.

The following expression sets the light field to 1:
kitchen.light = 1;

When you assign an out of range value to a bit field, the bit pattern is preserved,
and the appropriate bits are assigned. The following expression sets the toaster
field of the kitchen structure to 0 because only the least significant bit is assigned
to the toaster field:
kitchen.toaster = 2;

Declaring a Packed Structure

Data elements of a structure are stored in memory on an address boundary specific
for that data type. For example, a double value is stored in memory on a
double-word (8-byte) boundary. Gaps may be left in memory between elements of a
structure to align elements on their natural boundaries. You can reduce the padding
of bytes within a structure by using the _Packed qualifier on the structure
declaration.

Examples

The following program finds the sum of the integer numbers in a linked list:
/* program to illustrate linked lists */
#include <stdio.h>
struct record {

int number;
struct record *next_num;

};
int main(void)
{

struct record name1, name2, name3;
struct record *recd_pointer = &name1;
int sum = 0;
name1.number = 144;
name2.number = 203;
name3.number = 488;
name1.next_num = &name2;
name2.next_num = &name3;
name3.next_num = NULL;
while (recd_pointer != NULL)
{

Chapter 3. Declarations and Definitions 61

sum += recd_pointer->number;
recd_pointer = recd_pointer->next_num;

}
printf("Sum = %d\n", sum);

}

The structure type record contains two members: number (an integer) and next_num
(a pointer to a structure variable of type record).

The following values are assigned to the record type variables name1, name2, and
name3:

Member Name Value

name1.number 144

name1.next_num The address of name2

name2.number 203

name2.next_num The address of name3

name3.number 488

name3.next_num NULL (Indicating the end of the linked list.)

The variable recd_pointer is a pointer to a structure of type record. recd_pointer
is initialized to the address of name1 (the beginning of the linked list).

The while loop causes the linked list to be scanned until recd_pointer equals NULL.
The following statement advances the pointer to the next object in the list:
recd_pointer = recd_pointer->next_num;

Related Information

v “Structure and Union Member Specification . −>” on page 85

v “Declarators” on page 33

v “Initializers” on page 37

Unions

A union is an object that can hold any one of a set of named members. The
members of the named set can be of any data type. Members are overlaid in
storage.

Declaring a Union

The storage allocated for a union is the storage required for the largest member of
the union (plus any padding that is required so that the union will end at a natural
boundary of its strictest member).

A union type declaration contains the union keyword followed by an identifier
(optional) and a brace-enclosed list of members.

The following diagram shows the form of a union type declaration:

62 Language Reference

The ILE C compiler ignores register storage class for structures, unions, and their
members. Other C compilers may treat unions that are declared with the register
storage class differently.

The identifier is a tag that is given to the union that is specified by the member list.
If you specify a tag, any subsequent declaration of the union (in the same scope)
can be made by declaring the tag and omitting the member list. If you do not
specify a tag, you must place all variable definitions that refer to that union within
the statement that defines the data type.

The list of members provides the data type with a description of the objects that can
be stored in the union.

A member has the form:

You can refer to one of the union’s possible members as you refer to a member of
a structure. For example:
union {

char birthday[9];
int sex:1; /* 0 = male; 1 = female */
float weight;
} people;

people.birthday[0] = '\n';

assigns '\n' to the first element in the character array birthday, a member of the
union people. At any given time, a union can represent only one of its members. In
the preceding example, the union people will contain either sex, birthday, or weight
but never more than one of these.

The following code fragment shows some common errors when using unions. The
first line stores a date into the union through the people.birthday member. However,
the assignment to people.sex on line 2 will change the leftmost bit of the union to 1.
It will probably change the date stored in people.birthday. On line 3, since a date
(an array of char) is stored in the union, do not display the value as a float by using
people.weight.
1 people.birthday = "25/10/67";
2 people.sex = 1;
3 printf("%f\n", people.weight);

Example of Defining a Variable that Has Union Data Type

A union-variable definition contains an optional storage class keyword, the union
keyword, a union tag, and a declarator. The union tag indicates the data type of the
union variable.

ÊÊ union
qualifier identifier

·{ member ; } ÊÍ

ÊÊ type_specifier ·

,

declarator
: constant_expression

declarator

ÊÍ

Chapter 3. Declarations and Definitions 63

Type Specifier

The type specifier contains the keyword union that is followed by the name of the
union type. You must declare the union data type before you can define a union
that has that type.

You can define a union data type and a union of that type in the same statement by
placing the variable declarator after the data type definition.

Declarator

The declarator is an identifier, possibly with the volatile or const qualifier.

Initializer

You can only initialize the first member of a union.

The following example shows how you would initialize the first union member
birthday of the union variable people:
union {

char birthday[9];
int age;
float weight;
} people = {"04/06/57"};

Defining a Union Type and a Union Variable

You can place a type definition and a variable definition in one statement by placing
a declarator after the type definition. If you want to specify a storage class specifier
for the variable, you must place the storage class specifier at the beginning of the
statement.

Defining a Packed Union

You can use _Packed to qualify a union. However, the memory layout of the union
members is not affected. Each member starts at offset zero. The _Packed qualifier
does affect the total alignment restriction of the whole union. Consider the following
example:

union uu {
short a;
struct {
char x;
char y;
char z;

} b;
};
union uu n_array[2];
_Packed union uu p_array[2];

Each of the elements in the nonpacked n_array is of type union uu. Because it is
nonpacked, each element has an alignment restriction of 2 bytes. The largest
alignment requirement among the union members is that of short a. There is 1
byte of padding at the end of each element to enforce this requirement.

64 Language Reference

Now consider the packed array p_array. The alignment restriction of every element
is the byte boundary, because each of its elements is of type _Packed union uu.
Therefore, each element has a length of only 3 bytes, instead of the 4 bytes in the
previous example.

Examples

The following example defines a union data type (not named) and a union variable
(named length). The member of length can be a long int, a float, or a double.
union {

float meters;
double centimeters;
long inches;

} length;

The following example defines the union type data as containing one member. The
member can be named charctr, whole, or real. The second statement defines two
data type variables: input and output.
union data {

char charctr;
int whole;
float real;

};
union data input, output;

The following statement assigns a character to input:
input.charctr = 'h';

The following statement assigns a floating-point number to member output:
output.real = 9.2;

The following example defines an array of structures that is named records. Each
element of records contains three members: the integer id_num, the integer
type_of_input, and the union variable input. input has the union data type defined
in the previous example.
struct {

int id_num;
int type_of_input;
union data input;

} records[10];

The following statement assigns a character to the structure member input of
records’s first element:
records[0].input.charctr = 'g';

Related Information

v “Structure and Union Member Specification . −>” on page 85

v “Declarators” on page 33

v “Initializers” on page 37

Chapter 3. Declarations and Definitions 65

typedef

C language typedef declarations allow you to define your own identifiers that can
be used in place of C type specifiers such as int, float, and double. The data
types you define using typedef are not new data types. The identifiers defined are
synonyms for the primary data types that are used by the C language or data types
that are derived by combining the primary data types.

The syntax of a typedef declaration is:

A typedef declaration does not reserve storage.

When an object is defined using a typedef identifier, the properties of the defined
object are the same as if the object was defined by explicitly listing the data type
associated with the identifier.

Examples

The following statements declare LENGTH as a synonym for int and then use this
typedef to declare length, width, and height as integral variables:
typedef int LENGTH;
LENGTH length, width, height;

The preceding lines are equivalent to the following:
int length, width, height;

Similarly, typedef defines a structure type. For example:
typedef struct {

int kilos;
int grams;

} WEIGHT;

The following declarations can use the structure WEIGHT:
WEIGHT chicken, cow, horse, whale;

Related Information

v “Characters” on page 38

v “Floating-Point Variables” on page 39

v “Integers” on page 40

v “void Type” on page 43

v “Arrays” on page 47

v “Enumerations” on page 44

v “Pointers” on page 52

v “Structures” on page 57

v “Unions” on page 62

ÊÊ typedef type_specifier identifier ; ÊÍ

66 Language Reference

Incomplete Types

Incomplete types are the type void, an array of unknown size, or structure, union,
or enumeration tags that have no member lists. For example, the following are
incomplete types:

void var;
struct struct_type st; /* no previous definition of struct_type */

The void type is incomplete and cannot be completed. Structure, union, or
enumeration tags that are incomplete when first declared must be completed before
their first use in a statement.

Chapter 3. Declarations and Definitions 67

68 Language Reference

Chapter 4. Functions

main

When you begin the processing of a program, the system automatically calls the
function main. Every program must have one function named main, with the name
main that is written in lowercase letters. A main function has the form:

The function main() can declare either none or two parameters. Although any name
can be given to these parameters, they are usually referred to as argc and argv.
The first parameter, argc (argument count), has type int and indicates how many
arguments were entered on the command line. The second parameter, argv
(argument vector), has type array of pointers to char array objects. char array
objects are null-ended strings.

The value of argc indicates the number of pointers in the array argv. If a program
name is available, the first element in argv points to a character array that contains
the program name or the invocation name of the program that is being executed. If
the name cannot be determined, the first element in argv points to a null character.
This name is counted as one of the arguments to the function main(). For example,
if only the program name is entered on the command line, argc has a value of 1,
and argv[0] points to the program name.

Regardless of the number of arguments that are entered on the command line,
argv[argc] always contains NULL.

The following program backward prints the arguments entered on a command line
such that the last argument is printed first:

If you start this program from a command line with the following:
CALL PGM(MYLIB/BACKWARD) PARM('string1' 'string2')

the output that is generated is:
string2 string1

The arguments argc and argv would contain the following values:

Object Value

argc 3

argv[0] pointer to string “MYLIB/BACKWARD”

ÊÊ main

int
void

()
void
int argc , char * argv[]

Ê

Ê block_statement ÊÍ

#include <stdio.h>
int main(int argc, char *argv[])
{
while (--argc > 0)
printf(“%s ”, argv[argc]);

}

© Copyright IBM Corp. 1993, 1999 69

Object Value

argv[1] pointer to string “string1”

argv[2] pointer to string “string2”

argv[3] NULL

Related Information

v “Calling Functions and Passing Arguments” on page 76

v “Parameter Declaration List” on page 73

v “Types” on page 38

v “Identifiers” on page 12

v “Block” on page 120

Function Definition

A function definition specifies the name, formal parameters, and body of a
function. You can also specify the function’s return type and storage class. A
function definition has the form:

There are two ways to define a function: prototype and nonprototype. You should
use the prototype method because of the parameter type checking that can be
performed.

A function definition (either prototype or nonprototype) contains the following:

v The optional storage class specifier extern or static, which determines the
scope of the function. If a storage class specifier is not given, the function has
external connection.

v An optional type specifier, which determines the type of value that the function
returns. If a type specifier is not given, the function has type int.

v A function declarator, which provides the function with a name, can further
describe the type of the value that the function returns. It can list any parameters
(and their types) that the function expects. Parentheses enclose the parameters
that the function is expecting.

v A block statement, which contains data definitions and code.

In addition, the non-prototype function definition may also have parameter
declarations, which describe the types of parameters that the function receives. In
non-prototype functions, parameters that are not declared have type int.

A function can be called by itself or by other functions. Unless a function definition
has the storage class specifier static, the function also can be called by functions

ÊÊ
extern
static

function_declarator
type_specifier

Ê

Ê

· parameter_declarator

block_statement ÊÍ

70 Language Reference

that appear in other modules. If the function has a storage class specifier of static,
it can only be directly started from within the same source file. If a function has the
storage class specifier static or a return type other than int, the function definition
or a declaration for the function must appear before, and in the same file as, a call
to the function.

If a function definition has external linkage and a return type of int, calls to the
function can be made before it is visible. An implicit declaration of extern int
func(); is assumed. All declarations for a given function must be compatible; that
is, the return type is the same and the parameters have the same type.

The default type for the return value and parameters of a function is int, and the
default storage class specifier is extern. If the function does not return a value or it
is not passed any parameters, use the keyword void as the type specifier.

You can include ellipses (...) at the end of your parameter list to indicate that a
variable number of arguments will be passed to the function. When a function with
a variable number of arguments is called, argument type promotion is performed,
and no type checking is done on the arguments.

You cannot declare a function as a struct, or union member.

A function cannot have a return type of function, array, or any type having the
volatile or const qualifier. However, it can return a pointer to an object with a
volatile or const type.

You cannot define an array of functions. You can, however, define an array of
pointers to functions. For example, in the following, ary is an array of two function
pointers. Type casting is performed to the values that are assigned to ary for
compatibility:

The following example is a complete definition of the function sum:
int sum(int x,int y)
{

return(x + y);
}

The function sum() has external connection, returns an object that has type int,
and has two parameters of type int declared as x and y. The function body
contains a single statement that returns the sum of x and y.

#include <stdio.h>

int func1(void);
void func2(double a);

int main(void)
{

double num;
void (*ary[2]) ();
ary[0] = ((void(*)())func1);
ary[1] = ((void(*)())func2);

((int (*)())ary[0])(); /* calls func1 */
((void (*)(double))ary[1])(num); /* calls func2 */

}

Chapter 4. Functions 71

To use the function definition for library functions, you must undefine the macro with
the #undef directive before calling the function. The function definition for library
functions are provided as both macros and functions. A macro definition can be
suppressed one of the following ways:

v Enclose the name of the function in parentheses. For example, (atan)(x) uses
the atan() function to calculate the arc tangent of x.

v Take the address of the library function.

v Use the #undef directive to remove the macro definition of the function. For
example, #undef atan.

For library functions that are provided as both macros and functions, the macro is
defined in the header file that declares the function.

Function Declarator

The function declarator names the function and lists the function parameters. A
function declarator contains an identifier that names the function and a list of the
function parameters. There are two types of function declarators: prototype and
nonprototype .

Prototype Function Declarator

A prototype function declarator has the form:

Each parameter should be declared within the function declarator for prototype
function declarations. Any calls to the function must pass the same number of
arguments as there are parameters in the declaration.

To indicate that a function does not receive any values, use the keyword void in
place of the parameter. For example:
int stop(void)
{
}

The example below contains a function declarator sort with table that is declared
as a pointer to int and length declared as type int. Note that arrays as
parameters are implicitly converted to a pointer to the type.

ÊÊ identifier

·

()
,

type
name ,...

ÊÍ

72 Language Reference

The following examples contain prototype function declarators:
double square(float x);
int area(int x,int y);
static char *search(char);

The example below illustrates how a function declarator uses a typedef identifier:
typedef struct tm_fmt { int minutes;

int hours;
char am_pm;

} struct_t;
long time_seconds(struct_t arrival)

The following function set_date() declares a pointer to a structure of type date as a
parameter. date_ptr has the storage class specifier register.
set_date(register struct date *date_ptr)
{
date_ptr->mon = 12;
date_ptr->day = 25;
date_ptr->year = 87;

}

Nonprototype Function Declarator

A non-prototype function declarator has the form:

Each parameter should be declared in a parameter declaration list following the
declarator. If a parameter is not declared, it has type int.

The char and short parameters are widened to int, and float to double. No type
checking between the argument type and the parameter type is done for
non-prototyped functions. As well, there are no checks to ensure that the number of
arguments matches the number of parameters.

Parameter Declaration List

Each value that a function receives should be declared in a parameter declaration
list for non-prototype function definitions that follows the declarator.

inner auto_var = 2
passed_var = 1
passed_var = 3
outer auto_var = 1void sort(int table[], int length)
{
int i, j, temp;

for (i = 0; i < length -1; i++)
for (j = i + 1; j < length; j++)
if (table[i] > table[j])
{
temp = table[i];
table[i] = table[j];
table[j] = temp;

}
}

ÊÊ identifier ·

,

()
parameter

ÊÍ

Chapter 4. Functions 73

A parameter declaration determines the storage class specifier and the data type of
the value. It has the form:

The only storage class specifier that is allowed is the register storage class
specifier. Any type specifier for a parameter is allowed. If you do not specify the
register storage class specifier, the parameter will have the auto storage class
specifier. If you omit the type specifier and you are not using the prototype form to
define the function, the parameter will have type int.

int func(i,j)
{

/* i and j have type int */
}

You cannot declare a parameter in the parameter declaration list if it is not listed
within the declarator.

Function Body

The body of a function is a block statement. (For more information on block
statements, see “Block” on page 120.) The following function has an empty body:
void stub1(void)
{
}

The following function body contains a definition for the integer variable big_num, an
if-else control statement, and a call to the function printf():

Function Declarations

A function declaration establishes the name and the parameters of the function. A
function is declared implicitly by its appearance in an expression if it has not been
defined or declared previously. The implicit declaration is equivalent to a declaration
of extern int func_name().

ÊÊ · ·

,
.

storage_class_specifier
type_specifier declarator
type_qualifier *

abstract_declarator

Ê

Ê
, ...

ÊÍ

void largest(int num1, int num2)
{

int big_num;

if (num1 >= num2)
big_num = num1;

else
big_num = num2;

printf("big_num = %d\n", big_num);
}

74 Language Reference

If the called function returns a value that has a type other than int, you must
declare the function before the function call. Even if a called function returns a type
int, explicitly declaring the function prior to its call is good programming practice.

Some declarations do not have parameter lists; the declarations simply specify the
types of parameters and the return values, such as in the following example:

int func(int,long);

Examples

The following example defines the function absolute() with the return type double.
Because this is a noninteger return type, absolute() is declared prior to the
function call.

Specifying a return type of void on a function declaration indicates that the function
does not return a value. The following example defines the function absolute() with
the return type void. Within the function main(), absolute() is declared with the
return type void.

Related Information

v “extern Storage Class Specifier” on page 28

v “Declaration” on page 28.

#include <stdio.h>

double absolute(double);

int main(void)
{

double f = -3.0;

printf("absolute number = %lf\n", absolute(f));
}

double absolute(double number)
{

if (number < 0.0)
number = -number;

return (number);
}

#include <stdio.h>

int main(void)
{
void absolute(float);
float f = -8.7;

absolute(f);
}

void absolute(float number)
{
if (number < 0.0)
number = -number;

printf("absolute number = %f\n", number);
}

Chapter 4. Functions 75

Calling Functions and Passing Arguments

A function call specifies a function name and a list of arguments. The calling
function passes the value of each argument to the specified function. Parentheses
surround the argument list, and a comma separates each argument. The argument
list can be empty.

The arguments to a function are evaluated before the function call. When an
argument is passed in a function call, the function receives a copy of the argument
value. If the value of the argument is an address, the called function can use
indirection to change the contents that are pointed to by the address. If a function
or array is passed as an argument, the argument is converted to a pointer that
points to the function or array.

Arguments that are passed to parameters in prototype declarations will be
converted to the declared parameter type. For non-prototype function declarations,
char, and short parameters are promoted to int, and float to double.

You can pass a packed structure argument to a function expecting a non-packed
structure of the same type and vice versa. (The same applies to packed and
non-packed unions.)

Note: If you do not use a function prototype and you send a packed structure when
a non-packed structure is expected, a run-time error may occur.

In ILE C, arguments are evaluated and passed to the function from right to left. This
may differ for other C compilers. For example, the following sequence of statements
calls the function tester():
int x;
x = 1;
tester(x++, x);

The call to the tester() function in the preceding example may produce different
results on different compilers. Depending on the implementation, x++ may be
evaluated first, or x may be evaluated first. To avoid ambiguity, if you want x++ to be
evaluated first, you can replace the preceding sequence of statements with the
following:
int x, y;
x = 1;
y = x++;
tester(y, x);

Examples

The following statement calls the function startup() and passes no parameters:
startup();

The following function call causes copies of a and b to be stored in a local area for
the function sum(). The function sum() is started using the copies of a and b.
sum(a, b);

The following function call passes the value 2 and the value of the expression a + b
to the sum()function:
sum(2, a + b);

76 Language Reference

The following statement calls the functions printf() and sum(). The sum() receives
the values of a and b. The printf() function receives a character string and the
return value of the function sum():
printf("sum = %d\n", sum(a,b));

The following program passes the value of count to the function increment(). The
increment() function increases the value of the parameter x by 1.

The output illustrates that the value of count in the main() function remains
unchanged:
x = 6
count = 5

In the following program, the main() function passes the address of count to the
increment() function. The function increment() was changed to handle the pointer.
The parameter x is declared as a pointer. The contents to which x points are then
incremented.

The output shows that the variable count is increased:
*x = 6
count = 6

See "Using Packed Decimal Data in Your ILE C Programs" in the ILE C for AS/400
Programmer’s Guide for more information about using packed decimal data types in
function calls.

#include <stdio.h>

void increment(int);

int main(void)
{
int count = 5;

/* value of count is passed to the function */
increment(count);
printf("count = %d\n", count);

}

void increment(int x)
{
++x;
printf("x = %d\n", x);

}

#include <stdio.h>

int main(void)
{
void increment(int *x);
int count = 5;

/* address of count is passed to the function */
increment(&count);
printf("count = %d\n", count);

}

void increment(int *x)
{
++*x;
printf("*x = %d\n", *x);

}

Chapter 4. Functions 77

78 Language Reference

Chapter 5. Expressions and Operators

This chapter describes C language expressions. The evaluation of expressions is
based on the operators that the expressions contain and the context in which they
are used:

v “Primary Expression” on page 83

v “Unary Expression” on page 86

v “Binary Expression” on page 91

v “Conditional Expression ? :” on page 101

v “Assignment Expression” on page 102

v “Comma Expression ,” on page 104

v “Lvalue” on page 81

v “Constant Expression” on page 82

Most expressions can contain several different, but related, types of operands. The
following type classes describe related types of operands:

Integral Character objects and constants, objects that have an enumeration
type, and objects that have the type short, int, long, unsigned
short, unsigned int, unsigned long, long long, or unsigned long
long.

Arithmetic Integral objects and objects having the type float, double, packed
decimal, and long double.

Scalar Arithmetic objects and pointers to objects of any type.

Aggregate Arrays, structures, and unions.

Many operators cause conversions from one data type to another. See “Chapter 6.
Conversions” on page 105. Note that logical operations always return 32-bit
Boolean values.

Grouping and Evaluating Expressions

Two operator characteristics determine how operands group with operators:
precedence and associativity . Precedence provides a priority system for grouping
different types of operators with their operands. Associativity provides a left-to-right
or right-to-left order for grouping operands to operators that have the same
precedence. For example, in the following statements, the value of 5 is assigned to
both a and b because of the right-to-left associativity of the = operator. The value of
c is assigned to b first, and then the value of b is assigned to a.
b = 9;
c = 5;
a = b = c;

You can explicitly force the grouping of operands with operators by using
parentheses because the order of expression evaluation is not specified.

In the expression a + b * c / d, the *, and / operations are performed before +
because of precedence. b is multiplied by c before it is divided by d because of
associativity.

© Copyright IBM Corp. 1993, 1999 79

The following table lists the C language operators in order of precedence and
shows the direction of associativity for each operator. The primary operators have
the highest precedence. The comma operator has the lowest precedence.
Operators that appear in the same group have the same precedence.

Table 7. Operator Precedence and Associativity

Operator Name Associativity Operators

Primary left to right () [] . ->

Unary right to left ++ -- - + ! & * (typename) sizeof
digitsof, precisionof

Multiplicative left to right * / %

Additive left to right + -

Bitwise Shift left to right << >>

Relational left to right < > <= >=

Equality left to right == !=

Bitwise Logical AND left to right &

Bitwise Exclusive OR left to right | or ¬

Bitwise Inclusive OR left to right ¦

Logical AND left to right &&

Logical OR left to right ¦¦

Conditional right to left ? :

Assignment right to left = += -= *= /= <<= >>= %= &= |= ¦=

Comma left to right ,

The order of evaluation for function call arguments or for the operands of binary
operators is not specified. Avoid writing such ambiguous expressions as:
z = (x * ++y) / func1(y);
func2(++i, x[i]);

In the example above, ++y and func1(y) may not be evaluated in the same order
by all C language implementations. If y had the value of 1 before the first
statement, it is not known whether or not the value of 1 or 2 is passed to func1().
In the second statement, if i had the value of 1, it is not known whether the first or
second array element of x[] is passed as the second argument to func2().

The order of grouping operands with operators in an expression, that contain more
than one instance of an operator, with both associative and commutative properties,
is not specified. The operators that have the same associative and commutative
properties are: *, +, &, ¦, and | (or ¬). Grouping the expression in parentheses can
force the grouping of operands.

Examples

The parentheses in the following expressions explicitly show how the C language
groups operands and operators. If parentheses did not appear in these expressions,
the operands and operators would be grouped in the same manner as indicated by
the parentheses.
total = (4 + (5 * 3));
total = (((8 * 5) / 10) / 3);
total = (10 + (5/3));

80 Language Reference

The following expression contains operators that are both associative and
commutative:
total = price + prov_tax + city_tax;

Because the C language does not specify the order of grouping operands with
operators that are both associative and commutative, the operands and operators
could be grouped in the following ways (as indicated by parentheses):
total = (price + (prov_tax + city_tax));
total = ((price + prov_tax) + city_tax);
total = ((price + city_tax) + prov_tax);

However, the grouping of operands and operators could affect the result. In the
following expression, each function call may change the same global variables.
These side effects may result in different values for the expression that depend on
the order in which the functions are called:
a = b() + c() + d();

If the expression contains operators that are both associative and commutative, and
the order of grouping operands with operators can affect the result of the
expression, separate the expression into several expressions. For example, the
following expressions could replace the previous expression if the called functions
do not produce any side effects that affect the variable a.
a = b();
a += c();
a += d();

Related Information

v “Parenthesized Expression ()” on page 83

Lvalue

An lvalue is an expression that represents an object. A modifiable lvalue is an
expression representing an object that can be changed. A modifiable lvalue is the
left operand in an assignment expression. However, arrays and const objects are
not modifiable lvalues.

Usage

All assignment operators evaluate their right operand and assign that value to their
left operand. The left operand must evaluate to a reference to an object.

The assignment operators are not the only operators that require an operand to be
an lvalue. The address operator requires an lvalue as an operand while the
increment and the decrement operators require a modifiable lvalue as an operand.

Examples

Expression Lvalue

x = 42; x

*ptr = newvalue; *ptr

a++ a

Related Information

Chapter 5. Expressions and Operators 81

v “Assignment Expression” on page 102

v “Address &” on page 88

v “Structure and Union Member Specification . −>” on page 85

Constant Expression

A constant expression is an expression with a value that is determined during
compilation and cannot be changed during processing. It can only be evaluated.
Constant expressions can be composed of integer constants, character constants,
floating-point constants, and enumeration constants.

