Susan Gantner

Jon Paris

Paul Tuohy

Gary Mullen-Schultz

RPG: APIs

Introduction

The number of APIs supplied with a system increases from release to release. After
belonging to the realm of the “advanced” programmer, APIs are playing an ever-increasing
part in our day-to-day applications, for example, you might want an application program to be
able to retrieve invoices from a spooled file, convert those spooled files to PDFs, and e-mail
them to the relevant customer. By supplying such functions in the form of APls, i5/OS®
makes the functions available to C, COBOL, Java™, and RPG programmers.

How many APIs are there? Well, back in 2003 there were over 1,500 APIs available to
0OS/400® developers. After that, we stopped counting!

Given the increased use of APls, we decided to:

» Describe how to find APIs
» Explain how to interpret the APl documentation
» Explain how to use APIs

What is an API?

The term Application Programming Interface (API) can be applied in many instances. By
definition, an APl is an application-supplied program or procedure that allows an application
program, which is written in a high-level language, to access specific data or functions of the
application without requiring access to the source code or requiring a detailed understanding
of the functions' internal workings.

It is quite reasonable, and common, for any software application to provide APIs that provide
access to “complex” portions of the application, for example, an application might provide an
API that validates a product code or another API that calculates a price. Of course the
supplier of the application provides adequate documentation on how to use the API.

IBM® supplies APIs that allow programmers to use specific data or functions of the operating
system or a licensed program. The adequacy of the documentation is open to interpretation.

© Copyright IBM Corp. 2007. All rights reserved. ibm.com/redbooks 1

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

APIs provide functionality from the simple to the extremely complex. A lot of the APIs are not
for the faint hearted, and if you are unfortunate enough to start out with the wrong API you will
very possibly be wary of them forever.

Most programmers are introduced to APIs when they see them in an existing program. The
most commonly used APIs are probably Execute Command (QCMDEXC), Send Data Queue
(QSNDDTAQ) and Receive Data Queue (RCVDTAQ). You used APlIs if you ever issued a call
to any of these.

You must get to grips with the documentation and some of the methodologies that are used
with APls. But do not be discouraged. Although APIs may not be the easiest of items to get to
grips with, they are far from being impossible to master.

Why use APIs?

APlIs can allow access to system functions at a more detailed level than available with
commands. APIs can also allow access to system information and functions that are not
available through command line (CL) commands.

To make use of a lot of the new functionality in your applications, (for example, accessing
data in directories in the IFS) you must make use of APIs.

Finding APIs

In this section, we provide information about where to go to find APIs and how to find APIs.
The starting point for APIs is the Information Center, which you can access at:

https://publib.boulder.ibm.com/infocenter/iseries/v5rd/index. jsp

The API page

2

RPG: APIs

In the menu frame, expand Programming and APIs. The window, shown in Figure 1 on
page 3, is displayed.

https://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Fraducts Services h sslubona

Suppart b dosrdonds

Sy Boooasnk

=anrch: FErar Allupon
Cond el =] iteries Bndormation Cemer, Version § Refease 4 L] |
5 L M:-trmhu]
1 Plarning _
WiFrming e el et i
it ol Application programming interfacas
What's nesJor VERA This topic prowides sxperisnced applicston programmers with the mformstion needed fo develop
S‘Im"“:’* systam-level and other 505" applicatons wsing tha appicaton aragramming Bterfaces (AP1).
£ e AP by Conegpry MNaba: Raad 1he Code leence and dEciamer smifdrsaton for isgartant Bgal infomation.
Alpvaetic bt of AP
= L At corgmpls What's naw far ¥ 54
7. el Lirng 5P 1n Fired out about magar &F1 chenges for YERS
= i) Fowmplan: AE
¥ LLJ Fiachira inbwrf aca progrs Printahlo PIFs
1L Cornmon A8 e oararreni Ugg thg 1o yisw and print WBL cancaptd or groups of AaPlE
= [|
2l Coravaracations Al Finder
Anes To search for 8P by name or by category; use the &P frder. ¥You can also display an alphabetic
2 Dpsinpweni ook It of all aRls, all naw ARTE, &l changed sF1s, or &l esit programs
o Curvica
=1 0 o e iy Al by catagarg
=1 atie Berums AF1s by catagory 16t all the major &P0s for the system and ane dividad into major functional groups,
=120 Javen such a5 0R|ects and Work managamant.
115 Langagar
01] MRbr e sdas sopks ahians Alppleabatic lisy of APLs
11120 Sl sed ghibes Here 15 an alphabatic ist of all aPls by descnption.
I Wsbepinare ADplcaEn SaO
T Wabgprans MO AP concepts
53 0 L ot i 184 Shthers I Descrines the underying concepts that you need to understand bo waork effactivety with &PIs.
11l syt 3 Among the concepts cowensd are hasic concepts, programiming considorations, and tomrinology
s »
3 Wsing AP ls
B ¥ e o i g g e s o

Figure 1 API documentation in the Information Center

The API page, Figure 1, provides three links for finding an API:

» API Finder
» APIs by Category
» Alphabetic List of APIs

If you have a preference for hard copy, you can take the link for Printable PDFs, download,
and print the PDFs of your choice. At the time of writing, PDF documents are not available for
Security or UNIX®-Type APIs.

There are also links for Concepts, Using APIs, and Examples, which we suggest that you
review if you coded a couple of simpler APls.

You are usually looking for an API for one of two reasons:

» You came across an APl in a program, and you are wondering what it does.

» You want to perform a task, and you are wondering if there is an API that can help you
achieve it.

Using the API Finder
The easiest way to find an API is to use the API Finder, shown in Figure 2 on page 4, which
allows you to search for an API by:

» Its category (“Backup and Recovery,” “Message Handling,” “Object,” “Printing,” and so on)
» A search for its name or a search based on a partial description
» A group (by descriptive name being the most useful)

RPG: APIs 3

APT finder

Usge the &PI finder Lo find information sbout iSerest™ Aple. (See note.) Vou find APTs by categery or by name.

Find by category

Select a category of ARLs.

» [Go

Fired by AP1 deschpbive name, by API name, or by part of the name.
Exampla: Emtar QESCHENS, Change backup soheduls, or just QEZ.

Show results contaimng: & all words T any words Go |

Find by group

2 all aPIs by descriptive nams

Al ARLs by AP] name

0 all new apls
rall changed ARIS

O all et programs

Mote: Mot 28 APIs that can be used on Series servers are available using this finder,

Figure 2 Using the API Finder function

Say you happen to come across a call to the QLIRLIBD API in a program, and you want to
check its description:

1. In the Information Center (Figure 1 on page 3), click the API Finder link. The API Finder
window is displayed (Figure 2).

2. In the Find by Name section, enter a value of QLIRLIBD, and click the Go button to reach
a page, Figure 3, that lists all matches for your search. In our example, we received just
one entry for Retrieve Library Description.

APT tinder
Results for "QLIRLIBD" Back to API command findsr
Retrigva Library Oascroption QLIRLIED DhJEI:t ~related

Figure 3 Result of searching for QLIRLIBD or Library Description

Perhaps you want to write a program that lists information about a library:

1. Go to the API Finder.

2. Inthe Find by Name section, enter a value of “Library Description”, and click the Go button
to reach a page that lists all matches for your search. Again, there is just one entry for our
example, Retrieve Library Description.

4 RPG: APIs

If you know that it is possible for a command to provide some of the information you are
looking for, you can perform a general search for the command in the Information Center:

1. Go to the Information Center, and locate the Search field, which is at the top of the Web
page(Figure 1 on page 3).

2. In the Search field, type the command name followed by the letters API (for example,
DSPLIB API), and you may be lucky with the result set.

APl Web sites

After you find the API you are looking for, try doing a general search on the Web for
information about the API. There is a good chance that somebody else has already
programmed this API, and, if you are lucky, they have a prototype and a working example
available for you to download. An excellent example of this kind of web site is Think400 from
Denmark, who at the time of writing, had nine pages of indexes to APl examples. Think400 is
located at:

http://www.think400.dk/apier.htm

Another excellent site is Thomas Bishop's AS400PRO.com, which provides not only
examples but also provides a consolidated index of many other APl examples. Access this
information at:

http://www.thomasbishop.com/servlet/sql.tipListIng?cat=API

You should also check in QSYSINC/QRPGLESRC (requires System Openness Includes -
option 13 of the base OS to be installed), for a source member with the same name as the
API, which provides you with required data structure definitions; however, it does not provide
prototypes, so you must code them yourself, or find them on the web. But, at least it provides
you with a starting point. Unfortunately, the members in QSYSINC are mostly conversions
from RPG Ill and use absolute notation for data structure definitions, use binary data types
(as opposed to integers), use “short” field names, and do not take advantage of qualified data
structures. RPGLE source members are not provided for all APls, most notably the
UNIX-Type APIs.

Tip: One of the best ways of performing a search for APIs on the IBM site is through
Google. Simply specify “site:ibm.com” after your search phrase to specify that Google
should only search ibm.com.

Types of APIs

There are three general types of available APls:

» Original Program Model (OPM)
» [Integrated Language Environment® (ILE)
» UNIX-Type

You can call all three types of APIs from an ILE program, but you can only call OPM APIs
from an OPM program.

OPM APIs are provided as separate programs (dynamic calls), whereas ILE and UNIX-Type
APlIs are provided as procedures in service programs (static calls).

Some of the ILE APIs correspond to an OPM API, for example, you can call the Add Exit
Program API to the program QUSADDEP or call to the procedure QusAddExitProgram. Both
have identical parameters and are described on the same page of the API reference.

RPG: APIs 5

http://www.think400.dk/apier.htm
http://www.thomasbishop.com/servlet/sql.tipListInq?cat=API

There are a number of differences between the three types of APIs, most notably in the way
they are described in the Information Center. The descriptions of the OPM and ILE APlIs are
written in a generic non-language specific format, but the UNIX-Type APIs are described from
the perspective of the C programmer.

Deciphering the documentation

Probably the best way to start with understanding the documentation is to look at a couple of
examples: the Execute Command (QCMDEXC) and the Retrieve Library Description
(QLIRLIBD) APIs. But first you must be familiar with the description of parameter data types
for APls.

Parameter data types

You must remember that the descriptions of the parameters are supposed to be language
neutral, so do not fall into the trap of doing a direct translation of the data type and length of a
parameter.

Some of the descriptions are straight forward and can be translated directly, like CHAR(10)
(10A in RPG) or PACKED(15,5) (15P 5 in RPG). But others are not straightforward.

A definition of CHAR(*) indicates that the length of the parameter string varies. There is
usually a corresponding parameter to indicate the length of the parameter string used. So,
you must determine the length of the string and specify that length in the corresponding
second parameter (you see this with QCMDEXC).

Yet, there is the definition that causes the most confusion - BINARY(4), which does not
translate to 4B 0 in RPG. BINARY(4) indicates a 4 byte binary integer, whereas 4B 0 in RPG
indicates a 2 byte binary field that contains four digits.

Actually, you should avoid the B data type in RPG altogether, even though most of the
examples in the Information Center still use them. This is a throwback to the days of RPG I
when you could only define binary fields and not integers. A 4 byte binary integer can store a
value in the range -2,147,483,648 to 2,147,483,647, whereas a 4 byte binary field in RPG
(defined as 9B 0) can only hold a value in the range -999,999,999 to 999,999,999. Integers
are also more efficient than binary data types. Refer to the FAQ on www.midrange.com for
more information about the meaning of BINARY(4) in APl documentation.

http://fag.midrange.com/data/cache/24.html

So a definition of BINARY(4) translates to 101 0 in RPG, and a definition of BINARY (4)
UNSIGNED translates to 10U 0.

Execute command (QCMDEXC)

The QCMDEXC API is the API you have seen most used in application programs.

The documentation for QCMDEXC starts with a general description of the parameters and a
description of what the API does (Figure 4 on page 7).

6 RPG: APIs

http://faq.midrange.com/data/cache/24.html
http://faq.midrange.com/data/cache/24.html

Figure 4 is an example of what the QCMDEXC API does.

I..

wecute Command (QUMDEXC) AP

Requred Parametber Group:

1 Comrmand string Irnput Char(™}
z Length of cammard string Input Packed (15,5}

Optional Parameter:
3 IGC process control IMPUT Char(3)

Default Public Acthority: *USE
Threzdsafe! Yes,

Sea Ysage Notes for command considarations.

The Execute Command {2CMDEXC) APL nuns a single command, It i wsed to ren a corvnand from within a
high=level language (HLL) program or from withen 2 CL program where it is not known at compile time what
cormmand is o be run or what parametsrs are to be used,

QCMDEXC is calied from within your HLL program and the command it runs is passed to it as a parameter on the
CallL command.

After the command runs, contral returns to pour HLL program.

Motes:

1. Command strngs in Systems38 syntax can wuse the QCAERKED APL. The QCAEXEC APL accepls the same
2. The Pracess Commands (QCAPCMDO) APL asd Fll"Clu'ilﬂl':‘E simmilar functions,

3. If the command to be executed is a proxy cormmand, the QUMDEXC aPL will resolve to the tangst command. [

4, Proxy commands will be resolved before the command exit points QIEM_CCA_CHE_COMMAND and

parameters as QCMDEXC,

e

tha target command is also a prosy, tha process repeats unti esither 3 non-proxy command is found, or the
proxy chain becomes greater than the allowed maximum. Once a non-proxy command is fownd, the sesolved
command will replace the prosy command in the command string to be executed,

QIeM_OZa_RTV_COMMAND are called,
e —n

Figure 4 Parameters and functional description for the QCMDEXC API

The parameter descriptions of the QCMDEXC API consist of:

»

>

Required Parameter Group, which are the parameters that MUST be passed on the call.

An Optional Parameter Group, which are parameters that may or may not be passed on
the call. You must specify all parameters in an Optional Parameter Group even if you only
need to use one. Some APls can have more then one optional parameter group (for
example QRCVDTAQ has two and QSNDDTAQ has three).

A short description of each parameter, which we describe in detail later in the paper.
Always make sure that you read the detailed description of the parameter, especially with
CHAR, since it could actually be a structure that is being defined as opposed to a simple
string.

An indication of how the parameter is used by the API.
— INPUT means that the parameter is input to the API, but the APl does not change it.

— OUTPUT means that the API returns a value in the parameter but does not care about
the value input.

— 1/O means that the value of the parameter is INPUT to the API and that a value is
OUTPUT from the API.

A description of the type and length of the parameter. There then follows a description of
what the API does, how it works and special notes.

RPG: APIs 7

8

RPG: APIs

The documentation continues with a description of any required authorities required to use
the APl and any locks that may be caused when using it, as shown in Figure 5.

Authorities and Locks
A CRrrna
*LISE

Figure 5 Authorities and Locks for the QCMDEXC API

The Required Parameter Group, shown in Figure 6, gives a detailed description of each of the
required parameters. The first parameter is defined as CHAR(*), and the value of the second
parameter indicates the actual length of the first parameter. This is quite a common feature
that many APIs use.

FHequired Parameter Group
GCommand string
[NPUT ; CHARL*)

The command you want to un entered as a character stnrng. IF the command contains blanks, & must be
enclosed in apostrophes. The maximum length of the character skring is 32,702 characters; delimiters {the
apostrophes enclosing the sthng) are not countad as part of the sthing,

Length of command string
[MPUT;PACKED{15,5)

Tha maximum length being passed. [f the command string 15 passed a5 a quotad string, the commard langih
15 axacily the langth of the fllll:‘:tsl." strng If the command '5t|'l"ll.'_| s passad ina '-.-ari-abla, the command length
15 the length of the vanable, It = not necessary o reduce the command length 1o the acteal length of the
command string in the variable, although it is permissible to do 0.

Figure 6 Required Parameter Group for the QCMDEXC API

The Optional Parameter Group, shown in Figure 7, gives a detailed description of each of the
optional parameters. The optional parameter for QCMDEXC, if specified, must have a value
of 'IGC' to indicate that DBCS is to be accepted.

Optional Parameter Group
IGC process conleol
INEUT; CHARLE)

The 1G4 process contral instructs the system to accept doubla-byte data. The only walue supported is 160,
1EC must be entared uzing all uppercase siters

Figure 7 Optional Parameter Group for the QUMDEXC API

The Usage Notes, shown in Figure 8, provide any warnings about when or where you must
not use the API.

Lisorge: MNobes

Wil this APL Is threadsala, it should not be used to Pan & cammand that is nat threadsals in & job that has
multipla threads. Use the Display Command {DSPOMD) command to daterming whethar a command Is threadsats.

Figure 8 Usage Notes for the QCMDEXC API

Error Messages, shown in Figure 9, list the messages that you can issue as a result of calling

the

API. These messages are in the program status data structure.

E

or Messagaes

Mezsage ID Error Message Text

CPFOONS E Eeturned command string eecaads variabla providad length
CPRFOO0S E Errars ocourred i comimand

CPF3CO0 E Literal valur cannot be changed.

CPFoB?2 E Brogram or service program &1 in ibvary &2 ended, Rezson code 3,

=EREAMNN E ary escape message issued by any command may be retumed. The messages listed previously

ara those issuad by this &Pl Once the AP has called the command snalyzar, any massage issued
a5 an S9Cape message may appear,

Figure 9 Error Messages for the QCMDEXC API

Lastly, there is the line at the end of the page, shown in Figure 10, that indicates when the API
was introduced, prior to V1R3 for QCMDEXC.