Usage

The ILE C language requires constant expressions in the following places:

v In the subscript declarator, as the description of an array bound

v After the keyword case in a switch statement

v In an enumerator, as the numeric value of an enum constant

v In a bit-field width specifier

v In the preprocessor if statement

v In the initializer of a file scope data definition

v In the size and precision attributes of a packed decimal variable

In all the cases above, except for an initializer of a file scope data definition, the
constant expression can contain integer, character, and enumeration constants,
casts to integral types, and sizeof expressions.

In a file scope data definition, the initializer must evaluate to a constant or to the
address of a static storage (extern or static) object (plus or minus an integer
constant) that is defined or declared earlier in the file. Thus, the constant
expression in the initializer can contain integer, character, enumeration, and float
constants, casts to any type, sizeof expressions, and addresses (possibly modified
by constants) of static objects.

Examples

The following examples show constants that are used in expressions.

Expression Constant

x = 42; 42

extern int cost = 1000; 1000

y = 3 * 29; 3 * 29

Related Information

v “Arrays” on page 47

v “File Scope Data Declarations” on page 24

v “switch” on page 131

v “Enumerations” on page 44

v “Structures” on page 57

82 Language Reference

v “Conditional Compilation” on page 149

Primary Expression

A primary expression can be:

v An identifier

v A string literal

v A parenthesized expression

v A constant expression

v A function call

v An array element specification

v A structure or union member specification.

All primary operators have the same precedence and have left-to-right associativity.

Parenthesized Expression ()

You can use parentheses to explicitly force the order of expression evaluation. The
following expression does not contain any parentheses that are used for grouping
operands and operators. The parentheses surrounding weight, zipcode are used to
form a function call. Notice how the operands and operators are grouped in this
expression according to the rules for operator precedence and associativity:

The following expression is similar to the previous expression. This expression,
however, contains parentheses that change how the operands and operators group:

In an expression that contains both associative and commutative operators, you can
use parentheses to specify the grouping of operands with operators. The
parentheses in the following expression guarantee the order of grouping operands
with the operators:
x = f + (g + h);

-discount * (item + handling (weight, zipcode)) < (.10 * item)

Chapter 5. Expressions and Operators 83

Function Call ()

A function call is a primary expression containing a parenthesized argument list.
The argument list can contain any number of expressions that are separated by
commas. For example:
stub()
overdue(account, date, amount)
notify(name, date + 5)
report(error, time, date, ++num)

The arguments are evaluated, and each parameter is assigned the value of the
corresponding argument. Assigning a value to a parameter within the function body
changes the value of the parameter within the function. However, it has no effect on
the argument.

In the following example, main() passes func() two values: 5 and 7. The function
func() receives copies of these values and accesses them by the identifiers: a and
b. The function func() changes the value of a. When control passes back to
main(), the actual values of x and y are not changed. The called function func()
only receives copies of x and y, not the values themselves.

This program produces the following output:
In func, a = 12 b = 7
In main, x = 5 y = 7

When you define a function as returning a certain type, for example type int, the
result of the function call has that type.

If you want a function to change the value of a variable, pass a pointer to the
variable you want changed. When a pointer is passed as a parameter, the pointer is
copied; the object pointed to is not copied. (See “Pointers” on page 52.)

All arrays and functions are converted to pointers when passed as function
arguments. Arguments that are passed to non-prototyped functions undergo
conversions: type short or char parameters will be converted to int, and float
parameters to double. Use a cast expression for other conversions. (See “Cast” on
page 89.)

If the function has not been previously declared, an implicit declaration of extern
int func(); is assumed.

The compiler compares the data types that are provided by the calling function with
the data types that the called function expects. The compiler may also perform type
conversions if the declaration of the function is:

#include <stdio.h>
void func(int, int);
int main(void)
{

int x = 5, y = 7;
func(x, y);
printf("In main, x = %d y = %d\n", x, y);

}
void func (int a, int b)
{

a += b;
printf("In func, a = %d b = %d\n", a, b);

}

84 Language Reference

v in function prototype format and the parameters differ from the prototype

OR

v visible at the point where the function is called.

The order in which parameters are evaluated is not specified. Avoid such calls as:
method(sample1, batch.process--, batch.process);

In the preceding example, batch.process-- may be evaluated last, causing the last
two arguments to be passed with the same value.

A function can call itself.

See “Chapter 4. Functions” on page 69 for detailed characteristics of functions.

Array Element Specification (Array Subscript) []

A primary expression followed by an expression in [] (square brackets) specifies
an element of an array. The expression within the square brackets is referred to as
a subscript.

The primary expression must have a pointer type, and the subscript must have
integral type. The result of an array subscript is an lvalue.

The first element of each array has the subscript 0. Thus, the expression
contract[35] refers to the 36th element in the array contract.

In a multidimensional array, you can refer to each element (in the order of
increasing storage locations) by increasing the rightmost subscript most frequently.
For example, the following statement gives the value 100 to each element in the
array code[4][3][6]:
for (first = 0; first <= 3; ++first)

for (second = 0; second <= 2; ++second)
for (third = 0; third <= 5; ++third)

code[first][second][third] = 100;

“Arrays” on page 47 explains how to define and use an array.

Structure and Union Member Specification . −>

Two primary operators enable you to specify structure and union members: . (dot)
and -> (arrow).

The dot (a period) and arrow (formed by a minus and a greater than symbol)
operators are always preceded by a primary expression. They are followed by an
identifier.

When you use the dot operator, the primary expression must be an instance of a
type of structure or union. The identifier must name a member of that structure or
union. The result is the value that is associated with the named structure or union
member. The result is an lvalue if the first expression is an lvalue.

Some sample dot expressions:
roster[num].name
roster[num].name[1]

Chapter 5. Expressions and Operators 85

When you use the arrow operator, the primary expression must be a pointer to a
structure or a union. The identifier must name a member of the structure or union.
The result is the value of the named structure or union member to which the pointer
expression refers. In the following example, name is an int:
roster -> name

See also “Unions” on page 62 and “Structures” on page 57.

Unary Expression

A unary expression contains one operand and a unary operator. All unary
operators have the same precedence and have right-to-left associativity.

Increment ++

The ++ (increment) operator adds 1 to the value of the scalar operand. Otherwise, if
the operand is a pointer, it increments the operand by the size of the object to
which it points. The operand receives the result of the increment operation. Thus,
the operand must be a modifiable lvalue.

You can place the ++ before or after the operand. If it appears before the operand,
the operand is increased. Then the new value is used in the expression. If you
place the ++ after the operand, the current value of the operand is used in the
expression. Then the operand is increased. For example:
play = ++play1 + play2++;

is equivalent to the following three expressions:
play1 = play1 + 1;
play = play1 + play2;
play2 = play2 + 1;

The type of the increment expression is the same type as that of the operand.

The usual arithmetic conversions on the operand are performed. See “Usual
Arithmetic Conversions” on page 105.

Decrement −−

The -- (decrement) operator subtracts 1 from the value of the scalar operand.
Otherwise, if the operand is a pointer, it decreases the operand by the size of the
object to which it points. The operand receives the result of the decrement
operation. Thus, the operand must be a modifiable lvalue.

You can place the -- before or after the operand. If it appears before the operand,
the operand is decreased, and the decreased value is used in the expression. If the
-- appears after the operand, the current value of the operand is used in the
expression and the operand is decreased.

For example:
play = --play1 + play2--;

is equivalent to the following three expressions:

86 Language Reference

play1 = play1 - 1;
play = play1 + play2;
play2 = play2 - 1;

The type of the decrement expression is the same type as that of the operand.

The usual arithmetic conversions are performed on the operand. See “Usual
Arithmetic Conversions” on page 105.

Unary Plus +

The + (unary plus) operator maintains the value of the operand. The operand can
have any arithmetic type. The result is not an lvalue.

The result of the unary plus expression has the same type as the operand after any
integral promotions (for example, char to int).

Note: Any plus sign preceding a constant is not part of the constant.

The usual arithmetic conversions on the operand are performed. See “Usual
Arithmetic Conversions” on page 105.

Unary Minus −

The - (unary minus) operator negates the value of the operand. The operand can
have any arithmetic type. The result is not an lvalue.

For example, if quality has the value 100, -quality has the value -100.

The result of the unary minus expression has the same type as the operand after
any integral promotions (for example, char to int).

Note: Any minus sign preceding a constant is not part of the constant.

The usual arithmetic conversions on the operand are performed. See “Usual
Arithmetic Conversions” on page 105.

Logical Negation !

The ! (logical negation) operator determines whether the operand evaluates to 0
(false) or nonzero (true). The expression yields the value 1 (true) if the operand
evaluates to 0, and yields the value 0 (false) if the operand evaluates to a nonzero
value. The operand must have a scalar data type, but the result of the operation
has always type int and is not an lvalue.

The following two expressions are equivalent:
!right;
right == 0;

The usual arithmetic conversions on the operand are performed. See “Usual
Arithmetic Conversions” on page 105.

Chapter 5. Expressions and Operators 87

Bitwise Negation

The (bitwise negation) operator supplies the bitwise complement of the operand. In
the binary representation of the result, every bit has the opposite value of the same
bit in the binary representation of the operand. The operand must have an integral
type. The result has the same type as the operand, but is not an lvalue.

Suppose that x represents the decimal value 5. The 16-bit binary representation of
x is:
0000000000000101

The expression x supplies the following result (that is represented here as a 16-bit
binary number):
1111111111111010

The 16-bit binary representation of 0 is:
1111111111111111

The usual arithmetic conversions on the operand are performed. See “Usual
Arithmetic Conversions” on page 105.

Address &

The & (address) operator supplies a pointer to its operand. The operand must be an
lvalue or function designator. It cannot be a bit field, nor can it have the storage
class specifier register. The result is a pointer to an object or function having the
type of the operand. Thus, if the operand has type int, the result is a pointer to an
object having type int. The result is not an lvalue.

If p_to_y is defined as a pointer to an int and y as an int, the following expression
assigns the address of the variable y to the pointer p_to_y:
p_to_y = &y;

See also “Pointers” on page 52.

Indirection *

The * (indirection) operator determines that the value referred to by the pointer-type
operand. The operand cannot be a pointer to void, or one of the AS/400 pointer
types label pointer, invocation pointer, suspend pointer, system pointer, or open
pointer. The operation supplies an lvalue or a function designator if the operand
points to a function. Arrays and functions are converted to pointers. The type of the
operand determines the type of the result. Thus, if the operand is a pointer to an
int, the result has type int.

Do not apply the indirection operator to any pointer that contains an address that is
not valid, such as NULL. The result of applying an indirection operator to such a
pointer is not defined.

If p_to_y is defined as a pointer to an int and y as an int, the expressions:
p_to_y = &y;
*p_to_y = 3;

cause the variable y to receive the value 3.

88 Language Reference

See also “Pointers” on page 52.

Cast

A cast operator converts the type of the operand to a specified data type and
performs the necessary conversions to the operand for the type. The cast operator
is a parenthesized type specifier. This type and the operand must be scalar; the
type may also be void. The result has the type of the specified data type but is not
an lvalue.

The following expression contains a cast expression to convert an operand of type
int to a value of type double:
int x;
printf("x=%lf\n", (double)x);

The function printf() receives the value of x as a double. The variable x remains
unchanged by the cast.

The following example shows you how to explicitly cast a packed decimal type to a
float type and to an integer type.
The expected output is:

op_1 = -1123.4
op_2 = 12.000000
op_3 = 5

“Chapter 6. Conversions” on page 105 describes how the C language performs
conversions.

Size of an Object

The sizeof operator yields the size in bytes of the operand. The sizeof operation
cannot be performed on a bit field, a function, or an incomplete type such as void.
The operand may be the parenthesized name of a type. The compiler must be able
to evaluate the size at compile time. The expression is not evaluated; there are no
side effects. For example, the value of b is 5 from initialization to the end of the
program:
int main(void){
int b = 5;
sizeof(b++);

}

The size of a char object is the size of a byte. Given that the variable x has type
char, the expression sizeof(x) always evaluates to 1.

The result of a sizeof operation has type size_t. size_t is an unsigned integral
type defined in the <stddef.h> header.

#include <decimal.h>
main (void)
{
decimal(10,2) op_1 = -1123.4d;
decimal(12,5) op_2 = 12d;
decimal(4) op_3 = 5d;
printf("op_1 = %D(5, 1)\n", (decimal(5,1)) op_1);
printf("op_2 = %f\n", (float) op_2);
printf("op_3 = %d\n", (int) op_3);

}

Chapter 5. Expressions and Operators 89

The compiler determines the size of an object on the basis of its definition. The
sizeof operator does not perform any conversions. However, if the operand
contains operators that perform conversions, the compiler takes these conversions
into consideration. The following expression causes the usual arithmetic
conversions to be performed. The result of the expression x + 1 has type int (if x
has type char, short, or int or any enumeration type) and is equivalent to
sizeof(int):
sizeof (x + 1)

When you perform the sizeof operation on an array, the result is the total number
of bytes in the array. The compiler does not convert the array to a pointer before
evaluating the expression.

You can use a sizeof expression wherever a constant or unsigned constant is
required. One of the most common uses for the sizeof operator is to determine the
size of objects that are being communicated to or from storage allocation, input,
and output functions.

For portability of code, you should use the sizeof operator to determine the size
that a data type represents. In this instance, the name of the data type must be
placed in parentheses after the sizeof operator. For example:
sizeof(int)

When you use the sizeof operator with decimal(n,p), the result is the total number
of bytes that are occupied by the packed decimal type.

Digits of an Object

When you use the digitsof operator with a packed decimal type, the result is an
integer constant. The digitsof operand can be a packed decimaldata type or a
packed decimal constant expression. The digitsof operator returns the number of
significant digits (n) in a packed decimal type.

The following example gives you the number of digits (n) in a packed decimaltype.

Precision of an Object

When you use the precisionof operator with a packed decimal type, the result is
an integer constant. The precisionof operand can be a packed decimaldata type or
a packed decimal constant expression. The precisionof operator tells you the
number of decimal digits (p) of the packed decimal type.

The following example gives you the number of decimal digits (p) of the packed
decimal type:

#include <decimal.h>int n,n1;
decimal (5,2) x;
n = digitsof(x); /* The result is n=5. */
n1 = digitsof(1234.567d); /* The result is n1=7. */

#include <decimal.h>int p,p1;
decimal (5,2) x;
p = precisionof(x); /* The result is p=2. */
p1 = precisionof(123.456d); /* The result is p1=3. */

90 Language Reference

Binary Expression

A binary expression contains two operands that are separated by one operator.

Not all binary operators have the same precedence. Table 7 on page 80 shows the
order of precedence among operators. All binary operators have left-to-right
associativity.

The order in which the operands of most binary operators are evaluated is not
specified. Therefore, to ensure correct results, avoid creating binary expressions
that depend on the order in which the compiler evaluates the operands.

For binary expressions involving packed decimal types, alignment to the decimal
point is performed before the addition, subtraction, relational, equality and logical
operands are done. If more than 31 digits are needed to align the two operands,
the compilation will fail. If the two operands align within the 31-digit boundary
without truncation, you should check the following tables for information about
intermediate results.

To calculate the size of the packed decimal data type intermediate result when you
do not expect the result to exceed 31 digits, use Table 8. To calculate the size of
the result when you do expect the result to exceed 31 digits, use Table 9. Both
tables summarize the intermediate expression results with the four basic arithmetic
operators and conditional operators when applied to the packed decimal types. Both
tables assume that x has type decimal (n sub 1, p sub 1), y has type decimal(n sub
2, p sub 2) and decimal(n,p) is the result type.

Table 8. Intermediate Results of Packed Decimal Expressions (Without Overflow in n or p)

Expression (n, p)

x * y n = n sub 1 + n sub 2, p = p sub 1 + p sub 2

x / y n = DEC_DIG, p = DEC_DIG - ((n sub 1 - p sub 1) + p sub 2)

x + y p = max(p sub 1, p sub 2) ,n = max(n sub 1- p sub 1, n sub 2- p sub 2) + p
+ 1

x − y same rule as addition

z ? x : y p = max(p sub 1, p sub 2), n = max(n sub 1- p sub 1, n sub 2- p sub 2) + p

Use Table 9 to calculate the size of the result when the integral part or fractional
part or both parts of a packed decimal value are expected to exceed 31 digits.
Overflow occurs when, in order to calculate the intermediate result, more than 31
digits is required for n, p or both n and p.

Table 9. Intermediate Results with Packed Decimal Expressions (With Overflow in n or p)

Expression (n, p)

x * y n = min(n sub 1 + n sub 2, DEC_DIG), p = min(p sub 1+ p sub 2, DEC_DIG
- min((n sub 1 - p sub 1) + (n sub 2 - p sub 2), DEC_DIG))

x / y n = DEC_DIG, p = max(DEC_DIG - ((n sub 1- p sub 1) + p sub 2), 0)

x + y ir = min(max(n sub 1- p sub 1, n sub 2- p sub 2) + 1, DEC_DIG), p =
min(max(p sub 1, p sub 2), DEC_DIG - ir), n = ir + p

x − y same rule as addition

z ? x : y ir = max(n sub 1- p sub 1, n sub 2- p sub 2), p= min(max(p sub 1, p sub 2),
DEC_DIG - ir), n = ir + p

Chapter 5. Expressions and Operators 91

There is no alignment to the decimal point before multiplication and division
operands are applied.

Multiplication *

The * (multiplication) operator supplies the product of its operands. The operands
must have an arithmetic type. The result is not an lvalue. The usual arithmetic
conversions on the operands are performed. See “Usual Arithmetic Conversions” on
page 105.

The compiler may rearrange the operands in an expression that contains more than
one multiplication operator. This is because the multiplication operator has both
associative and commutative properties. For example, the expression:
sites * number * cost

can be interpreted in any of the following ways:
(sites * number) * cost
sites * (number * cost)
(cost * sites) * number

When both operands are packed decimal types, the resulting type is formed
according to the rules in Table 8 on page 91 and Table 9 on page 91.

Note: No negative zero results from the operation. For example,
-1d * +0d ==> +00d
1d * -0d ==> +00d

The following example shows you how to multiply packed decimal variables.

The expected output is:
res_mul =−1.4814000

See the Run-Time Library Reference for information about printf() and %D(*,*).

Division /

The / (division) operator supplies the quotient of its operands. The operands must
have an arithmetic type. The result is not an lvalue.

If both operands are positive integers and the operation produces a remainder, the
remainder is ignored. Thus, the expression 7 / 4 supplies the value 1 (rather than
1.75 or 2).

#include <decimal.h> /* Packed Decimal Header File */
#include <stdio.h>
int main(void)
{
decimal(10,2) op_1 = 12d;
decimal(5,5) op_2 = -.12345d;
decimal(15,7) res_mul;
res_mul = op_2 * op_1;
printf("res_mul =%D(*,*)\n",digitsof(res_mul),precisionof(res_mul),res_mul);

}

92 Language Reference

For the ILE C compiler, the result of -7 / 4 is -1 with a remainder of -3, assuming
that both -7 and 4 are signed. If 4 is unsigned, -7 is converted to unsigned.

The result is undefined if the second operand evaluates to 0.

The usual arithmetic conversions on the operands are performed. See “Usual
Arithmetic Conversions” on page 105.

When both operands are packed decimal types, the resulting type is formed
according to the rules in Table 8 on page 91 and Table 9 on page 91.

Note: No negative zero results from the operation. For example,
-0d / 1d < +0.000000000000000000000000000000d

The following example shows you how to divide packed decimal variables.
The expected output is:

res_div =1.2079927338782

See the Run-Time Library Reference for information about printf() and %D(*,*).

Remainder %

The % (remainder) operator supplies the remainder from the division of the left
operand by the right operand. For example, the expression 5 % 3 supplies 2. The
result is not an lvalue.

Both operands must have an integral type. If the right operand evaluates to 0, the
result is undefined. If either operand has a negative value, the result is such that
the following expression always yields the value of a if b is not 0 and a/b is
representable:

(a / b) * b + a % b;

The usual arithmetic conversions on the operands are performed. See “Usual
Arithmetic Conversions” on page 105.

Addition +

The + (addition) operator supplies the sum of its operands. Both operands must
have an arithmetic type. Otherwise, the first operand must be a pointer to an object
type and the second operand must have an integral type.

When both operands have an arithmetic type, the usual arithmetic conversions on
the operands are performed. The result has the type produced by the conversions
on the operands and is not an lvalue.

#include <decimal.h> /* Packed Decimal Header File */
#include <stdio.h>
int main(void)
{
decimal(24,12) op_3 = 12.34d;
decimal(20,5) op_4 = 11.01d;
decimal(31,14) res_div;
res_div = op_3 / op_4;
printf("res_div =%D(*,*)\n",digitsof(res_div),precisionof(res_div),res_div);

}

Chapter 5. Expressions and Operators 93

Note: Function pointers and the AS/400 pointer types system pointer, call pointer,
label pointer, and suspend pointer cannot be used as operands in an
addition expression.

When both operands are packed decimal types, the resulting type is formed
according to the rules in Table 8 on page 91 and Table 9 on page 91.

Note: No negative zero results from the operation. For example:
-0d + -0d < +00d

The following example shows you how to add packed decimal variables.
The expected output is:

res_add =11.87655

See the Run-Time Library Reference for information about printf() and %D(*,*).

When one of the operands is a pointer, the compiler converts the other operand to
an address offset. (See “To and From Pointer Types” on page 116.) The result is a
pointer of the same type as the pointer operand. For example, after the addition,
ptr will point to the third element of the array:

int array[5];
int *ptr;
ptr = array + 2;

Subtraction −

The - (subtraction) operator supplies the difference of its operands. Both operands
must have an arithmetic type. Otherwise, the left operand must have a pointer type
and the right operand must have the same pointer type or an integral type.

When both operands have an arithmetic type, the usual arithmetic conversions on
the operands are performed. The result has the type produced by the conversions
on the operands and is not an lvalue.

When the left operand is a pointer and the right operand has an integral type, the
compiler converts the value of the right to an address offset. (See “To and From
Pointer Types” on page 116.) The result is a pointer of the same type as the pointer
operand.

If both operands are pointers to the same type, the compiler converts the result to a
32-bit integral type. The result represents the number of objects separating the two
addresses. Behavior is undefined if the pointers do not refer to objects in the same
array. In pointer arithmetic, subtracting two addresses to determine the offset
always results in a 32-bit signed integer.

#include <decimal.h> /* Packed Decimal Header File */
#include <stdio.h>
int main(void)
{
decimal(10,2) op_1 = 12d;
decimal(5,5) op_2 = -.12345d;
decimal(14,5) res_add;
res_add = op_1 + op_2;
printf("res_add =%D(*,*)\n",digitsof(res_add),precisionof(res_add),res_add);

}

94 Language Reference

Notes on pointers:

1. You cannot use function pointers and the AS/400 pointer types system pointer,
invocation pointer, label pointer, and suspend pointer as operands in a
subtraction expression.

2. In pointer arithmetic, subtracting two addresses to determine the offset will
always result in a 32-bit signed integer.

When both operands are packed decimal types, the resulting type is formed
according to the rules in Table 8 on page 91 and Table 9 on page 91

Note: No negative zero results from the operation. For example:
8d - 8d < +00d

The following example shows you how to subtract packed decimal variables.
The expected output is:

res_sub =0.340000000000

See the Run-Time Library Reference for information about printf() and %D(*,*).

Bitwise Left and Right Shift << >>

The bitwise shift operators move the bit values of a binary object. The left operand
specifies the value to be shifted. The right operand specifies the number of
positions that the bits in the value are to be shifted. The result is not an lvalue.

The << (bitwise left shift) operator indicates that the bits are to be shifted to the left.
The >> (bitwise right shift) operator indicates that the bits are to be shifted to the
right.

Each operand must have an integral type. The compiler performs integral
promotions on the operands. Then the right operand is converted to type int. The
result has the same type as the left operand (after the arithmetic conversions).

If the right operand has a negative value or a value that is greater than or equal to
the width in bits of the expression being shifted, the result is undefined.

If the right operand has the value 0, the result is the value of the left operand (after
the usual arithmetic conversions).

The << operator fills vacated bits with zeros. For example, if l_op has the value
4019, the bit pattern (in 16-bit format) of l_op is:
0000111110110011

The expression l_op << 3 supplies:

#include <decimal.h> /* Packed Decimal Header File */
#include <stdio.h>
int main(void)
{
decimal(10,2) op_1 = 12d;
decimal(24,12) op_3 = 12.34d;
decimal(25,12) res_sub;
res_sub = op_3 - op_1;
printf("res_sub =%D(*,*)\n",digitsof(res_sub),precisionof(res_sub),res_sub);

}

Chapter 5. Expressions and Operators 95

0111110110011000

If the left operand has an unsigned type, the >> operator fills vacated bits with
zeros. Otherwise, the compiler will fill the vacated bits of a signed value with a copy
of the value’s sign bit. For example, if l_op has the value -25, the bit pattern (in
16-bit format) of l_op is:
1111111111100111

The expression l_op >> 3 supplies:
1111111111111100

Relationa l < > <= >=

The relational operators compare two operands and determine the validity of a
relationship. If the relationship that is stated by the operator is true, the value of the
result is 1. Otherwise, the value of the result is 0.

The following table describes the relational operators:

Table 10. Relational Operators

Operator Usage

< Indicates whether the value of the left operand is less than the value of the
right operand.

> Indicates whether the value of the left operand is greater than the value of
the right operand.

<= Indicates whether the value of the left operand is less than or equal to the
value of the right operand.

>= Indicates whether the value of the left operand is greater than or equal to
the value of the right operand.

Both operands must have arithmetic types or be pointers to the same object type.
The result has type int.

If the operands have arithmetic types, the usual arithmetic conversions on the
operands are performed.

When the operands are pointers, the result is determined by the locations of the
objects to which the pointers refer. If the pointers do not refer to objects in the same
array, the result is not defined.

Note: Function pointers and the AS/400 pointer types system pointer, call pointer,
label pointer, and suspend pointer cannot be used as operands in a
relational expression.

Relational operators have left-to-right associativity. Therefore, the expression:
a < b <= c

is interpreted as:
(a < b) <= c

If the value of a is less than the value of b, the first relationship is true and supplies
the value 1. The compiler then compares the value 1 with the value of c.

96 Language Reference

The following example shows you how to use a relational operator (less than, <)
with packed decimals. In this example, packed decimal types are compared with
other arithmetic types (integer, float, double, long double). The implicit conversions
are performed using the arithmetic conversion rules in “Usual Arithmetic
Conversions” on page 105. Leading zeros in the example are shown to indicate the
size of the number of digits in the packed decimal. You do not need to enter leading
zeros in your packed decimalvariable.
The expected output is:

pdval is the smallest !
pdval is the smallest !
pdval is the smallest !
pdval is the smallest !
pdval is the smallest !

Equality == !=

The equality operators, like the relational operators, compare two operands for the
validity of a relationship. The equality operators, however, have a lower precedence
than the relational operators. If the relationship that is stated by an equality operator
is true, the value of the result is 1. Otherwise, the value of the result is 0.

The following table describes the equality operators:

Table 11. Equality Operators

Operator Usage

== Indicates whether the value of the left operand is equal to the value of the
right operand.

!= Indicates whether the value of the left operand is not equal to the value of
the right operand.

Both operands must have arithmetic types or be pointers to the same type.
Otherwise, one operand must have a pointer type and the other operand must be a
pointer to void or NULL. The result has type int.

If the operands have arithmetic types, the usual arithmetic conversions on the
operands are performed.

If the operands are pointers, the result is determined by the locations of the objects
to which the pointers refer.

#include <decimal.h>
#include <stdio.h>
decimal(10,3) pdval = 0000023.423d; /* Packed decimal declaration*/
int ival = 1233; /* Integer declaration */
float fval = 1234.34f; /* Float declaration */
double dval = 251.5832; /* Double declaration */
long double lval = 37486.234; /* Long double declaration */
int main(void)
{
decimal(15,6) value = 000485860.085999d;
if (pdval < ival) printf("pdval is the smallest !\n"); /* Perform relational */
if (pdval < fval) printf("pdval is the smallest !\n"); /* operation between */
if (pdval < dval) printf("pdval is the smallest !\n"); /* other data types and */
if (pdval < lval) printf("pdval is the smallest !\n"); /* packed decimal. */
if (pdval < value) printf("pdval is the smallest !\n");

}

Chapter 5. Expressions and Operators 97

If one operand is a pointer and the other operand is an integer having the value 0,
the expression is true only if the pointer operand evaluates to NULL.

You can also use the equality operators to compare pointers to members that are of
the same type but do not belong to the same object. The following expressions
contain examples of equality and relational operators:
time < max_time == status < complete
letter != EOF

Where the operands have types and values suitable for the relational operators, the
semantics for relational operators applies.

Note: Positive zero and negative zero compare equal. For example, the expression
(-0.00d== +0.00000d) always evaluates to TRUE.

The following example shows you how packed decimal variables are initialized and
compared for equality.
The expected output is:

op_1 equals op_2

Bitwise AND &

The & (bitwise AND) operator compares each bit of its first operand to the
corresponding bit of the second operand. If both bits are 1’s, the corresponding bit
of the result is set to 1. Otherwise, it sets the corresponding result bit to 0.

Both operands must have an integral type. The usual arithmetic conversions on
each operand are performed. The result has the same type as the converted
operands.

The compiler may rearrange the operands in an expression that contains more than
one bitwise AND operator. This is because the bitwise AND operator has both
associative and commutative properties.

The following example shows the values of a, b, and the result of a & b represented
as 16-bit binary numbers:

bit pattern of a 0000000001011100

bit pattern of b 0000000000101110

bit pattern of a & b 0000000000001100

#include <decimal.h>
#include <stdio.h>
decimal(1) op_1 = +0d; /* Declare and initialize */
decimal(1) op_2 = -0d; /* packed decimal variables. */
decimal(9,4) op_3 = 00012.3400d;
decimal(4,2) op_4 = 12.34d;
int main(void)
{
if (op_1 == op_2)
{
printf("op_1 equals op_2\n");

}
if (op_3 != op_4)
{
printf("op_3 not equal op_4\n");

}
}

98 Language Reference

Bitwise Exclusive OR |

The bitwise exclusive OR operator compares each bit of its first operand to the
corresponding bit of the second operand. In EBCDIC, the ¬ symbol represents the |
symbol. If both bits are 1’s or both bits are 0’s, the corresponding bit of the result is
set to 0. Otherwise, it sets the corresponding result bit to 1.

Both operands must have an integral type. The usual arithmetic conversions on
each operand are performed. The result has the same type as the converted
operands and is not an lvalue.

The compiler may rearrange the operands in an expression that contains more than
one bitwise exclusive OR operator. This is done because the bitwise exclusive OR
operator has both associative and commutative properties.

The following example shows the values of a, b, and the result of a | b represented
as 16-bit binary numbers:

bit pattern of a 0000000001011100

bit pattern of b 0000000000101110

bit pattern of a | b 0000000001110010

Bitwise Inclusive OR ¦

The ¦ (bitwise inclusive OR) operator compares the values (in binary format) of
each operand. It yields a value whose bit pattern shows which bits in either of the
operands has the value 1. If both of the bits are 0, the result of that bit is 0;
otherwise, the result is 1.

Both operands must have an integral type. The usual arithmetic conversions on
each operand are performed. The result has the same type as the converted
operands and is not an lvalue.

The compiler may rearrange the operands in an expression that contains more than
one bitwise inclusive OR operator. This is because the bitwise inclusive OR
operator has both associative and commutative properties.

The following example shows the values of a, b, and the result of a ¦ b represented
as 16-bit binary numbers:

bit pattern of a 0000000001011100

bit pattern of b 0000000000101110

bit pattern of a ¦ b 0000000001111110

Logical AND &&

The && (logical AND) operator indicates whether both operands have a nonzero
value. If both operands have nonzero values, the result has the value 1. Otherwise,
the result has the value 0.

Both operands must have a scalar type. The usual arithmetic conversions on each
operand are performed. The result has type int and is not an lvalue.

Chapter 5. Expressions and Operators 99

The logical AND operator guarantees left-to-right evaluation of the operands. If the
left operand evaluates to 0, the right operand is not evaluated.

The following examples show how the expressions that contain the logical AND
operator are evaluated:

Expression Result

1 && 0 0

1 && 4 1

0 && 0 0

The following example uses the logical AND operator to avoid a divide-by-zero
situation:
y && (x / y)

The expression x / y is not evaluated when y is 0.

Note: The logical AND (&&) should not be confused with the bitwise AND (&)
operator. For example:

1 && 4 evaluates to 1
while

1 & 4 evaluates to 0

Logical OR ¦¦

The ¦¦ (logical OR) operator indicates whether either operand has a nonzero value.
If either operand has a nonzero value, the result has the value 1. Otherwise, the
result has the value 0.

Both operands must have a scalar type. The usual arithmetic conversions on each
operand are performed. The result has type int and is not an lvalue.

The logical OR operator guarantees left-to-right evaluation of the operands. If the
left operand has a nonzero value, the right operand is not evaluated.

The following examples show how expressions that contain the logical OR operator
are evaluated:

Expression Result

1 ¦¦ 0 1

1 ¦¦ 4 1

0 ¦¦ 0 0

The following example uses the logical OR operator to conditionally increment y:
++x ¦¦ ++y;

The expression ++y is not evaluated when the expression ++x evaluates to a
nonzero quantity.

Note: The logical OR (¦¦) should not be confused with the bitwise OR (¦) operator.
For example:

100 Language Reference

1 ¦¦ 4 evaluates to 1
while

1 ¦ 4 evaluates to 5

Conditional Expression ? :

A conditional expression is a compound expression that contains a condition (the
first expression), an expression to be evaluated if the condition has a nonzero value
(the second expression), and an expression to be evaluated if the condition has the
value 0.

The conditional expression contains one two-part operator. The ? symbol follows the
condition, and the : symbol appears between the two action expressions. All
expressions that occur between the ? and : are treated as one expression.

The first operand must have a scalar type. The second and third operands must
have arithmetic types, compatible structure type, compatible union type, or
compatible pointer type. A type is compatible when it has the same type but not
necessarily the same qualifiers (volatile, const, or _Packed). Also, the second
and third operands may be a pointer and a NULL pointer constant, or a pointer to an
object and a pointer to void.

The first expression is evaluated first. If the first expression has a nonzero value,
the second expression is evaluated, and the third operand is not evaluated. Its
result is converted to the result type. If the expression is an arithmetic type, the
usual arithmetic conversions on the second expression are performed. If the first
expression has a zero value, the third expression is evaluated with the usual
arithmetic conversions performed on it if it has an arithmetic type.

The types of the second and third operands determine the type of the result as
shown in Table 12.

Table 12. Type of the Conditional Expression

Type of One Operand Type of Other Operand Type of Result

Arithmetic Arithmetic Arithmetic after usual
arithmetic conversions

struct/union type Compatible struct/union
type

struct/union type with all
the qualifiers on both
operands

void void void

Pointer to compatible type Pointer to compatible type Pointer to type with all the
qualifiers specified for the
type

Pointer to type NULL pointer Pointer to type

Pointer to object or
incomplete type

Pointer to void Pointer to void with all the
qualifiers specified for the
type

Conditional expressions have right-to-left associativity.

Examples

The following expression determines which variable has the greater value, y or z,
and assigns the greater value to the variable x:

Chapter 5. Expressions and Operators 101

x = (y > z) ? y : z;

The preceding expression is equivalent to the following statement:
if (y > z)

x = y;
else

x = z;

The following expression calls the function printf(), which receives the value of
the variable c, if c evaluates to a digit. Otherwise, the printf() function receives
the character constant 'x'.
printf(" c = %c\n", isdigit(c) ? c : 'x');

Assignment Expression

An assignment expression stores a value in the object that is designated by the
left operand.

The left operand in all assignment expressions must be a modifiable lvalue. The
type of the expression is the type of the left operand. The value of the expression is
the value of the left operand after the assignment has completed. The result of an
assignment expression is not an lvalue.

All assignment operators have the same precedence and have right-to-left
associativity.

There are two types of assignment operators: simple assignment and compound
assignment. The following sections describe these operators.

Simple Assignment =

The simple assignment operator stores the value of the right operand in the object
that is designated by the left operand.

Both operands must have arithmetic types, the same structure type, or the same
union type. Otherwise, both operands must be pointers to the same type, or the left
operand must be a pointer and the right operand must be the constant 0 or NULL.

If both operands have arithmetic types, the system converts the type of the right
operand to the type of the left operand before the assignment.

If the left operand is a pointer and the right operand is the constant 0, the result is
NULL.

Pointers to void can appear on either side of the simple assignment operator.

A packed structure or union can be assigned to a nonpacked structure or union of
the same type. A nonpacked structure or union can be assigned to a packed
structure or union of the same type.

If one operand is packed and the other is not, the layout of the right operand is
remapped to match the layout of the left. This remapping of structures may degrade
performance. For efficiency, when you perform assignment operations with
structures or unions, you should ensure that both operands are either packed or
nonpacked.

102 Language Reference

Note: If you assign pointers to structures or unions, the objects they point to must
both be either packed or nonpacked. See “Initializers of Pointers” on page 53
for more information on assignments with pointers.

You can assign values to operands with the type qualifier volatile. You cannot
assign a pointer of an object with the type qualifier const to a pointer of an object
without the const type qualifier such as in the following example:
const int *p1;
int *p2;
p2 = p1; /* is not allowed */
p1 = p2; /* note that this is allowed */

The following example assigns the value of number to the member employee of the
structure payroll:
payroll.employee = number;

The following example assigns in order the value 0 to d, the value of d to c, the
value of c to b, and the value of b to a:
a = b = c = d = 0;

Note: The assignment (=) operator should not be confused with the equality
comparison (==) operator. For example:

if(x == 3) evaluates to 1 if x is equal to three

while

if(x = 3) is taken to be true because (x = 3) evaluates to a nonzero value
(3). The expression also assigns the value 3 to x.

Compound Assignment

The compound assignment operators consist of a binary operator and the simple
assignment operator. They perform the operation of the binary operator on both
operands and give the result of that operation to the left operand.

If the left operand of the += and -= operators is a pointer, the right operand must
have an integral type; otherwise, both operands must have an arithmetic type.

Both operands of the *=, /=, and %= operators must have an arithmetic type.

Both operands of the <<=, >>=, &=, |=, and ¦= operators must have an integral type.

Note: The expression a *= b + c is equivalent to a = a * (b + c), and not a = a
* b + c.

The following table lists the compound assignment operators and shows an
expression using each operator:

Table 13. Compound Assignment Operators

Operator Example Equivalent Expression

+= index += 2 index = index + 2

-= *(pointer++) -= 1 *pointer = *(pointer++) - 1

*= bonus *= increase bonus = bonus * increase

/= time /= hours time = time / hours

Chapter 5. Expressions and Operators 103

Table 13. Compound Assignment Operators (continued)

Operator Example Equivalent Expression

%= allowance %= 1000 allowance = allowance % 1000

<<= result <<= num result = result << num

>>= form >>= 1 form = form >> 1

&= mask &= 2 mask = mask & 2

|= test |= pre_test test = test | pre_test

¦= flag ¦= ON flag = flag ¦ ON

Although the equivalent expression column shows the left operands (from the
example column) that is evaluated twice, the left operand is evaluated only once.

Comma Expression ,

A comma expression contains two operands separated by a comma. Although the
compiler evaluates both operands, the value of the right operand is the value of the
expression. The left operand is evaluated, possibly producing side effects, and the
value is discarded. The result of a comma expression is not an lvalue.

Both operands of a comma expression can have any type. All comma expressions
have left-to-right associativity. The left operand is fully evaluated before the right
operand.

If omega had the value 11, the following example would increment y and assign the
value 3 to alpha:
alpha = (y++, omega % 4);

Any number of expressions that are separated by commas can form a single
expression. The compiler evaluates the leftmost expression first. The value of the
rightmost expression becomes the value of the entire expression. For example, the
value of the following expression is rotate(direction):
intensity++, shade * increment, rotate(direction);

Restrictions

You can place comma expressions within lists that contain commas (for example,
argument lists and initializer lists). However, because the comma has a special
meaning, you must place parentheses around comma expressions in these lists.
The comma expression t = 3, t + 2 is in the following function call:
f(a, (t = 3, t + 2), c);

The arguments to function f() are: the value of a, the value 5, and the value of c.

104 Language Reference

Chapter 6. Conversions

Many C language operators cause conversions. A conversion changes the form of a
value and its type. For example, when you add values that have different data
types, the compiler converts the types of the objects to the same type before
adding the values. Addition of a short int value and an int value causes the
compiler to convert the short int value to the int type.

Conversions may occur, for example, when:

v A cast operation is performed.

v An operand is prepared for an arithmetic or logical operation.

v An assignment is made to an lvalue that has different type from the assigned
value.

v A prototyped function is given an argument that has a different type from the
parameter.

v The type of the expression that is specified on a function’s return statement has
a different type from the defined return type for the function.

Although the C language contains some guidelines for conversions, many
conversions have implementation-specific aspects. These implementation specific
aspects occur because:

v The sizes of the data types vary.

v The manner of handling signed data varies.

v The data formats vary.

Usual Arithmetic Conversions

Most C operators perform type conversions to bring the operands of an expression
to a common type. It can also extend short values to the integer size used in
machine operations. The conversions that are performed by C operators depend on
the specific operator and the type of the operand or operands. However, many
operators perform similar conversions on operands of integer and floating-point
types. These conversions are known as standard arithmetic conversions because
they apply to the types of values that are ordinarily used in arithmetic.

Integer promotions are performed when you use a char, short int, int, bit field,
or an enumeration type wherever an int or unsigned int is expected. If an int can
hold the value, the value is converted to an int; otherwise, it is converted to an
unsigned int. All other arithmetic types are unchanged by integer promotions.

“Type Conversions” on page 106 outlines the path of each type of conversion.

Arithmetic conversion proceeds in the following order:

1. If one operand has long double type, the other operand is converted to long
double type.

2. If one operand has double type, the other operand is converted to double.

3. If one operand has float type, the other operand is converted to float.

4. If one operand has packed decimal type, the other operand is converted to
packed decimal.

5. If one operand has unsigned long long int type, the compiler converts the
other operand to unsigned long long int.

© Copyright IBM Corp. 1993, 1999 105

6. If one operand has long long int type, the compiler converts the other
operand long long int.

7. If one operand has unsigned long int type, the other operand is converted to
unsigned long int.

8. If one operand has unsigned int type and the other operand has long int
type and the value of the unsigned int can be represented in a long int, the
operand with unsigned int type is converted to long int.

9. If one operand has unsigned int type and the other operand has long int
type and the value of the unsigned int cannot be represented in a long int.
Both operands are converted to unsigned long int.

10. If one operand has long int type, the other operand is converted to long int.

11. If one operand has unsigned int type, the other operand is converted to
unsigned int.

12. If both operands have int type, the result is type int.

Type Conversions

Type conversions are the assignment of a value to a variable of a different data
type, when:

v A value is explicitly cast to another type.

v An operator converts the type of its operand or operands before performing an
operation.

v A value is passed as an argument to a function.

The following sections outline the rules governing each kind of conversion.

Assignment Conversions

In assignment operations, the type of the value being assigned is converted to the
type of the variable that receives the assignment. ILE C allows conversions by
assignment between integer, floating-point and packed decimal types, even when
the conversion entails loss of information.

The methods of carrying out the conversions depend on the type, as follows.

From Signed Integer Types

C converts a signed integer to a shorter signed integer by truncating the high-order
bits. The compiler converts a signed integer to a longer signed integer by
sign-extension. Conversion of signed integers to floating-point values may result in
a loss of precision because floating point representations are inherently inexact. To
convert a signed integer to an unsigned integer, you must convert the signed
integer to the size of the unsigned integer. The compiler interprets the result as an
unsigned value.

106 Language Reference

The following chart summarizes conversions from signed integer types:

Table 14. Conversions from Signed Integer

From To Method

signed char short Sign-extend.

int Sign-extend.

long Sign-extend.

long long Sign-extend.

unsigned char Preserve pattern; high-order bit loses
function as sign bit.

unsigned short Sign-extend to short; convert short to
unsigned short.

unsigned long Sign-extend to long; convert long to
unsigned long.

unsigned long long Sign-extend to long long; convert long
long to unsigned long long.

decimal(n,p) Convert to decimal(10,0) and then convert
to the required packed decimal type.

float Sign-extend to long; convert long to float.

double Sign-extend to long; convert long to double.

long double Sign-extend to long; convert long to long
double.

short signed char Preserve low-order byte.

int Sign-extend.

long Sign-extend.

long long Sign-extend.

unsigned char Preserve low-order byte.

unsigned short Preserve bit pattern; high-order bit loses
function as sign bit.

unsigned long Sign-extend to long; convert long to
unsigned long.

unsigned long long Sign-extend to long long; convert long
long to unsigned long long.

decimal(n,p) Convert to decimal(10,0) and then convert
to the required packed decimal type.

float Sign-extend to long; convert long to float.

double Sign-extend to long; convert long to double.

long double Sign-extend to long; convert long to long
double.

Chapter 6. Conversions 107

Table 14. Conversions from Signed Integer (continued)

From To Method

int signed char Preserve low-order byte.

short Preserve low-order bytes.

long No conversion.

long long Sign-extend.

unsigned char Preserve low-order byte.

unsigned short Preserve low-order bytes.

unsigned long Preserve bit pattern; high-order bit loses
function as sign bit.

unsigned long long Sign-extend to long long; convert long
long to unsigned long long.

decimal(n,p) Convert to decimal(10,0) and then convert
to the required packed decimal type.

float Represent as a float; if the long cannot be
represented exactly, some loss of precision
occurs.

double Represent as a double; if the long cannot
be represented exactly, some loss of
precision occurs.

long double Represent as a long double; if the long
cannot be represented exactly, some loss of
precision occurs.

long signed char Preserve low-order byte.

short Preserve low-order bytes.

int No conversion.

long long Sign extend.

unsigned char Preserve low-order byte.

unsigned short Preserve low-order bytes.

unsigned long Preserve bit pattern; high-order bit loses
function as sign bit.

unsigned long long Sign-extend to long long; convert long
long to unsigned long long.

decimal(n,p) Convert to decimal(10,0) and then convert
to the required packed decimal type.

float Represent as a float; if the long cannot be
represented exactly, some loss of precision
occurs.

double Represent as a double; if the long cannot
be represented exactly, some loss of
precision occurs.

long double Represent as a long double; if the long
cannot be represented exactly, some loss of
precision occurs.

108 Language Reference

Table 14. Conversions from Signed Integer (continued)

From To Method

long long signed char Preserve low-order byte.

short Preserve low-order bytes.

int Preserve low-order bytes.

long Preserve low-order bytes.

unsigned char Preserve low-order byte.

unsigned short Preserve low-order bytes.

unsigned int Preserve low-order bytes.

unsigned long Preserve low-order bytes.

unsigned long long Preserve bit pattern; high-order bit loses
function as sign bit.

decimal(n,p) Convert to decimal(20,0) and then convert
to the required packed decimal type.

float Represent as a float; if the long long
cannot be represented exactly, some loss of
precision occurs.

double Represent as a double; if the long long
cannot be represented exactly, some loss of
precision occurs.

long double Represent as a long double; if the long
long cannot be represented exactly, some
loss of precision occurs.

From Unsigned Integer Types

The compiler converts an unsigned integer to a shorter unsigned or signed integer
by truncating the high-order bits. The compiler converts an unsigned integer to a
longer unsigned or signed integer by setting the high-order bits to 0. The compiler
converts unsigned values to floating-point values by first converting to a signed
integer of the same size. The compiler then converts the signed value to a
floating-point value. Conversion of unsigned integers to floating-point values may
result in a loss of precision because floating point representations are inherently
inexact.

When an unsigned integer is converted to a signed integer of the same size, no
change in the bit pattern occurs. However, the value changes if the sign bit is set.

Chapter 6. Conversions 109

The following chart summarizes conversions from unsigned integer types:

Table 15. Conversions from Unsigned Integer Types

From To Method

unsigned char signed char Preserve bit pattern; high-order bit becomes
sign bit.

short Zero-extend; preserve the bit pattern.

int Zero-extend; preserve the bit pattern.

long Zero-extend; preserve the bit pattern.

long long Zero-extend; preserve the bit pattern.

unsigned short Zero-extend; preserve the bit pattern.

decimal(n,p) Converted to decimal(10,0) and then
converted to the required packed decimal
type.

unsigned int Zero-extend; preserve the bit pattern.

unsigned long Zero-extend; preserve the bit pattern.

unsigned long long Zero-extend; preserve the bit pattern.

float Convert to long; convert long to float.

double Convert to long; convert long to double.

long double Convert to long; convert long to long
double.

unsigned short signed char Preserve low-order byte.

short Preserve bit pattern; high-order bit becomes
sign bit.

int Zero-extend; preserve the bit pattern.

long Zero-extend; preserve the bit pattern.

long long Zero-extend; preserve the bit pattern.

unsigned char Preserve low-order byte.

unsigned int Zero-extend.

unsigned long Zero-extend.

unsigned long long Zero-extend.

decimal(n,p) Converted to decimal(10,0) and then
converted to the required packed decimal
type.

float Convert to long; convert long to float.

double Convert to long; convert long to double.

long double Convert to long; convert long to long
double.

110 Language Reference

Table 15. Conversions from Unsigned Integer Types (continued)

From To Method

unsigned int signed char Preserve low-order byte.

short Preserve low-order bytes.

int Preserve bit pattern; high-order bit becomes
sign.

long Preserve bit pattern; high-order bit becomes
sign.

long long Zero-extend.

unsigned char Preserve low-order byte.

unsigned short Preserve low-order bytes.

unsigned long long Zero-extend.

decimal(n,p) Converted to decimal(10,0) and then
converted to the required packed decimal
type.

float Convert int to float.

double Convert int to double.

long double Convert int to long double.

unsigned long signed char Preserve low-order byte.

short Preserve low-order bytes.

int Preserve bit pattern; high-order bit becomes
sign.

long Preserve bit pattern; high-order bit becomes
sign.

long long Zero-extend.

unsigned char Preserve low-order byte.

unsigned short Preserve low-order bytes.

unsigned int No conversion.

unsigned long long Zero-extend.

decimal(n,p) Converted to decimal(10,0) and then
converted to the required packed decimal
type.

float Convert long to float.

double Convert long to double.

long double Convert long to long double.

Chapter 6. Conversions 111

Table 15. Conversions from Unsigned Integer Types (continued)

From To Method

unsigned long long signed char Preserve low-order byte.

short Preserve low-order bytes.

int Preserve low-order bytes.

long Preserve low-order bytes.

long long Preserve bit pattern; high-order bit becomes
sign bit.

unsigned char Preserve low-order byte.

unsigned short Preserve low-order bytes.

unsigned int Preserve low-order bytes.

unsigned long Preserve low-order bytes.

decimal(n,p) Convert to decimal(20,0) and then convert
to the required packed decimal type.

float Represent as a float; if the unsigned long
long cannot be represented exactly, some
loss of precision occurs.

double Represent as a double; if the unsigned long
long cannot be represented exactly, some
loss of precision occurs.

long double Represent as a long double; if the unsigned
long long cannot be represented exactly,
some loss of precision occurs.

From Floating-Point Types

A float value that is converted to a double undergoes no change in value. A double
that is converted to a float is represented exactly, if possible. If C cannot exactly
represent the double value as a float, the number loses precision. If the value is
too large to fit into a float, the number is undefined. If a floating-point value is
converted to a packed decimal with a smaller precision, the fractional part of the
floating point number is truncated. If the value is too large to fit into a packed
decimal, the number is undefined.

A float has 6 significant digits. A double has 15 significant digits and is represented
internally as a value having 15 significant digits. As a result, when a double is
converted to a packed decimal, it is the internal representation of the double value
which is used. If this value of the double cannot be represented in the packed
decimal, then the fractional part of the internal double value is truncated.

A floating-point value is converted to an integer value by converting to an unsigned
long. The decimal fraction portion of the floating-point value is discarded in the
conversion. If the result is still too large to fit, the result of the conversion is
undefined.

112 Language Reference

The following chart summarizes conversions from floating-point types:

Table 16. Conversions from Floating-Point Types

From To Method

float signed char Convert to long; convert long to signed
char.

short Convert to long; convert long to short.

int Truncate at decimal point; if result is too
large to be represented as a int, result is
undefined.

long Truncate at decimal point; if result is too
large to be represented as a long, result is
undefined.

long long Truncate at decimal point; if result is too
large to be represented as a long long, the
result is undefined.

unsigned short Convert to unsigned long; convert unsigned
long to unsigned short.

unsigned int Truncate at decimal point; if result is too
large to be represented as an unsigned int,
result is undefined.

unsigned long Truncate at decimal point; if result is too
large to be represented as an unsigned
long, result is undefined.

unsigned long long Truncate at decimal point; if result is too
large to be represented as an unsigned
long long, the result is undefined.

decimal(n,p) Convert to the required packed decimal
type. Truncate the fractional part of the float
to be converted if it cannot be represented
in the packed decimal format. If the result is
too large to be represented as a
decimal(n,p), the result is undefined.

double Represent as a double.