AP sxisbance pror Eo W 1R3

Top | Brogiann arsd Sl Cormunand ARIE | AFRDE Dy Calsoory

Figure 10 Release information for the QCMDEXC API

Next, we look at an example of using the QCMDEXC API.

Using the QCMDEXC API

Example 1 shows that the member, STDAPIINFO, contains the prototype for the QCMDEXC
API.

Example 1 STDAPIINFO contains the prototype for QCMDEXC API

(1)
(2)

(3)

D ExecuteCommand PR ExtPgm('QCMDEXC")

D Command 3000 Const Options(*VarSize)
D CommandLen 15 5 Const

D IGCProcess 3 Const Options(*NoPass)

The following list contains the main points in Example 1. The numbers in this list correspond
with the numbering in Example 1:

1.

Each of the parameters is defined with a CONST keyword, since they are all INPUT
parameters and you are not concerned about a value being returned. This allows us the
freedom to pass constants, expressions, or fields of slightly different definitions as
parameters to the API. Refer to section 3.6.1 of the IBM Redbooks® publication Who
Knew You Could Do That with RPG IV? A Sorcerer's Guide to System Access and More,
SG24-5402 for more information about prototype keywords.

. The command parameter is defined with OPTIONS(*VARSIZE) to indicate that any length

up to 3000 is acceptable (the length of 3,000 is arbitrary, it must be enough for the longest
command you might issue).

The IGC process parameter is defined with OPTIONS(*NOPASS) to indicate that it is an
optional parameter.

RPG: APIs 9

10

The program APIO1 is an example of a program that requests a library name and calls the
Display Library (DSPLIB) command to list its contents, as shown in Example 2.

Example 2 DSPLIB API example

H Option(*SrcStmt:*NoDebugIO)

/Copy APISRC,STDAPIINFO

D MyCommand S 50
D Library S 10
D ProgramInfDS SDS NoOpt
D Qualified
(1) D Msgld 7 Overlay(ProgramInfDS:40)
/Free
(2) Dsply 'Library Name: ' ' ' Library;
(3) MyCommand = 'DSPLIB ' + %Trim(Library) + ' *PRINT';
Monitor;
(4) ExecuteCommand (MyCommand:%Len (MyCommand)) ;
On-Error;
(5) Dsply ProgramInfDS.Msgld;
EndMon;
*InLR = *On;
/End-Free

Create this program by using the command:
CRTBNDRPG PGM(REDBOOK/API01) SRCFILE(REDBOOK/APISRC)

A successful call to APIO1 results in a spooled file that lists the contents for the library name
that you entered. The following list contains the main points of Example 2. The numbers in
this list correspond with the numbering in Example 2:

1. The message ID in the program status data structure identifies the message ID for any
failed command. If the message ID alone is insufficient for your error handling needs, you
can use the alternative QCAPCMD, which uses the standard API error structure that we
describe in the following section.

2. Alibrary name is entered.
3. The required command string is constructed.

4. The QCMDEXC APl is called to issue the command. The use of “%LEN BIF” for the
second parameter on the call is allowed because of the CONST keyword.

5. If the call to QCMDEXC ends in error, the message ID from the program status data
structure is displayed. In Example 2, we use a Monitor group as opposed to an E extender
on a CallP.

RPG: APIs

Error structure

The error structure is common to a lot of APIs and is a means by which an API can indicate
that an error occurred and provide information about the error. Example 3 is the definition of
an error structure defined in the member STDAPIINFO and used in the examples in this
chapter.

Example 3 Error structure definition in STDAPINFO

D APIError DS Qualified
(1) D BytesProvided 10I 0 inz(%size(APIError))
(2) D BytesAvail 10I 0 inz(0)
(3) D Msgld 7A
(4) D 1A
(5) D MsgData 240A

The following definitions, which are numbered to correspond with the numbering in
Example 3, are:

1. BytesProvided tells the API the size of the error structure, which determines how many
bytes of information, regarding an error, are returned by the API. The %size BIF is used to
initialize the value of the field to the size of the error structure.

2. BytesAvail is set by the APl and indicates how many bytes, regarding an error, were
returned by the API. The value of this field is greater than 0 if the API detected an error, so
check the value of this field if you need to know if there was an error.

3. MsgID is the seven character message ID that identifies the error. It corresponds to one of
the Error Messages listed in the documentation for the API.

4. The unnamed “filler” field is required and your program should not reference it.

5. MsgData is the variable message data for the message. This is not the complete
message text, but it is the variable portion of the message text, for example, the equivalent
of the information you provide for the Message Data (MSGDTA) parameter on the Send
Program message (SNDPGMMSG) command. The size of 240 is arbitrary but is large
enough to accommodate most situations without wasting storage.

The error code parameter is optional for some APls, particularly the older ones. If you do not
include the error code parameter, the API returns both diagnostic and escape messages to
the caller. If the parameter is coded, diagnostic messages are not returned. Exception
messages are returned to the caller based on the length available.

If you specify a BytesProvided length as zero, when an error occurs, an exception is returned
to the caller.

If you specify a BytesProvided length of eight, (actually any length from 8 - 11 has the same
effect) the ID of the exception message is placed in the Msgld field. No exception is signaled
to the application.

If you specify a BytesProvided length of 12 or more, then if an error occurs, in addition to the
Msgld, the MsgData is also filled in.

Even if you ultimately plan to have the API return the full set of exception data and act
appropriately, you might find it useful during the early stages of testing to set the length to
zero. Doing so causes your job to immediately halt if there is an error and allows you to look
at the job log and review the messages. Later, as you add the logic to handle exceptions, you
can set the length parameter to an appropriate value.

RPG: APIs 11

Retrieve Library Description (QLIRLIBD)

Now that you know the basic layout of the documentation, we can examine an API that has a
slightly more complex parameter structure. The QLIRLIBD API returns up to eight items of
information about a library, for example, text description, size of library, and the number of
objects in library.

Figure 11 shows the description and parameter for the QLIRLIBD API.

Retrieve Library Description (QLIRELBD) AP

Faquired Paramster Group:

1 EReceiver vanabls Cutput Char(*)
2 Length of ecewer variable Imput Bnary{4)
3 Library nams Input Char(1d]
4 Attributes to retrigve Input Char(™*}
5 Ermor code 140 Chari*}

Diafault Public Authority: *USE

Threadsafe: Yes

Thi Retrigwve Library Descrigtion {QLIRLIBDY APT lets wau retrieve sttributes for s spacific library, semilar to the
Retneve Library Descaption (RTYLIRBD) cormmand, This AP1 also retums the number of obpects in a hbrasy and the
total library size, the size of the objects in the library plus the size of the library object itzelf. Currently, the only
other finction that does this is the Display Ubrary (DSPLIE) command with OUTPUTE*PRINT),

Figure 11 Parameters for the QLIRLIBD API
The member STDAPIINFO contains the corresponding prototype for the QLIRLIBD API.

Example 4 QLIRLIBD API

D RetrievelLibrarylInfo...

D PR ExtPgm('QLIRLIBD')

(1) D Receiver 65535 Options(*VarSize)

(2) D ReceiverLen 10I 0 Const

(3) D Library 10 Const

(4) D RtvAttributes 50 Const Options(*VarSize)
D Error LikeDS (APIError)

The parameters, which are numbered to correspond with the numbers in Example 4, are:

1. The information returned by QLIRLIBD (more in a moment).
2. The length of the first parameter.

3. The name of the library.

4. The attributes to retrieve.

The Receiver and RtvAttributes parameters deserve further examination.

12 RPG: APIs

Retrieve Attributes

The documentation for QLIRLIBD, shown in Figure 12, describes the Attributes to Retrieve
parameter as a structure.

Attributes to retrieve
INPLIT; CHAR*®Y
The mformation for the library that you want to retrieve,
The mformation muest be in the followeng format:
Mumber of BINARY(E)

elemants in

g e The tatal nuriber of all of the reguest keys,

Fequast koys AfdAY of BINGRY(4)

A arvay of requast keys o identify what fields of information about the librasy are
requasted. The size of the array is defined in the preceding nurber of elements in
requast amay value. For a kst of the vald key identifisrs, ses the topic Kays

Figure 12 Description of the Attributes to Retrieve parameter

The member STDAPIINFO contains the corresponding definition of the structure used to
identify the required attributes.

Example 5 Definition of the structure that identifies the required attributes

D GetLibraryAttributes...

(1) D DS Qualified Based(DummyPtr)
(2) D NumberOfkeys 10I 0
(3) D RequestKeys 10I 0 Dim(15)

The following important points are numbered to correspond with the numbering in Example 5:

1. Since this data structure (and all other structures in STDAPIINFO) is for definition
purposes only, the data structure is based on a “dummy pointer” that is never set. This
means that the data structure does not occupy any memory in a program in which it is
included. When using the QLIRLIBD API, programs must use the LIKEDS keyword to
define a data structure with the same definition.

2. NumberOfKeys is the number of elements in theRequestKeys array that contain a requested
attribute key.

3. Each element of the RequestKeys array has a key ID (a number one to nine) that identifies
the attribute required.

Figure 13 shows the documentation for the available keys. Please note that key ID 9 is only
available from V5R4 onward.

Ko eys
The following table ksts the valid key identifiers that can be specified in the attributes to retrieve paramster, See
the Field Dascriptions for the descriptions of the valid key fislds.
Key ID Typea Flald

1 CHAR{ 1) Type of borary

2 BIMNARY(4) auxiliary storage pocl (ASP) mumber

3 CHAR{1D} Create avthonty

4 CHAR{10) Create object ausditing

5 CHAR{SD) Text dascrption

) CHAR{L2) Library sze information

¥ BIMARY 4] ‘humber of objects in library

B CHAR{ LD Aualiary storage pool (ASP) device name

B9 CHAR{10Y suniliary storage pool (ASP) Group name 4

Figure 13 Description of the Attribute Keys

RPG: APIs 13

14

Receiver parameter

The documentation for QLIRLIBD, shown in Figure 14, specifies that the receiver is actually a
format that is further described at “Format of Data Returned.” The second parameter must
identify the length of the structure you are providing as the first parameter.

Recalver variable
DUTPUT; CHARE*)

The wariable that is to receive the information requested. If this area is smaller than the actual length of the
data retumed, tha AR returmnms only the data that the area can hold. Refar to Eomiat of Dats Beturnad for

details about the format.

Length of receiver variable
INFUT; H.]NAR":'-{_‘I}

The length of the receiver variable. The minimurm length iz 8 bytes. [f ke length s largers than the size of
the receiver variable, results may be unpredictable,

Figure 14 Description of the Receiver and Receiver Length parameters

The documentation describes the format of data returned, shown in Figure 15, as a structure
which, in turn, contains yet more variable length data that is further described at “Format for
Variable Length Records.”

Format of Data Returmed

For detailed descriptions of the fields, see Field Descriptions.

Ofiset
Dec | Hex [Type Fiesld
0 || 0 |[almarviey Bytes returred
4 & |BINARY[) Bytes available
g | =] EHI-“!AR\'{-I} Wariable length records returned
12 e |BIARY {d) Yariable length records availabla
18 | 10 'EHAE{‘} sariabls igng:h record for each key specified. For the

specific format of the varable length record, ses
Eormuat for Wariahle Length Becord,

Figure 15 Description of the Format of Data Returned

RPG: APIs

The receiver variable contains information in the format shown in Figure 16. The number of
variable length records and the size of each record is dependent on the number of attributes
and attributes requested.

Static Information

Variable Length Record

Variable Length Record

Variable Length Record

Variable Length Record

Varable Length Record

Figure 16 Format of the Receiver Variable Returned

The member STDAPIINFO contains the corresponding definition of the structure returned by

the

API.

Example 6 Definition of the structure that the API returns

D LibraryInfoReceiver...

(1)
(2)
(3)
(4)

(5)

D DS Qualified Based(DummyPtr)
D BytesReturned 10I 0

D BytesAvail 10I 0

D VarLenRecReturned...

D 10I 0

D VarLenRecAvailable...

D 10I 0

D VarData 512

The subfields returned in the data structure, which are numbered to correspond with the
numbering in Example 6, are:

1.
2.

BytesReturned indicates the number of actual bytes returned by the API.

BytesAvail indicates the number of bytes that the API could have returned. The value of
BytesAvail can be greater than BytesReturned if the amount of data that the API can
return exceeded the size of the format that was specified for the receiver parameter.

VarLenRecReturned indicates the number of information records that the API returned.

4. VarLenRecAvail indicates the number of information records available. As with

BytesReturned and BytesAvail, any difference between the two is dependent on the size
of the format that is specified for the receiver parameter.

VarData is the data returned, and it contains one or more variable length records, which
are described in the documentations, as shown in Figure 17 on page 16.

RPG: APIs 15

Faormat for Variable Length Record

For detailed descriptions of the fields, see Fiald Dascriptions.

Offset
Dec Hax | Type Flald
] 0 BIMARYE) Langth of raturnad data
4 & B IR AR () Kay idantifiar
g 8 BINARY(E) Size of fiald
12 C CHARL*) Fiald valug
CHAaR{* RRserved

Figure 17 Description of the Format of Variable Length Record

The member STDAPIINFO contains the corresponding definition of the variable length
record.

Example 7 Definition of the variable length record

D FormatVariableRecord...

D DS Qualified Based(DummyPtr)
(1) D LenRetData 10I 0
(2) D Keyld 10I 0
(3) D FldSize 10I 0
(4) D Fldvalue 50
D FldValuel2 12 OverLay(F1dValue)
D FldValuelO 10 OverLay(F1dValue)
D FldValuel 1 OverLay(F1dValue)
D FldValuelnt 10I 0 OverLay(F1dValue)

This format only contains the actual data returned, for example, each instance cannot occupy
62 bytes of storage. The main points to note, which are numbered to correspond with the
numbering in Example 7, are:

1. LenRetData is the actual length of the variable length format.
2. Keyld is the key for which a value is being returned.

3. F1dSize (Size of Field) is the size of the returned field.

4

. Fldvalue (Field Value) is the value returned for the Keyld; however, the size of the field
value is different depending on the value of the KeylId (for example, the length of 1
returned for a KeyId with a value of 1—length of 10 returned for a KeyId with a value of 3);
therefore, F1dValue is overlaid by fields that correspond to the different returned lengths.
Refer to Figure 13 on page 13 for the type of field that is returned for each attribute.

The documentation specifies that the field value that is returned for the library size (type 6) is
another structure in the format shown in Figure 18.

Library Size Information Format

The following table shows the layout of the ibrary size information key, For detailed descriptions of the fields, see
Field Deescriptians.

Oifsel
Dec Hex Type Field
u] 0 BIMARY) Libwary Size
4 4 BIM&RY(<) Library size miltiphar
& g CHARC LY Information status
B 9 CHARL S Resaryead

Figure 18 Description of the Library Size Information Format

16 RPG: APIs

Example 8 shows that the member STDAPIINFO contains the corresponding definition of the
Library Size Information Format.

Example 8 Definition of the Library Size Information Format

D LibrarySizeInformation...

D DS Qualified Based(DummyPtr)
(1) D LibrarySize 10I 0
(2) D LibraryMult 10I 0
(3) D InfoStatus 1

D

The data structures, which are numbered to correspond with the numbering in Example 8,
consists of:

1. LibrarySize is the base size of the library.

2. LibraryMult is used to multiply the size to get the actual size. The multiplier is 1 for any
size less then 1,000,000,000.

3. InfoStatus contains a value of “1” to indicate that all objects in the library were used in
determining the size.

From the information in this section, you should have some idea of the “complexity” of how an
API returns information—a format that contains one or more variable length formats at least
one of which may contain another format.

In the next section, we look at an example of using QLIRLIBD.

Using the QLIRLIBD API

The program API02 uses the QLIRLIBD API to retrieve and list requested attributes for the
requested library, as shown in Example 9.

Example 9 QLIRLIBD API

H Option(*SrcStmt:*NoDebugl0)

(1) /Copy APISRC,STDAPIINFO

(2) D GetAttributes DS LikeDS(GetLibraryAttributes)
(3) D Inz
(2) D FormatReturn DS LikeDS(LibraryInfoReceiver)
D pFormatVarRec S *
(2) D FormatVarRec DS LikeDS(FormatVariableRecord)
(4) D Based(pFormatVarRec)
(2) D LibSizInf DS LikeDS(LibrarySizeInformation)
D i S 51 0
D DspData S 52
D Library S 10
D KeysIn S 9
D ForKeys S 9 Varying
D LOWER C "abcdefghijkIimnopgrstuvwxyz'

RPG: APIs 17

18

RPG: APIs

(5)

(6)

(7)
(8)

(9)

(10)
(11)
(12)

D UPPER C

"ABCDEFGHIJKLNMOPQRSTUVWXYZ'

/Free

Dsply 'Library: ' Library;

DspLy 'Keys (1 to 9): ' ' ' Keysln;
Library = %XLate(LOWER: UPPER: Library);
ForKeys = %Trim(KeysIn);

For i = 1 to %Len(ForKeys);
GetAttributes.RequestKeys(i) =
%Int (%SubSt (ForKeys:i:1));
EndFor;

GetAttributes.NumberOfkeys = %Len(ForKeys);

RetrieveLibraryInfo(ForMatReturn
: %Len(FormatReturn)
: Library
: GetAttributes
: APIError);

If APIError.BytesAvail > 0;
Dsply APIError.Msgld;
Dsply %Subst(APIError.MsgData:1:52);
*InLR = *On;
Return;
EndIf;

pFormatVarRec = %Addr(FormatReturn.VarData);
For i = 1 to FormatReturn.VarLenRecReturned;
Select;
When FormatVarRec.KeyId = 1;
DspData = 'l Type: '
+ FormatVarRec.FldValuel;
When FormatVarRec.Keyld = 2;
DspData = '2 ASP No: '
+ %Char(FormatVarRec.F1dValuelnt);
When FormatVarRec.KeyId = 3;
DspData = '3 Create Authority: '
+ FormatVarRec.F1dValuelQ;
When FormatVarRec.Keyld = 4;
DspData = '4 Create Object Auditing: ' +
FormatVarRec.F1dValuelO;
When FormatVarRec.KeyId = 5;
DspData = '5 '
+ FormatVarRec.FldValue;
When FormatVarRec.KeylId = 6;
LibSizInf = FormatVarRec.FldValuel2;
DspData = '6 Size: '
+ %Char(LibSizInf.LibrarySize)
+ ' ' + %Char(LibSizInf.LibraryMult)
+ ' ' + LibSizInf.InfoStatus;
When FormatVarRec.Keyld = 7;
DspData = '7 Objects: '
+ %Char(FormatVarRec.F1dValuelnt);

When FormatVarRec.KeyId = 8;
DspData = '8 ASP Device: '
+ FormatVarRec.F1dValuelO;
When FormatVarRec.KeyId = 9;
DspData = '9 ASP Group: '
+ FormatVarRec.F1dValuelO;
EndS1;

DspLy DspData;

(13) pFormatVarRec = pFormatVarRec + FormatVarRec.LenRetData;

EndFor;

*InLR = *On;
/End-Free

Create this program by using the command:
CRTBNDRPG PGM(REDBOOK/API02) SRCFILE(REDBOOK/APISRC)

The main points of interest, which are numbered to correspond with the numbering in
Example 9 on page 17, are:

1.
2.

© ® N o

Copy directive includes the required prototype and format definitions.

LIKEDS defines data structures for the Get Attributes, Receiver, Variable Length Record,
and Library Size Information formats.

The GetAttributes data structure is initialized to ensure that the integers in the data
structure are initialized properly.

. The data structure for the format of the variable length record is based on a pointer. The

data structure is overlaid onto each returned attribute record.

The library name and key attributes are input. The library name is converted to uppercase
(the library name is case sensitive). The string of attribute keys is trimmed and moved to a
variable length field (just to make the following loop through the attributes that little bit
easier).

The requested attributes are placed in the array of request keys.
The number of request keys is set.
The QLIRLIBD API is called.

The value of the bytes available in the error code is checked. If it is greater then zero (for
example, there is an error), the error message returned is displayed and the program
ends. To see this working, specify an invalid library name and duplicate attributes or an
invalid attribute key.

10.The program sets the pointer for FormatVarRec equal to the address of VarData in

FormatVarRec, for example, FormatVarRec now overlays the start of the variable data
returned by the QLIRLIBD API, so it is overlaying the first variable length record returned.

RPG: APIs 19

11.VarLenRecRet (the number of records returned) is the basis for a loop.

12.The program displays the relevant data returned based on the value of the Key ID. Look
again at the definition of FormatVarRec and note how F1dValue is overlaid by fields of
different lengths and types. It is important that you use the right lengths for the different
key IDs because they are the actual lengths returned—remember, it is a variable length
record. Also note how the value for Key ID 6 (Library Size) is moved to the LibSizInf data
structure for further breakdown.

13.The interesting bit is at the end of the FOR loop. You just finished with the record for one
key, and you now want FormatVarRec to overlay the next variable length record returned.
Simply add the length of the current variable length record to the current value of the
pointer.

Table 1 shows the contents of the receiver variable that contains the variable length records
for attributes one to eight.

Table 1 Sample contents of the Receiver variable for QLIRLIBD

Field name Start position Description Value
BytesReturned 1 Bytes Returned 222
BytesAvalil 5 Bytes Available 222
VarLenRecReturned 9 Variable Length 8
Records Returned
VarLenRecAvailable 13 Variable Length 8
Records Available
LenRetData 17 Length of Returned 16
Data
Keyld Key Id 1
FIdSize Field Size 1
FldValue Field Value ‘0
LenRetData 33 Length of Returned 16
Data
Keyld Key Id 2
FldSize Field Size 4
FldValue Field Value 1
LenRetData 49 Length of Returned 24
Data
Keyld Key Id 3
FIdSize Field Size 10
FldValue Field Value *SYSVAL

20 RPG: APIs

Field name Start position Description Value
LenRetData 73 Length of Returned 24
Data
Keyld Key Id 4
FIdSize Field Size 10
FldValue Field Value *SYSVAL
LenRetData 97 Length of Returned 64
Data
Keyld Key Id 5
FIdSize Field Size 50
FldValue Field Value ‘Sample Development
Library'
LenRetData 161 Length of Returned 24
Data
Keyld Key Id 6
FldSize Field Size 12
FldValue Field Value 892928 1 '1
LenRetData 185 Length of Returned 16
Data
Keyld Key Id 7
FIdSize Field Size 4
FldValue Field Value 6
LenRetData 201 Length of Returned 22
Data
Keyld Key Id 8
FIdSize Field Size 10
FldValue Field Value “SYSBAS

Example 10 shows the corresponding information that the program displays.

Example 10 Information that the program displays

DSPLY Library:

redbook

DSPLY Keys (1 to 9):

12345678

DSPLY 1 Type: 0
DSPLY 2 ASP No:

RPG: APIs 21

DSPLY 3 Create Autority: *SYSVAL

DSPLY 4 Create Object Auditing: *SYSVAL
DSPLY 5 Sample Development Library
DSPLY 6 Size: 892928 1 1

DSPLY 7 Objects: 6

DSPLY 8 ASP Device: *SYSBAS

The List APIs

Many of the APIs return lists of information, which means that the API returns a variable
amount of information, for example, the amount of information that the List Objects
(QUSLOBUJ) API returns is dependant on the number of objects being listed.

The List APIs are not a category of API (you will not find them on the “APIs by Category” Web
page); instead, they refer to the way that the APl works. They all work in the exact same way.
To create a user space:

1. Call the List API that provides the name of the user space. The required information is
placed in the user space.

2. Process the information in the user space.

3. Repeat steps 2 and 3 as often as required.

4. Delete the user space when you are finished. Alternatively, create the user space in
QTEMP so that it automatically disappears when the job ends.

You need to make use of user spaces when you are using the List APIs.

User spaces

22

Section 5.3 of the IBM Redbooks publication Who Knew You Could Do That with RPG IV? A
Sorcerer's Guide to System Access and More, SG24-5402 gives a fairly detailed description
of user spaces, so we are not going to repeat the process here. But it is a good idea to write a
couple of subprocedures to handle the user spaces required by the List APlIs.

The member STDAPIINFO contains prototypes for the CreatelListSpace and
DeleteListSpace subprocedures, as shown in Example 11.

Example 11 CreatelListSpace and DeleteListSpace subprocedures of STDAPIINFO

D CreatelListSpace...

D PR * ExtProc('CREATELISTSPACE')
D SpaceName 10A Const

D DeletelListSpace...

D PR ExtProc('DELETELISTSPACE')
D SpaceName 10A Const

Both subprocedures accept the name of a user space and the CreateListSpace
subprocedure returns a pointer to the address of the user space in memory.

The member STDAPIINFO also contains prototypes for the User List APIs to Create a User
Space (QUSCRTUS), Change User Space Attributes (QUSCUSAT), Retrieve Pointer to User

RPG: APIs

Space (QUSPTRUS) and Delete a User Space (QUSDLTUS) along with the definition of the

attribute structure that QUSCUSAT requires, as shown in Example 12.

Example 12 Prototypes of the member STDAPIINFO

D CreateUserSpace...

D PR ExtPgm('QUSCRTUS"')
D UserSpaceName 20A Const
D Attribute 10A Const
D Size 10I 0 Const
D Initial 1A Const
D Authority 10A Const
D Text 50A Const
// Optional Parameter Group 1
D Replace 10A Const Options(*NOPASS)
D ErrorCode Options (*NOPASS)
D LikeDS (APIError)
// Optional Parameter Group 2
D Domain 10A Const Options(*NOPASS)
// Optional Parameter Group 3
D TransferSize 10I 0 Const Options(*NOPASS)
D OptimumAlign 1A Const Options(*NOPASS)
D ChangeUserSpaceAttributes...
D PR ExtPgm('QUSCUSAT')
D ReturnLibrary 10A
D UserSpaceName 20A Const
D Attribute Const
D LikeDS (SpaceAttribute)
D ErrorCode LikeDS (APIError)
D GetUserSpace PR ExtPgm('QUSPTRUS"')
D UserSpaceName 20A Const
D pSpacePtr *
D ErrorCode Options (*NOPASS)
D LikeDS (APIError)
D DeleteUserSpace...
D PR ExtPgm('QUSDLTUS"')
D UserSpace 20A Const
D ErrorCode LikeDS (APIError)
D SpaceAttribute DS Qualified Based(DummyPtr)
D NumberOfRecs 10I 0
D ExtendRecord 12A
D Key 10I 0 Overlay(ExtendRecord)
D Length 10I 0 OverlLay(ExtendRecord:*Next)
D Extend 1A OverLay(ExtendRecord:*Next)

The member SPACEPROCS contains the definition of the CreateListSpace and
DeleteListSpace subprocedures, as shown in Example 13 on page 24.

RPG: APIs

23

24

RPG: APIs

Example 13 CreatelListSpace and DeleteListSpace subprocedures in SPACEPROCS

H NoMain Option(*SrcStmt : *NoDebugIQ)

(1)
(2)

(3)

(4)

(5)

(6)

/Copy APISRC,STDAPIINFO

P CreatelListSpace...
P B Export
D CreatelListSpace...
D PI *
D SpaceName 10A Const
D FullSpaceName S 20A
D Library S 10A
D SpacePtr S *
D SetAttribute DS LikeDS(SpaceAttribute)
D Inz
/Free
Ful1SpaceName = SpaceName + 'QTEMP';
De]eteUserSpace(FullSpaceName
: APIError);
CreateUserSpace(FullSpacename
: '"APILIST'
: 1000000
: x'00'
"*ALL'
'User Space for API Qutput'
: "*YES!
: APIError);
SetAttribute. NumberOfRecs =1
SetAttribute.Key = 3;
SetAttribute.Length = 1;
SetAttribute.Extend = '1';
ChangeUserSpaceAttributes(Library
: FullSpaceName
: SetAttribute
: APIError);
GetUserSpace(FullSpacename
: SpacePtr
: APIError);
Return SpacePtr;
/End-Free
P E

P DeletelListSpace...

P B Export
D DeleteListSpace...

D PI

D SpaceName 10A Const
D FullSpaceName S 20A

/Free
Ful1SpaceName = SpaceName + 'QTEMP';
DeleteUserSpace(FullSpaceName
: APIError);
/End-Free
P E

Create the SPACEPROCS service program by using the following commands:
CRTRPGMOD MODULE (REDBOOK/SPACEPROCS) SRCFILE(REDBOOK/APISRC)

CRTSRVPGM SRVPGM(REDBOOK/SPACEPROCS) EXPORT(*ALL)

Add the service program to the APIS binding directory by using this command:
ADDBNDDIRE BNDDIR(REDBOOK/APIS) 0BJ((REDBOOK/SPACEPROCS))

The main points to note, which are numbered to correspond with the numbering in
Example 13 on page 24, are:

1. Only the user space name is provided as a parameter. The subprocedure creates the user
space in QTEMP.

2. Even though the user space should not exist in QTEMP, the subprocedure makes sure by
deleting the user space.

3. The user space is created with an initial size of 1,000,000 bytes. One of the issues of
dealing with the list APIs is that you must ensure that you have enough space for the data
returned. One solution is to use the maximum size of 16 M, or the other solution, which
you see in Example 13 on page 24, is to make the user space extendable.

4. The attribute of the user space is changed to make it extendable. Refer to section 5.3.1.7
of Who Knew You Could Do That with RPG IV? A Sorcerer's Guide to System Access and
More, SG24-5402 for details.

5. The user space is loaded, and the pointer to its memory location is retrieved.

6. The pointer to the user space is returned.

The List APl documentation

The documentation for a List API follows a standard format in the Information Center. For any
List API you will see the following headings:

v

Description

Authorities and Locks

Required Parameter Group

Optional Parameters (if any)

Format of the Generated List

Input Parameter Section

Header Section

List Data Section (for each possible format request)
Field Descriptions

Error Messages

vyVVyVYyVYVYVYYVYYY

The Format of the Generated List section contains a link for “User Space Format for List
APIs”

RPG: APIs 25

User space format for List APIs

Another item that is common to the List APIs is the way in which information is placed in the
user space. Although the content of the user space is dependent on the API that is used to
populate it, the format in which the information is placed in the user space is standard.

Information is placed in the user space in five segments, as shown in Figure 19. The five
segments are:

1. The content of the User Area segment is common to all List APIs, and you can use it as a
communication area if you are sharing the user space between multiple programs.

2. The content of the Generic Header segment is common to all List APIs and contains
information about the API that is used to populate the user space. Most importantly, it
contains pointer offsets to the other segments in the user space, an indication of the
number of entries in the list, and the size of each entry.

3. The content of the Input Parameters segment is unique to each API and reflects the
values passed as parameters to the API. Therefore, the size of the Input Parameters
segment is different for each API.

4. The content of the Header segment is unique for each APl and contains general
information that is pertinent to the use of the API.

5. The content of the List Data segment is unique for each APl and contains the list of data
that the API generates.

User Area

Offset To Input Generic Header
Offset To Header.

Offset To List
Mumber In List
Entry Size

Input Parameter

Header

List Data

Figure 19 Format of Data in a List APl User Space

26 RPG: APIs

Figure 20 shows the documentation for the Generic Header.

Commaon data structure formats

This topic shows the genernc user space layout. Format 0100 skows the format for an onginal program rmodel

{(OPM3 layvout, Farmat 0300 shows the format for an Integrated Language Environment® (ILEY madel layout, The
fields are described in detail after the table.

Generic header format 0100

\Offsat | Type Figld
Dec|Hex
a ¥ CHAR(G4) | User area
G |40 | BINARY(SE)
"63 B e CH.I'J.R.{QI}_” -é-f.n.l::!urn‘q release and lewel
| TZ2 |48 CH.I'J.I'-I.;{;B}; Fnrr.n.:;l: narme

ISIZI ED CH.ﬁ.D.;{.ln}l EPT used

I‘E!I:I B CH.I'J.R{lE:’;I Date and timée creatod

I 103 |67 |CH&R{1) |Imformation status

: 104 |68 E[NAR:\"I::‘EIJ Sizre af user space used

108 |6C | BIMARY(4) | Offsel Lo input parameter section

112 (70 | BINARY(4) | Size of input paramseter section
116 (74 |BINARY(4) | Offset to header section
120 (78 |BIMNARY(4)|Size of header section
124 [7C | BINARY(4) | Offset to list data section
128 (80 |BIMNARY(4) | Size of list data section
132 (84 |[BINARY($) | Mumber of kst entries
136 (88 |BINARY(4) | Size of each entry
140 [BC |BINARY(4) | CCSID of data in the list entres
144 (90 |[CHA&R{Z} |Cowntry or region 1D
146 (82 |CHAR{ZY |Language ID
149 |95 |CHAR{L) |Subsetted list indicator
| 150 |96 | CHAR{42) |Peserved

Generic header format 0300

foﬁsat Typa Field
Dec| Hax
o 0 Ewvarything from the 0100 format

192 [CO0 [CHAR(Z56) | APL entry point name
448 | 1C0 [CHAR(128) | Reservad

Figure 20 Structure of the Generic Header

Example 14 shows that the member STDAPIINFO contains the corresponding definition of
the Generic Header.

Example 14 Definition of the Generic Header

D Base_GenericHeader...

D DS Qualified Based(DummyPtr)
(1) D UserArea 64A

D HeaderSize 10I 0

D Releaselevel 4A

D Format 8A

D APIUsed 10A

D Created 13A

D Status 1A

D UserSpaceSize 10T 0
(2) D OffsetToInput 101 0

RPG: APIs

27

28

RPG: APIs

D SizeOfInput 10I 0
(2) D OffsetToHeader...

D 10I 0

D SizeOfHeader 10I 0
(2) D OffsetTolList 10I 0

D SizeOfList 10I 0
(3) D NumberInList 10I 0
(3) D EntrySize 10I 0

D EntryCCSID 10I 0

D CountryID 2A

D LanguagelD 3A

D SubsettedList 1A

D 42A

// Only use for ILE

D EntryPointName...