Chapter 6. Conversions 113

Table 16. Conversions from Floating-Point Types (continued)

From To Method

double signed char Convert to float; convert float to char.

short Convert to float; convert float to short.

int Truncate at decimal point; if result is too
large to be represented as a long, result is
undefined.

long Truncate at decimal point; if result is too
large to be represented as a long, result is
undefined.

long long Truncate at decimal point; if result is too
large to be represented as a long long,
result is undefined.

unsigned short Convert to unsigned long; convert unsigned
long to unsigned short.

unsigned int Truncate at decimal point; if result is too
large to be represented as an unsigned int,
result is undefined.

unsigned long Truncate at decimal point; if result is too
large to be represented as an unsigned
long, result is undefined.

unsigned long long Truncate at decimal point; if result is too
large to be represented as an unsigned
long long, result is undefined.

decimal(n,p) Convert to the required packed decimal
type. Truncate the fractional part of the
double to be converted if it cannot be
represented in the packed decimal format. If
the result is too large to be represented as
a decimal(n,p), the result is undefined.

float Represent as a float; if the double value
cannot be represented exactly as a float,
loss of precision occurs; if the value is too
large to be represented in a float, the
result is undefined.

long double Represent as a long double.

114 Language Reference

Table 16. Conversions from Floating-Point Types (continued)

From To Method

long double signed char Convert to double; convert double to float;
convert float to char.

short Convert to double; convert double to float;
convert float to short.

int Truncate at decimal point; if result is too
large to be represented as a int, result is
undefined.

long Truncate at decimal point; if result is too
large to be represented as a long, result is
undefined.

long long Truncate at decimal point; if result is too
large to be represented as a long long,
result is undefined.

unsigned short Convert to double; convert double to
unsigned long; convert unsigned long to
unsigned short.

unsigned int Truncate at decimal point; if result is too
large to be represented as an unsigned int,
result is undefined.

unsigned long Truncate at decimal point; if result is too
large to be represented as an unsigned
long, result is undefined.

unsigned long long Truncate at decimal point; if result is too
large to be represented as an unsigned
long long, result is undefined.

decimal(n,p) Convert to the required packed decimal
type. Truncate the fractional part of the long
double to be converted if it cannot be
represented in the packed decimal format. If
the result is too large to be represented as
a decimal(n,p), the result is undefined.

float Convert to double; represent as a float; if
the long double value cannot be
represented exactly as a float, loss of
precision occurs; if the value is too large to
be represented in a float, the result is
undefined.

double Represent as a double; If the result is too
large to be represented as a double, result
is undefined.

long double Represent as a long double; If the result is
too large to be represented as a long
double, result is undefined.

Chapter 6. Conversions 115

The following chart summarizes conversions from packed decimal types:

Table 17. Conversions from Packed Decimal Types

From To Method

decimal(n,p) signed char Truncate the fractional part and then convert
to signed char.

short Truncate the fractional part and then convert
to short.

int Truncate the fractional part and then convert
to int.

long Truncate the fractional part and then convert
to long.

long long Truncate the fractional part and then convert
to long long.

unsigned short Truncate the fractional part and then convert
to unsigned short.

unsigned char Truncate the fractional part and then convert
to unsigned char.

unsigned int Truncate the fractional part and then convert
to unsigned int.

unsigned long Truncate the fractional part and then convert
to unsigned long.

unsigned long long Truncate the fractional part and then convert
to unsigned long long.

decimal(n,p) Convert to the required packed decimal
type, truncating from the integral or
fractional part, if the integral or the fractional
part of the packed decimal target is smaller.

float Convert to float. If the value is too big to
be represented exactly as a float, the
result is undefined.

double Convert to double. If the value is too big to
be represented exactly as a double, the
result is undefined.

long double Convert to long double. If the value is too
big to be represented exactly as a long
double, the result is undefined.

To and From Pointer Types

You can convert a pointer to one type of value to a pointer to a different type.

Conversion of AS/400 pointers is subject to certain restrictions. See the ILE C for
AS/400 Programmer’s Guide for more information on AS/400 pointer conversion.

You can convert a pointer value to an integral value. The path of the conversion
depends on the size of the pointer and the size of the integral type.

The conversion of an integer value to an address offset (in an expression with an
integral type operand and a pointer type operand) is system dependent.

A pointer to a constant or a volatile object should never be assigned to a
non-constant or non-volatile object.

116 Language Reference

A pointer to void can be converted to or from a pointer to any incomplete or object
type.

From Other Types

When you define a value using the enum type specifier, the value is treated as an
int. Conversions to and from an enum value proceed as for the int type.

When a packed structure or union is assigned to a nonpacked structure or union of
the same type or an nonpacked structure is assigned to, a packed structure or
union of the same type, the layout of the right operand is remapped to match the
layout of the left.

No other conversions between structure or union types are allowed.

The void type has no value, by definition. Therefore, it cannot be converted to any
other type, nor can any value be converted to void by assignment. However, a
value can be explicitly cast to void.

Chapter 6. Conversions 117

118 Language Reference

Chapter 7. C Language Statements

This chapter describes the label identifier and statement, and the following C
language statements.

v Block

v break

v continue

v do

v Expression

v for

v goto

v if

v Null

v return

v switch

v while

Labels

A label is an identifier that allows your program to transfer control to other
statements within the same function. It is the only type of identifier that has function
scope (see “Scope” on page 4). The goto or switch statements transfers control to
the statement that follows the label. In ILE C, the control is transferred to a label
when an exception occurs while the function that contains the label is running. This
can only happen if the label has been named as the branch point handler on a
#pragma exception_handler directive. A label has the form:

For example, the following are labels:
comment_complete: ; /* Example of null statement label */
test_for_null: if (NULL == ptr) /* Example of statement label */

The case and default labels have a specific use and are described later in this
chapter. See “switch” on page 131.

Related Information

v “goto” on page 127

v “switch” on page 131

v “exception_handler” on page 163

ÊÊ identifier : statement ÊÍ

© Copyright IBM Corp. 1993, 1999 119

Block

A block statement enables you to group any number of data definitions,
declarations, and statements into one statement. When you enclose definitions,
declarations, and statements within a single set of braces, everything within the
braces is treated as a single statement. You can place a block wherever a
statement is allowed. The block statement has the form:

All definitions and declarations occur at the beginning of a block before statements.
Statements must follow the definitions and declarations. A block is considered a
single statement.

If you redefine a data object inside a nested block, the inner object hides the outer
object while the inner block is run. Defining several variables that have the same
identifier can make a program difficult to understand and maintain. Therefore, you
should limit such redefinitions of identifiers within nested blocks.

If a data object is usable within a block, all nested blocks can use that data object
(unless that data object identifier is redefined).

Initialization of an auto or register variable occurs each time the block is run from
the beginning. If you transfer control from one block to the middle of another block,
initializations are not always performed. You cannot initialize an extern variable
within a block.

Examples

The following example shows how the values of data objects change in nested
blocks:

The preceding example produces the following output:
second x = 2
first x = 1

ÊÊ · ·{ }
type_definition statement
file_scope_data_declaration
block_scope_data_declaration

ÊÍ

1 #include <stdio.h>
2
3 int main(void)
4 {
5 int x = 1; /* Initialize x to 1 */
6 int y = 3;
7
8 if (y > 0)
9 {

10 int x = 2; /* Initialize x to 2 */
11 printf("second x = %4d\n", x);
12 }
13 printf("first x = %4d\n", x);
14 }

120 Language Reference

Two variables that are named x are defined in main(). The definition of x on line 5
keeps storage throughout the processing of main(). However, because the definition
of x on line 10 occurs within a nested block, line 11 recognizes x as the variable
defined on line 10. Line 13 is not part of the nested block. Thus, line 13 recognizes
x as the variable defined on line 5.

break

A break statement enables you to stop and exit from a loop or switch statement.
This statement can be used from any point within the loop or switch other than the
logical end. A break statement has the form:

In a looping statement (do, for, or while), the break statement ends the loop and
moves control to the next statement outside the loop. Within nested statements, the
break statement ends only the smallest enclosing do, for, switch, or while
statement.

In a switch body, the break statement ends the processing of the switch body and
gives control to the next statement outside the switch body.

Restrictions

You can place a break statement only in the body of a looping statement (do, for
or while). A break statement can also be used in the body of a switch statement.

Examples

The following example shows a break statement in the action part of a for
statement. If the ith element of the array string is equal to '\0', the break
statement causes the for statement to end.
for (i = 0; i < 5; i++)
{

if (string[i] == '\0')
break;

length++;
}

The preceding for statement is equivalent to the following for statement, if string
does not contain any embedded null characters:
for (i = 0; i < 5; i++)
{

if (string[i] != '\0')
length++;

}

The following example shows a break statement in a nested looping statement. The
outer loop sequences an array of pointers to strings. The inner loop examines each
character of the string. When the break statement is run, the inner loop ends, and
control returns to the outer loop.

ÊÊ break ; ÊÍ

Chapter 7. C Language Statements 121

The preceding program produces the following output:
letter count = 4

The following example is a switch statement that contains several break
statements. Each break statement indicates the end of a specific clause and ends
the processing of the switch statement.

Related Information

v “do” on page 124

v “for” on page 125

v “switch” on page 131

v “while” on page 134

/*
** This program counts the characters in the strings that are
** part of an array of pointers to characters. The count stops
** when one of the digits 0 through 9 is encountered
** and resumes at the beginning of the next string.
*/

#include <stdio.h>

#define SIZE 3

int main(void)
{

static char *strings[SIZE] = { "ab", "c5d", "e5" };
int i;
int letter_count = 0;
char *pointer;

for (i = 0; i < SIZE; i++) /* for each string */
/* for each character */

for (pointer = strings[i]; *pointer != '\0'; ++pointer)
{ /* if a number */

if (*pointer >= '0' && *pointer <= '9')
break;

letter_count++;
}

printf("letter count = %d\n", letter_count);
}

enum {morning, afternoon, evening} timeofday;

switch (timeofday)
{

case (morning):
printf("Good Morning\n");
break;

case (evening):
printf("Good Evening\n");
break;

default:
printf("Good Day, eh\n");
break;

}

122 Language Reference

continue

A continue statement enables you to end the current iteration of a loop. Program
control is passed from the location in the body of the loop in which the continue
statement is found to the end of the loop body. A continue statement has the form:

The continue statement ends the processing of the action part of a do, for, or
while statement. This moves control to the condition part of the statement. If the
looping statement is a for statement, control moves to the third expression in the
condition part of the statement. Then control moves to the second expression (the
test) in the condition part of the statement.

Within nested statements, the continue statement ends only the current iteration of
the do, for, or while statement immediately enclosing it.

Restrictions

You can place a continue statement only within the body of a looping statement
(do, for or while).

Examples

The following example shows a continue statement in a for statement. The
continue statement causes the system to skip over those elements of the array
rates that have values less than or equal to 1.

The preceding program produces the following output:
Rates over 1.00
rate = 1.45
rate = 1.88
rate = 2.00

The following example shows a continue statement in a nested loop. When the
inner loop encounters a number in the array strings, that iteration of the loop is
ended. Processing continues with the third expression of the inner loop (See “for”
on page 125). The inner loop is ended when the ’\0’ escape sequence is
encountered.

ÊÊ continue ; ÊÍ

#include <stdio.h>

#define SIZE 5

int main(void)
{

int i;
static float rates[SIZE] = { 1.45, 0.05, 1.88, 2.00, 0.75 };

printf("Rates over 1.00\n");
for (i = 0; i < SIZE; i++)
{

if (rates[i] <= 1.00) /* skip rates <= 1.00 */
continue;

printf("rate = %.2f\n", rates[i]);
}

}

Chapter 7. C Language Statements 123

The preceding program produces the following output:
letter count = 5

Compare the preceding program with the program on page “break” on page 121.
The program on page “break” on page 121 shows the use of the break statement,
but performs a similar function.

Related Information

v “do”

v “for” on page 125

v “while” on page 134

do

A do statement repeatedly runs a statement until the test expression evaluates to
0. Because of the order of processing, the statement is run at least once.

The body of the loop is run before the while clause (the controlling expression) is
evaluated. Further processing of the do statement depends on the value of the
while clause. If the while clause does not evaluate to 0, the statement is run again.
Otherwise, the statement is no longer run.

The controlling expression must be of scalar type.

A break, return, or goto statement can cause the execution of a do statement to
end, even when the while clause does not evaluate to 0.

/**
** This program counts the characters in strings that are part **
** of an array of pointers to characters. The count excludes **
** the digits 0 through 9. **
***/

#include <stdio.h>

#define SIZE 3

int main(void)
{

static char *strings[SIZE] = { "ab", "c5d", "e5" };
int i;
int letter_count = 0;
char *pointer;
for (i = 0; i < SIZE; i++) /* for each string */

/* for each character */
for (pointer = strings[i]; *pointer != '\0'; ++pointer)
{ /* if a number */

if (*pointer >= '0' && *pointer <= '9')
continue;

letter_count++;
}

printf("letter count = %d\n", letter_count);
}

ÊÊ do statement while (expression) ; ÊÍ

124 Language Reference

Example

The following statement prompts the user to enter a 1. If the user enters a 1, the
statement ends. Otherwise, the statement displays another prompt.

Related Information

v “break” on page 121

v “continue” on page 123

v “while” on page 134

Expression

An expression statement contains an expression. Expressions are described in
“Chapter 5. Expressions and Operators” on page 79. An expression statement has
the form:

An expression statement evaluates the given expression. An expression statement
is used to assign the value of the expression to a variable or to call a function.

Examples

Related Information

v “Chapter 5. Expressions and Operators” on page 79

for

A for statement enables you to do the following:

v Evaluate an expression prior to the first iteration of the statement (“initialization”)

v Specify an expression to determine whether or not the statement should be run
(“controlling part”)

v Evaluate an expression after each iteration of the statement

#include <stdio.h>

int main (void)
{

int reply1;

do
{

printf("Enter a 1\n");
scanf("%d", &reply1);

} while (reply1 != 1);
}

ÊÊ
expression

; ÊÍ

printf("Account Number: \n"); /* A call to printf */
marks = dollars * exch_rate; /* An assignment to marks */
(difference < 0) ? ++losses : ++gain; /* A conditional increment */
switches = flags ¦ BIT_MASK; /* An assignment to switches */

Chapter 7. C Language Statements 125

A for statement has the form:

The compiler evaluates expression1 only once. You can use this expression to
initialize a variable. If you do not want to evaluate an expression prior to the first
iteration of the statement, you can omit this expression.

The compiler evaluates expression2 before each run of the statement. expression2
must evaluate to a scalar type. If this expression evaluates to 0, the for statement
is ended and control moves to the statement following the for statement.
Otherwise, the statement is run. If you omit expression2, it will be as if the
expression had been replaced by a nonzero constant and the for statement will not
be terminated by failure of this condition.

The compiler evaluates expression3 after each run of the statement. You can use
this expression to increase, decrease, or reinitialize a variable. If you do not want to
evaluate an expression after each iteration of the statement, you can omit this
expression.

A break, return, or goto statement can cause the execution of a for statement to
end, even when the second expression does not evaluate to 0. If you omit
expression2, you must use a break, return, or goto statement to stop the
processing of the for statement.

Examples

The following for statement prints the value of count 20 times. The for statement
initially sets the value of count to 1. After each run of the statement, count is
increased.

For comparison purposes, the preceding example can be written using the following
sequence of statements to accomplish the same task. Note the use of the while
statement instead of the for statement.

The following for statement does not contain an initialization expression:

ÊÊ for (
expression1

;
expression2

;
expression3

Ê

Ê) statement ÊÍ

for (count = 1; count <= 20; count++)
printf("count = %d\n", count);

count = 1;
while (count <= 20)
{

printf("count = %d\n", count);
count++;

}

for (; index > 10; --index)
{

list[index] = var1 + var2;
printf("list[%d] = %d\n", index, list[index]);

}

126 Language Reference

The following for statement will continue running until scanf() receives the letter e:

The following for statement contains multiple initializations and increments. The
comma operator makes this construction possible.

The following example shows a nested for statement. The outer statement is run
as long as the value of row is less than 5. Each time the outer for statement is run,
the inner for statement sets the initial value of column to zero. The statement of the
inner for statement is run 3 times. The inner statement is run as long as the value
of column is less than 3. This example prints the values of an array that has the
dimensions [5][3]:

Related Information

v “break” on page 121

v “continue” on page 123

goto

A goto statement causes your program to unconditionally transfer control to the
statement that is associated with the label that is specified on the goto statement. A
goto statement has the form:

The goto statement transfers control to the statement that is indicated by the
identifier.

Notes

Use the goto statement sparingly. Because the goto statement can interfere with
the normal top-to-bottom sequence of processing, it makes a program more difficult
to read and maintain. Often, a break statement, a continue statement, or a function
call can eliminate the need for a goto statement.

for (;;)
{

scanf("%c", &letter);
if (letter == '\n')

continue;
if (letter == 'e')

break;
printf("You entered the letter %c\n", letter);

}

for (i = 0, j = 50; i < 10; ++i, j += 50)
{

printf("i = %2d and j = %3d\n", i, j);
}

for (row = 0; row < 5; row++)
for (column = 0; column < 3; column++)

printf("%d\n", table[row][column]);

ÊÊ goto identifier ; ÊÍ

Chapter 7. C Language Statements 127

If you use a goto statement to transfer control to a statement inside a loop or block,
initializations of automatic storage for the loop do not take place and the result is
undefined. The label must appear in the same function as the goto.

Examples

The following example shows a goto statement that is used to jump out of a nested
loop. A goto statement is not necessary in this function.

if

An if statement allows you to conditionally run a statement when the specified test
expression evaluates to a nonzero value. The expression must have a scalar type.
You may optionally specify an else clause on the if statement. If the test
expression evaluates to 0 and an else clause exists, the statement associated with
the else clause is run. An if statement has the form:

When if statements are nested and else clauses are present, a given else is
associated with the closest preceding if statement within the same block.

Examples

The following example causes grade to receive the value A if the value of score is
greater than or equal to 90.

The following example displays number is positive if the value of number is greater
than or equal to 0. Otherwise, the example displays number is negative.

The following example shows a nested if statement:

void display(int matrix[3][3])
{

int i, j;

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)
{

if ((matrix[i][j] < 1) ¦¦ (matrix[i][j] > 6))
goto out_of_bounds;

printf("matrix[%d][%d] = %d\n", i, j, matrix[i][j]);
}

return;
out_of_bounds: printf("number must be 1 through 6\n");

}

ÊÊ if (expression) statement
else statement

ÊÍ

if (score >= 90)
grade = 'A';

if (number >= 0)
printf("number is positive\n");

else
printf("number is negative\n");

128 Language Reference

The following example shows an if statement that does not have an else clause.
Because an else clause always associates with the closest if statement, braces
may be necessary to force a particular else clause to associate with the correct if
statement. In this example, omitting the braces would cause the else clause to
associate with the nested if statement.

The following example shows an if statement nested within an else clause. This
example tests multiple conditions. The tests are made in order of their appearance.
If one test evaluates to a nonzero value, a statement runs and the entire if
statement ends.

Null Statement

A null statement performs no operation and has the form:

You can use a null statement in a looping statement to show a nonexistent action or
in a labeled statement to hold the label.

Example

The following example initializes the elements of the array price. Because the
initializations occur within the for expressions, a statement is only needed to finish
the for syntax; no operations are required:
for (i = 0; i < 3; price[i++] = 0)

;

return

A return statement ends the processing of the current function and returns control
to the caller of the function. A return statement has the form:

if (paygrade == 7)
if (level >= 0 && level <= 8)

salary *= 1.05;
else

salary *= 1.04;
else

salary *= 1.06;

if (gallons > 0) {
if (miles > gallons)

mpg = miles/gallons;
}
else

mpg = 0;

if (value > 0)
++increase;

else if (value == 0)
++break_even;

else
++decrease;

ÊÊ ; ÊÍ

Chapter 7. C Language Statements 129

A return statement ends the processing of the current function.

A return statement is optional. If the system reaches the end of a function without
encountering a return statement, control is passed to the caller as if a return
statement without an expression were encountered.

A function can contain multiple return statements.

Value

If an expression is present on a return statement, the value of the expression is
returned to the caller. If the data type of the expression is different from the data
type of the function, conversion of the return value takes place as if the value of the
expression were assigned to an object with the same data type as the function.

If an expression is not present on a return statement, the value of the return
statement is not defined. If an expression is not given on a return statement and
the calling function is expecting a value to be returned, the resulting behavior is
undefined.

You cannot use a return statement with an expression when the function is
declared as returning type void.

Examples

The following function searches through an array of integers to determine if a match
exists for the variable number. If a match exists, the function match() returns the
value of i. If a match does not exist, the function match() returns the value -1
(negative one).

Related Information

v “Chapter 4. Functions” on page 69

v “Expression” on page 125

ÊÊ return
expression

; ÊÍ

return; /* Returns no value */
return result; /* Returns the value of result */
return 1; /* Returns the value 1 */
return (x * x); /* Returns the value of x * x */

int match(int number, int array[], int n)
{

int i;

for (i = 0; i < n; i++)
if (number == array[i])

return (i);
return(-1);

}

130 Language Reference

switch

A switch statement enables you to transfer control to different statements within
the switch body that depends on the value of the switch expression. The switch
expression must have an integral type. Within the body of the switch statement,
there are case labels that consist of a label, a case expression (that evaluates to an
integral value), and statements, plus an optional default label. If the value of the
switch expression equals one of the case expressions’ values, the statements
following that case expression are run. Otherwise, the default label statements, if
any, are run. A switch statement has the form:

A switch body can have a simple or complex form. The simple form contains any
number of case labels that are mixed with an optional default label. The simple
form ends with a single statement. The simple form of the switch body is rarely
used in C language programs because only the final case or default label can be
followed by a statement. An if statement usually can replace a switch statement
that has a simple switch body. The simple form of a switch body is shown below:

The complex form of a switch body, that is enclosed in braces, can contain
definitions, declarations, case clauses, and a default clause. Each case and
default clause can contain statements. The complex form of a switch body is
shown below:

Note: If you include an initializer within a type_definition, extern_definition or
internal_data_definition, it is ignored.

A case_clause contains a case label followed by any number of statements. A case
clause has the form:

ÊÊ switch (expression) switch_body ÊÍ

ÊÊ case_label statement
default_label statement

case_label case_label

ÊÍ

ÊÊ { ·
type_definition
file_scope_data_declaration
block_scope_data_declaration

·
case_clause

Ê

Ê
default_clause

·
case_clause

} ÊÍ

ÊÊ case_label · statement ÊÍ

Chapter 7. C Language Statements 131

A case_label contains the word case that is followed by a constant expression and
a colon. Anywhere you can place one case label; you can place multiple case
labels. A case label has the form:

A default_clause contains a default label that is followed by one or more
statements. You can place a case label on either side of the default label. A
default_clause has the form:

A default_label contains the word default and a colon. A switch statement can
have only one default label. A default label has the form:

The switch statement passes control to the statement that follows one of the labels
or to the statement that follows the switch body. The value of the expression that
precedes the switch body determines which statement receives control. This
expression is called the switch expression.

The value of the switch expression is compared with the value of the expression in
each case label. If a matching value is found, control passes to the statement
following the case label that contains the matching value. If the system does not
find a matching value and a default label appears anywhere in the switch body,
control passes to the default labelled statement. Otherwise, no part of the switch
body runs.

If control passes to a statement in the switch body, control does not pass from the
switch body until a break statement is encountered or the last statement in the
switch body is processed.

An integral promotion is performed on the controlling expression, if necessary. All
expressions in the case statements are converted to the same type as the
controlling expression.

Restrictions

The switch expression and the case expressions must have an integral type. The
value of each case expression must represent a different value and must be a
constant expression.

Only one default label can occur in each switch statement.

You can place data definitions at the beginning of the switch body. However, the
compiler does not initialize auto and register variables at the beginning of a
switch body.

Examples

ÊÊ · case constant_expression : ÊÍ

ÊÊ
case_label

default_label
case_label

· statement ÊÍ

ÊÊ default : ÊÍ

132 Language Reference

The following switch statement contains several case clauses and one default
clause. Each clause contains a function call and a break statement. The break
statements prevent control from passing down through each statement in the
switch body.

If the switch expression evaluated to '/', the switch statement would call the
function divide. Control would then pass to the statement following the switch
body.

If the switch expression matches a case expression, the statements following the
case expression are executed until a break statement is encountered or the end of
the switch body is reached. In the following example, break statements are not
present. If the value of text[i] is equal to 'A', all three counters are increased. If
the value of text[i] is equal to 'a', lettera and total are increased. Only total
is increased if text[i] is not equal to 'A' or 'a'.

The following switch statement performs the same statements for more than one
case label:

char key;

printf("Enter an arithmetic operator\n");
scanf("%c",&key);

switch (key)
{

case '+':
add();
break;

case '-':
subtract();
break;

case '*':
multiply();
break;

case '/':
divide();
break;

default:
printf("invalid key\n");
break;

}

char text[100];
int capa, lettera, total;

for (i=0; i<sizeof(text); i++) {

switch (text[i])
{

case 'A':
capa++;

case 'a':
lettera++;

default:
total++;

}
}

Chapter 7. C Language Statements 133

If the expression month had the value 3, control would be passed to the statement:
printf("month %d is a spring month\n", month);

The break statement would pass control to the statement that follows the switch
body.

Related Information

v “break” on page 121.

while

A while statement enables you to repeatedly run the body of a loop until the
controlling expression evaluates to 0. A while statement has the form:

The expression is evaluated to determine whether or not the body of the loop
should be run. The expression must be a scalar type. If the expression evaluates to
0, the statement ends, and the body of the loop is never run. Otherwise, the body is
run. After the body has been run, control returns to the expression. Further
processing of the action depends on the value of the condition.

A break, return, or goto statement can cause the running of a while statement to
end, even when the condition does not evaluate to 0.

Examples

int month;
switch (month)
{

case 12:
case 1:
case 2:

printf("month %d is a winter month\n", month);
break;

case 3:
case 4:
case 5:

printf("month %d is a spring month\n", month);
break;

case 6:
case 7:
case 8:

printf("month %d is a summer month\n", month);
break;

case 9:
case 10:
case 11:

printf("month %d is a fall month\n", month);
break;

default:
printf("not a valid month\n");
break;

}

ÊÊ while (expression) statement ÊÍ

134 Language Reference

In the following program, item[index] triples each time the value of the expression
++index is less than MAX_INDEX. When ++index evaluates to MAX_INDEX, the while
statement ends.