D 256A

D 128A

The Generic Header contains many fields that might or might not be of interest to you, but the
following items are the main components of the Generic Header that are of practical use, and
they provide the means of accessing the rest of the information in the user space. The
following numbered list explains the fields in Example 14 on page 27. The numbers in this list
correspond with the numbering in Example 14 on page 27:

1. The UserArea is common to all list APls and may contain any information you want.

2. 0ffsetToInput, 0ffsetToHeader, and OffsetToList provide the offsets to the variable
portions of the user space. When the API copies information to the user space, the
Header information is always at the start of the user space. You use the address of the
user space, plus the relevant offsets, to set the starting locations of the Input Parameters,
Header, and List Data sections.

3. NumberInList provides the number of entries in the list, and EntrySize provides the size of
each entry. You use these values to “loop” through the entries in the list.

Let us look at an example of how to decipher the contents of the Input Parameters, Header,
and List Data segments using the List Record Format (QUSLRCD) and List Fields
(QUSLFLD) APIs. These APIs are the foundation for a solution for one of the most commonly
asked questions on the RPG Internet lists: How can | obtain the value of a field whose name
is stored in another field? After you master the basics of this API, you might want to continue
your explorations by studying the code at the Midrange.com FAQ, which you can find at:

http://fag.midrange.com/data/cache/51.html

You can find the descriptions of the QUSLFLD and QUSLRCD APIs in the Information Center
using the API finder.

http://faq.midrange.com/data/cache/51.html
http://faq.midrange.com/data/cache/51.html

List Record Formats (QUSLRCD)

The List Record Formats (QUSLRCD) APl lists all record formats for a requested file.
Figure 21 shows the documentation for the parameter group and the API description.

List Record Formats (QUSLRCDY APL

Required Parameter Group:

optional Parameter Group:

Service Prograrn Mame: QUSLRCD
Default Public Authority: *USE

Threadsafe: No

1 Qualifind user space nams Inpust Char{20)
z Format name [nput Char{g}
k] Qualified file name [nput Char{20%
& Overmcde procassing Input Char{1}

5 Ermror code [0 Char ™)

a5

The List Record Formats (QUSLRCD) AP] generates a list of record format infarmation contained within the
spacified file and places the 1 in a specified uder space. The created list replaces army existinng informaton in the
user space.

You can use the QUSLRCD AP] with database file types, such asz *PF, *1F, and *0ODMF, and device file tyvpes, such

*DSRF, "TAPF, "DKTF, *PRTF, *SAVF, and *ICFF.

Figure 21 Parameters for the List Record Formats (QUSLRCD) API

The member STDAPIINFO contains the corresponding prototype.

Example 15 STDAPIINFO corresponding prototype

D ListFormats PR ExtPgm('QUSLRCD")

(1) D UserSpace 20A Const

(2) D FormatName 8A Const

(3) D FileName 20A Const

(4) D Override 1A Const

(5) D Error LikeDS(APIError)
D Options(*NoPass)

The definitions of the parameters, which correspond with the numbering in Example 15, are:

1.

The User Space name identifies the user space in which the list is placed. This
twenty-character field identifies the name of the user space in the first ten characters,
followed by the name of the library (*CURLIB and *LIBL are allowed for the library name).
Ensure that the names are in uppercase.

The Format Name identifies the format in which the list information is returned. The
allowed values are RCDL0100, RCDL0200, and RCDL0300. This value indicates how to
interpret the information that the API returns.

The File Name identifies the file you want to examine. The naming rules are the same as
the user space name.

Override processing indicates whether or not active overrides should be taken into
account when the API is called. In other words, if the requested file is overridden to
another file, this value indicates whether the API should run against the requested file or
the overridden file.

The last optional parameter is the standard API error structure.

RPG: APIs 29

30

Figure 22 shows the definition of the Input Parameter Section for the QUSLRCD API.

[hput Parameter Section
offsat

DR Hax | Typnr Finid

o [|CHARS 1O Usar spaca nama

10 A L‘Hnl{{l".lj- User space library name
20 L4 CHAR{E) Farrmal rname

20 ic CHARL 1D File name specified

aa 26 CHARCIDN File hiorary name specified
48 =] ICHARC L) OvaEmde processing

Figure 22 Input Parameter section for QUSLRCD

The member STDAPIINFO contains the corresponding data structure definition, as shown in
Example 16. The contents of the data structure reflect the parameters specified when
QUSLRCD was called.

Example 16 Data structure definition for the Input Parameter section for QUSLRCD

D Base_RecordInputParm...

D DS Qualified Based(DummyPtr)
D UserSpace 10A

D UserSpacelLibrary...

D 10A

D Format 8A

D File 10A

D FileLibrary 10A

D Override 1A

At first glance, you may think that the Input Parameter Section is superfluous to requirements,
but it can be useful if the program or procedure that processes the user space is not the
program or procedure that originally called the API.

Figure 23 shows the definition of the Header Section for the QUSLRCD API.

Header Section
Dffsat
Do Hax ([Type Fiald
[u] i} ICHAR({1O] |File name uzed
10 & .l.‘HnﬂxF"(llil] File Horary name wased
20 14 [CHAR{1D) File type
an 1E CHARISD) File taxt descnption
80 =11 BIMNARY (4 Filg text descrption CCSID
B4 Ed CHAR {13} Fila craation date

Figure 23 Header Section for QUSLRCD

The member STDAPIINFO contains the corresponding data structure definition, as shown in
Example 17.

Example 17 Data structure definition for the Header Section of QUSLRCD

D Base_RecordHeader...

D DS Qualified Based(DummyPtr)
D FileUsed 10A

D FileLibraryUsed...

D 10A

D FileType 10A

RPG: APIs

D FileText 50A

D 1A

D FileTextCCSID 10I 0
D FileCreationDate...

D 13A

The Header section provides basic information about the file used. Remember that the actual
file that is used might be different from the file requested, depending on the value of the

override parameter.

QUSLRCD returns list data in one of three formats, depending on the value of RCDL0100,

RCDL0200, or RCDL0300 specified for the Format parameter. Figure 24 shows the definition

of the formats for QUSLRCD.

RCOLO100 List Data Section

Offsat
Dec
o]

Firld

|Record format name

Hex |Typs

[cHARM10]

RCOLOZ00 List Data Section

RCDLO300 List Data Section

Offseet

Dz Hexse | [Ty |Field

a a |CHAR(1O) Record format name

10 B JCHAR(13) Record format 10

=3 17 |CHARI1) [reserved
22 1B |[BIMaRY(4) [recora length

o8 10 |[EIMaRv(4 [Mumlz=r of fizids

32 0 [CHAR(SD) :REv:i:u"c- taxt description

g2 52 [CHARIZ) [resarved

84 L4 |BIR&SEY (43 :I'-‘:n::cnn,‘. text description CCSID

Off st

Dz Huzxe Ty Fiuld

1] a |CHARC1O) |Pcord farmat name

0 A |CHARL2Y |Lowest response indicator

12 G BINARY(4) |Buffer size

16 10 _I:H.&F!;f.e-l:l:] :Recnrc- format iw;.-ps

36 24 [cHAR(L) [5tarting line number

37 25 fl:H-‘-Ft(I‘.u |Separate ndicator area present

Figure 24 Formats of List Data for QUSLRCD

The member STDAPIINFO contains the corresponding data structure definitions, as shown in

Example 18.

Example 18 Data structure definitions for the Formats of List Data for QUSLRCD

D Base_RcdL0100 DS
D FormatName 10A
D Base_RcdL0200 DS
D FormatName 10A
D Formatld 13A
D 1A
D RecordLength 10I 0

Qualified Based(DummyPtr)

Qualified Based(DummyPtr)

RPG: APIs

31

D NumberOfFields...

D 10I O
D FormatText 50A

D 2A

D FormatTextCCSID...

D 10I 0
D Base_RcdL0300 DS Qualified Based(DummyPtr)
D FormatName 10A

D LowestResponselnd...

D 2A

D BufferSize 10I 0
D FormatType 20A

D StartLine 1A

D INDARAPresent 1A

D 1A

The List Data contains an entry in the requested format for each record format that is defined
in the file. The RCDL0300 format might only be specified for device files.

List Fields (QUSLFLD)

The QUSLFLD API generates a list of fields for a specified record format in a file. Figure 25
shows the documentation for the parameter group and the API description.

List Fields (QUSLFLD) API

Required Parameter Group:

1 Qualified user space name Input Char(20}
2 Farmat name Input Char(8)
3 Qualified file name Input Char{z0}
4 Record format name Input Char{10}
3 Cverride processing Input Char{1)

Cptional Parameter:
6 Error code /0 Char(*}

Default Public Authaority: *USE

Threadsafe: Mo

The List Fields {QUSLFLD) API generates a list of fields within a specified file recard format name. The list of fields
is placed in a specified user space. The generated list replaces any existing information in the user space. You can
use the QUSLFLD API only with database file types, such as *PF, *LF, and *DDMF, and device file types, such as
*ICFF and *PRTF.

¥ou can use the QUSLFLD APT to:
* Generate a list of field format names.
¢ Gather additional information about specific field formats.

* Create a product similar to the Structured Query Language {SQL) using the Open Query File {OPNQRYF)
command,

*

Create applications similar to the data file utility {DFLY,

* Create a compiler supporting externally described data,

*

Create applications that use data defined to the system.

Figure 25 Parameters for the List Fields (QUSLFLD) API

32 RPG: APIs

The member STDAPIINFO contains the corresponding prototype, as shown in Example 19.

Example 19 STDAPIINFO corresponding prototype

D ListFields PR ExtPgm('QUSLFLD")
D UserSpace 20A Const
D FormatName 8A Const
D FileName 20A Const
D RecordFormat 10A Const
D Override 1A Const
D Error LikeDS(APIError)
D Options(*NoPass)

The definitions of the parameters are identical to those for QUSLRCD with the addition of the
Record Format Name, which identifies the record format in the file for which you want to list
the fields. Naturally, the values for the Format Name are different: FLDL0100, FLDL0200, and
FLDLO300. The API only retrieves the information for one record format. You can specify a
value of *FIRST for the format name (even though this is not indicated in the documentation),
which is useful if you are using the API with single format files, but you do not know the name
of the format.

Figure 26 shows the definition of the Input Parameter section for the QUSLFLD API.

It Paraimeter Section
Mrset

Dec | Hex Type Fiesldl

0 Li] CHAR 103 Uzer gpace namse

10 A CHAR{ 103 Usar space library riamea

20 1 CHAR]S) Forrmat name

28 1& CHARS 103 File riame specified

£ 26 CHAR{ 10 File library name specified

42 20 CHARY 1O fepcord format name specified
1= 34 CHAR{ L) Owerride processing

Figure 26 Input Parameter section for QUSLFLD

The member STDAPIINFO contains the corresponding data structure definition, as shown in
Example 20. The contents of the data structure reflect the parameters specified when
QUSLFLD was called.

Example 20 Data structure definition for QUSLFLD Input Parameter section

D Base_FieldInputParm...

D DS Qualified Based(DummyPtr)
D UserSpace 10A

D UserSpacelLibrary...

D 10A

D Format 8A

D File 10A

D FileLibrary 10A

D FileFormat 10A

D Override 1A

RPG: APIs 33

Figure 27 shows the definition of the Header section for the QUSLFLD API.

Header Section
Offsat

Dec Hex ([Type Field

o 0 |[CHAR(1D) File name usad

10 A CHARS 10} Filz hbrary name used

20 14 |[CHAR(1D) Filz type

a0 1E CHARE 107 |Pecard format name used

Ll 28 le-:qF:‘-fi'-l-:':u \Rzcord length]

45 2C CHARL 13} |Record format 1D

57 =0 Eﬁ.ﬁ:u.(:ﬁl'.,‘ Lr.prnrd tamt rIn':r.rlrul:.in.n

107 50 [CHAR(1) |Reserved

1408 G I:lli‘-&éu;-ﬁ;[-l-} [record text description CES10
112 70 [CHAR{1) “ariable length figlds in format indicator
113 Tl |CHAR(1) |Graphic fields indicatar

114 72 |CHAR{1) |Date and time fislds ingicator
115 73 ICHAR(1) Hull-capahble fields indicatar

Figure 27 Header Section for QUSLFLD

The member STDAPIINFO contains the corresponding data structure definition, as shown in
Example 21.

Example 21 Data structure definition for the Header section for QUSLFLD

D Base_FieldHeader...

D DS Qualified Based(DummyPtr)
D FileUsed 10A

D FilelLibraryUsed...

D 10A

D FileType 10A

D FormatUsed 10A

D RecordLength 10I 0
D Formatld 13A

D FormatText 50A

D 1A

D FormatTextCCSID...

D 10I 0
D VariablelLengthFieldsInd...

D 1A

D GraphicFieldsInd...

D 1A

D DateTimeFieldsInd...

D 1A

D NullCapableFieldsInd...

D 1A

The Header section provides basic information about the record format that is being listed,
such as the record length and format ID. It also contains indicators (zero or one) as to
whether or not the record contains Graphic Fields, Date/Time Fields, or Null Capable Fields.

QUSLFLD returns list data in one of three formats, depending on the value of FLDL0100,
FLDL0200, or FLDLO300 specified for the Format parameter.

34 RPG: APIs

Figure 28 shows the definition of the FLDL0100 format for QUSLFLD.

FLDLOLOO List Data Section

Oil'f.s ::.t

Dec Huzxc |T'ypl.- Finld
o 0 ||EHARLO) |Figld name
10 [chariLy |pata type
11 B |cHaR(1) e
1z [BIMaRY) |t put Buffer pasitan
1& 10 [[RINARV(S) [1mput burfer positien
20 14 |[RINARY(S) |Fiate tengts in bytes
2+ | 18 |pnarv(s) |[oians
2 1 [BINARY(4) |Decimal positan
22 | 20 ||cHargooy ||Fietd rext deseription
8z 5z ||CHAR(Z) [t cone -
a4 B+ |[BINARY(4) |Ecit word length
=) 5B |CHAR(S4) |Ecit word
[1sz | oe |[cham{zoy [colimn hezding 1
172 AC |[cHam(20) |zolumen heading 2
192 | cD |[CHAR{ZDY [colurmn heading 2
S CHAR{ 1D} |]nl'e~rna| field name
EAEE DE |[CHAR{2DY [alemztive fisid nams
252 FC |BINARY(4) |Length of alternative field name
256 100 [BIMARY(%) |Mumber of DBCS characters
260 104 |CHAR{LY |Nu|l valies allowed
261 105 |[CHAR{L} |H|:|st vanable indcator
262 106 ||[CHAR{4} |pate znd time format
266 104 ||CHAR{L) |pate and time separator
267 108 |[CH&R{L) vanzole length fisls indicator (overlay for ML
mapping)
260 100 |[BINARY(E) |Fieta teut description CoS10
EE 110 |[BINARY(E) [Fied data cczim
276 114 |[BINARY(4) |Figtd columea headings CosI
" ze0 | 118 |BINARY(3) |Figta edit words ccsiD
204 L0 |[BINARY(E) |ucs-2 displayed fizld length
284 120 |[BINARY(E) |Figld data encodng schems
202 124 |[BINARY($) |Masimurn targe object fisld lengti
206 128 [BINARY($) |Pad length far large object
300 120 |[BIMARY({%) |L_9ngth of user-defined type name
04 130 |[CHAR{LZEY Usar-defined type nams
432 160 ||CHAR{LD} Usar-defined type Worary nams
442 lea |[CHAR{L) Dratalink: link cantrol
443 1BE ||CHAR{L} Dratalink integrity
424 1BC ||[CHAR(L)Y Datalink read permission
445 1BD» |[CHAR{L) Datalink write parression
445 1BE ||[CHAR({L) Datalink recovery
| 447 1BF ||CHAR{L} Cratalink undind contral
448 12O ([BIMARY(£) |Dispia5.' oF prink row Aumber
452 104 |BINARY($) Display or print column numbsr
456 1C8 ||CHAR(LY R0 column
457 1c9 |[cHar(Ly [122ntity cotumn
4z8 1Ca |[cHaR(L) GEMERATED BY
459 1CB ||[CHAR{L). Igzntity column - CYCLE
460 105 ||DECIMAL{ZL,0) [1dentity column - driginal START WITH
476 10C |[DECIMAL{ZLO) | [Idzntity column - Cument START WITH
402 1EC |[BINARY(E) Id=ntity column - INCREMENT 8Y
496 1F0 |[DECIMAL{ZL0) |[identity column - MINYALUE
512 200 |PECIMAL{Z1,0)
s28 | 210 |[BiMaRy()
| saz | 214 |[cHam(1)
533 215 [CRAR(LTY Pesarved

Figure 28 FLDL0100 Format returned for QUSLFLD

RPG: APIs

35

The member STDAPIINFO contains the corresponding data structure definition, as shown in
Example 22.