Related Information

v “break” on page 121

v “continue” on page 123

#define MAX_INDEX (sizeof(item) / sizeof(item[0]))

#include <stdio.h>

int main(void)
{

static int item[] = { 12, 55, 62, 85, 102 };
int index = 0;

while (index < MAX_INDEX)
{

item[index] *= 3;
printf("item[%d] = %d\n", index, item[index]);
++index;

}
}

Chapter 7. C Language Statements 135

136 Language Reference

Chapter 8. Preprocessor Directives

This chapter describes the C preprocessor directives. Preprocessing is a step in
the compilation process that enables you to:

v Replace tokens in the current file with specified replacement tokens. A token is a
series of characters that are delimited by white space. The only white space that
is allowed on a preprocessor directive is the space, horizontal tab, and
comments.

v Imbed files within the current file

v Conditionally compile sections of the current file

v Change the line number of the next line of source and change the file name of
the current file

v Generate diagnostic messages

The preprocessor recognizes the following directives:

v #define

v #undef

v #error

v #include

v #if

v #ifdef

v #ifndef

v #else

v #elif

v #endif

v #line

v #pragma

Note: The # is not part of the directive’s name and can be separated from the
name with white spaces.

Most preprocessor directives can appear anywhere in a program. Some #pragma
directives have restrictions on where they can appear and how often they can
appear in a program. See the descriptions of the individual #pragma directives for
more information.

Preprocessor Directive Format

Preprocessor directives begin with the # token that is followed by a preprocessor
keyword. The # token must appear as the first character that is not white space on
a line.

A preprocessor directive ends at the new-line character unless the last character of
the line is the \ (backslash) character. If the \ character appears as the last
character in the preprocessor line, the preprocessor interprets the \ and the
new-line character as a continuation marker and interprets the following line as a
continuation of the current preprocessor line.

© Copyright IBM Corp. 1993, 1999 137

#define

A preprocessor define directive directs the preprocessor to replace all
subsequent occurrences of a macro with specified replacement tokens. A
preprocessor #define directive has the form:

The #define directive can contain an object-like definition or a function-like
definition.

Object-Like Macro Definition

An object-like macro definition replaces a single identifier with the specified
replacement tokens. The following object-like definition causes the preprocessor to
replace all subsequent instances of the identifier COUNT with the constant 1000:
#define COUNT 1000

This definition would cause the preprocessor to change the following statement (if
the statement appears after the previous definition):
int arry[COUNT];

In the output of the preprocessor, the preceding statement would appear as:
int arry[1000];

The following definition refers to the previously defined identifier COUNT:
#define MAX_COUNT COUNT + 100

The preprocessor replaces each subsequent occurrence of MAX_COUNT with COUNT +
100, which the preprocessor then replaces with 1000 + 100.

Function-Like Macro Definition

Function-like macro definition:

An identifier followed by a parenthesized parameter list and the replacement tokens.
White space cannot separate the identifier (which is the name of the macro) and
the left parenthesis of the parameter list. A comma must separate each parameter.
For portability, you should not have more than 31 parameters for a macro.

Function-like macro call:

ÊÊ # define identifier

·

()
,

identifier

Ê

Ê ·
identifier
character

ÊÍ

138 Language Reference

An identifier followed by a parenthesized list of arguments. A comma must separate
each argument. Once the preprocessor identifies a function-like macro call,
argument substitution takes place. The correspond argument replaces the
parameter in the replacement code. Any macro calls that are contained in the
argument itself are completely replaced before the argument replaces its
corresponding parameter in the replacement code.

The following line defines the macro SUM as having two parameters a and b and the
replacement tokens (a + b):
#define SUM(a,b) (a + b)

This definition would cause the preprocessor to change the following statements (if
the statements appear after the previous definition):
c = SUM(x,y);
c = d * SUM(x,y);

In the output of the preprocessor, the preceding statements would appear as:
c = (x + y);
c = d * (x + y);

Notes

A macro call must have the same number of arguments as the corresponding
macro definition has parameters.

In the macro call argument list, commas that appear as character constants, in
string constants or surrounded by parentheses, do not separate arguments.

The scope of a macro definition begins at the definition and does not end until it
encounters a corresponding #undef directive. If there is no corresponding #undef
directive, the scope of the macro definition lasts until the end of the compilation.

A recursive macro is not fully expanded. For example, the definition
#define x(a,b) x(a+1,b+1) + 4

would expand
x(20,10)

to
x(20+1,10+1) + 4

rather than trying to expand the macro x over and over within itself.

A definition is not required to specify replacement tokens. The following definition
removes all instances of the token static from subsequent lines in the current file:
#define static

You can change the definition of a defined identifier or macro with a second
preprocessor #define directive only if the second preprocessor #define directive is
preceded by a preprocessor #undef directive. See “#undef” on page 140. The
#undef directive nullifies the first definition so that the same identifier can be used in
a redefinition.

Within the text of the program, the preprocessor does not scan character constants
or string constants for macro calls.

Chapter 8. Preprocessor Directives 139

Examples

The following program contains two macro definitions and a macro call that refers to
both of the defined macros:

After being interpreted by the preprocessor, the preceding program is replaced by
code equivalent to the following:

Processing of this program produces the following output:

value 1 = 4
value 2 = 3

Related Information

v “#undef”

v “# Operator” on page 144

v “## Operator” on page 145

#undef

A preprocessor undef directive causes the preprocessor to end the scope of a
preprocessor definition. A preprocessor #undef directive has the form:

#undef is ignored if the identifier is not currently defined as a macro.

Examples

The following directives define BUFFER and SQR:
#define BUFFER 512
#define SQR(x) ((x) * (x))

#include <stdio.h>
#define SQR(s) ((s) * (s))
#define PRNT(a,b) \
printf("value 1 = %d\n", a); \
printf("value 2 = %d\n", b) ;

int main(void)
{
int x = 2;
int y = 3;
PRNT(SQR(x),y);

}

int main(void)
{
int x = 2;
int y = 3;
{

printf("value 1 = %d\n", ((x) * (x)));
printf("value 2 = %d\n", y);

}
}

ÊÊ # undef identifier ÊÍ

140 Language Reference

The following directives nullify the preceding definitions:
#undef BUFFER
#undef SQR

Any occurrences of the identifiers BUFFER and SQR that follow these #undef directives
are not replaced with any replacement tokens. Once the definition of a macro has
been removed by an #undef directive, the identifier can be used in a new #define
directive.

Related Information

v “#define” on page 138

Predefined Macros

The C language provides the following predefined macro names.

__DATE__ A character string literal containing the date when the source file
was compiled. The date will be in the form:

"Mmm dd yyyy"

where:

Mmm represents the month in an abbreviated form (Jan, Feb, Mar,
Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec).

dd represents the day. If the day is less than 10, the first d will be a
blank character.

yyyy represents the year.

__FILE__ A character string literal containing the name of the source file.

__IFS_IO__ The integer 1.

Note: This macro is defined when SYSIFCOPT(*IFSIO) or
SYSIFCOPT(*IFS64IO) is specified on the CRTCMOD or
CRTBNDC command.

__IFS64_IO__ The integer 1.

Note: This macro is defined when SYSIFCOPT(*IFS64IO) is
specified on the CRTCMOD or CRTBNDC command. When
this macro is defined, _LARGE_FILES and
_LARGE_FILE_API are also defined in the relevant
IBM-supplied header files.

__ILEC400__ A macro that is defined only by the ILE C compiler. You can use
this macro in source code that is compiled for several platforms to
block off code that is to be compiled only for the AS/400 platform
with #ifdef __ILEC400__ or #if defined (__ILEC400__) preprocessor
directives.

__ILEC400_TGTVRM__
A macro defined only by the ILE C compiler, as an integral value
that maps to the version/release/modification of the OS/400® that
the module or program being compiled is intended to run on. The
target release, VxRyMz, translates to an __ILEC400_TGTVRM__

Chapter 8. Preprocessor Directives 141

||

|
|
|
|
|

|

value of xyz, where x, y, and z are integer values. For example, a
target release of V3R7M0 will cause the macro to have an integral
value of 370.

__LINE__ An integer that represents the current source line number.

__OS400__ The integer 1.

__OS400_TGTVRM__
A macro defined only by the ILE C compiler, as an integral value
that maps to the version/release/modification of the OS/400® that
the module or program being compiled is intended to run on. The
target release, VxRyMz, translates to an __OS400_TGTVRM__
value of xyz, where x, y, and z are integer values.

Note: This macro is also defined by the ILE C++ compiler.

__POSIX_LOCALE__
The integer 1.

Note: This macro is defined when LOCALETYPE(*LOCALE) is
specified on the CRTCMOD or CRTBNDC command line.

__STDC__ The integer 1.

Note: This macro is undefined if the langlvl pragma is set to
anything other than ANSI.

__TERASPACE__ The integer 1.

Note: This macro is defined when TERASPACE(*YES *TSIFC) is
specified on the CRTCMOD or CRTBNDC command line.

__TIME__ A character string literal containing the time when the source file
was compiled. The time will be in the form:

"hh:mm:ss"

where:

hh represents the hour.

mm represents the minutes.

ss represents the seconds.

__TIMESTAMP__ A character string literal containing the date and time when the
source file was last changed.

The date and time will be in the form:
"Day Mmm dd hh:mm:ss yyyy"

where:

Day represents the day of the week (Mon, Tue, Wed, Thu, Fri, Sat, or
Sun).

Mmm represents the month in an abbreviated form (Jan, Feb, Mar,
Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec).

142 Language Reference

||

|
|

|

dd represents the day. If the day is less than 10, the first d will be a
blank character.

hh represents the hour.

mm represents the minutes.

ss represents the seconds.

yyyy represents the year.

Note: Other C compilers may not supported this macro. If the
macro is supported on other C compilers, the date and time
values may be different than those that are shown here.

__UCS2__ The integer 1.

Note: This macro is defined when LOCALETYPE(*LOCALEUCS2)
is specified on the CRTCMOD or CRTBNDC command line.

_IS_QSYSINC_INSTALLED
A macro that is defined only by the ILE C compiler. This macro is
defined when the QSYSINC library is successfully added to the
product portion of the library list.

Notes

The predefined macro names consist of two underscore (__) characters
immediately preceding the name, the name in uppercase letters, and two
underscore characters immediately following the name.

The value of __LINE__ will change during compilation as the compiler processes
subsequent lines of your source program. Also, the value of __FILE__, and
__TIMESTAMP__ will change as the compiler processes any #include files that are
part of your source program.

You can also change __LINE__ and __FILE__ using the #line preprocessor
directive.

Restrictions

Predefined macro names cannot be the subject of a #define or #undef
preprocessor directive.

Examples

The following printf() statements will display the values of the predefined macros
__LINE__, __FILE__, __TIME__, and __DATE__ and will print a message indicating the
program’s conformance to ANSI standards based on __STDC__:

Chapter 8. Preprocessor Directives 143

||

|
|

|

Related Information

v “#define” on page 138

v “#undef” on page 140

v “#line” on page 152

Operator

The # (single number sign) operator converts a parameter of a function-like macro
(see “Function-Like Macro Definition” on page 138) into a character string literal. If
macro ABC is defined using the following directive:

#define ABC(x) #x

all subsequent calls of the macro ABC would be expanded into a character string
literal that contains the argument that are passed to ABC. For example:

Invocation Result of Macro Expansion

ABC(1) "1"

ABC(Hello there) "Hello there"

When you use the # operator in a function-like macro definition, the following rules
apply:

1. A parameter in a function-like macro that is preceded by the # operator will be
converted into a character string literal containing the argument passed to the
macro.

2. White-space characters that appear before or after the argument that is passed
to the macro will be deleted.

3. Multiple white-space characters that are imbedded within the argument that is
passed to the macro will be replaced by a single space character.

4. If the argument passed to the macro contains a string literal and if a \
(backslash) character appears within the literal, a second \ character will be
inserted before the original \ when the macro is expanded.

5. If the argument passed to the macro contains a " (double quotation mark)
character, a \ character will be inserted before the " when the macro is
expanded.

6. The conversion of an argument into a string literal occurs before macro
expansion on that argument.

7. If more than one ## operator or # operator appears in the replacement list of a
macro definition, the order of evaluation of the operators is not defined.

#pragma langlvl(ANSI)
#include <stdio.h>
#ifdef __STDC__
define CONFORM "conforms"
#else
define CONFORM "does not conform"
#endif
int main(void)
{
printf("Line %d of file %s has been executed\n", __LINE__, __FILE__);
printf("This file was compiled at %s on %s\n", __TIME__, __DATE__);
printf("This program %s to ANSI standards\n", CONFORM);

}

144 Language Reference

8. If the result of the replacement is not a valid character string literal, the behavior
is undefined.

Examples

The following examples demonstrate the rules that are given in the preceding
paragraph.

#define STR(x) #x
#define XSTR(x) STR(x)
#define ONE 1

Invocation Result of Macro Expansion

STR(\n "\n" '\n') "\n \"\\n\" '\\n'"

STR(ONE) "ONE"

XSTR(ONE) "1"

XSTR("hello") "\"hello\""

Related Information

v “#define” on page 138

v “#undef” on page 140

Operator

The ## (double number sign) operator is used to concatenate two tokens in a macro
call (text or arguments) given in a macro definition. If a macro XY was defined using
the following directive:

#define XY(x,y) x##y

the last token of the argument for x will be concatenated with the first token of the
argument for y.

For example,

Invocation Result of Macro Expansion

XY(1, 2) 12

XY(Green, house) Greenhouse

When you use the ## operator, the following rules apply:

1. The ## operator cannot be the very first or very last item in the replacement list
of a macro definition.

2. The last token of the item that precedes the ## operator is concatenated with
first token of the item that follows the ## operator.

3. Concatenation takes place before any macros in arguments are expanded.

4. If the result of a concatenation is a valid macro name, it is available for further
replacement even if it appears in a context in which it would not normally be
available.

5. If more than one ## operator or # operator appears in the replacement list of a
macro definition, the order of evaluation of the operators is not defined.

Example

Chapter 8. Preprocessor Directives 145

The following examples demonstrate the rules that are given in the preceding
paragraph.
#define ArgArg(x, y) x##y
#define ArgText(x) x##TEXT
#define TextArg(x) TEXT##x
#define TextText TEXT##text
#define Jitter 1
#define bug 2
#define Jitterbug 3

Invocation Result of Macro Expansion

ArgArg(var, 1) "var1"

ArgText(var) "varTEXT"

TextArg(var) "TEXTvar"

TextText "TEXTtext"

ArgArg(Jitter, bug) 3

Related Information

v “#define” on page 138

#error

A preprocessor error directive causes the preprocessor to generate an error
message and causes the compilation to fail. The #error directive has the form:

Examples

The following directive:
#error Error in TESTPGM1 - This section should not be compiled

generates the error message: Error in TESTPGM1 - This section should not be
compiled

Usage

You can use the #error directive as a safety check during compilation. For
example, if your program uses preprocessor conditional compilation directives
(see “Conditional Compilation” on page 149), you can place #error directives in the
source file to make the compilation fail if a section of the program is reached that
should be bypassed.

Related Information

v “Conditional Compilation” on page 149

ÊÊ # error · character ÊÍ

146 Language Reference

#include

A preprocessor include directive causes the preprocessor to replace the directive
with the contents of the specified file. A preprocessor #include directive has the
form:

The following table indicates the search path that is taken by the ILE C compiler for
AS/400 source physical files. See the default file names and search paths below.

Filename Member File Library

mbr mbr default file default search

file/mbr1 mbr file default search

mbr.file mbr file default search

lib/file/mbr mbr file lib

lib/file(mbr) mbr file lib

Note:

1 If the include file format <file/mbr.h> is used, the compiler searches for mbr in the file in
the library list first. If mbr is not found, then the compiler searches for mbr.h in the same file
in the library list. Only ″h″ or ″H″ are allowed as member name extensions.

If library and file are not specified, the preprocessor uses a specific search path
depending on which delimiter surrounds the filename. The < > delimiter specifies
the name as a system include file. The " " delimiter specifies the name as a user
include file.

The following describes the search paths for the #include directive used by the ILE
C compiler.

Default File Names When the Library and File are not Named (member name only):

Include Type Default File Name

< > QCSRC

" " The source file of the root source member, where root source
member is the library, file, and member determined by the
CRTBNDC or CRTCMOD processing of the SRCFILE keyword.

Default Search Paths When the Filename is not Library Qualified:

Include Type Search Path

< > Searches the current library list (*LIBL)

" " Checks the library containing the root source member; if not found
there, the compiler searches the user portion of the library list,
using either the filename specified or the file name of the root
source member (if no filename is specified); if not found, the
compiler searches the library list (*LIBL) using the specified
filename.

Search Paths When the Filename is Library Qualified (lib/file/mbr):

ÊÊ #include <filename>
"filename"

ÊÍ

Chapter 8. Preprocessor Directives 147

Include Type Search Path

< > Searches for lib/file/mbr only

" " Searches for the member in the library and file named. If not found,
searches the user portion of the library list, using the file and
member names specified.

User includes are treated the same as system includes when the CRTCMOD or
CRTBNDC command option *SYSINCPATH has been specified.

The preprocessor resolves macros on a #include directive. After macro
replacement, the resulting token sequence must consist of a file name enclosed in
either double quotation marks or the characters < and >. For example:
#define MONTH <july.h>
#include MONTH

Usage

If there are a number of declarations used by several files, you can place all these
definitions in one file and #include that file in each file that uses the definitions. For
example, the following file defs.h contains several definitions and an inclusion of an
additional file of declarations:

You can embed the definitions that appear in defs.h with the following directive:
#include "defs.h"

One of the ways you can combine the use of preprocessor directives is
demonstrated in the following example. A #define is used to define a macro that
represents the name of the C standard I/O header file. A #include is then used to
make the header file available to the C program.

Using the #include Directive When Compiling Source in an Integrated
File System File

You can use the SRCSTMF keyword to specify an Integrated File System file at
compile time. The #include processing differs from source physical file processing in
that the library list is not searched. An INCLUDE environment variable, if it exists, or
the compiler’s default search path described below is used to resolve header files.

/* defs.h */
#define TRUE 1
#define FALSE 0
#define BUFFERSIZE 512
#define MAX_ROW 66
#define MAX_COLUMN 80
int hour;
int min;
int sec;
#include "mydefs.h"

#define IO_HEADER <stdio.h>
.
.
.

#include IO_HEADER /* equivalent to specifying #include <stdio.h> */
.
.
.

148 Language Reference

The compiler’s default include path is
/QIBM/ProdData/ILEC:/QIBM/ProdData/ILEC/include:/QIBM/include. It is used
when the INCLUDE environment variable either has a value of *NULL or does not
exist in the job. The compiler’s default include path should always be part of the
INCLUDE environment variable.

While attempting to open the include file, the compiler uses each directory specified
in the environment variable. If, during the search, the open fails for any reason, no
message will be given. Instead, the next directory after the colon (:) will be checked.

#include files use the delimiters ″″ or <>.

The algorithm to search for include files is:
if file is fully qualified (a slash / starts the name) then
attempt to open the fully qualified file

else
if "" is delimiter, check job current directory
if not found:
Loop through the list of directories in the INCLUDE environment variable
or the default include path

until the file is found
or the end of the include path is encountered

endif

Conditional Compilation

A preprocessor conditional compilation directive causes the preprocessor to
conditionally suppress the compilation of portions of source code. Such directives
test a constant expression or an identifier to determine which tokens the
preprocessor should pass on to the compiler and which tokens should be ignored.
The directives are:

v #if

v #ifdef

v #ifndef

v #else

v #elif

v #endif

For each #if, #ifdef, and #ifndef directive, there are zero or more #elif
directives, zero or one #else directive, and one matching #endif directive. All the
matching directives are considered to be at the same nesting level.

You can have nested conditional compilation directives. So if you have the following
directives, the first #else will be matched with the #if directive.

#ifdef MACNAME
/* tokens added if MACNAME is defined */

if TEST <=10
/* tokens added if MACNAME is defined and TEST <= 10 */

else
/* tokens added if MACNAME is defined and TEST > 10 */

endif
#else

/* tokens added if MACNAME is not defined */
#endif

Chapter 8. Preprocessor Directives 149

Each directive controls the block immediately following it. A block consists of all the
tokens starting on the line following the directive and ending at the next conditional
compilation directive at the same nesting level.

Each directive is processed in the order in which it is encountered. If an expression
evaluates to zero, the block following the directive is ignored.

When a block following a preprocessor directive is to be ignored, the tokens are
examined only to identify preprocessor directives within that block so that the
conditional nesting level can be determined. All tokens other than the name of the
directive are ignored.

Only the first block whose expression is nonzero is processed. The remaining
blocks at that nesting level are ignored. If none of the blocks at that nesting level
has been processed and there is a #else directive, the block following the #else
directive is processed. If none of the blocks at that nesting level has been
processed and there is no #else directive, the entire nesting level is ignored.

#if, #elif

The #if and #elif directives compare the value of the expression to zero. All
macros are expanded, any defined expressions are processed and all remaining
identifiers are replaced with the token 0.

The preprocessor #if directive has the following form:

The preprocessor #elif directive has the following form:

The expressions that are tested must be integer constant expressions that follow
these rules:

v The expression can contain the defined unary operator. The constant expression
can contain the unary operator defined. This operator can be used only with the
preprocessor keyword #if. The following expressions evaluate to 1 if the
identifier is defined in the preprocessor, otherwise to 0:
defined identifier
defined(identifier)

v The expression can contain defined macros.

v The preprocessor evaluates the constant expression using long ints. The
preprocessor does not support long long ints.

If the constant expression evaluates to a nonzero value, the tokens that
immediately follow the condition are passed on to the compiler.

ÊÊ # if constant_expression ·
statement

ÊÍ

ÊÊ # elif constant_expression ·
statement

ÊÍ

150 Language Reference

#ifdef

The #ifdef directive checks for the existence of macro definitions.

If the identifier specified is defined as a macro, the tokens that immediately follow
the condition are passed on to the compiler.

The preprocessor #ifdef directive has the following form:

The following example defines MAX_LEN to be 75 if EXTENDED is defined for the
preprocessor. Otherwise, MAX_LEN is defined to be 50.
#ifdef EXTENDED
define MAX_LEN 75
#else
define MAX_LEN 50
#endif

#ifndef

The #ifndef directive checks for the existence of macro definitions.

If the identifier that is specified is not defined as a macro, the tokens that
immediately follow the condition are passed on to the compiler.

The preprocessor #ifndef directive has the following form:

The following example defines MAX_LEN to be 50 if EXTENDED is not defined for the
preprocessor. Otherwise, MAX_LEN is defined to be 75.
#ifndef EXTENDED
define MAX_LEN 50
#else
define MAX_LEN 75
#endif

#else

If the condition specified in the #if, #ifdef, or #ifndefdirective evaluates to 0, and
the conditional compilation directive contains a preprocessor #else directive, the
source text located between the preprocessor #else directive and the preprocessor
#endif directive is selected by the preprocessor to be passed on to the compiler.

The preprocessor #else directive has the form:

ÊÊ # ifdef identifier ·
statement

ÊÍ

ÊÊ # ifndef identifier ·
statement

ÊÍ

Chapter 8. Preprocessor Directives 151

#endif

The preprocessor #endif directive ends the conditional compilation directive. The
preprocessor #endif directive has the form:

The following example shows how you can nest preprocessor conditional
compilation directives:

The following program contains preprocessor conditional compilation directives:

#line

A preprocessor line control directive causes the compiler to view the line number
of the next source line as the specified number. A preprocessor #line directive has
the form:

ÊÊ # else ·
statement

ÊÍ

ÊÊ # endif ÊÍ

#if defined(TARGET1)
define SIZEOF_INT 16
ifdef PHASE2
define MAX_PHASE 2
else
define MAX_PHASE 8
endif
#elif defined(TARGET2)
define SIZEOF_INT 32
define MAX_PHASE 16
#else
define SIZEOF_INT 32
define MAX_PHASE 32
#endif

#include <stdio.h>
int main(void)
{

static int array[] = { 1, 2, 3, 4, 5 };
int i;
for (i = 0; i <= 4; i++)
{

array[i] *= 2;
#if TEST >= 1

printf("i = %d\n", i);
printf("array[i] = %d\n", array[i]);

#endif
}

}

152 Language Reference

A file name specification enclosed in double quotation marks can follow the line
number. If you specify a file name, the compiler views the next line as part of the
specified file. If you do not specify a file name, the compiler views the next line as
part of the current source file.

The token sequence on a #line directive is subject to macro replacement. After
macro replacement, the resulting character sequence must consist of a decimal
constant, optionally followed by a file name enclosed in double quotation marks.

Example

You can use #line control directives to make the compiler provide more meaningful
error messages. The following program uses #line control directives to give each
function an easily recognizable line number:

The preceding program produces the following output:
Func_1 - the current line number is 102
Func_2 - the current line number is 202

(Null Directive)

The null directive performs no action. The null directive consists of a single # on a
line of its own.

Example

In the following example, if MINVAL is a defined macro name, no action is performed.
If MINVAL is not a defined identifier, it is defined 1.
#ifdef MINVAL
#

#else
#define MINVAL 1

#endif

ÊÊ # line decimal_constant
″ filename ″

ÊÍ

#include <stdio.h>
#define LINE200 200
int main(void)
{

func_1();
func_2();

}
#line 100
func_1()
{

printf("Func_1 - the current line number is %d\n",__LINE__);
}
#line LINE200
func_2()
{

printf("Func_2 - the current line number is %d\n",__LINE__);
}

Chapter 8. Preprocessor Directives 153

#pragma

The following section describes #pragma preprocessor directives available for
use with the ILE C compiler.

A pragma is an implementation-defined instruction to the compiler. It has the
general form given below, where character sequence is a series of characters
giving a specific compiler instruction and arguments, if any.

The character sequence on a pragma is not subject to macro substitutions. More
than one pragma construct can be specified on a single #pragma directive.

argopt

Description

Argument Optimization (argopt) is a pragma which may improve run-time
performance. Applied to a bound procedure, optimizations can be achieved by:

v Passing space pointer parameters in to general-purpose registers (GPRs).

v Storing a space pointer returned from a function in to a GPR.