Example 22 Data structure definition for FLDL0O100 for QUSFLD

D Base F1dL0100 DS Qualified Based(DummyPtr)
D FieldName 10A
D DataType 1A
D Use 1A
D OQutputBufferPosition...
D 10I 0
D InputBufferPosition...
D 10I 0
D FieldLengthBytes...
D 10I 0
D Digits 10I 0
D Decimals 10I 0
D Text 50A
D EditCode 2A
D EditWordLength...
D 10I 0
D EditWord 64A
D ColumnHeadingl...
D 20A
D ColumnHeading2...
D 20A
D ColumnHeading3...
D 20A
D InternalFieldname...
D 10A
D AlternativeFieldname...
D 30A
D AlternativeFieldnamelength...
D 10I 0
D NumberOfDBCS 10I 0
D AllowNULL 1A
D HostVariablelnd...
D 1A
D DateTimeFormat...
D 4A
D DateTimeSeparator...
D 1A
D VarLenFieldInd...
D 1A
D TextCCSID 10I 0
D DataCCSID 10I 0
D HeadingCCSID 10I 0
D EditWordCCSID 10I 0
D UCS2Length 10I 0
D EncodingScheme...
D 10I 0
D MaxLOBLength 101 O
D PadLengthLOB 10I 0
D UDTNameLength 10T O
D UDTName 128A
D UDTLibrary 10A

36 RPG: APIs

D DatalinkLinkControl...

D 1A

D DatalinkIntegrity...

D 1A

D DatalinkReadPermission...

D 1A

D DatalinkWritePermission...

D 1A

D DatalinkRecovery...

D 1A

D DatalinkUnlinkControl...

D 1A

D RowNumber 10I 0
D ColumnNumber 10I O
D ROWIDCoTumn 1A

D IdentityColumn...

D 1A

D GeneratedBy 1A

D IdentityColumn_Cycle...

D 1A

D IdentityColumn_OriginalStartWith...
D 31P 0
D IdentityColumn_CurrentStartWith...
D 31P 0
D IdentityColumn_IncrementBy...

D 10I 0
D IdentityColumn_MinValue...

D 31P 0
D IdentityColumn_MaxValue...

D 31P 0
D IdentityColumn_Cache...

D 10I 0
D IdentityColumn_Order...

D 1A

D 11A

Now, all you have to decide is which items of information are relevant. It usually takes some
experimentation to interpret the information returned. For example, FLDL0O100 returns the
number of bytes of storage required for a field, not the length of the field. If the field is
numeric, you can use the digits for the length. If the field is a varying length character field,
subtract two from the storage length.

RPG: APIs 37

Figure 29 shows the definition of the FLDL0200 and FLDLO0300 formats.

FLDLOZ200 List Data Section

Offsat
| Dec Hex Type |Firld
a o [BINARY (4} Length of FLOLC200 format
4 4 E-]N.ﬂ.R'r'l:_-1-:. Disolacemant to defadt valus
i B M aRT) [Length of default valua
iz C i.ﬁ.ll Felds dofined by FLOLO100 Forrmat
* * CHAR(™) |Default walue

FLDOLO300O List Data Section

Offset
| Dec Hex Typs Fleld
[T 0 [minaRve [Length of FLELOS00 Farmat
+ || # |[pansrvoa) [Displacement to all felds defined by FLOLO10O format
a 2] BIMARY4) Displacement ko altermative fisld name
= || ¢ BINARY(4) |pisplacement to default valss
146 10 .H'!NAI'-'.'f'{ﬂ} Lenath of dafault valus
- * (Al fields defined by FLOLOL00 format
¥ i CHaR(™) [altarnative feld narme {I-:nh-.j,'n
" | CHAR(*) Dafault walua

Figure 29 FLDL0200 and FLDL0300 Formats returned for QUSLFLD

The member STDAPIINFO contains the corresponding data structure definitions, as shown in
Example 23.

Example 23 Data structure definitions for FLDL0200 and FLDL0300 for QUSLFLD

D Base_F1dL0200 DS Qualified Based(DummyPtr)
D F1dLO200Length...
D 10I O
D DefaultOffset 10I 0
D DefaultLength 10I 0
// F1dL0100 LikeDS(Base F1dL0100)
// DefaultValue A
D Base F1dL0300 DS Qualified Based(DummyPtr)
D F1dLO300Length...
D 10I 0
D F1dLO1000ffset...
D 10I 0
D AlternativeOffset...
D 10I 0
D DefaultOffset 10I 0
D DefaultLength 10I 0
// F1dL0100 LikeDS(Base F1dL0100)
// AlternativeName A
// DefaultValue A

38 RPG: APIs

FLDLO200 returns the exact same information that FLDLO100 returns along with the default
value for the field. FLDLO300 returns the exact same information as FLDL0100 along with the
alternative field name and the default value for the field. The alternative field name and the
default value for the field are variable in length, so you must use the offsets that are provided
in the formats along with a pointer to map fields onto the relevant space.

Because FLDL0200 and FLDLO300 are variable in length, there is an implication in using
them as opposed to FLDL0100, which is fixed length. Instead of using the Size of Each Entry
in the Generic Header to determine the starting point of the next entry, you must use the
format length (FIdLO200Length and FIdLO300Length), for example, the next list entry is at the
address of this entry plus the length.

Using QUSLRCD and QUSLFLD

The program APIO3 is an example of a program that uses the QUSLRCD and QUSFLD API
to list record format and field information for a file, as shown in Figure 30. You enter the name
of a file and the library. A list of record formats in the file is displayed. You select a format, and
a list of fields in the file is displayed.

FiLa O LESEE
Library: EECHOOE D]

Limt Formastn for File

FLla: APIAINSSE Ll BEORGHGGET e DIHEE
‘ Tazs b Timploy Fila for Lind AFL Esespios

Longth Towxt
EE

ua
a4

bt
nq

sk Faobals For Foemal
File: A81030EF Library: REDOGOKAS] Paornst: SUSOTLFHT [a4
Hama Start Typs Size Len. Des Tesd
A]

Exit
LR]

L IBRARY LE
FILET Y Ea
Fle FTE®T i

323020
BOGE b

Botom

Figure 30 Program using the QUSLRCD and QUSLFLD APIs
The member APIO3DSPF contains the definition of the display file, as shown in Example 24.

Example 24 Definition of the display file for QUSLREC and QUSLFLD List APl example

A* APIO3D - Display File for QUSLREC and QUSLFLD List API Example

A DSPSIZ(24 80 *DS3)
A INDARA

(1) A R SELECTNAME
A CA03(03 'Exit')

A 1 36'Select File'

RPG: APIs 39

DSPATR(HI)
9 28'File . :'
FILENAME 10 B 9 37
31 ERRMSG('Invalid File or Library')
10 28'Library:'
LIBRARY 10 B 10 37
23 2'F3=Exit'
DSPATR(HI)
COLOR(BLU)

> > > > > > > >

(2) R SUBRECFMT
SFL
3
6
17
31EDTCDE(Z)

42

OPTION 1
FORMATNAME 10
FORMATID 13
LENGTH 10 0
TEXT 30

> > > > > >
OO oo w
NN NN

(2) R SUBCTLFMT
SFLCTL (SUBRECFMT)
OVERLAY
CA03(03 'Exit')
CA12(12 'Cancel')
51 SFLDSP
52 SFLDSPCTL
53 SFLCLR
51 SFLEND (*MORE)
SFLSIZ(1000)
SFLPAG(15)
RRN1 4S OH
1 28'List Formats for File'
DSPATR(HI)
2'File:!
8
20'Library:'
29
41'Type:'
47
2'5=Select'
COLOR(BLU)
20'Text . '
29
6 2'Opt'
DSPATR(HI)
6 6'Format'
DSPATR(HI)
6 17'Id"
DSPATR(HI)
6 34'Length'
DSPATR(HI)
6 42'Text'
DSPATR(HI)

FILENAME 10 0

LIBRARY 10 0

FILETYPE 10 0

B wwwwww

~

FILETEXT 50 O

> > > > > >>>>>>>>>>>>>>>>>>>
~

=

R FOOTER1
A 23 2'F3=Exit F12=Cancel'

(2)

40 RPG: APIs

(3)

(3)

(3)

=

> > > > > > > >

> > > > > > > >>>>>>>>>>>>>>>>>>>

> = = >

51
52
53
51

R SUBRECFLD
FLDNAME
OFFSET
FLDTYPE
FLDSIZE
FLDLENGTH
DECPOS
FLDTEXT

R SUBCTLFLD

RRN2

FILENAME

LIBRARY

FORMAT

RCDLENGTH

FMTTEXT

R FOOTERZ

10 0
5 00
1 0
5 00
5 00
2 0

30 0
4S OH

10 0

10 0

10 0

10 00

50 0

—_

O P PREWWWwWwwwwww

23

DSPATR(HI)
COLOR(BLU)

SFL

2
13EDTCDE(Z)
20
24EDTCDE(Z)
30EDTCDE(Z)
36
40

SFLCTL(SUBRECFLD)
OVERLAY

SFLDSP

SFLDSPCTL

SFLCLR

SFLEND (*MORE)
SFLSIZ(1000)
SFLPAG(15)

28'List Fields for Format'
DSPATR(HI)

2'File:!

8
20'Library:'
29
41'Format:'
49
61'Length:’
69EDTCDE(3)

2'Text:!

8

2'Name'

DSPATR(HI)
13'Start!
DSPATR(HI)
19'Type'
DSPATR(HI)
25'Size!
DSPATR(HI)
30'Len.'
DSPATR(HI)
35'Dec'
DSPATR(HI)
40'Text'
DSPATR(HI)

2'Press Enter to Continue...'
DSPATR(HI)
COLOR(BLU)

RPG: APIs

41

42

Create the display file, in Example 24 on page 39, by using the command:

CRTDSPFF FILE(REDBOOK/APIO3DSPF) SRCFILE(REDBOOK/APISRC)

The formats in the display file, which are numbered to correspond with the numbering in
Example 24 on page 39, are:

1. SELECTNAME allows for the entry of a file name and a library name. An error message is
displayed if the file is not found.

2. SUBRECFMT, SUBCTLFMT, and FOOTERH1 display the list of record formats and allow
for the selection of a format.

3. SUBRECFLD, SUBCTLFLD, and FOOTER2 display the list of fields for the selected
format.

Also note, that we used the file level INDARA keyword to enable the use of the INDDS
keyword in the RPGLE program.

Example 25 shows the H, F, and D specs in the API03 program.

Example 25 H, F, and D specs in the AP103 program

(1) H DftActGrp(*No) ActGrp(*New) BndDir('APIS"')
H Option(*SrcStmt:*NoDebugl0)

(2) FAPIO3DSPF CF E WorkStn IndDs (WorkStnInd)
F SFile(SubRecFmt: RRN1)
F SFile(SubRecF1d: RRN2)

// Prototypes for Internal Procedures

(3) D CreateSpaces PR
D DeleteSpaces PR
D SelectFile PR
D LoadFormats PR
D pFormatHeader * Const
D ShowFormats PR
D ProcessFormats PR
D ListFieldsForFormat...
D PR
D RecordFormat 10A Const
D pFieldHeader * Const

/Copy APISRC,STDAPIINFO

(4) /Copy APISRC,WORKSTNIND

(5) D BadName N OverLay(WorkStnInd:31)
D CtlEvent S 4A

(6) D pFormatHeader S *

(7) D pFieldHeader S *

(8) D FormatSpace S 10A Inz('LISTFORMAT')
D FieldSpace S 10A Inz('LISTFIELDS')

RPG: APIs

The main points, which we numbered to correspond with the numbering in Example 25 on
page 42, are:

1.

I

The APIS binding directory contains an entry for the SPACEPROCS service program,
which contains the user space subprocedures that we described in “User spaces” on
page 22.

The INDDS keyword is used to map the display file indicators to a data structure as
opposed to the RPG indicators.

Prototypes are defined for the internal subprocedures in the program.
A copy member is used to include the standard indicators that are used with a display file.
The error indicator BadName is appended to the end of the data structure.

FormatHeader is the pointer used to access the user space that is populated by
QUSLRCD.

7. FieldHeader is the pointer used to access the user space that is populated by QUSLFLD.

8. FormatSpace and FieldSpace contain the names of the user spaces.

Example 26 shows the mainline in the AP103 program.

Example 26 The mainline in the AP103 program

/Free
(1) CreateSpaces();
CtLEvent = 'SELF';
(2) DoU CtT1Event = '"*END';
Select;
When CtT1Event = 'SELF';
(3) SelectFile();
When CtT1Event = 'LOAD';
(4) LoadFormats (pFormatHeader) ;
When CtT1Event = 'SHOW';
(5) ShowFormats () ;
When CtT1Event = 'PROC';
(6) ProcessFormats();
EndS1;
EndDo;
(7) DeleteSpaces();
*InLR = *On;
/End-Free

The AP103 program works as follows (the following numbers correspond with the numbering
in Example 26):

1.
2.

Create the two user spaces.

The Do Until loop is based on the contents of Ct1Event. Again, based on the contents of
Ct1Event, one subprocedure is called on each iteration of the loop.

Select the file and library.

RPG: APIs 43

4. Load the list of formats to the subfile. The pointer to the Record Formats user space is
passed as a parameter.

5. Display and input the Record Formats subfile.
6. Process requests from the Records Formats subfile.
7. Delete the user spaces.

Next, we look at the internal subprocedures.

CreateSpaces() and DeleteSpaces()

The CreateSpaces() and DeleteSpaces() subprocedures simply call the standard procedures
in SPACEPROCS to create/delete the required user spaces, as shown in Example 27.

Example 27 CreateSpaces() and DeleteSpaces()

// Create User Spaces used by APIs
P CreateSpaces B
D PI
/Free
pFormatHeader = CreatelListSpace(FormatSpace);
pFieldHeader = CreatelistSpace(FieldSpace);
/End-Free

// Delete User Spaces used by APIs
P DeleteSpaces B
D PI
/Free
DeletelListSpace(FormatSpace);
DeletelListSpace(FieldSpace);
/End-Free
p E

SelectFile()

The SelectFile() subprocedure allows for the display and entry of the file selection window,
as shown in Example 28. The next event is to load the Record Format subfile and an exit
event is set if F3 is pressed.

Example 28 SelectFile()

[mmmm e e s
// Select the file to process
p SelectFile B
D PI
/Free

CtlEvent = 'LOAD';

ExFmt SelectName;
ErrInds = *Zeros;

Select;
When F3Exit;

44 RPG: APIs

CtlEvent = '"*END';
EndS1;
/End-Free

p E

LoadFormats()

The LoadFormats () subprocedure calls QUSLRCD to populate the Record Format user space
and loads the list of formats to the subfile. Example 29 shows the D specs for LoadFormats ().

Example 29 LoadFormats()

(1)

(2)

(3)

(4)

(5)

// Load the 1ist of Formats to a subfile
p LoadFormats B

D PI
D pFormatHeader * Const
// General API List Header
D GenericHeader DS LikeDS (Base_GenericHeader)
D Based(pFormatHeader)

// QUSLRCD Formats Returned

D pInputParameter...

D S *

D InputParameter DS LikeDS(Base_RecordInputParm)
D Based(pInputParameter)

D pHeader S *

D Header DS LikeDS(Base_RecordHeader)

D Based(pHeader)

D pRcdL0200 S *

D RcdL0200 DS LikeDS(Base_RcdL0200)

D Based(pRcdL0200)

The items to note, which are numbered to correspond with the numbers in Example 29, in the
D specs are:

1.
2.

The pointer to the Record Format user space is passed as a parameter.

LIKEDS defines a Generic Header data structure, which is the same as the standard
definition in STDAPIINFO. The data structure is based on the value of the pointer that is
passed as a parameter (pFormatHeader), which means that the data structure overlays the
start of the Record Format user space.

LIKEDS defines an Input Parameter data structure, which is the same as the standard
definition in STDAPIINFO. The data structure is based on the value of the pointer because
it must be overlaid onto the Record Format user space based on the offset in the Generic
Header.

RPG: APIs 45

46

LIKEDS defines a Header data structure, which is the same as the standard definition in
STDAPIINFO. The data structure is based on the value of the pointer because it must be
overlaid onto the Record Format user space based on the offset in the Generic Header.

LIKEDS defines a RCDL0200 data structure, which is the same as the standard definition
in STDAPIINFO. The data structure is based on the value of the pointer because it must
be overlaid onto the Record Format user space based on the offset in the Generic Header.
This data structure is re-overlaid in the user space for each entry in the list.

Example 30 shows the process in LoadFormats ().

Example 30 The process in LoadFormats()

(1)
(2)

(3)

(4)
(5)
(6)

(7)

(8)
(9)

/Free
Ct1Event = 'SHOW';

ListFormats(FormatSpace + 'QTEMP'
: 'RCDL0200"
: FileName + Library
:'0!
: APIError);

If APIError.BytesAvail > 0;
BadName = *On;
Ct1Event = 'SELF';
Return;

EndIf;

pInputParameter = pFormatHeader + GenericHeader.O0ffsetTolInput;
pHeader = pFormatHeader + GenericHeader.0ffsetToHeader;
pRcdL0200 = pFormatHeader + GenericHeader.0ffsetToList;

FileType = Header.FileType;
FileText = Header.FileText;
Option = *Blanks;

SFLCTr = *On;
Write SUbCtTFmt;
SFLC1r = *0ff;

For RRN1 = 1 to GenericHeader.NumberInList;
FormatName = RcdL0200.FormatName;
FormatId = RcdL0200.FormatId;

Length = RcdL0200.RecordLength;
Text = RcdL0200.FormatText;
Write SubRecFmt;

(10) pRcdL0200 = pRcdL0200 + GenericHeader.EntrySize;

EndFor;
/End-Free
P E

RPG: APIs

The following is an explanation of the process in Example 30 on page 46. The numbers in the
following list correspond with the numbers in Example 30 on page 46:

1.
2.

The next event is to display the Record Formats subfile.

Call QUSLRCD to populate the Record Formats user space with information for the
requested file in the RCDL0200 format.

If there is an error on the call to QUSLRCD, display the error message on the file selection
window. Here, the assumption is that the file or library does not exist, but you can be as
detailed as you want to be on the error reporting. We recommend that you check if an
error is reported after making a call to a List APl because there are a myriad of errors that
can occur (from typos to authority problems). Remember, you can find a list of possible
error messages at the end of the description of each API. You can also check the value of
the status field in the Generic Header (Status) to determine whether or not you have a
complete list, which is indicated by a value of C.

. Overlay the Input Parameter data structure onto the user space, based on the address of

the user space plus the offset in the Generic Header.

Overlay the Header data structure onto the user space based on the address of the user
space plus the offset in the Generic Header.

Overlay the RCDL0200 data structure onto the user space based on the address of the
user space, plus the offset in the Generic Header. RCDL0200 now overlays the first entry
in the list.

7. Set the window headings, and clear the subfile.

8. Use the number of entries in the list (as indicated in the Generic Header) to determine how

many records to load to the subfile (RRN1 is the relative-record number field for the
Record Format subfile).

Copy the required fields from the RCDL0200 data structure to the subfile record, and write
the subfile record.

10.Advance the RCDL0200 data structure to the next entry in the list by adding the Entry Size

to the current pointer for RCDL0200.

ShowFormats()

The ShowFormats () subprocedure allows for the display and entry of the Record Formats
subfile. The next event is to process the Record Format subfile. An exit event is set if F3 is
pressed and a Select File event is set if F12 is pressed. See Example 31.

Example 31 ShowfFormats()

R L L L PP P
// Show the Formats for a File
p ShowFormats B
D PI
/Free

Ctl1Event = 'PROC';

SFLDsp = *0On;
SFLDspCt1 = *On;
Write Footerl;
ExFmt SubCt1Fmt;
SFLDsp = *0ff;
SFLDspCt1 = *0ff;

Select;

RPG: APIs

47

When F3Exit;
Ctl1Event = '*END';
When F12Cancel;
CtlEvent = 'SELF';
EndS1;

/End-Free
p E

ProcessFormats()

The ProcessFormats () subprocedure processes requests in the Record Formats subfile, as
shown in Example 32. For any changed record with an option of 5 the
ListFieldsForFormat () subprocedure is called passing the requested Record Format name
and the pointer to the Fields List user space.

Example 32 ProcessFormats()

// Process the Formats for a File
p ProcessFormats B
D PI
/Free
Ctl1Event = 'SHOW';

RRN1 = 0;
ReadC SubRecFmt;
Dow Not %EQOF();
If Option = '5';
ListFieldsForFormat (FormatName:pFieldHeader);
EndIf;
Option = *Blanks;
Update SubRecFmt;
ReadC SubRecFmt;
EndDo;

/End-Free
p E

ListFieldsForFormat()

The ListFieldsForFormat () bears a striking similarity to the LoadFormats () subprocedure,
and it should because both subprocedures perform similar functions. ListFieldsForFormat ()
calls QUSLFLD to populate the Fields List user space, loads the list of fields to the subfile,
and displays the subfile. Example 33 shows the D specs for ListFieldsForFormat().

Example 33 D specs for ListFieldsForFormat()

// List the the Fields for a Format
P ListFieldsForFormat...

p B
D ListFieldsForFormat...
D PI

48 RPG: APIs

(1)
(2)

(3)

(4)

(5)

(6)

D RecordFormat 10A Const
D pFieldHeader * Const
// General API List Header
D GenericHeader DS LikeDS (Base_GenericHeader)
D Based(pFieldHeader)
// QUSLFLD Formats Returned
D pInputParameter...
D S *
D InputParameter DS LikeDS(Base_FieldInputParm)
D Based(pInputParameter)
D pHeader S *
D Header DS LikeDS(Base_FieldHeader)
D Based (pHeader)
D pF1dL0100 S *
D F1dL0100 DS LikeDS(Base_F1dL0100)
D Based (pF1dL0100)

The following list highlights the items to note in the D specs. The items in the list are
numbered in correspondence to the numbers in Example 33 on page 48:

1.
2.
3.

The name of the required record format is passed as a parameter.
The pointer to the Field List user space is passed as a parameter.

LIKEDS defines a Generic Header data structure, which is the same as the standard
definition in STDAPIINFO. The data structure is based on the value of the pointer that is
passed as a parameter (pFieldHeader), which means that the data structure overlays the
start of the Field List user space.

LIKEDS defines an Input Parameter data structure that is the same as the standard
definition in STDAPIINFO. The data structure is based on the value of the pointer because
it must be overlaid onto the Field List user space that is based on the offset in the Generic
Header.

LIKEDS defines a Header data structure that is the same as the standard definition in
STDAPIINFO. The data structure is based on the value of the pointer because it must be
overlaid onto the Field List user space that is based on the offset in the Generic Header.

LIKEDS defines a FLDL0100 data structure, which is the same as the standard definition
in STDAPIINFO. The data structure is based on the value of the pointer because it must
be overlaid onto the Field List user space that is based on the offset in the Generic
Header. This data structure is re-overlaid in the user space for each entry in the list.

Example 34 shows the process in ListFieldsForFormat ().

Example 34 The process in ListFieldsForFormat()

/Free
(1) ListFields(FieldSpace + 'QTEMP'
: 'FLDLO100'
: FileName + Library
: RecordFormat
IOI

: APIError);

RPG: APIs 49

(2) If APIError.BytesAvail > 0;
Dsply APIError.Msgld;

Return;
EndIf;
(3) pInputParameter = pFieldHeader + GenericHeader.OffsetToInput;
(4) pHeader = pFieldHeader + GenericHeader.0ffsetToHeader;
(5) pF1dL0100 = pFieldHeader + GenericHeader.0ffsetTolist;
(6) Format = Header.FormatUsed;

RcdLength = Header.RecordlLength;
FmtText = Header.FormatText;

SFLCTr = *0On;
Write SUbCtTF1d;
SFLC1r = *0ff;

(7) For RRN2 = 1 to GenericHeader.NumberInList;

(8) Fl1dName = F1dL0100.FieldName;
0ffSet = F1dL0100.0OutputBufferPosition;
F1dType = F1dL0100.DataType;
F1dSize = F1dL0100.FieldLengthBytes;
If (F1dL0100.Digits = 0);
FldLength = F1dL0100.FieldLengthBytes;
DecPos = *Blanks;
If (F1dL0100.VarLenFieldInd = '1');
FldLength = FldLength - 2;
EndIf;
Else;
FldLength = F1dL0100.Digits;
DecPos = %Char(F1dL0100.Decimals);
EndIf;
F1dText = F1dL0100.Text;
Write SubRecFld;

(9) pF1dL0100 = pF1dL0100 + GenericHeader.EntrySize;
EndFor;
(10) SFLDsp = *On;

SFLDspCt1 = *On;
Write Footer?;
ExFmt SubCt1F1d;
SFLDsp = *0ff;
SFLDspCt1 = *0ff;

/End-Free
p E

Create the ListFieldsForFormat () program by using the command:
CRTBNDRPG PGM(REDBOOK/API03) SRCFILE(REDBOOK/APISRC)

50 RPG: APIs

The following list explains the process of creating the ListFieldsForFormat() program. The
numbers in this list correspond with the numbers in Example 34 on page 49:

1. Call QUSLFLD to populate the Fields List user space with information for the requested
file/record format in the FLDLO100 format.

2. There really must not be any error on the call to QUSLFLD (any errors should have been
detected on the call to QUSLRCD, and the record format name should be valid, since it
was selected from the displayed list). However, if there is an error, simply display the error
message ID and return.

3. Overlay the Input Parameter data structure onto the user space based on the address of
the user space, plus the offset in the Generic Header.

4. Overlay the Header data structure onto the user space based on the address of the user
space, plus the offset in the Generic Header.

5. Overlay the FLDLO100 data structure onto the user space based on the address of the
user space plus the offset in the Generic Header. FLDL0100 now overlays the first entry in
the list.

6. Set the window headings, and clear the subfile.

7. Use the number of entries in the list (as indicated in the Generic Header) to determine how
many records to load to the subfile (RRN2 is the relative-record number field for the Fields
List subfile).

8. Copy the required fields from the FLDLO0100 data structure to the subfile record, and write
the subfile record. Note how the field length is calculated based on whether it is numeric
and whether or not it is varying length.

9. Advance the FLDLO100 data structure to the next entry in the list by adding the Entry Size
to the current pointer for FLDLO100. If you were using the FLDL0200 or FLDL0300
formats, you would add the entry size length in the FLDL0200 or FLDL0300 format to the
current pointer for the list entry.

10.Display the subfile.

Points to ponder about List APIs

One of the main features of the example in API03 is the way in which the user spaces are
reused. The two user spaces are created when the program starts. Each time a file is
selected, the Record Formats user space is repopulated. Each time a record format is
selected the Fields List user space is repopulated.

Remember:

» List APIs place information in a user space.

» The information in the user space follows a standard structure.

» List Data is returned in a format that is requested when the APl is called.

» All information is accessed by using pointers and offsets, which are identified in the
Generic Header, to overlay data structures onto the relevant portions of the user space.

RPG: APIs 51

ILE APIs

As the name implies, all of the ILE APls are bound calls. This means that they can only be
called from true ILE programs, for example, programs that are created with the CRTPGM
command or by specifying DFTACTGRP(*NO) on the CRTBNDRPG command.

The ILE style APIs come in two formats: regular ILE APIls and the ILE CEE APlIs.

Regular ILE APIs

52

RPG: APIs

The regular ILE APIs are simply ILE procedure equivalents of some of the regular OPM style
API programs. The documentation, definition, parameters, and error processing are the exact
same for both. The only difference is that one is a bound call and the other is a dynamic call.

API functions that have an equivalent OPM program and ILE procedure available are
identified in the documentation by having two API names listed. Figure 31 on page 53 shows
the list of National Language Support-related APIs (APls by Category — National
Language Support —National Language Support-related APIs), which show that the
Convert Case API has two names: QLGCNVCS and Ql1gConvertCase, and the Retrieve
Locale Information API has two names: QLGRTVLC and QlgRetrieveLocaleInformation.

Figure 31 shows the list of National Language Support-related APIs.

Mational Language Support-related APIs

The national language support-ralated AP1s work with the national language suppork (MLS) Functions.

The MLS=related APIs that work with UCS2 (Universal Multiple-Octet Coded Character Set with 16 bits per
character) character sets aqe!

-

*

-

Adwance bo Mext Composite Character Sequence (UniNextCompChar) API
Composite Character Sequence Code Element Count (UnidueryCompCharban()) AP]
Convert Case (QLECNYCS, QlgConvertCase) API

Hurmber af Cormposite Character Sequences (UrelusryCampChar]) ART

Retriswe Locale Information (QLGRTYLE, QigRetnisvelocalsinformation) aPL
Transform UCS Data (QigTransformUCShatal)y API

The MLS-related &PI1s are:

-

Adwvance o Next Composite Character Sequence (UniMextCompChar() locates the next non-cambinirg
character in a string,

Composite Character Sequence Code Element Count (UnidueryCompCharlen(y) computes the nember of code
elements in a composite character seguence.

Jpercase or lowercase.

Convert Sort Sequence Table (QLGCHYSS) converts a

identifier {CCSI0) to another,

ort ssquance tzble from one codsd charscter set

Convert Text Descrotor {QIgcvi TextDescToDese) converts a descriptar of text from ore typs (CCSID, for
example) to nother typs (1ANA name, far exampls),

Number of Campozite Character Sequences (UriQueryCompChar]) computes the number of composita

character sequences in a coda element array.
Betrigve CCSI0 Data (QLGRTVED) retrieves different subsets of CCS10s based on the selection bypa.

Retrewve CCOSI0 Text (QLGRTYCT) retriewves different subsets of CCSIDS' values and their descriptions, i
available.

Retrgve Country or Recon Identifers (QLGRTYCE) retrigves a list of country or region identifiers and their
descrptions,

Retrigyve Defauit COSID (QLGRTYDC) retrieves the default CCS1D given a language 1D,
Rethewe Lanquage 105 (OLGRTYLD) retrieves a list of language identsfiers.

Betrieve Lanquage Information (QLGRELMGE) returns a salected national languags version (NLY) based on the
specified product, option, and language identifier,

Retrigve Locale Information (QLGRTYLE, QigRetnevelocalainformation) ret
locata,

Retreve Sort Seguence Takle (QLGRTYSS) retrieves a specified sort sequence table.
Scan String for Mived Oatas (QLGSCHMRKY tests & mixed input stnng far double-byte characters.

Sort (JLESORT) provides a generalized sort function.

Sort InputfSulput (QLESRTIO) provides & set of records to be sorted or retums a sst of records that have
already been sorted.

Transform UCS Osts (HgTransformUCshatal)) transforms, through a formuls as comparsd to a mapping, data
from ome form of Unicode to anothar,

Truncate Character Data (QLGTRDTA) truncates a CCSID-tagged string of character data to a specified
lergth.

Validate COSID (QrgvalidateCCSI00)) determings whether the specified CCSID is suppested by the (Seres.

Validate Language [0 (QLGYLID) ensures that a language identifier is supported,

Figure 31 List of National Language Supported Related API

Because we are going to need to convert case in “ILE CEE APIs” on page 57, let us see what
is involved in using the Q1gConvertCase API.

RPG: APIs

53

Example 35 shows the prototypes for the subprocedures ConvertToUpper and
ConvertTolLower, coded in STDAPIINFO, which you can call to convert a string to upper case
or lower case. Both APIs accept a string and return a string and allow for an optional second
parameter to specify the required CCSID.

Example 35 ConverToUpper and ConvertToLower

D ConvertToUpper PR 65535A ExtProc('CONVERTTOUPPER')

D Stringln 65535A Const

D ForCCSID 10I 0 Const

D Options(*NoPass)

D ConvertToLower PR 65535A ExtProc('CONVERTTOLOWER')
D Stringln 65535A Const

D ForCCSID 10I 0 Const

D Options(*NoPass)

Figure 32 shows the definition of the Convert Case API itself. Again, both the program name
and procedure name are identified for the API. The benefit here is that the definition of the
parameters is exactly the same for both.

Conwvert Case {QLGCNVCS, QlgConvertCase) API

Fequired Paramster Group:

1 Request controd black Imput Char(™*)
2 Input data Imput Char*}
3 Cutput dats Cutput Char*y
4 Length of data Imput Bamary{ 4}
5 Ermor code 140 Char{*}

Service Program: QLGCASE
Default Public Authority: *USE

Threadsafa: Mo

The Conwert Case (0PM, QLEGCHNVCS; ILE, OdgConvertCase) AP] pravades a case conversion function that can be
directly called by any application prograsm. This API can be used to convert character data to either wppercaze or

Inwarcase.

Thig &Pl supports converdsian for dngle-byte, mixed-byte, and UCS2 {Unnversal Multiple-0c tet Coded Character Set
with 16 lits par character) character sets. For the rsed-byte character set data, only the single-byte paction af
the data is converted, This AP does not convert double-byte character data from any doubde-byte character set
(DBCS) or fram a mixed-boyte character set.

This &Pl can base case conversion on a CCSID, whenzas the Carmvert Data (QDCSLATE) AP uses only table
ohjects

Figure 32 Definition of the Convert Case API with two call names

The service program QLGCASE (identified directly after the parameters) is included
automatically when a program is created, but there are some service programs that are not
automatically included that you need to identify when you create programs. You know you
have a problem if you receive a “CPD5DO02 Definition not found for symbol 'name_of_API"”
message in the job log when you try to create the program. In such an instance, the easiest
way to ensure that the service program is included in the creation process is to include the
service program in a binding directory that is specified in the Binding Directory parameter on
the create command.

So why would you use one API as opposed to the other? In most cases, it is doubtful that
there is much difference between the APls. There is a chance that the ILE procedure is a
more recent edition of the API and might therefore be better written and more efficient, then
again, maybe not. There is also the possibility of a performance gain by executing bound calls
as opposed to dynamic calls; however, the difference would only really be noticeable if the

54 RPG: APIs

API were being called continuously in a loop. The main difference is a simple one of self
documentation: It is a lot easier to figure out what the called API does from the name
Q1gConvertCase as opposed to the name QLGCNVCS.

The names of ILE procedures are case sensitive so be sure that you use the EXTPROC
keyword to identify the name of the procedure on the prototype, even if you are going to use
the same name for the prototype. In RPG 1V, if you do not provide an EXTPROC (or
EXTPGM) keyword on a prototype, the compiler assumes that the name of the called
procedure is the upper case equivalent of the prototype name. The easiest way to ensure you
get it right is to copy and paste the name of the procedure from the Web page.