Parameters

function_name Specifies the name of the function for which optimized procedure
parameter passing is to be specified. The function can be either a
static function, an externally-defined function, or a function defined
in the current compilation unit that will be called from outside the
current compilation unit.

typedef_of_function_name
Specifies the name of the typedef of the function for which
optimized procedure parameter passing is to be specified.

typedef_of_function_ptr
Specifies the name of the typedef of the function pointer for which
optimized procedure parameter passing is to be specified.

function_ptr Specifies the name of the function pointer for which optimized
procedure parameter passing is to be specified.

Notes on Usage

Specifying #pragma argopt directive does not guarantee that your program will be
optimized. Participation in argopt is dependent on the translator.

ÊÊ # pragma · character_sequence ÊÍ

ÊÊ #pragma argopt (function_name)
typedef_of_function_name
typedef_of_function_ptr
function_ptr

ÊÍ

154 Language Reference

|
|

|
|

|
|
|
|

|
|

|

|

|

|
|

|

|

|

||
|
|
|
|

|
|
|

|
|
|

||
|

|

|
|

A function must be declared (prototyped), or defined before it can be named in a
#pragma argopt directive.

A structure greater than 8 bytes will not fit in a GPR.

Void pointers will not be optimized since they are not space pointers.

The #pragma argopt cannot be specified for functions which have OS-linkage or
built-in linkage (for functions which have a #pragma linkage (function_name, OS)
directive or #pragma linkage(function_name, builtin) directive associated with them,
and vice versa).

The #pragma argopt will be ignored for functions which are named as handler
functions in #pragma exception_handler or #pragma cancel_handler directives, and
error handling functions such as signal() and atexit(). The #pragma argopt
directive cannot be applied to functions with a variable argument list.

#pragma argopt scoping

The #pragma argopt is placed where the function, the function pointer, typedef of a
function pointer or typedef of an function is visible (can be used) within a region of
the program code called its scope. #pragma argopt scope is determined its
placement in the code. An error will be issued when #pragma argopt is not within
the scope of the declaration. The #pragma argopt directive can fall within file, block,
or structure scope.

#include <stdio.h>

long func3(long y)
{
printf("In func3()\n");
printf("hex=%x,integer=%d\n",y, y);
}
#pragma argopt (func3) /* file scope of function */
int main(void)
{
int i, a=0;
typedef long (*func_ptr) (long);
#pragma argopt (func_ptr) /* block scope of typedef */

/* of function pointer */
struct funcstr

{
long (*func_ptr2) (long);
#pragma argopt (func_ptr2) /* struct scope of function */

/* pointer */
};

struct funcstr func_ptr3;

Figure 4. Example using #pragma argopt (Part 1 of 2)

Chapter 8. Preprocessor Directives 155

|
|

|

|

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
||

|

argument

Description

Specifies the argument-passing mechanism to be used for the procedure or typedef
that is named as the first parameter. If a typedef is named as the first parameter, it
must be the typedef of a function.

This pragma simplifies calls to bound procedures in other ILE languages.

Parameters

function_name Specifies the name of the function that is defined in an external
program.

OS OS indicates that arguments are passed using the same method as
the #pragma linkage OS. Non-address arguments are copied to
temporary locations, widened (unless nowiden has been specified)
and the address of the copy is passed to the called procedure.
Arguments that are addresses or pointers are passed directly to the
called procedure.

VREF VREF indicates that all arguments are copied to temporary
locations. The addresses of the temporary locations, rather than the
values of the arguments, are passed to the called function.

nowiden Specifies that the arguments are not to be widened before they are
passed. This parameter can be used by itself without specifying an
argument type. For example, #pragma argument (myfunc,
nowiden), to indicate that arguments on calls to myfunc are to be
passed by value, unwidened.

Notes on Usage

for (i=0; i<99; i++)
{
a = i*i;
if (i == 7)
{
func_ptr3.func_ptr2 = func3;
func_ptr3.func_ptr2(i);
}

}
return i;

}

Figure 4. Example using #pragma argopt (Part 2 of 2)

ÊÊ # pragma argument (function_name , OS)
, nowiden

, VREF
, nowiden

, nowiden

ÊÍ

156 Language Reference

|

|

|

|

|
|
|

|

|

||
|

||
|
|
|
|
|

||
|
|

||
|
|
|
|

|

A function name specified in the #pragma argument directive should not be defined
in the current compilation unit.

Warnings are issued, and the #pragma argument directive is ignored if any of the
following occurs:

v The function_name in the directive is not the name of a procedure or a typedef of
a procedure.

v A typedef named in the directive has been used in the declaration or definition of
a procedure before being used in the directive.

v #pragma argument directive has already been specified for this function.

cancel_handler

Description

Specifies that the function named is to be enabled as a user-defined ILE cancel
handler at the point in the code where the #pragma cancel_handler directive is
located.

Any cancel handler that is enabled by a #pragma cancel_handler directive is
implicitly disabled when the call to the function containing the directive is finished.
The call is removed from the call stack, if the handler has not been explicitly
disabled by the #pragma disable_handler directive.

Parameters

function_name Specifies the name of the function to be used as a user-defined ILE
cancel handler.

com_area Used to pass information to the exception handler. If no com_area
is required, specify zero as the second parameter of the directive. If
a com_area is specified on the directive, it must be a variable of
one of the following data types: integral, float, double, struct, union,
array, enum, pointer, or packed decimal. The com_area should be
declared with the volatile qualifier. It cannot be a member of a
structure or a union.

See the Run-Time Library Reference for information about <except.h> and the
typedef _CNL_Hndlr_Parms_T, a pointer which is passed to the cancel handler.

Notes on Usage

This #pragma directive can only occur at a C language statement boundary and
inside a function definition.

The compiler issues an error message if any of the following occurs:

v The directive occurs outside a C function body or inside a C statement.

v The handler function is not declared or defined.

v The identifier that is named as the handler function is not a function.

v The com_area variable is not declared.

v The com_area variable does not have a valid object type.

ÊÊ # pragma cancel_handler (function_name , 0)
, com_area

ÊÍ

Chapter 8. Preprocessor Directives 157

|
|

|
|

|
|

|
|

|

|

|

|

|
|
|

|
|
|
|

|

||
|

||
|
|
|
|
|
|

|
|

|

|
|

|

|

|

|

|

|

See the ILE C for AS/400 Programmer’s Guide for examples and more information
about using the #pragma cancel_handler directive.

chars

Description

Specifies that the compiler is to treat all char objects as signed or unsigned. This
pragma must appear before any C code or directive (except for the #line directive)
in a source file.

Parameters

signed All char objects are treated as signed integers.

unsigned All char objects are treated as unsigned integers.

checkout

Description

Specifies whether or not the compiler should give informational messages indicating
possible programming errors when a CHECKOUT option other than *NONE is
specified on the CRTCMOD or CRTBNDC command.

Parameters

suspend Specifies that the compiler suspend informational messages on the
CHECKOUT keyword of the CRTCMOD or CRTBNDC command.

resume Specifies that the compiler resume informational messages on the
CHECKOUT keyword of the CRTCMOD or CRTBNDC command.

Notes on Usage

#pragma checkout directives can be nested. This means that a #pragma checkout
(suspend) directive will have no effect if a previously specified #pragma checkout
(suspend) directive is still in effect. This is also true for the #pragma checkout
resume directive.

Example

ÊÊ # pragma chars (signed)
unsigned

ÊÍ

ÊÊ # pragma checkout (suspend)
resume

ÊÍ

/* Assume CHECKOUT(*PPTRACE) had been specified */
#pragma checkout(suspend) /* No CHECKOUT diagnostics are performed */

...
#pragma checkout(suspend) /* No effect */

...
#pragma checkout(resume) /* No effect */

...
#pragma checkout(resume) /* CHECKOUT(*PPTRACE) diagnostics continue */

158 Language Reference

|
|

|

|

|

|
|
|

|

||

||

|

|

|

|
|
|

|

||
|

||
|

|

|
|
|
|

|
|

comment

Description

Emits a comment into the program or service program object. This can be shown
by DSPPGM or DSPSRVPGM with DETAIL(*COPYRIGHT). This pragma must
appear before any C code or directive (except for the #line directive) in a source
file. This pragma has a 256-byte limit.

Parameters

Valid settings for the comment pragma can be:

compiler The name and version of the compiler is emitted into the end of the
generated program object.

date The date and time of compilation is emitted into the end of the
generated program object.

timestamp The last modification date and time of the source is emitted into the
end of the generated program object.

copyright The text that is specified by characters is placed by the compiler
into the generated program object and is loaded into memory when
the program is run.

user The text specified by characters is placed by the compiler into the
generated object. However, it is not loaded into memory when the
program is run.

Notes on Usage

v The copyright and user comment types are virtually the same on the AS/400.
One has no advantage over the other.

v The maximum number of characters in the text portion of a #pragma
comment(copyright) or #pragma comment(user) directive is 256. (This is an
AS/400 restriction.)

v The maximum number of #pragma comment directives that can appear in a
single compilation unit is 8. (This is an AS/400 restriction.)

convert

Description

Specifies the Coded Character Set Identifier (CCSID) to use for converting the
string literals from that point onward in a source file during compilation. The
conversion continues until the end of the source file or until another #pragma
convert directive is specified. Use #pragma convert (0) to disable the previous

ÊÊ # pragma comment (compiler)
date
timestamp
copyright
user , ″ characters ″

ÊÍ

ÊÊ # pragma convert (ccsid) ÊÍ

Chapter 8. Preprocessor Directives 159

|

|

|

|
|
|
|

|

|

||
|

||
|

||
|

||
|
|

||
|
|

|

|
|

|
|
|

|
|

|

|

|

|
|
|
|

#pragma convert directive. The CCSID of the string literals before conversion is the
same CCSID as the root source member. CCSIDs 905 and 1026 are not supported.
The CCSID can be either EBCDIC or ASCII.

Parameters

ccsid Specifies the coded character set identifier to use for converting the
strings and literals in the source file. The value may range between
0 and 65535. See the ILE C for AS/400 Run-Time Library
Reference manual for more information about code pages.

Notes on Usage

The run-time library functions that parse format strings (such as printf() and
scanf()) cannot use ASCII format strings. Therefore, all format strings must be in
EBCDIC.

String and character constants that are specified in hex, for example (0xC1), are
not converted.

Substitution characters will not be used when converting to a target CCSID that
does not contain the same symbol set as the source CCSID. The compilation will
fail.

If a CCSID with the value 65535 is specified, the CCSID of the root source member
is assumed. If the source file CCSID value is 65535, the job CCSID is assumed for
the source file. If the file CCSID is 65535 and the job CCSID is not 65535, the job
CCSID is assumed for the file CCSID. If the file is 65535 and the job is also 65535,
but the system CCSID value is not 65535, the system CCSID value is assumed for
the file CCSID. If the file, job and system CCSID values are 65535, CCSID 037 is
assumed.

If the LOCALETYPE(*LOCALEUCS2) option is specified on the CRTCMOD or
CRTBNDC command line, wide-character literals are not converted. See the ″Using
Unicode Support for Wide-Character Literals″ section in the ILE C for AS/400
Programmer’s Guide for more information.

descriptor

Description

An operational descriptor is an optional piece of information that is associated with
a function argument. This information is used to describe an argument’s attributes,
for example, its data type, and length. The #pragma descriptor directive is used to
identify functions whose arguments have operational descriptors.

ÊÊ # pragma descriptor (void function_name (od_specifiers)) ÊÍ

od_specifiers:

· " " ,
void

160 Language Reference

|
|
|

|

||
|
|
|

|

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

|

|

|
|
|
|

Operational descriptors are useful when passing arguments to functions that are
written in other languages that may have a different definition of the data types of
the arguments. For example, C defines a string as a contiguous sequence of
characters ended by and including the first null character. In another language, a
string may be defined as consisting of a length specifier and a character sequence.
When passing a string from a C function to a function written in another language,
an operational descriptor can be provided with the argument to allow the called
function to determine the length and type of the string being passed.

The ILE C compiler generates operational descriptors for arguments that are
passed to a function specified in a #pragma descriptor directive. The generated
descriptor contains the descriptor type, data type, and length for each argument that
is identified as requiring an operational descriptor. The information in an operational
descriptor can be retrieved by the called function using the ILE APIs CEEGSI and
CEEDOD. See the System API Reference for information about the ILE APIs for
operational descriptors.

For the operational descriptor to determine the correct string length when passed
through a function, the string has to be initialized. If the string is not initialized, the
first element will be auto-initialized to NULL ’\0’; consequently, the operational
descripter will generate a string length of 1.

The ILE C compiler supports operational descriptors for describing strings.

Note: A character string in ILE C is defined by using any one of the following:

v char string_name[n]

v char * string_name

v A string literal.

Parameters

function_name The name of the function whose arguments require operational
descriptors.

od_specifiers A list of symbols, that consists of either ″″ or void, separated by
commas, that specify which of a function’s arguments are to have
operational descriptors. An od_specifier list is similar to the
argument list of a function except that an od_specifier list for a
function can have fewer specifiers than its argument list. If a string
operational descriptor is required for an argument, ″″ should be
specified in the equivalent position for the od_specifier parameter. If
an operational descriptor is not required for an argument then void
is specified for that parameter in the equivalent position for the
od_specifier list.

Notes on Usage

The compiler issues a warning and ignores the #pragma descriptor directive if any
of the following conditions occur:

v The function with the name function_name is not prototyped before its #pragma
descriptor directive.

v A call to the function with function_name occurs before its #pragma descriptor
directive.

v The function with the name function_name is a static function or a user entry
procedure, that is main().

Chapter 8. Preprocessor Directives 161

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

|

|

|

|

|

||
|

||
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|

|
|

When using operational descriptors consider the following:

v Operational descriptors are only generated for functions that are called by their
function name. Functions that are called by function pointer do not have
operational descriptors generated.

v If there are fewer od_specifiers than function arguments, the remaining
od_specifiers default to void.

v If a function requires a variable number of arguments, the #pragma descriptor
directive can specify that operational descriptors are to be generated for the
required arguments but not for the variable arguments.

v It is not valid to do pointer arithmetic on a literal or array while it is also used as
an argument that requires an operational descriptor, unless explicitly cast to char
*. For example, if F is a function that takes as an argument a string, and F
requires an operational descriptor for this argument, then the argument on the
following call to F is not valid: F(a + 1) where ″a″ is defined as char a[10].

disable_handler

Description

Disables the handler most recently enabled by either the exception_handler or
cancel_handler pragma.

This directive is only needed when a handler has to be explicitly disabled before the
end of a function. This is done since all enabled handlers are implicitly disabled at
the end of the function in which they are enabled.

Notes on Usage

This pragma can only occur at a C language statement boundary and inside a
function definition. The compiler issues an error message if the #pragma
disable_handler is specified when no handler is currently enabled.

enumsize

Description

Specifies the number of bytes the compiler uses to represent enumerations. The
pragma affects all subsequent enum definitions until the end of the compilation unit
or until another #pragma enumsize directive is encountered. If more than one
pragma is used, the most recently encountered pragma is in effect. If the size is not
specified in the pragma, the compiler uses the default size, that is, the minimum
number of bytes required to represent each value of the enumeration.

ÊÊ # pragma disable_handler ÊÍ

ÊÊ #pragma enumsize ()
1
2
4

ÊÍ

162 Language Reference

|

|
|
|

|
|

|
|
|

|
|
|
|
|

|

|

|

|
|

|
|
|

|

|
|
|

|

|

|

|
|
|
|
|
|

If the number of bytes specified in the pragma is less than that required to
represent each value of the enumeration, the compiler will issue a warning and set
the size of the enumeration type to 4 bytes.

The pragma may appear anywhere that a preprocessor directive is valid.

Example

The size of an enumeration variable is determined by the size of its enumeration
type. For example:

The output of this example is:
sizeof s1 = 4; size of l1 = 1

exception_handler

Description

Enables a user-defined ILE exception handler at the point in the code where the
#pragma exception_handler is located.

Any exception handlers enabled by #pragma exception_handler that are not
disabled using #pragma disable_handler are implicitly disabled at the end of the
function in which they are enabled.

Parameters

function Specifies the name of the function to be used as a user-defined ILE
exception handler.

label Specifies the name of the label to be used as a user-defined ILE
exception handler. The label must be defined within the function
where the #pragma exception_handler is enabled. When the
handler gets control, the exception is implicitly handled and control
resumes at the label defined by the handler in the invocation
containing the #pragma exception_handler directive. The call stack
is canceled from the newest call to, but not including, the call
containing the #pragma exception_handler directive. The label can

#include <stdio.h>
#pragma enumsize (4)
enum size {Small, Big}; /* size of enum is 4 bytes */
int main(void)
{
#pragma enumsize()
enum length{Long,Short}; /* size of enum is 1 byte */
enum size s1;
enum length l1;
printf("sizeof s1 = %d;size of 11 = %d\n",

sizeof(s1),sizeof(l1));
}

ÊÊ # pragma exception_handler (function_name
label

, 0
, com_area

Ê

Ê , class1 , class2
, ctl_action

, msgid_list

) ÊÍ

Chapter 8. Preprocessor Directives 163

|
|
|

|

|

|
|
|

|

|

|

|

|

|
|

|
|
|

|

||
|

||
|
|
|
|
|
|
|

be placed anywhere in the statement part of the function definition,
regardless of the position of the #pragma exception_handler.

com_area Used for the communications area. If no com_area should be
specified, zero is used as the second parameter of the directive. If
a com_area is specified on the directive, it must be a variable of
one of the following data types: integral, float, double, struct, union,
array, enum, pointer, or packed decimal. The com_area should be
declared with the volatile qualifier. It cannot be a member of a
structure or a union.

class1, class2 Specifies the first four bytes and the last four bytes, respectively, of
the exception mask. The <except.h> header file describes the
values that you can use for the class masks. It also contains macro
definitions for these values. class1 and class2 have to evaluate to
integer constant expressions after any necessary macro
expansions. You can monitor for the valid class2 values of:

v _C2_MH_ESCAPE

v _C2_MH_STATUS

v _C2_MH_NOTIFY, and

v _C2_FUNCTION_CHECK.

ctl_action Specifies an integer constant to indicate what action should take
place for this exception handler. If handler is a function, the default
value is _CTLA_INVOKE. If handler is a label, the default value is
_CTLA_HANDLE. This parameter is optional.

The following are valid exception control actions that are defined in
the <except.h> header file:

#define name Value Action
_CTLA_INVOKE 1 This control action will cause the function

named on the directive to be invoked and
will not handle the exception. If the
exception is not explicitly handled,
processing will continue. This is valid for
functions only.

_CTLA_HANDLE 2 The exception is handled and messages
are logged prior to calling the handler.
The exception will no longer be active
when handler gets control. Exception
processing ends when the exception
handler returns. This is valid for functions
and labels.

_CTLA_HANDLE_NO_MSG 3 The exception is handled but messages
are not logged prior to calling the handler.
The exception will no longer be active
when handler gets control and exception
messages are not logged. Msg_Ref_Key
in the typedef _INTRPT_Hndlr_Parms_T
is set to zero. Exception processing ends
when the exception handler returns. This
is valid for functions and labels.

164 Language Reference

|
|

||
|
|
|
|
|
|

||
|
|
|
|
|

|

|

|

|

||
|
|
|

|
|

|||||
||||
|
|
|
|
|
||||
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|

#define name Value Action
_CTLA_IGNORE 131 The exception is handled and messages

are logged. Control is not passed to the
handler function named on the directive
and exception will no longer be active.
Execution resumes at the instruction
immediately following the instruction that
caused the exception. This is valid for
functions only.

_CTLA_IGNORE_NO_MSG 132 The exception is handled and messages
are not logged. Control is not passed to
the handler function named on the
directive and exception will no longer be
active. Execution resumes at the
instruction immediately following the
instruction that caused the exception.
This is valid for functions only.

msgid_list Specifies an optional string literal that contains the list of message
identifiers. The exception handler will take effect only when an
exception occurs whose identifiers matches one of the identifiers on
the list of message identifiers. The list is a series of 7-character
message identifiers where the first three characters are the
message prefix and the last four are the message number. Each
message identifier is separated by one or more spaces or commas.
This parameter is optional, but if it is specified, ctl_action must also
be specified.

For the exception handler to get control, the selection criteria for
class1 and class2 must be satisfied. If the msgid_list is specified,
the exception must also match at least one of the message
identifiers in the list, based on the following criteria:

v The message identifier matches the exception exactly.

v A message identifier, whose two rightmost characters are 00, will
match any exception identifier that has the same five leftmost
characters. For example, a message identifier of CPF5100 will
match any exceptions whose message identifier begins with
CPF51.

v A message identifier, whose four rightmost characters are 0000,
will match any exception identifier that has the same prefix. For
example, a message identifier of CPF0000 will match any
exception whose message identifier has the prefix CPF
(CPF0000 to CPF9999).

v If msgid_list is specified, but the exception that is generated is
not one specified in the list, the exception handler will not get
control.

Notes on Usage

The macro _C1_ALL, defined in the <except.h> header file, can be used as the
equivalent of all the valid class1 exception masks. The macro _C2_ALL, defined in
the <except.h> header file, can be used as the equivalent of all four of the valid
class2 exception masks.

You can use the binary OR operator to monitor for different types of messages. For
example,

Chapter 8. Preprocessor Directives 165

||||
||||
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|
|
|

|
|

#pragma exception_handler(myhandler, my_comarea, 0, _C2_MH_ESCAPE | \
_C2_MH_STATUS | _C2_MH_NOTIFY, _CTLA_IGNORE, "MCH0000")

will set up an exception monitor for three of the four class2 exception classes that
can be monitored.

The compiler issues an error message if any of the following occurs:

v The directive occurs outside a C function body or inside a C statement.

v The handler that is named is not a declared function or a defined label.

v The com_area variable has not been declared or does not have a valid object
type.

v Either of the exception class masks is not a valid integral constant

v The ctl_action is one of the disallowed values when the handler that is specified
is a label (_CTLA_INVOKE, _CTLA_IGNORE, _CTLA_IGNORE_NO_MSG).

v The msgid_list is specified, but the ctl_action is not.

v A message in the msgid_list is not valid. Message prefixes that are not in
uppercase are not considered valid.

v The messages in the string are not separated by a blank or comma.

v The string is not enclosed in “ ” or is longer than 4K bytes.

See the ILE C for AS/400 Programmer’s Guide for examples and more information
about using the #pragma exception_handler directive.

inline (function)

Description

The #pragma inline directive specifies that function_name is to be inlined. The
pragma can appear anywhere in the source, but must be at file scope. The pragma
has no effect if the INLINE(*ON) parameter is not specified on the CRTCMOD or
CRTBNDC command. If #pragma inline is specified for a function, the inliner will
force the function specified to be inlined on every call. The function will be inlined in
both selective (*NOAUTO) and automatic (*AUTO) INLINE mode.

Inlining replaces function calls with the actual code of the function. It reduces
function call overhead, and exposes more code to the optimizer, allowing more
opportunities for optimization.

Notes on Usage

v Inlining takes place only if compiler optimization is set to level 30 or higher.

v Directly recursive functions will not be inlined. Indirectly recursive functions will
be inlined until direct recursion is encountered.

v Functions calls with variable argument lists will not be inlined if arguments are
encountered in the variable portion of the argument list.

v If a function is called through a function pointer, then inlining will not occur.

v The pragma inline directive will be ignored if function_name is not defined in the
same compilation unit that contains the pragma.

v A function’s definition will be discarded if the function is static, if it has not had its
address taken and if it has been inlined everywhere it is called. This action can
decrease the size of the module and program object where the function is used.

ÊÊ # pragma inline (function_name) ÊÍ

166 Language Reference

|
|

|
|

|

|

|

|
|

|

|
|

|

|
|

|

|

|
|

|

|

|

|
|
|
|
|
|

|
|
|

|

|

|
|

|
|

|

|
|

|
|
|

See the ″Function Call Performance″ appendix of the ILE C for AS/400
Programmer’s Guide for more information on function inlining.

langlvl

Description

This pragma must appear before any C code or directive (except for the #line
directive) in a source file. The compiler uses predefined macros in the header files
to make declarations and definitions available that define the specified language
level.

Parameters

ANSI defines the preprocessor variables __ANSI__ and __STDC__ and
undefines other langlvl variables. Product-specific extensions will
not be introduced; for example, the prototype for the hypot()
function will not be declared in <math.h>.

SAA defines the preprocessor variables __SAA__ and __SAA_L2__ and
undefines other langlvl variables.

SAAL2 defines the preprocessor variable __SAA_L2__ and undefines other
langlvl variables.

EXTENDED defines the preprocessor variable __EXTENDED__ and undefines other
langlvl variables. The default language level is EXTENDED.

linkage

Description

Specifies that the compiler is to use a different set of linkage conventions. name1
specifies the name of a function, and name2 specifies the name of the linkage
convention. Variations of specifying name2 are described in the following sections.
This #pragma linkage directive must be placed before any definition of or call to
name1.

linkage (function_name, builtin)

Description

Indicates that references to function_name are to be treated as referring to a built-in
rather than referring to a bound procedure or dynamically-called program.

ÊÊ # pragma langlvl (ANSI)
SAA
SAAL2
EXTENDED

ÊÍ

ÊÊ # pragma linkage (name1 , name2) ÊÍ

ÊÊ # pragma linkage (function_name , builtin)
, nowiden

ÊÍ

Chapter 8. Preprocessor Directives 167

|
|

|

|

|

|
|
|
|

|

||
|
|
|

||
|

||
|

||
|

|

|

|

|
|
|
|
|

|

|

|

|
|

Parameters

function_name Specifies the name of the function affected by this pragma.

builtin Specifies that the function named in function_name will be treated
as a built-in function. The ILE C standard header files contain both
the prototypes and the #pragma directives for these built-in (MI)
functions that can be used on the AS/400 system.

nowiden Specifies that the arguments are not to be widened before they are
copied and passed. This parameter is optional.

Notes on Usage

If this pragma specifies a function that is not a built-in function, the compiler issues
a warning message, and the pragma is ignored. The compiler treats the function, if
the function is called in the compilation unit, as an ordinary C function call.

For more information on bulletins, see the ILE C/C++ MI Library Reference.

linkage (program_name, OS)

Description

Specifies that the external program, program_name, is called using OS/400 calling
conventions.

Parameter

program_name
Specifies the name of the external program. This must be specified
in uppercase and be less than 11 characters long unless the
#pragma map directive is specified to meet OS/400 program
naming conventions. If the program name that is specified is too
long, it will be truncated. Names greater than 255 characters are
truncated to 255 characters during #pragma linkage processing.
Specify #pragma map on the 255-character-truncated name.