Figure 33 shows the definition of the Request Control Block for the Convert Case API. The
layout of the structure is different depending on the value of the first parameter. Always make
sure you read the description for every field, for example, you might be inclined to ignore the
10 character reserved value at the end of the layout for the CCSID format, but the
documentation specifies that you must initialize these 10 characters to hexadecimal zeros.

Format of Reguest Control Block
The faollowing table shows the lzyout of the request control block. For a detailed descrption of each fisld, sees Field
Cescrnpltsons,
iset
Dec Hex Type Fiald
1] a BIMARY <) Type af request
Mote: The rezt of the Eyout when the request is 1 (CCSID fomat)
* “+ B MARN) CCSID of mput data
] & BIMARY(4) Case request
12 [CHAR 10) Rpsorved
MNote: The rest of the layout when the reguest is 2 (tabde object format)
[a [4 BNARYGE DBCE indicatar
a -] CHAR{ZD) Quakfied table name
[Mote: The rest of the layout when the reguest is = Q:llan-d;.‘.ﬁnm:.’."nrm.'lfj
4 4 EM[MARNY) DRCS indicator
[2 BINARY(4) moserved
iz [BIMARY($) Lerngth of user-defined table
16 n '..,;H-il':'{.“,l Usar-defined case conversion t=ble

Figure 33 Definition of the Request Control Block for the Convert Case API

CASEPROCS is a module that contains two subprocedures (ConvertToUpper and
ConvertTolLower) that make use of the Q1gConvertCase API, as shown in Example 36.

Example 36 CASEPROCS
(1) H NoMain Option(*SrcStmt : *NoDebugIO)

/Copy APISRC,STDAPIINFO

// Request 1 - CCSID Format

(2) D RCB1 DS Qualified
D RequestType 10I 0
D CCSID 10I 0
D CaseRequest 10I 0
(3) D 10A Inz(*A11X'00')
(4) D ConvertCase PR ExtProc('QlgConvertCase')
D RCB Like (RCB1)
D Const
D InputData 65535A Const
D OQutputData 65535A

RPG: APIs 55

56

(5)

(6)
(7)

(8)
(9)

(10)

(11)

o

DatalLength 10I 0 Const
ErrorCode LikeDS(APIError)

o

// Convert a string to Upper Case
ConvertToUpper B Export
ConvertToUpper PI 65535A
Stringln 65535A Const
ForCCSID 10I 0 Const
Options(*NoPass)

O O O o o

o

StringOut S 65535A

/Free
RCB1.RequestType = 1;
If (%Parms() > 1);
RCB1.CCSID = ForCCSID;
Else;
RCB1.CCSID = 03
EndIf;
RCB1.CaseRequest = 0;
ConvertCase(RCB1
: Stringln
: StringOut
: %Len(%Trim(StringIn))
: APIError);
Return StringOut;
/End-Free
P E

// Convert a string to Lower Case
P ConvertToLower B Export
D ConvertToLower PI 65535A
D Stringln 65535A Const
D ForCCSID 10I 0 Const
D Options(*NoPass)

D StringOut S 65535A

/Free
RCB1.RequestType = 1;
If (%Parms() > 1);
RCB1.CCSID = ForCCSID;
Else;
RCB1.CCSID = 03
EndIf;
RCB1.CaseRequest = 1;
ConvertCase(RCB1
: Stringln
: StringOut
: %Len(%Trim(StringIn))
: APIError);
Return StringOut;
/End-Free
P E

RPG: APIs

Create the CASEPROCS service program by using these commands:

CRTRPGMOD MODULE (REDBOOK/CASEPROCS) SRCFILE(REDBOOK/APISRC)
CRTSRVPGM SRVPGM(REDBOOK/CASEPROCS) EXPORT(*ALL)

Add the service program to the APIS binding directory APIS by using this command:
ADDBNDDIRE BNDDIR(REDBOOK/APIS) 0BJ((REDBOOK/CASEPROCS))

The following list points out the main points in Example 36 on page 55. The numbers in this
list correspond to the numbers in Example 36 on page 55:

1. CASEPROCS is a NOMAIN module.

2. RCB1 is the Request Control Block for a CCSID format request. The Request Control
Block is defined in CASEPROCS as opposed to STDAPIINFO because we are
encapsulating calls to QlgConvertCase through the ConvertToUpper and
ConvertToLower subprocedures.

3. The reserved portion of the Request Control Block is initialized to hex '00".

4. ConvertCase is the prototype for Q1gConvertCase. Note that the use of the EXTPROC
keyword as opposed to EXTPGM and the procedure name in mixed case. As with the
Request Control Block, the prototype is defined in CASEPROCS as opposed to
STDAPIINFO because we are encapsulating calls to Q1gConvertCase through the
ConvertToUpper and ConvertToLower subprocedures.

5. ConvertToUpper accepts and returns a string. It also allows for an optional CCSID as a
second parameter.

6. The Request Type in the Request Control Block is set to 1 for a CCSID format request.

7. The CCSID in the Request Control Block is set to the requested CCSID or defaults to zero
if a CCSID was not requested.

8. The Case Request in the Request Control Block is set to zero to request a conversion to
upper case.

9. The QlgConvertCase APl is called.

10.The converted string is returned.

11.ConvertToLower is the exact same as ConvertToUpper except that the Case Request in the
Request Control Block is set to one to request a conversion to lower case.

We show an example of using ConvertToUpper in the next section.

ILE CEE APIs

The ILE CEE APIs are easy to identify because their names all start with either “CEE” or
“CE4”. The APIs that start with “CEE” might have a corresponding APl on another IBM
platform; whereas, those APIs that start with “CE4” are specific to OS/400 or i5/0S.

The documentation for the ILE CEE APIs, the definition of parameters, and the way in which
errors are handled are different from the traditional APIs. The good news is that the ILE CEE
APIs are very well documented.

RPG: APIs 57

58

RPG: APIs

The first step is to understand how the data types for the ILE CEE APIs are identified in the
documentation and how to represent them in RPG IV:

1. From the Information Center, access the Application programming interfaces page at the
following Web site:

https://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apiref/
api.htm

2. Click the APIs by Category link, and then click the ILE CEE link. The ILE CEE APIs page
is displayed (Figure 34).

3. Click the Data Type Definitions for ILE CEE link, and the page shown in Figure 34 is
displayed.

ILE CEE APIs

The Integrated Language Erviranment (B (ILE) srchitecture on the iLsnst T operating system prowdes s set of
bimdable application prograrmming interfaces {(aPIs) known a5 ILE CEE &FIs. In some cases, they provide additonal
fisnction beyond that provided by 5 specific high-lavel lamguage. For exampla, not all high-level languages (HLL)
offar intrinsic means to manipulate dynamic storage. In these cases, you can supplement an HLL function by wsing
apprapriate [LE CEE APls. If your HLL pravides the same function a5 a particular ILE CEE API, use the HLL-spacific
anE

The [LE CEE APls are useful for mused=language spplcatons because they are HLL independsnt. For example, IF
wou use only condition managemant [LE CEE APIs with a mixed-language application, you will have uniform
candition harding semantics far that apgheation. This urafarmity can make condition mansgemant abser thary
whign using multiple HLL-specific condition handling reodels.

The [LE CEE APls prowvide a wide-range of functicnal afeas inciudirng:

* pActivation Group and Contral Flow APLs

* Condstoon Management APls

* Date and Tune APTS
* Math APIS

* Masdane Services AP[e

* Prograrm of Procedure Call APIs

+ Storsge Management APIsS

Far mara mfarmation about using [LE CEE APIs, sea the lollowing Sections:

ILE CEE AP] Calling and Maming Conventions

+ Diata Tyoe Definitions of ILE CEE

Ot ki Pararmeters in [LE CEE

L]

15705 Messages and the ILE CEE AP] Feedback Code

Figure 34 ILE CEE APIs

https://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apiref/api.htm

Figure 35 shows the start of the Data Type Definitions of ILE CEE APIs page. The table
shows how each data type is referenced in ILE C, ILE COBOL, and ILE RPG.

CHAR

UCHAR

SCHAR

iMT2

LIINT2

[MT4

Dates Type

Description

& 1=byla pnsgred
charactiar

A L-byta unsgned
charactar

A L-byte saqgned
cRaractar

& 2ebiyte sagned
intagar

& Z-byta unsgned
intagar

A A-byte sagned
A ET-Ty

Craatan Toype Destimitions of ILE CEE APTs

The data typos that are wsed i tho parameter tablos for wach ILE CEE &PI ane defired in Datza Type Defnitions across IS Languaoss.
The information in tha JLE PPG column assumsas BPG DeSpeciication codmg,

[pata Typo Definitions across [LE Languagos

ILE C

typadal ursigaed char _CHAR;

typadaf urmigaed char _UCHAR;

typedef sgned char _SCHaR;

%

typedal agaed chorr _[HT2;

typadaf urmgaed shoet _UINTZ;

typodef signed nt _INT4;

ILE COBOL ILE RP

PIC =
Blank ar A in data type
oo L
ToflL of 1

PIC =
Dlank 98 L 1n data CLy¥pe
e L e
TosL of 1

FIC =

hlenk or Lk in cdaza cype
£ Lo
TosL o 1

PS94 Dikaky
IZ SR04 BN [in datm type colums

Tos/L of &
decirml pomitions = 0O

BIC G{4) BIHARY
I in dara Lype eolumd

TosL of 5

decimal peaitions = 0

FIZ S9{5) aINARY
N I in daca nype ool
TofL of 10
denixeml positions = O

Figure 35 Start of the Data Type Definitions of ILE CEE APIs

Further down the Data Type Definitions of the ILE CEE APIs page is the definition of the
feedback token, as shown in Figure 36. The feedback token is the ILE CEE API equivalent of
the API error structure for standard APIs. It provides feedback information for any error
conditions that are encountered by the called API.

FEEDBALCH

& mapping of the

welback:
{cardition} Taken
{fcd

cypeda? volmcila mcruass | oL f= Furra Ta/L

_VINTE ESESevs O ==y Pl S(4) Entey Entey
_UINT: Kmoilo: binaTy iz (H

_BITS Caxm fe-- LY 02 nugno pic F(4) F L U
_BITE SeWeErluiy bE: Binary (S LA [Ea) su
_NITS Canerml T ¥ Qi flga pic =(1) Tlaga i
_CHAR Facility ID[3]: a2 facid pic x(1) facid a
UINT1 I#_Infol OF 191 plo 99 131 101

¥ _FEEDRMCE; bBinaTy

Figure 36 Definitions of the feedback token

STDAPIINFO contains the corresponding definition of the feedback token, as shown in
Example 37.

Example 37 Definition of the feedback token

D fc

D

O O O O o

sev

msgno
msgnochar

flags

facid

isi

DS

QuaTlified
50 0
50 0
2A Overlay(msgno)
1A
3A

10U 0

The subfield facid provides the first three characters of the message ID and the subfield
msgno provides the last four. In the documentation, the definition of the message number

RPG: APIs 59

(msgno) is slightly misleading. It should be a two-byte hexadecimal number, which
unfortunately, cannot be defined in RPG IV. To determine the true value of msgno you must
convert it from hex to character. You may be tempted to try this yourself (for example, using
the Ml Instruction APl cvthc—Convert Hex to Decimal), but there is another ILE CEE API that
makes the deciphering of the feedback token very straightforward:

1. From the ILE CEE APIs page, click the Message Services APIs link.

https://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apiref/
api.htm

2. Click the Get a Message (CEEMGET) link, and Figure 37 on page 61 is displayed.

3. You pass the API a feedback token and it returns the text of the message. The APl may

be called multiple times if the amount of text that can be returned exceeds the size of the
field you supply as the second parameter.

Important: Always read the description of the ILE CEE APIs very carefully: Note how the
second parameter is “passed by reference with descriptor”, which means that you must
specify the OPDESC keyword on the prototype for the API.

60 RPG: APIs

https://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apiref/api.htm

Figure 37 shows the Get a Message (CEEMGET) API.

Get a Message (CEEMGET) APL

Reguired Parameter Group:

1 cond_tokan Input FEEDRACK
2 moessago_area Durkput VSTRING
3 meg_plr /0 [HT4

Orrossible Parameber:

4 fc Dutput FEEDRACK
Service Program Name; GQLEAW]
Default Public Autharity: *USE

Threadsafs: ves

The Get a Message (CEEMGET) APT retrieves a message and stores (b in @ buffer for manipulation oF output by the
caller,

The AP1 retrieves @ message and places it in the storage location refersnced by the message_area pararseter,

Thi msg_ptr parameter has & walue of zero on the initial call to the CEEMGET API If the message 15 too lange to
be contained in message_ares, meg_pdr is reburned containing an index into the message. The ndex s used in
subseguent calls to CEEMGET ta retneve the remaring portion of the message. Whan the entire message has
been retrievad, rmeg o@ir 8 returned containing a value of zero.

Authorities and Locks

Nange.

Required Parameter Group
cond_token (input)

A 12-byte condition token, See Usmng Condition Management aPls for a description of the condition token.

message_area {(output by descriptor)

A walid ILE sting variable, passed by reference with a descriptor. The CEEMGET AP] places the retrieved
message nto this string varable.

msg_pte {Input fowtput)

A &-byte integer with 2 value of 0 on the mitial call to CEEMGET to retnsve a message. If the message is
ton large to be contained in the message_sres, msg_ptr will be returmed containing an index inko the
message. The index is used in subsequent calls to CEEMGET to retrieve the ramaining portion of the
message. When the entire message has been retneved, msg_pdr is returned with a value of 0.

Omissible Parameter
fic {ouwtput)
A 12-byte feedback coda.

Figure 37 Get a Message (CEEMGET) API

RPG: APIs 61

62

STDAPIINFO contains the corresponding prototype definition, as shown in Example 38.

Example 38 Prototype definition

D GetAMessage PR ExtProc('CEEMGET')
(1) D OpDesc
(2) D cond_token LikeDS(fc)
D Const
(3) D message area 50A Varying
D msg_ptr 10I 0
(4) D fcOut LikeDs(fc)
D Options (*Omit)

The following list contains the main points to note in Example 38. The numbers in this list
correspond with the numbers in Example 38:

1. The OPDESC keyword is required because at least one parameter requires an
operational descriptor.

2. The condition token is a feedback token.

3. The message text returned is only defined as 50 characters because we are using the
DSPLY operation to display its contents (DSPLY may only display up to 52 characters of
text).

4. The API might, itself, return a feedback token. You can omit the feedback token as
opposed to being optional.

Section 9.6 from Who Knew You Could Do That with RPG IV? A Sorcerer's Guide to System
Access and More, SG24-5402 provides examples of how to use the ILE CEE APIs for
Condition Management, Activation Group, and Control Flow. As an example of deciphering
an ILE CEE API:

1. From the ILE CEE APIs page, click the Date and Time APIs link.

2. Click the Return Default Date and Time Strings for Country or Region (CEEFMDT)
APl link. Figure 38 on page 63 is displayed. This API returns a date and time picture string
for the requested country or region code. A list of valid country and region codes is
provided at the bottom of the page for the API.

RPG: APIs

Figure 38 shows the Return Default and Time Strings for Country or Region API.

Return Detfault Date and Strings for Counitry oF

Ormssible Parame ter:

1 cowntryfregion_code Input CHARS
Reduired Parameter:

2 datetme_str Cukput YETRIMNG
Ormssible Parameter:

1 feo autpaut FEEDBACE
Semice Program Mame: QLEAWI
Default Public suthonty: *USE

Threadsafe: Yes

The Return Default Date and Time String for Country or Begion (CEEFMDT} AP returns the default date and bme
picturg strings for the country or region specified in the country/region_cods paramster,

Ormissible Parametoer
country Sregion_code {inpuat)

The Z-character string that represents the country or region code. See Country/Pegion Codes for watues, IF
this valus is blank, the default country or region code is used,

Authaorities and Locks

Mame.

Required Parameter
datethme_str {output by descriptor)

The default date and time picture stnng for the country or region cods is placed mto thes character string
varahble.

Omissible Parameter
T Comunkprurk)

& 12-byte fesdback code passed by reference. If specified 25 an srgument, a condition token is returmed to
the calling procedurs, [f not specified ard the requested operation was not successfully completed, the
condition is signaled to the condition managear.

Figure 38 Return Default Date and Time Strings for Country or Region (CEEFMDT) API

STDAPIINFO contains the corresponding prototype definition, which we show in Example 39.

Example 39 Prototype definition for CEEFMDT API

D DateTimeForCountry...

D PR ExtProc('CEEFMDT')
(1) D OpDesc
(2) D CountryCode 2A Options(*OMIT)

D time_pic_str 40A Varying

D fcOut LikeDs (fc)

D Options(*0Omit)

The numbers in the following list correspond with the numbers in Example 39. The main
points to note are:

1. The OPDESC keyword is required since at least one parameter requires an operational
descriptor.

2. If the country code is blank or omitted the default country code or region code is used.

RPG: APIs 63

API04, Example 40, is a program that demonstrates the use of the CEEFMDT and
CEEMGET APIs along with the Q1gConvertCase API that we described in “Regular ILE APIs”
on page 52. API04 allows for the entry of a country or region code and displays the
corresponding date and time format for the country or region. If there is an error on a call to
CEEFMDT, the required message text is retrieved and displayed.