OS Specifies that the external program is called using OS/400 calling
conventions.

nowiden Specifies that the arguments are not to be widened before they are
copied and passed. This parameter is optional.

Notes on Usage

This pragma enables an ILE C program to call other ILE C, EPM, or OPM
programs. Arguments on the call are passed according to the following OS/400
argument-passing conventions:

v Non-address arguments are copied to temporary locations, widened (unless
nowiden has been specified) and the address of the copy is passed to the called
program

v Address arguments are passed directly to the called program.

ÊÊ # pragma linkage (program_name , OS)
, nowiden

ÊÍ

168 Language Reference

|

||

||
|
|
|

||
|

|

|
|
|

|

|

|

|

|
|

|

|
|
|
|
|
|
|
|

||
|

||
|

|

|
|
|

|
|
|

|

The compiler issues a warning message and ignores the #pragma linkage directive
if:

v The program is declared with a return type other than int or void.

v The #pragma argument directive is already specified for the function.

linkage (typedef_name, OS)

Description

Specifies that the OS linkage convention is to be associated with the typedef name.
This typedef can then be used when declaring external functions (programs) that
have OS linkage.

Parameters

typedef_name Specifies the name of the typedef affected by this pragma.

OS Specifies that the external program is called using OS/400 calling
conventions.

nowiden Specifies that the arguments are not to be widened before they are
passed. This parameter is optional.

Notes on Usage

A #pragma linkage OS directive with a typedef name is ignored. A warning is issued
by the compiler if the typedef is used in a declaration before it is named in the
#pragma linkage OS directive.

If the function named in the pragma is defined in the current compilation unit, the
function definition is used and the #pragma linkage directive for that function is
ignored. A warning message is issued.

map

Description

Specifies that the compiler is to replace the external symbol (that is used in your C
source) name1 with the external symbol name2. Case significance is preserved
only for those systems, including ILE C, that support case distinction for external
symbols.

The #pragma map directive supports library-qualified external program names. See
#pragma linkage(program_name, OS) on “linkage (program_name, OS)” on
page 168 for more information.

ÊÊ # pragma linkage (typedef_name , OS)
, nowiden

ÊÍ

ÊÊ # pragma map (name1 , ″ name2 ″) ÊÍ

Chapter 8. Preprocessor Directives 169

|
|

|

|

|

|

|

|
|
|

|

||

||
|

||
|

|

|
|
|

|
|
|

|

|

|

|
|
|
|

|
|
|

mapinc

Description

Indicates that external AS/400 file descriptions (DDS) are to be included in an ILE C
module. The directive identifies the file and DDS record formats, and provides
information on the fields to be included. This pragma, along with its associated
include directive, causes the ILE C compiler to automatically generate typedefs from
the record formats that are specified in the external file descriptions.

Parameters

include_name This is the name that you refer to on the #include directive in the
source program (this is only a tag).

library_name This is the name of the library that contains the externally described
file

file_name This is the name of the externally described file.

format_name This is a required parameter which indicates the DDS record format
that is to be included in your program. You can include more than
one record format (format1 format2), or all the formats in a file
(*ALL).

options The possible options are:

input Fields declared as either INPUT or BOTH in the
DDS are included in the typedef structure.
Response indicators are included in the input
structure when the keyword INDARA is not
specified in the external file description (DDS
source) for device files.

output Fields declared as either OUTPUT or BOTH in DDS
are included in the typedef structure. Option
indicators are included in the output structure when
the keyword INDARA is not specified in the external
file description (DDS source) for device files.

both Fields declared as INPUT, OUTPUT, or BOTH in
DDS are included in the typedef structure. Option

ÊÊ # pragma mapinc (″include_name″ , Ê

Ê

·

*LIBL/
″ file_name (*ALL) ″

*CURLIB/
format_name

library_name/

Ê

Ê , ″options″ ,
d z

″ ″
_P 1BYTE_CHAR

p

Ê

Ê)
, ″union_type_name″

, ″prefix_name″

ÊÍ

170 Language Reference

|

|

|

|
|
|
|
|

|

||
|

||
|

||

||
|
|
|

||

||
|
|
|
|
|

||
|
|
|
|

||
|

and response indicators are included in both
structures when the keyword INDARA is not
specified in the external file description (DDS
source) for device files.

key Fields that are declared as keys in the external file
description are included. This option is only valid for
database files and DDM files.

indicators A separate 99-byte structure for indicators is
created when the indicator option is specified. This
option is only valid for device files.

lname This option allows the use of file names of up to
128 characters in length. If the file name has more
than 10 characters then the name will be converted
to an associated short name. The short name will
be used to extract the external file definition. When
the file has a short name of 10 characters or less
the name is not converted to an associated short
name. Record field names up to 30 characters in
length will be generated in the typedefs by the
compiler.

lvlchk A typedef of an array of struct is generated (type
name _LVLCHK_T) for the level check information.
A pointer to an object of type _LVLCHK_T is also
generated and is initialized with the level check
information (format name and level identifier).

nullflds If there is at least one null-capable field in the
record format of the DDS, a null map typedef is
generated containing a character field for every field
in the format. With this typedef, the user can
specify which fields are to be considered null (set
value of each null field to 1, otherwise set to zero).
Also, if the key option is used along with option
nullflds, and there is at least one null-capable key
field in the format, an additional typedef is
generated containing a character field for every key
field in the format.

For physical and logical files you can specify input, both, key,
lvlchk, and nullflds. For device files you can specify input,
output, both, indicator, and lvlchk.

The data type can be one or more of the following and must be
separated by spaces.

d Packed decimal data type.

p Packed fields from DDS are declared as character fields.

z Zoned fields from DDS are declared as character fields.
This is the default because ILE C does not have zoned
data type.

_P Packed structure is generated.

Chapter 8. Preprocessor Directives 171

|
|
|
|

||
|
|

||
|
|

||
|
|
|
|
|
|
|
|
|

||
|
|
|
|

||
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

||

||

||
|
|

||

1BYTE_CHAR
Generates a single byte character field for one byte
characters that are defined in DDS.

" " Default values of d and z are used.

union_type_name
A union definition of the included type definitions is created with the
name union_type_name_t. This parameter is optional.

prefix_name Specifies the first part of the generated typedef structure name. If
the prefix is not specified, the library and file_name are used.

Notes on Usage

See "Using Externally Described Files in Your ILE C Program" in the ILE C for
AS/400 Programmer’s Guide for more information about using the #pragma mapinc
directive with externally described files.

margins

Description

Specifies the left and right margins to be used as the first and last column,
respectively, when scanning the records of the source member where the #pragma
directive occurs.

The margin setting applies only to the source member in which it is located and has
no effect on any source members named on include directives in the member.

Parameters

left margin Must be a number greater than zero but less than 32 754. The left
margin should be less than the right margin.

right margin Must be a number greater than zero but less than 32 754, or an
asterisk (*). The right margin should be greater than the left margin.
The compiler scans between the left margin and the right margin.
The compiler scans from the left margin specified to the end of the
input record, if an asterisk is specified as the value of right margin.

Notes on Usage

The #pragma margins directive takes effect on the line following the directive and
remains in effect until another #pragma margins or nomargins directive is
encountered or the end of the source member is reached.

The #pragma margins directive also overrides the values specified on the
MARGINS keyword of the CRTCMOD or CRTBNDC command while the #pragma
directive is in effect.

The #pragma margins and sequence directives can be used together. If these two
#pragma directives reserve the same columns, the #pragma sequence directive has
priority, and the columns are reserved for sequence numbers. For example, if the

ÊÊ # pragma margins (left margin , right margin)
*

ÊÍ

172 Language Reference

|
|
|

||

|
|
|

||
|

|

|
|
|

|

|

|

|
|
|

|
|

|

||
|

||
|
|
|
|

|

|
|
|

|
|
|

|
|
|

#pragma margins directive specifies margins of 1 and 20, and the #pragma
sequence directive specifies columns 15 to 25 for sequence numbers, the margins
in effect are 1 and 14, and the columns reserved for sequence numbers are 15 to
25.

If the margins specified are not in the supported range or the margins contain
non-numeric values, a warning message is issued during compilation and the
directive is ignored.

noargv0

Description

Specifies that the source program does not make use of argv[0]. This pragma can
improve performance of applications that have a large number of small C programs,
or a small program that is called many times.

Notes on Usage

The #pragma noargv0 must appear in the compilation unit where the main()
function is defined, otherwise it is ignored.

argv[0] will be NULL when the noargv0 pragma directive is in effect. Other
arguments in the argument vector will not be affected by this directive. If the
#pragma noargv0 directive is not specified, argv[0] will contain the name of the
program that is currently running.

noinline (function)

Description

Specifies that a function will not be inlined. The settings on the INLINE parameter of
the CRTCMOD or CRTBNDC command will be ignored for this function_name.

Notes on Usage

The first pragma specified will be the one that is used. If #pragma inline is specified
for a function after #pragma noinline has been specified for it, a warning will be
issued to indicate that #pragma noinline has already been specified for that
function.

The #pragma noinline directive can only occur at file scope.

The pragma will be ignored, and a warning that is issued if it is not found at file
scope.

ÊÊ # pragma noargv0 ÊÍ

ÊÊ # pragma noinline (function_name) ÊÍ

Chapter 8. Preprocessor Directives 173

|
|
|
|

|
|
|

|

|

|

|
|
|

|

|
|

|
|
|
|

|

|

|

|
|

|

|
|
|
|

|

|
|

nomargins

Description

Specifies that the entire input record is to be scanned for input.

Notes on Usage

The #pragma nomargins directive takes effect on the line following the directive and
remains in effect until a #pragma margins directive is encountered or the end of the
source member is reached.

The #pragma nomargins directive also overrides the values specified on the
MARGINS keyword of the CRTCMOD or CRTBNDC command while the #pragma
directive is in effect.

nosequence

Description

Specifies that the input record does not contain sequence numbers.

Notes on Usage

The #pragma nosequence directive takes effect on the line following the directive
and remains in effect until a #pragma sequence directive is encountered or the end
of the source member is reached.

The #pragma nosequence directive also overrides the values specified on the
SEQCOL keyword of the CRTCMOD or CRTBNDC command while the #pragma
directive is in effect.

nosigtrunc

Description

Specifies that no exception is generated at run time when overflow occurs with
packed decimals in arithmetic operations, assignments, casting, initialization, or
function calls. This directive suppresses the signal that is raised in packed
decimaloverflow. The #pragma nosigtrunc directive can only occur at filescope. A
warning message will be issued if the #pragma nosigtrunc directive is encountered
at function, block or function prototype scope, and the directive will be ignored.

Notes on Usage

ÊÊ # pragma nomargins ÊÍ

ÊÊ # pragma nosequence ÊÍ

ÊÊ # pragma nosigtrunc ÊÍ

174 Language Reference

|

|

|

|

|

|
|
|

|
|
|

|

|

|

|

|

|
|
|

|
|
|

|

|

|

|
|
|
|
|
|

|

This #pragma directive has file scope and must be placed outside a function
definition; otherwise it is ignored. A warning message may still be issued during
compilation for some packed decimal operations if overflow is likely to occur. See
the "Using Packed Decimal Data in Your ILE CPrograms" chapter of the ILE C for
AS/400 Programmer’s Guide for more information about packed decimalerrors.

operational descriptor

See “descriptor” on page 160.

page

Description

Skips n pages of the generated source listing. If n is not specified, the next page is
started. The skipped lines are only shown on a hardcopy listing.

pagesize

Description

Sets the number of lines per page to n for the generated source listing. The first
seven lines are reserved for compiler generated information such as the page
number and product identification. The source code listing starts on the eighth line.
The pagesize pragma may not affect the option listing page (that is sometimes
called the Prolog).

pointer

Description

Allows the use of the AS/400 pointer types: space pointer, system pointer,
invocation pointer, label pointer, suspend pointer, and open pointer. A variable that
is declared with a typedef that is named in the #pragma pointer directive has the
pointer type associated with typedef_name in the directive. The <pointer.h> header
file contains typedefs and #pragma directives for these pointer types. Including this
header file in ILE C source code allows you to use these typedefs directly for
declaring pointer variables of these types.

Parameters

pointer_type which can be one of:

SPCPTR Space pointer

ÊÊ # pragma page ()
n

ÊÍ

ÊÊ # pragma pagesize ()
n

ÊÍ

ÊÊ # pragma pointer (typedef_name , pointer_type) ÊÍ

Chapter 8. Preprocessor Directives 175

|
|
|
|
|

|

|

|

|

|

|
|

|

|
|

|
|
|
|
|

|

|

|

|
|
|
|
|
|
|

|

||

||

OPENPTR Open pointer

SYSPTR System pointer

INVPTR Invocation pointer

LBLPTR Label code pointer

SUSPENDPTR
Suspend pointer

Notes on Usage

The compiler issues a warning and ignores the #pragma pointer directive if any of
the following errors occur:

v The pointer type that is named in the directive is not one of SPCPTR, SYSPTR,
INVPTR, LBLPTR, SUSPENDPTR, or OPENPTR.

v The typedef named is not declared before the #pragma pointer directive.

v The identifier that is named as the first parameter of the directive is not a
typedef.

v The typedef named is not a typedef of a void pointer.

v The typedef named is used in a declaration before the #pragma pointer directive.

The typedef named must be defined at file scope.

See the ILE C for AS/400 Programmer’s Guide for more information about using
AS/400 pointers.

sequence

Description

Specifies the columns of the input record that are to contain sequence numbers.
The column setting applies only to the source setting in which it is located and has
no effect on any source members named on include directives in the member.

Parameters

left column Must be greater than zero but less than 32 754. The left column
should be less than the right column.

right column Must be greater than zero but less than 32 754. The right column
should be greater than or equal to the left column. An asterisk (*)
that is specified as the right column value indicates that sequence
numbers are contained between left column and the end of the
input record.

Notes on Usage

The #pragma sequence directive takes effect on the line following the directive. It
remains in effect until another #pragma sequence or nosequence directive is
encountered or the end of the source member is reached.

ÊÊ # pragma sequence (left_column , right_column)
*

ÊÍ

176 Language Reference

||

||

||

||

|
|

|

|
|

|
|

|

|
|

|

|

|

|
|

|

|

|

|
|
|

|

||
|

||
|
|
|
|

|

|
|
|

The #pragma sequence directive also overrides the values specified on the
SEQCOL keyword of the CRTCMOD or CRTBNDC command while the #pragma
directive is in effect.

The #pragma margins and sequence directives can be used together. If these two
#pragma directives reserve the same columns, the #pragma sequence directive has
priority, and the columns are reserved for sequence numbers. For example, if the
#pragma margins directive specifies margins of 1 and 20 and the #pragma
sequence directive specifies columns 15 to 25 for sequence numbers, the margins
in effect are 1 and 14, and the columns reserved for sequence numbers are 15 to
25.

If the margins specified are not in the supported range or the margins contain
non-numeric values, a warning message is issued during compilation and the
directive is ignored.

skip

Description

Skips the next n lines of the generated source listing. The value of n must be a
positive integer less than 255. If n is omitted, one line is skipped. The skipped lines
are only shown on a hardcopy listing.

strings

Description

Specifies that the compiler may place strings into read-only memory or must place
strings into writeable memory. Strings are writeable by default. This pragma must
appear before any C code in a file.

Note: This pragma will override the *STRDONLY option on the CRTBNDC or
CRTCMOD command.

subtitle

Description

Places the text that is specified by subtitle on all subsequent pages of the
generated source listing.

ÊÊ # pragma skip ()
n

ÊÍ

ÊÊ # pragma strings (readonly)
writeable

ÊÍ

ÊÊ # pragma subtitle (″ subtitle ″) ÊÍ

Chapter 8. Preprocessor Directives 177

|
|
|

|
|
|
|
|
|
|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|
|

|

|

|

|
|

title

Description

Places the text that is specified by title on all subsequent pages of the generated
source listing.

Example
#pragma langlvl(ANSI)
#pragma title("pragma example")
#pragma pagesize(55)
#pragma map(ABC, "A$$BC@")

ÊÊ # pragma title (″ title ″) ÊÍ

178 Language Reference

|

|

|

|
|

|

|
|
|
|

Chapter 9. I/O Considerations

This chapter provides information on:

v Data Management Operations on Record Files

v Data Management Operations on Stream Files

v C Streams and File Types

v DDS-to-ILE C Data Type Mappings

Data Management Operations on Record Files

See the Data Management manual for information on the data management
operations and ILE C functions available for record files.

Data Management Operations on Stream Files

See the Data Management manual for information on the data management
operations and ILE C functions available for stream files.

To use stream files (type=record) with record I/O functions you must cast the FILE
pointer to an RFILE pointer.

C Streams and File Types

The following table summarizes which file types are supported as streams.

Table 18. Processing C Stream and File Types

Stream Database Diskette Tape Printer Display ICF DDM Save

TEXT Yes No No Yes No No Yes No

BINARY:
Character at
a time

Yes No No Yes No No Yes No

BINARY:
Record at a
time

Yes Yes Yes Yes Yes Yes Yes Yes

DDS-to-C Data Type Mapping

The following table shows DDS data types and the corresponding ILE C
declarations that are used to map fields from externally described files to your ILE
C program. The ILE C compiler creates fields in structure definitions based on the
DDS data types in the externally described file.

See the DDS Reference for more information.

Table 19. DDS-to-ILE C Data Type Mappings

DDS Data Type Length
Decimal
Position ILE C Declaration

Indicator 1 0 char INxx_INyy[n]; for unused indicators xx
through yy char INxx; for used indicator xx

A - alphanumeric 1-32766 none char field[n]; (where n = 1 to 32766)

© Copyright IBM Corp. 1993, 1999 179

|

Table 19. DDS-to-ILE C Data Type Mappings (continued)

DDS Data Type Length
Decimal
Position ILE C Declaration

A - alphanumeric
variable length
VARLEN keyword

1-32740 none _Packed struct { short len;
char data[n];

} field;
where n is the maximum length of field

B - binary 1-4 0 short int field;

B - binary 1-4 1-4 char field[2];

B - binary 5-9 0 int field;

B - binary 5-9 1-9 char field[4];

H - hexadecimal 1 none char field;

H - hexadecimal 2-32766 none char field[n]; (where n = 2 to 32766)

H - hexadecimal
variable length
VARLEN keyword

1-32740 none _Packed struct { short len; char data[n]; } field;
where n is the maximum length of field

G - graphic
variable length
VARLEN keyword

4-1000 none _Packed struct { short len; wchar_t data[n]; }
field; (where n = 4 to 1000)

P - packed decimal 1-31 0-31 decimal (n,p) where n is length and p is
decimal position on option d

S - zoned decimal 1-31 0-31 char field[n]; (where n = 1 to 31)

F - floating point �1� �1� float field;

F - floating point �1� �1� double field;

J - DBCS only 4-32766 none char field[n]; (where n = 4 to 32766 and n is
an even number)

E - DBCS either 4 - 32766 none char field[n]; (where n = 4 to 32766 and n is
an even number)

O - DBCS open 4 - 32766 none char field[n]; (where n = 4 to 32766)

J - DBCS only
variable length
VARLEN keyword

4-32740 none _Packed struct { short len; char data[n]; } field;
(where n = 4 to 32740 and n is an even
number)

E - DBCS either
variable length
VARLEN keyword

4-32740 none _Packed struct { short len; char data[n]; } field;
(where n = 4 to 32740 and n is an even
number)

O - DBCS open
variable length
VARLEN keyword

4-32740 none _Packed struct { short len;
char data[n];

} field;
(where n = 4 to 32740)

T - time 8 none char field[8];

L - date 6, 8, or
10

none char field[n]; (where n = 6, 8 or 10)

Z - time stamp 26 none char field[26];

Note: �1�The C declaration (float or double) is based on what is specified in the FLTPCN
(floating-point precision) keyword in the DDS: *SINGLE (default) is float, *DOUBLE is
double.

See the DDS Reference for more information on using the new database data types or
variable length fields.

180 Language Reference

Appendix. AS/400 Control Characters

The following table identifies the internal hexadecimal representation of the AS/400
control sequences that are used by the ILE C compiler and library.

Table 20. Internal Hexadecimal Representation

Print representation Internal representation

NUL (null) 0x00

SOH (start of heading) 0x01

STX (start of text) 0x02

ETX (end of text) 0x03

SEL (select) 0x04

HT (horizontal tab) 0x05

RNL (required new line) 0x06

DEL (delete) 0x07

GE (graphic escape) 0x08

SPS (superscript) 0x09

RPT (repeat) 0x0a

VT (vertical tab) 0x0b

FF (form feed) 0x0c

CR (carriage return) 0x0d

SO (shift out) 0x0e

SI (shift in) 0x0f

DLE (data link escape) 0x10

DC1 (device control 1) 0x11

DC2 (device control 2) 0x12

DC3 (device control 3) 0x13

RES/ENP (restore or enable presentation) 0x14

NL (new line) 0x15

BS (backspace) 0x16

POC (program-operator communication) 0x17

CAN (cancel) 0x18

EM (end of medium) 0x19

UBS (unit backspace) 0x1a

CU1 (customer use 1) 0x1b

IFS (interchange file separator) 0x1c

IGS (interchange group separator) 0x1d

IRS (interchange record separator) 0x1e

IUS/ITB (interchange unit separator or
intermediate transmission block)

0x1f

DS (digit select) 0x20

SOS (start of significance) 0x21

FS (field separator) 0x22

© Copyright IBM Corp. 1993, 1999 181

Table 20. Internal Hexadecimal Representation (continued)

Print representation Internal representation

WUS (word underscore) 0x23

BYP/INP (bypass or inhibit presentation) 0x24

LF (line feed) 0x25

ETB (end of transmission block) 0x26

ESC (escape) 0x27

SA (set attributes) 0x28

SM/SW (set mode or switch) 0x2a

CSP (control sequence prefix) 0x2b

MFA (modify field attribute) 0x2c

ENQ (enquiry) 0x2d

ACK (acknowledge) 0x2e

BEL (bell) 0x2f

SYN (synchronous idle) 0x32

IR (index return) 0x33

PP (presentation position) 0x34

TRN 0x35

NBS (numeric backspace) 0x36

EOT (end of transmission) 0x37

SBS (subscript) 0x38

IT (indent tab) 0x39

RFF (required form feed) 0x3a

CU3 (customer use 3) 0x3b

DC4 (device control 4) 0x3c

NAK (negative acknowledge) 0x3d

SUB (substitute) 0x3f

(blank character) 0x40

182 Language Reference

Bibliography

For additional information about topics related to
ILE C programming on the AS/400 system, refer
to the following IBM AS/400 publications:

v ADTS/400: Application Development Manager
User’s Guide, SC09-2133-01, describes
creating and managing projects defined for the
Application Development Manager/400 feature,
as well as using the program to develop
applications.

v ADTS/400: Programming Development
Manager, SC09-1771-00, provides information
about using the Application Development
ToolSet/400 programming development
manager (PDM) to work with lists of libraries,
objects, members, and user-defined options to
easily do such operations as copy, delete, and
rename. Contains activities and reference
material to help the user learn PDM. The most
commonly used operations and function keys
are explained in detail using examples.

v ADTS for AS/400: Source Entry Utility,
SC09-2605-00, provides information about
using the Application Development ToolSet/400
source entry utility (SEU) to create and edit
source members. The manual explains how to
start and end an SEU session and how to use
the many features of this full-screen text editor.
The manual contains examples to help both
new and experienced users accomplish various
editing tasks, from the simplest line commands
to using pre-defined prompts for high-level
languages and data formats.

v Application Display Programming,
SC41-5715-00, provides information about:

– Using DDS to create and maintain displays
for applications;

– Creating and working with display files on
the system;

– Creating online help information;

– Using UIM to define panels and dialogs for
an application;

– Using panel groups, records, or documents

v Backup and Recovery, SC41-5304-03, provides
information about setting up and managing the
following:

– Journaling, access path protection, and
commitment control

– User auxiliary storage pools (ASPs)

– Disk protection (device parity, mirrored, and
checksum)

Provides performance information about backup
media and save/restore operations. Also
includes advanced backup and recovery topics,
such as using save-while-active support, saving
and restoring to a different release, and
programming tips and techniques.

v CICS Family: Application Programming Guide,
SC41-5454-00, provides information on
application programming for CICS/400®. It
includes guidance and reference information on
the CICS application programming interface and
system programming interface commands, and
gives general information about developing new
applications and migrating existing applications
from other CICS platforms.

v ILE C/C++ MI Library Reference,
SC09-2418-00, provides information on
Machine Interface instructions available in the
ILE C compiler that provide system-level
programming capabilities.

v CL Programming, SC41-5721-02, provides a
wide-ranging discussion of AS/400
programming topics including a general
discussion on objects and libraries, CL
programming, controlling flow and
communicating between programs, working with
objects in CL programs, and creating CL
programs. Other topics include predefined and
impromptu messages and message handling,
defining and creating user-defined commands
and menus, application testing, including debug
mode, breakpoints, traces, and display
functions.

v CL Reference (Abridged), SC41-5722-03,
provides a description of the AS/400 control
language (CL) and its OS/400 commands.
(Non-OS/400 commands are described in the
respective licensed program publications.) Also
provides an overview of all the CL commands
for the AS/400 system, and it describes the
syntax rules needed to code them.

v Communications Management, SC41-5406-02,
provides information about work management in
a communications environment,
communications status, tracing and diagnosing
communications problems, error handling and
recovery, performance, and specific line speed
and subsystem storage information.

© Copyright IBM Corp. 1993, 1999 183

v Data Management, SC41-5710-00, provides
information about using files in application
programs. Includes information on the following
topics:

– Fundamental structure and concepts of data
management support on the system

– Overrides and file redirection (temporarily
making changes to files when an application
program is run)

– Copying files by using system commands to
copy data from one place to another

– Tailoring a system using double-byte data

v DB2 for AS/400 Database Programming,
SC41-5701-02, provides a detailed discussion
of the AS/400 database organization, including
information on how to create, describe, and
update database files on the system. Also
describes how to define files to the system
using OS/400 data description specifications
(DDS) keywords.

v DB2 for AS/400 SQL Programming,
SC41-5611-02, provides information about how
to use DB2® Query Manager and SQL
Development kit licensed program. Shows how
to access data in a database library and
prepare, run, and test an application program
that contains embedded SQL statements.
Contains examples of SQL/400® statements
and a description of the interactive SQL
function. Describes common concepts and rules
for using SQL/400 statements in ILE COBOL,
PL/I, ILE C, FORTRAN/400®, ILE RPG/400,
and REXX.

v DB2 for AS/400 SQL Reference,
SC41-5612-02, provides information about how
to use Structured Query Language/400 DB2
statements and gives details about the proper
use of the statements. Examples of statements
include syntax diagrams, parameters, and
definitions. A list of SQL limits and a description
of the SQL communication area (SQLCA) and
SQL descriptor area (SQLDA) are also
provided.

v DDS Reference, SC41-5712-01, provides
detailed descriptions for coding the data
description specifications (DDS) for file that can
be described externally. These files are
physical, logical, display, print, and intersystem
communication function (ICF) files.

v Distributed Data Management, SC41-5307-00,
provides information about remote file
processing. It describes how to define a remote
file to OS/400 distributed data management
(DDM), how to create a DDM file, what file

utilities are supported through DDM, and the
requirements of OS/400 DDM as related to
other systems.

v Experience RPG IV Multimedia Tutorial,
SK2T-2700, is an interactive self-study program
explaining the differences between RPG III and
RPG IV and how to work within the new ILE
environment. An accompanying workbook
provides additional exercises and doubles as a
reference upon completion of the tutorial. ILE
RPG code examples are shipped with the
tutorial and run directly on the AS/400.

v GDDM Programming Guide, SC41-0536-00,
provides information about using OS/400
graphical data display manager (GDDM®) to
write graphics application programs. Includes
many example programs and information to
help users understand how the product fits into
data processing systems.

v GDDM Reference, SC41-3718-00, provides
information about using OS/400 graphical data
display manager (GDDM) to write graphics
application programs. This manual provides
detailed descriptions of all graphics routines
available in GDDM. Also provides information
about high-level language interfaces to GDDM.

v ICF Programming, SC41-5442-00, provides
information needed to write application
programs that use AS/400 communications and
the OS/400 intersystem communications
function (OS/400-ICF). Also contains
information on data description specifications
(DDS) keywords, system-supplied formats,
return codes, file transfer support, and program
examples.

v IDDU Use, SC41-5704-00, describes how to
use the AS/400 interactive data definition utility
(IDDU) to describe data dictionaries, files, and
records to the system. Includes:

– An introduction to computer file and data
definition concepts

– An introduction to the use of IDDU to
describe the data used in queries and
documents

– Representative tasks related to creating,
maintaining, and using data dictionaries,
files, record formats, and fields

– Advanced information about using IDDU to
work with files created on other systems and
information about error recovery and
problem prevention.

v ILE C for AS/400 Programmer’s Guide,
SC09-2712-01, provides information on how to

184 Language Reference

develop applications using the ILE C language.
It includes information about creating, running
and debugging programs. It also includes
programming considerations for interlanguage
program and procedure calls, locales, handling
exceptions, database, externally described and
device files. Some performance tips are also
described. An appendix includes information on
migrating source code from EPM C or System
C to ILE C.

v ILE C for AS/400 Run-Time Library Reference,
SC09-2715-00, provides reference information
about ILE C library functions, including
Standard C library functions and ILE C library
extensions. Examples are provided and
considerations for programming are also
discussed.

v ILE COBOL for AS/400 Programmer’s Guide,
SC09-2540-01, provides information about how
to write, compile, bind, run, debug, and
maintain ILE COBOL programs on the AS/400
system. It provides programming information on
how to call other ILE COBOL and non-ILE
COBOL programs, share data with other
programs, use pointers, and handle exceptions.
It also describes how to perform input/output
operations on externally attached devices,
database files, display files, and ICF files.

v ILE COBOL for AS/400 Reference,
SC09-2539-01, provides a description of the
ILE COBOL programming language. It provides
information on the structure of the ILE COBOL
programming language and the structure of an
ILE COBOL source program. It also provides a
description of all Identification Division
paragraphs, Environment Division clauses, Data
Division clauses, Procedure Division
statements, and Compiler-Directing statements.

v ILE COBOL for AS/400 Reference Summary,
SX09-1317-01, provides quick reference
information on the structure of the ILE COBOL
programming language and the structure of an
ILE COBOL source program. It also provides
syntax diagrams of all Identification Division
paragraphs, Environment Division clauses, Data
Division clauses, Procedure Division
statements, and Compiler-Directing statements.

v ILE Concepts, SC41-5606-03, explains
concepts and terminology pertaining to the
Integrated Language Environment architecture
of the OS/400 licensed program. Topics
covered include creating modules, binding,
running programs, debugging programs, and
handling exceptions.

v ILE RPG for AS/400 Programmer’s Guide,
SC09-2507-02, provides information about the
ILE RPG programming language, which is an
implementation of the RPG IV language in the
Integrated Language Environment (ILE) on the
AS/400 system. It includes information on
creating and running programs, with
considerations for procedure calls and
interlanguage programming. The guide also
covers debugging and exception handling and
explains how to use AS/400 files and devices in
RPG programs. Appendixes include information
on migration to RPG IV and sample compiler
listings. It is intended for people with a basic
understanding of data processing concepts and
of the RPG language.

v ILE RPG for AS/400 Reference, SC09-2508-02,
provides information about the ILE RPG
programming language. This manual describes,
position by position and keyword by keyword,
the valid entries for all RPG IV specifications,
and provides a detailed description of all the
operation codes and built-in functions. This
manual also contains information on the RPG
logic cycle, arrays and tables, editing functions,
and indicators.

v ILE RPG for AS/400 Reference Summary,
SX09-1315-01, provides information about the
RPG III and RPG IV programming language.
This manual contains tables and lists for all
specifications and operations in both languages.
A key is provided to map RPG III specifications
and operations to RPG IV specifications and
operations.

v Local Device Configuration, SC41-5121-00,
provides information about configuring local
devices on the AS/400 system. This includes
information on how to configure the following:

– Local work station controllers (including
twinaxial controllers)

– Tape controllers

– Locally attached devices (including twinaxial
devices)

v Machine Interface Functional Reference,
SC41-5810-00, describes the machine interface
instruction set. Describes the functions that can
be performed by each instruction and also the
necessary information to code each instruction.

v Printer Device Programming, SC41-5713-03,
provides information to help you understand
and control printing. Provides specific
information on printing elements and concepts
of the AS/400 system, printer file and print
spooling support for printing operations, and

Bibliography 185

printer connectivity. Includes considerations for
using personal computers, other printing
functions such as Business Graphics Utility
(BGU), advanced function printing (AFP), and
examples of working with the AS/400 system
printing elements such as how to move spooled
output files from one output queue to a different
output queue. Also includes an appendix of
control language (CL) commands used to
manage printing workload. Fonts available for
use with the AS/400 system are also provided.
Font substitution tables provide a
cross-reference of substituted fonts if attached
printers do not support application-specified
fonts.

v REXX/400 Programmer’s Guide,
SC41-5728-00, provides a wide-ranging
discussion of programming with REXX on the
AS/400 system. Its primary purpose is to
provide useful programming information and
examples to those who are new to Procedures
Language 400/REXX and to provide those who
have used REXX in other computing
environments with information about the
Procedures Language 400/REXX
implementation.

v ILE RPG for AS/400 Programmer’s Guide,
SC09-2507-02, provides information needed to
design, code, compile, and test RPG programs
on the AS/400 system. The manual provides
information on data structures, data formats, file
processing, multiple file processing, the
automatic report function, RPG command
statements, testing and debugging functions,
application design techniques, problem
analysis, and compiler service information. The
differences between the RPG for AS/400
compiler, the System/38® environment RPG III
compiler, and the System/36®-compatible RPG
II compiler are also discussed.

v Security - Basic, SC41-5301-00, explains why
security is necessary, defines major concepts,
and provides information on planning,
implementing, and monitoring basic security on
the AS/400 system.

v Security - Reference, SC41-5302-03, tells how
system security support can be used to protect
the system and the data from being used by
people who do not have the proper
authorization, protect the data from intentional
or unintentional damage or destruction, keep
security information up-to-date, and set up
security on the system.

v Local Device Configuration, SC41-5121-00,
provides step-by-step procedures for initial

installation, installing licensed programs,
program temporary fixes (PTFs), and secondary
languages from IBM. This manual is also for
users who already have an AS/400 system with
an installed release and want to install a new
release.

v System API Programming, SC41-5800-00,
provides information for the experienced
application and system programmers who want
to use the OS/400 application programming
interfaces (APIs). Provides getting started and
examples to help the programmer use APIs.

v System API Reference, SC41-5801-03,
provides information for the experienced
programmer on how to use the application
programming interfaces (APIs) to such OS/400
functions as:

– Dynamic Screen Manager

– Files (database, spooled, hierarchical)

– Message handling

– National language support

– Network management

– Objects

– Problem management

– Registration facility

– Security

– Software products

– Source debug

– UNIX-type

– User-defined communications

– User interface

– Work management

Includes original program model (OPM),
Integrated Language Environment (ILE), and
UNIX-type APIs.

v System Operation, SC41-4203-00, provides
information about handling messages, working
with jobs and printer output, devices
communications, working with support
functions, cleaning up your system, and so on.

v Basic System Operation, Administration, and
Problem Handling, SC41-5206-03, provides
information about the system unit control panel,
starting and stopping the system, using tapes
and diskettes, working with program temporary
fixes, as well as handling problems.

v Tape and Diskette Device Programming,
SC41-5716-01, provides information to help
users develop and support programs that use
tape and diskette drives for I/O. Includes

186 Language Reference

information on device files and descriptions for
tape and diskette devices.

Bibliography 187

188 Language Reference

Index

Special Characters
[] array subscript operators 85
? : conditional operators 101
... ellipses 71
+= assignment 103
-= assignment operator 103
/= assignment operator 103
*= assignment operator 103
&= assignment operator 103
\ continuation character 10, 20, 137
-- decrement operator 86
== equal to operator 97
\ escape character 10
++ increment operator 86
&& logical AND operator 99
!= not equal to operator 97
(null directive) preprocessor directive 153
operator preprocessor directive 145
() operators

for calling functions 84
for grouping expressions 83

() parentheses 83
− subtraction operator 94
?? trigraphs 9
+ addition operator 93
& address operator 88
& bitwise operator 98
, comma operator 104
__DATE__ 141
/ division operator 92
. dot operator 85
__FILE__ 141
-> arrow operator 85
=> assignment operator 103
__IFS_IO__ 141
__IFS64_IO__ 141
__ILEC400__ 141
* indirection operator 88
__LINE__ 142
! logical negation operator 87
* multiplication operator 92
operator preprocessor directive 144
__OS400__ 142
__POSIX_LOCALE__ 142
preprocessor directive character 137
= simple assignment operator 102
__STDC__ 142
__TERASPACE__ 142
__TIME__ 142
__TIMESTAMP__ 142
__UCS2__ 143
|= assignment operator 103
| bitwise exclusive OR operator 99
#define preprocessor directive 138
″double quotation mark 20
#elif preprocessor directive 150
#else preprocessor directive 151

#endif preprocessor directive 152
#error preprocessor directive 146
>= greater than or equal to operator 96
>>= assignment operator 103
>> right-shift operator 95
> greater than operator 96
<= less than or equal to operator 96
<<= assignment operator 103
<< left-shift operator 95
< less than operator 96
#if preprocessor directive 150
#ifdef preprocessor directive 151
#ifndef preprocessor directive 151
#include preprocessor directive 147
_IS_QSYSINC_INSTALLED 143
#line preprocessor directive 152
_Packed qualifier 36
¦= assignment operator 103
¦ inclusive OR operator (bitwise) 99
¦¦logical OR operator 100
#pragma preprocessor directive 154
#undef preprocessor directive 140

A
additive operators

addition + 93
subtraction − 94

address operator & 88
aggregate types 79
alert escape sequence \a 10
AND operator (bitwise) & 98
AND operator (logical) && 99
ANSI flagging 167
argc argument count 69
argopt pragma 154
argument optimization

scoping 155
argument pragma 156
arguments

command line 4
functions call, in a 76
to main function 4

argv argument vector 69
arithmetic conversions 105
arithmetic types 79
arrays 47, 85
arrow operator -> 85
ASCII character codes 10
assignment conversions 106
assignment expression

compound 103
definition of 102
simple 102

associativity of operators 79
auto storage class specifier 25

B
backslash escape sequence \\ 10
backspace escape sequence \b 10

© Copyright IBM Corp. 1993, 1999 189

bell escape sequence \a 10
binary expression 91
binary operators

addition operator + 93
bitwise AND operator & 98
bitwise inclusive OR operator ¦ 99
bitwise OR operator | 99
definition 91
division operator / 92
equality operator == 97
greater than operator > 96
inequality operator != 97
left-shift operator << 95
less than operator < 96
logical AND operator && 99
logical OR operator ¦¦ 100
multiplication operator * 92
remainder operator % 93
right-shift operator >> 95
subtraction operator − 94

bit field 58, 60
bitwise negation operator 88
bitwise operators

AND & 98
exclusive OR | 99
inclusive OR ¦ 99
left-shift << 95
negation operator 88
right-shift >> 95

block 120
block scope data declarations

auto 25
register 30
static 31
using 23

brackets, square [] 85
break statement 121
builtins

linkage pragma 167
byte 89

C
call, function 84
calling

functions 76
cancel_handler pragma 157
carriage return escape sequence \r 10
case label 131
cast operator 89
char 38
character

character constant 18
converting

char 38
unsigned char 38

escape sequence 10
string constant 20
trigraphs 9
type 38
type specifier 38

character set 9

chars pragma 158
checkout pragma 158
comma operator (,) 104
command line arguments 4
comment pragma 159
comments 11
compatible types 101
compilation unit 2
compound statement 120
conditional compilation

elif preprocessor directive 150
else preprocessor directive 151
endif preprocessor directive 152
if preprocessor directive 150
ifdef preprocessor directive 151
ifndef preprocessor directive 151
using 149

conditional expression ? : 101
conditional statements

if 128
switch 131

const 35
constant expression 82
constants

character 18
decimal 15
enumeration 22
escape sequence 10
floating-point 17
hexadecimal 15
integer 14
octal 16
packed decimal 19
string 20
types 14

continuation character 10, 20, 137
continue statement 123
control characters 181
control statements

break 121
continue 123
goto 127
return 129

conversions 105
conversions, type 106
convert pragma 159
converting

arithmetic 105
assignment 106
cast operator 89
from enumeration types 117
from floating-point types 112
from pointer types 117
from signed integer types 106
from unsigned integer types 109

D
data definitions

constant 14

190 Language Reference

data types
array 47
character 38
enumerations 44
floating-point 39
functions 70
integer 40
pointer 52
scalar 38
structure 57
typedef 66
union 62
void 43

decimal constant 15
declarations

block scope 23
C source program 1
definition 23
file scope 24
function 74
parameter 73

declarator
array 47
character 38
definition of 33
floating-point 39
integer 41
pointer 52
subdeclarator 33
subscript 34
union 64
using 33

decrement operator -- 86
default clause 131, 132
default label 132
defined, preprocessor operator 150
defined unary operator 150
definition, macro 138
definitions 1, 23
dereferencing 88
descriptor pragma 160
directives

C source program 1
disable_handler pragma 162
division operator / 92
do statement 124
dot operator . 85
double 39
double precision

constants 17
variables 39

E
EBCDIC character codes 10
ellipses (...) 71
else clause 128
end of string 20
enum 44
enumerations

enum data types 44

enumerations (continued)
enumeration constant 44
types, converting 117

enumerator 44
enumsize pragma 162
equal to operator == 97
equality operators

equal to == 97
not equal to != 97

error messages
#line control directive 153

escape character \ 10
escape sequence 10
evaluation, expression 79
exception_handler pragma 163
exclusive OR operator (bitwise) | 99
exponent 17
expressions

assignment 102
binary 91
comma 104
conditional 101
constant 82
evaluation of 79
grouping of 79
lvalue 81
parentheses () 83
parenthesized 83
primary 83
statement 125
unary 86

extern declaration 28
extern storage class specifier 28
external identifier 13

F
field, bit 58, 60
file inclusion 147
file naming conventions 147
file scope data declarations 24

extern 28
static 31

file type 179
float 39
float specifier 39
floating-point types

constants 17
converting types 116
double 39
float 39
long double 39

for statement 125
form feed escape sequence \f 10
function-like macro 138
functions

body 1, 74
calling functions 76, 84
declarations 74
declarator 72
definitions 70
main 4, 69

Index 191

functions (continued)
parameter 1
prototypes 70
return statements 129
void 75

G
global variables 28
goto statement 127
greater than operator > 96
greater than or equal to operator >= 96

H
hexadecimal constant 15
hexadecimal numbers as escape sequences 10
horizontal tab escape sequence \t 10

I
identifiers

attributes of 12
class 7

if statement 128
ILEC400_TGTVRM macro 141
implementation-defined behavior 1
implicit declaration 74
increment operator ++ 86
indentation of code 137
indirection operator * 88
initial expression 37
initializers 37

array 48
character 38
floating 39
integer 41
structure 58

inline pragma 166
int 40
int constant 14
int specifier 41
integer

constants 14
decimal 15
floating-point constant 17
hexadecimal 15
int 40
long 40
octal 16
promotion 105
short 40
types, converting 112
types, signed, converting 106
types, unsigned, converting 109
unsigned 40
unsigned int 40
unsigned long 40
unsigned short 40

integral types 79
internal identifier 13

K
keywords 13

L
labels 119
langlvl pragma 167
left-shift operator << 95
less than operator < 96
less than or equal to operator <= 96
line continuation character \

escape sequence, as an 10
preprocessor directives, in 137
string constants, in 20

line feed escape sequence \r 10, 21
linkage

definition of 6
external 6
internal 6

linkage pragma 167, 168, 169
literal 20
local variables 23
logical AND operator && 99
logical negation operator ! 87
logical OR operator ¦¦ 100
long 40
long double 39
long long 40
loop statements

do 124
for 125
while 134

lvalue 81

M
macro definition 138
macro invocation 138
macros, predefined

DATE 141
FILE 141
IFS_IO 141
IFS64_IO 141
ILEC400 141
ILEC400_TGTVRM 141
IS_QSYSINC_INSTALLED 143
LINE 142
OS400 142
OS400_TGTVRM 142
POSIX_LOCALE 142
STDC 142
TERASPACE 142
TIME 142
TIMESTAMP 142
UCS2 143

main() function
form 69
parameters 4, 69
program processing 3
usage 69

map pragma 169

192 Language Reference

mapinc pragma 170
margins pragma 172
member 58
minus, unary operator - 87
modulo operator % 93
multiplicative operators

division / 92
multiplication * 92
remainder % 93

N
name spaces 7
naming classes 7
naming files 147
negation operators

bitwise 88
logical ! 87

nested visibility 4
new-line character

escape sequence \n 10, 21
white space, as 137

newline escape sequence \n 10
noargv0 pragma 173
noinline pragma 173
nomargins pragma 174
nosequence pragma 174
nosigtrunc pragma 174
not equal to operator != 97
null character \0 20
NULL pointer 54
null statement 129

O
object-like macro definition 138
octal constant 16
octal numbers as escape sequences 10
one’s complement operator 88
operational descriptor pragma 160
operators

144
= 102, 103
*= 103
145
+= 103
|= 103
>>= 103
<<= 103
—= 103
address operator & 88
arrow -> 85
assignment 102
associativity 79
binary 91
bitwise AND & 98
bitwise exclusive OR | 99
bitwise inclusive OR ¦ 99
bitwise negation operator 88
bitwise shift 95
cast operator 89
comma 104

operators (continued)
conditional ? : 144
decrement operator -- 86
division / 92
equality operators 97
increment operator ++ 86
indirection operator * 88
left-shift << 95
logical AND && 99
logical negation operator ! 87
logical OR ¦¦ 100
multiplication * 92
precedence and associativity 79
primary 83
relational operators 96
remainder % 93
right-shift >> 95
sizeof operator 89
subtraction − 94
unary 86
unary plus operator (+) 87

OR operator (logical) ¦¦ 100
OS400_TGTVRM macro 142

P
packed

assignments and comparisons 102
structures 61, 76
unions 64, 76

packed decimal
type definition 42
types, converting 116

packed decimal constant 19
page pragma 175
pagesize pragma 175
parameter declaration 73
parameter passing 76
parameters, to main function 4
parentheses () 83
passing

addresses 76
arguments 76
values 76

plus, unary operator (+) 87
pointer pragma 175
pointers 86

conversion 116
description of 52

pragma preprocessor directives
argopt 154
argument 156
cancel_handler 157
chars 158
checkout 158
comment 159
convert 159
definition 137
description of 154
disable_handler 162
enumsize 162
exception_handler 163

Index 193

pragma preprocessor directives (continued)
inline 154
langlvl 167
linkage 167, 168, 169
map 169
mapinc 170
margins 172
noargv0 173
noinline 173
nomargins 174
nosequence 174
nosigtrunc 174
operational descriptor 160
page 175
pagesize 175
pointer 175
sequence 176
skip 177
strings 177
subtitle 177
title 178

precedence of operators 79
predefined macros 141
preprocessor directives

(null directive) 153
operator 145
operator 144
argopt 154
argument 156
cancel_handler 157
chars 158
checkout 158
comment 159
conditional compilation 149
convert 159
define 138
definition 137
description of 154
disable_handler 162
elif 150
else 151
endif 152
enumsize 162
error 146
exception_handler 163
format of 137
if 150
ifdef 151
ifndef 151
include 147
inline 166
langlvl 167
line control 152
linkage 167, 168, 169
map 169
mapinc 170
margins 172
noargv0 173
noinline 173
nomargins 174
nosequence 174

preprocessor directives (continued)
nosigtrunc 153
operational descriptor 160
page 175
pagesize 175
pointer 175
pragma 154
sequence 176
skip 177
strings 177
subtitle 177
title 178
undef 140

primary expression 83
program, running 3
program structure 1
prototype 70

Q
question mark escape sequence \? 10
quotation mark

double quotation escape sequence \″ 10
single quotation escape sequence \’ 10

R
record file

data management operation 179
recursion

function calls 85
register storage class specifier 30
relational operators

greater than > 96
greater than or equal to >= 96
less than < 96
less than or equal to <= 96

remainder operator % 93
return statement 129
return value, as declared 75
right-shift operator >> 95
running, starting point 3

S
scalar types 79
scope

block 4
file 4
function 4
function prototype 5
identifier 4

sequence pragma 176
shift operators << and > 95
short 40
signed char 38
signed int 40
signed integer types, converting 106
simple assignment operator = 102
single precision

variables 39

194 Language Reference

single quotation escape sequence \’ 10
sizeof operator 89
skip pragma 177
source files 2
source program, constituents 1
space character 137
splice preprocessor directive ## 145
statements

block 120
break 121
continue 123
do 124
expression 125
for 125
goto 127
if 128
labels 119
null 129
return 129
switch 131
while 134

static storage class specifier 31
storage, const 35
storage, volatile 35
storage classes

auto 25
extern 28
register 30
static 31

storage duration 7
stream file

data management operation 179
stream type 179
string constant 20
stringize preprocessor directive # 144
strings

constant 20
strings pragma 177
struct specifier 58
structures

description of 57
members of 85

subdeclarator 33
subscript declarator 34
subscript declarator in arrays 47
subscripts 85
subtitle pragma 177
subtraction operator − 94
switch 131

T
tab characters

horizontal escape sequence \t 10
vertical escape sequence \v 10
white space, as 137

ternary expression ? : 101
title pragma 178
tokens

definition 137
preprocessing 137

trigraphs 9

type conversions 106
typedef 66
types

array 47
character 38
enumerations 44
floating-point 39
functions 70
integer 40
pointer 52
scalar 38
structure 57
typedef 66
union 62
void 43

U
unary expression 86
unary minus operator - 87
unary operators

address operator & 88
bitwise negation operator 88
cast operator 89
decrement operator -- 86
increment operator ++ 86
indirection operator * 88
logical negation operator ! 87
minus 87
plus 87
sizeof operator 89

unary plus operator (+) 87
undefined behavior, definition of 1
union specifier 62
unions

members of 85
unsigned 40
unsigned char 38
unsigned int 40
unsigned integer types, converting 109
unsigned long 40
unsigned long long 40
unsigned short 40
user entry procedure (UEP) 3

V
variables

array 47
block scope data declarations 23
character 38
enumeration 44
file scope data declarations 24
floating-point 39
integer 40
pointer 52
structure 57
union 62

vertical tab escape sequence \v 10
visibility 4
void() function 75
void data type 43

Index 195

volatile 35

W
wchar_t 18

while statement 134

white space 11, 137, 144

wide character constant 18

196 Language Reference

IBM

Program Number: 5769-CX2

Printed in U.S.A.

SC09-2711-01

	Table of Contents
	Tables
	Notices
	About This Book
	CHAPTER 1. Introduction to C
	Overview of the C Language
	C Source Programs
	C Source Files
	Program Processing
	Scope
	Linkage
	Storage Duration
	Name Spaces
	CHAPTER 2. Lexical Elements of C
	Character Set
	Trigraphs
	Escape Sequences
	Comments
	Identifiers
	Keywords
	Constants
	CHAPTER 3. Declarations and Definitions
	Block Scope Data Declarations
	File Scope Data Declarations
	Storage Class Specifiers
	auto Storage Class Specifier
	extern Storage Class Specifier
	Declaration
	register Storage Class Specifier
	static Storage Class Specifier
	Declarators
	volatile and const Qualifiers
	_Packed Qualifier
	Initializers
	Types
	Characters
	Floating-Point Variables
	Integers
	Packed Decimal
	void Type
	Enumerations
	Arrays
	Pointers
	Structures
	Unions
	typedef
	CHAPTER 4. Functions
	main
	Function Definition
	Function Declarations
	Calling Functions and Passing Arguments
	CHAPTER 5. Expressions and Operators
	Grouping and Evaluating Expressions
	Lvalue
	Constant Expression
	Primary Expression
	Unary Expression
	Binary Expression
	Conditional Expression ? :
	Assignment Expression
	Comma Expression ,
	CHAPTER 6. Conversions
	Usual Arithmetic Conversions
	Type Conversions
	CHAPTER 7. C Language Statements
	Labels
	Block
	break
	continue
	do
	Expression
	for
	goto
	if
	Null Statement
	return
	switch
	while
	CHAPTER 8. Preprocessor Directives
	Preprocessor Directive Format
	#define
	#undef
	Predefined Macros
	# Operator
	## Operator
	#error
	#include
	Conditional Compilation
	#line
	# (Null Directive)
	#pragma
	CHAPTER 9. I/O Considerations
	Data Management Operations on Record Files
	Data Management Operations on Stream Files
	C Streams and File Types
	DDS-to-C Data Type Mapping
	APPENDIX. AS/400 Control Characters
	Bibliography
	Index