Example 40 AP104

(1) H DftActGrp(*NO) ActGrp(*New) BndDir('APIS')
H Option(*SrcStmt:*NoDebugIO)

/Copy APISRC,STDAPIINFO

2A

40A Varying
50A Varying
10I 0

D CountryID S

D DateTime S

D MsgText S

D MsgPtr S

/Free

(2) DoU Countryld = '**';
CountrylId = *Blanks;

(3) Dsply 'Enter Country Code (** to End)'

"' Countryld;

If (Countryld <> '**');
(4) CountryId = ConvertToUpper(Countryld);
(5) DateTimeForCountry(CountryID
: DateTime
. fe);
If fc.sev=0;
(6) Dsply DateTime;
Else;
(7) MsgPtr = 0;
DoU MsgPtr = 0;
GetAMessage(fc
: MsgText
: MsgPtr
: XOMIT);
Dsply MsgText;
EndDo;
EndIf;
EndIf;
EndDo;

*InLR = *On;
/End-Free

Create the program in Example 40 by using the command:
CRTBNDRPG PGM(REDBOOK/API04) SRCFILE(REDBOOK/APISRC)

64 RPG: APIs

The numbers in the following list correspond with the numbers in Example 40 on page 64.
The main points to note in Example 40 on page 64 are:

1. The APIS binding directory is specified in the H spec because the program makes use of
the ConvertToUpper subprocedure in the CASEPROCS service program. You do not need
to specify a service program for the ILE CEE APIs because they are automatically bound.

The program loops until a value of **' is entered for the country code.

A country or region code is entered.

The entered code is converted to uppercase.

The CEEFMDT API is called to retrieve the date time format.

If the call to CEEFMDT was successful, the date time format is displayed.

If the call to CEEFMDT was not successful, the CEEMGET API is called to retrieve the
message text for the message that was identified in the feedback token. The message
pointer parameter is greater then zero if more message text is available. Its value is the
starting position of the next bit of available text. A subsequent call to CEEMGET retrieves
the text that starts at that position.

N o o MDD

Calling the program API04 and providing country IDs of blank (for default, which happens to
be US in this example), for example, (Ireland), us (United States) and jw (invalid) results in
the following being displayed.

DSPLY Enter Country Code (** to End)
*N

DSPLY MM/DD/YY ZH:MI:SS AP

DSPLY Enter Country Code (** to End)
ie

DSPLY DD/MM/YY ZH:MI:SS

DSPLY Enter Country Code (** to End)
us

DSPLY MM/DD/YY ZH:MI:SS AP

DSPLY Enter Country Code (** to End)
Jw

DSPLY The country/region_code identifier is not valid fo
DSPLY r CEEFMDT.

DSPLY Enter Country Code (** to End)

Note how the message text for the invalid country ID is split over two lines.

Although they read a little differently from the traditional APIs, the ILE CEE APIs are not that
difficult to interpret.

UNIX-Type APIs

The UNIX-Type APIs are so called because they are based on standard APIs that are
available on UNIX systems. The UNIX-Type APIs have a different style of documentation and
error handling just as the ILE CEE APIs do. Unfortunately for the RPG programmer, the
documentation for the UNIX-Type APlIs is not as easy to comprehend as the documentation
for the ILE CEE APIs.

The UNIX-Type APIs are documented with the C/C++ programmer in mind, which makes

some sense when you consider that the APIs were ported from UNIX where C/C++ is the
norm; however, RPG and COBOL are still the norm on System i™, and unless you have

RPG: APIs 65

knowledge of C/C++, you are going to find the documentation a challenge—but not an
insurmountable challenge.

Before tackling the APls, familiarize yourself with simply calling C functions. The best place to
start is in Section 5.1 “Exploiting the C function library: a case study” in Who Knew You Could
Do That with RPG IV? A Sorcerer's Guide to System Access and More, SG24-5402.

It is easy to interpret some of the basic data types used as parameters, which are described
in section 5.1.1 of Who Knew You Could Do That with RPG IV? A Sorcerer's Guide to System
Access and More, SG24-5402; however, you may come across data types that do not seem
to make any sense. Help is at hand. Barbara Morris of the IBM Toronto labs has a Web page
titled “Converting from C prototypes to RPG prototypes,” which gives you most of what you
need. But do not jump straight to this Web page. It is best to familiarize yourself with a few of
the simpler APIs before tackling parameter definitions that require Barbara's clarification.

You can find the Web page at:

http://www.opensource400.org/callc.html

We also advise that you install the System Includes Library (QSYSINC) on your system. You
will almost certainly want to refer to some of the system supplied sources. You can install

QSYSINC on your system by installing Option 13 of the Operating System (5722S551) -
System Openness Includes.

Interpreting the interface

66

Let us look at an example of using a UNIX-Type API:

1. From the Information Center (Figure 34 on page 58), access the Application programming
interfaces page at the following Web site:

https://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apiref/
api.htm

2. Click the APIs by Category link, and then click the UNIX-Type link. The UNIX-Type APls
page is displayed.

3. From the UNIX-Type APIs page, click the Integrated File System APIs link, and then
click the access() (Determine file accessibility) link, which is the very first APl listed. The
window in Figure 39 is displayed. Use the access() API to determine if a path or file exists
and whether or not you can access it, rather like using the Check Object (CHKOBJ)
command for the IFS.

access)--Determine File Accessibility

Spntax

Hipelude <upistd. b

ine access{conat char “patd, int amade| :

Service Program Mame: GPOLLIEL
Ciafzult Public authonty: *LUSE

Threadsate: Conditional; se& Usage Motss

The umss{} function determines whether a Mle can be accessed in a particular manner, When :hl':"l'.'k-f-.'j whether a
job has appropriate parmissions, access() looks at the rea! user 10 (LD and group 10 {GIDY, not the effectiee [Ds.
Adoptod authority is not used.

Figure 39 Syntax for the access() API

RPG: APIs

http://www.opensource400.org/callc.html
https://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apiref/api.htm

The access() Determine File Accessibility is not quite the same as the documentation for the
previous APIs! The format that is used to describe the interface for the APl is actually C code,
which is all well and good if you are a C programmer.

The second line, which reads int access(const char *path, int amode), describes the
interface for the API. It indicates that access() returns an integer (int at the start of the line)
and accepts two parameters: a pointer to a null terminated path name (const char *path) and
an integer that indicates the required access mode (int amode).

The next part of the documentation provides a description of the parameters, as shown in
Figure 40.

FParimetors
path
{Irnput) A pointér ta the null-teérminatéd path namé for the fe to ba checked far accesgibility.

This pararster is assumed to be represented in the CCSID (coded charscter et identifier) currantly in effact
o the job: If the CCSID of the pob s 655380, this parameter = assumed to be represented in the default 2510
of the job

conat char *path is the name of tha file whose accesshity vou want to deteming. If the namad file is a
symbaolic link, access() resolves the symbolic link.

Ser Qlgaccess-- Detarmme File sccessibility {using NLS-enablad path name} for a description and an axampla
of supplying the path in any CCSI0,

armode
{Input) A bitwise representation of the access permissions to be checked.
The fl:l"l:l'ﬁ'll'lg symbals, which are cafined in the unistd.h: header FI|B. can be used in amods:
F_l‘.'l.\.'

Tests whether the file s:ists

Tests whether the file can be accessed for reading
W Ox

Tests whather the file can ba accessed for writing

Tests whather the fils can be accessed for execution

You can take the bitwize inclugive OF of &ay or all of the last three symbols to test spversl sacceds modes st
omce. 1F wou are using F_OK to test for the existence of tha file, you cannot wsa OR with any of the other
symbols. If any othar bits are set in amode, access() retums the [EINVAL] error.

If the _|IZI|.'I has *ALLOB] '5|.'IEL‘|3| Suthority, -BEC-ESS{_] will indicate success for P_OkK, W_0K, or X_OFK aver if hone
of the parmission bits are set.

Figure 40 Parameters for the access() API

The definition of the first parameter specifies “a pointer to the null-terminated path name.” In
RPG, we are used to fixed-length strings (for example, we predefine the maximum length of
character fields), but in C, the length of a string is indeterminate, and the length is based on
what the content of the string is. C strings are terminated with a null value to indicate the end
of the string, which you must take into account when you call C functions from RPG. Use
OPTIONS(*STRING) on the definition of the parameter in the prototype, and use the %STR
built in function to retrieve a string returned from a C function.

The definition of the second parameter reads a lot more complicated then it actually is. A lot
of the APIs written in C use a method of setting bits in a byte to indicate certain requirements.
The different permutation and combination of bits are defined as named constants. The
documentation tells you that the values you can specify for the second parameter are
represented by one of the named constants (F_OK, R_OK, W_OK or X_OK), which are
defined in the member unistd.h.

If you were writing a C program, you could simply include the unistd.h member in your
program (just like using a copy member in RPG); however, because you are writing an RPG

RPG: APIs 67

68

program, you have a little work to do. You need to browse the member UNISTD in the source
physical file H in the library QSYSINC, and search for “constants for access” to see the
following definitions.

/***/

/* Constants for access() */
/***/

#define R 0K 4 /* Test for read permission */
#define W 0K 2 /* Test for write permission */
#define X 0K 1 /* Test for execute or search
permission */
#define F 0K 0 /* Test for existence of a file */

You now need to redefine these in RPG (more in a moment).

Further down the documentation page, (skipping over the Authorities for the moment) is a
description of the return value, as shown in Figure 41.

Return vValue
i

AcoRss{) was successful.

AcCRss)) was nob successful (tha spacified accass & not permitted). Tha srmo global vanabla s sst to
incizate the ardor

Figure 41 Return Value for the access() API

A return value of zero means that the call to access() was successful, and a returned value of
“-1” means it was not successful. We discuss more about identifying errors in the next
section.

You now have enough information to define a prototype and some named constants.

STDAPIINFO contains the definition of the following prototype and named constant
definitions, as shown in Example 41.

Example 41 Prototype and named constant definitions

(1) D access PR 10I 0 ExtProc('access')
(2) D path * Value Options(*String)
D amode 10I 0 Value
(3) D R.OK C 4
D W_OK C 2
D X_OK C 1
D F OK C 0

The numbers in the following list correspond with the section numbers in Example 41. The
main points to note in Example 41are:

1. Being written in C, the APl names are case sensitive so ensure that you use the
EXTPROC keyword to specify the APl name.

2. The OPTIONS(*STRING) keyword ensures that a null terminator is appended to the
parameter value.

3. Named constants are defined to correspond to the definition in UNISTD.

RPG: APIs

Identifying errors

Figure 41 on page 68 indicates the means by which errors are identified. The API returns a
value (usually a negative number) to indicate that the call detected an error. The
documentation indicates that the errno global variable is set to indicate the error, which
means that you must use the C function __errno (that is two underlines followed by “errno”) to
retrieve the value of the global variable errno. STDAPIINFO contains the following definitions:

D Geterrno PR * ExtProc('__errno')
D p_errno S *
D errno S 10I 0 Based(p_errno)

Geterrno returns a pointer to a variable. The value of an integer based on the returned pointer
will be the value of the global errno variable. Using __errno requires the inclusion of the
QC2LE binding directory.

But what values can errno contain? The documentation for the API lists the possible error
conditions that may be indicated in errno, as shown in Figure 42.

Figure 42 shows the error conditions for the access() API.

Error Conditions

[f acpess() & not successful, &rmd usually indicates ane of the following &rrors. Undsy Some carnditiders, &vrd could
indicate am ermor other than those listed hera.

Error condition Additional information

FEACCES? . . N
= [f wou are accessing a remaote file through the Metwork Fda Systam, update operations to fils

permissions at the sarver are not reflected at the client until updates to data that is storad
locally by the Network File System take place, (Several optons on the Add Mounted Fis
System (ADDMFE) command determine the time between refresh operations of local data)
&cCess to & remote fds may 2=so fail due to different mappings of ussr 10 [(UID) or growp I0s
(G107 on the local and remote systems

TEASAM]

! EBALETD T

JFEBADHARE |

FESLEY]

TECONVERT]

[FDAAGE]
TEFaE T}
JEFILETT

ErcALT

Figure 42 Some of the error conditions for the access() API

Again, C identifies the possible values as named constants. The member ERROR, in the
source physical file H in the library QSYSINC, contains the definition of the error condition
constants, so you may want to consider converting the member ERROR to RPG. If that
seems like too much work, visit Scott Klements Web site, and download the IFSIO_H and
ERRNO_H source members from Scott’s RPG and IFS presentation. You can find Scott’s
Web site at:

http://www.scottklement.com/presentations/

Alternatively, you can simply select an error condition in the documentation to be shown a
table of all the possible Errno Values for UNIX-Type Functions, as shown in Figure 43.

RPG: APIs 69

http://www.scottklement.com/presentations/
http://www.scottklement.com/presentations/

Errmo Yalues for UNTK-Type Functions
Programs wsing the UNIE™ e type functions may receive ervor information as errme values, The possible values
retumed arg isted hare in ascending errme value sEQURNCE.
Nama value Text Datalls
EDa 2001 | A dormasy errer ocowred i 8 math
function.
ERANGE 2002 | A range arror accurrad,
ETRUMNC 2002 | Data was truncated on an input,
aulpul, or update aperation.
EROTOPEN 3004 | File i= not cpean. ¥ou sttermpled to do an oparation that
required the file to be open.
ENOTREAD 3005 | File = nat epened for read operations. | You trned to read a file that s not open for
read operations.,
EIO 3006 | Inputfeutpul arrar. & A physieal 100 arvor aceurred of 4
referenced object was damaged. &
ENODEY 3007 | Mo such device.
ERECIO 3008 | Cannat get single charscter foc files The file that was specified i< open for record
opened for recosd 140, 170 and you attempted tooread ik as 2
stream file,
ENOTWRITE 3009 | File s not opened for wite operations. | You tned to update a file that has not been
opened for wnte operations,
ESTOIN 3040 | The stdin skream cannot be opened,
ESTDOUT 3011 | The stdout skream cannot be opened.
ESTDERR 3012 | The stderr stream cannet be apened.
ERADSEEK 3013 | The positioning pararmeter in fSeek ig
nat corract,
ERADNAME 3014 | The ebject name specified is not
carrect.
EBADMODE 2015 | The typs vanabie specified on the open | The mode that you attempted to open the
functeon is not correct. file i is POt comect,
ERBADPOS 2017 | The position specifier 1s not carrect,
ENOPOS 3018 | Thers s o recesd at the specified You attempled to positan Lo a record that
pasition. daes not edist in the file,

Figure 43 Errno Values for UNIX-Type Functions

For the upcoming example, STDAPIINFO contains the following definition:

D ENOENT
D EACCES

C
C

3025
3401

ENOENT indicates “No Path or Entry” and EACCES indicates “Permission denied.”

Other Documentation

Before we look at an example, let us look at the rest of the documentation that is shown for

the access() API.

70 RPG: APIs

Figure 44 shows the Authorities that are required for each type of access mode request.

Authorities

Authorlzation Required for access{)

‘Object Referred Lo [Authority Required |errno

Each directory in the path namwe preceding the object to be tasted |* X EACCES
Chpect when B_CK is specifiad |*R |[EACCES
Ohpect when W_0K is spacifisd [+ EACCES
Objact when ¥_0K is specified [*x "~ |[EnccES
Di]jﬂ': ;.vhnn RO | ‘:N'__DK. [:lpm:iﬁr.'d E*RW 'EA.CEEE
Oibject when R_OFE | %_0K is specified [*Rse [Bacrces
Dbfect when W_OK | ¥_0FK ig specibed [* e EACCES
Dbpect when B_CK | W_0K | ¥_0K & specified E'RWH |EACCES
Dhpsct when F_06 s specified |Hane Mone

Figure 44 Authorities for the access() API

Figure 45 shows the error messages that may be sent from the function.

Error Messages

The fallowing messsges may be sent From thes function

Message [0 Error Message Tt

CFE3418 E Fossible APAR condition ar hardware fadure.

CPFADDY E File system arror occurred. Error numbar 2:1.

CRF3CF2 E Ermardsy occuerad dunng cunning of &1 AP,

CPFOR72 E Program or sarvice program Bl in ibrary 82 ended, Peason code 83,

Figure 45 Error Messages for the access() API

Figure 46 shows the Usage Notes for the function. Usage notes highlight any special
conditions or considerations for using the function.

Lsage MNotes
1. This functon will fail with emor code [EMOTSAFE] whaen both of the following conditions occur
* wWhere multiphe threads axist in the job.

* The ohject this function is oparating on resides in a fila system that is not threadsafe. Only the following file
systems are threadsafe for thes function

* “root® ()

* QOpenSys

* User-defined

* QNTC

+* QSYS.LIB

+ Independent ASP OSYS.LIEB
= QOET

* Metwork Fils Systam

+ OFileSyr.400

2. Metwork File Systermn Differences

Local acoess to remote fiss through the Network File System may produce unexpectad resuits due bo conditions
at the server. Once a file s open, subzequent requests to perform operations on the fle can Fail because file
attnbutes are checked at the server on each request. I germissions on the file 2re made more restictve at the
sarver or the file is unlinked or mads unavailsbls by the ssever for another clismt, your oparation on 30 opan file
descrpbor will Tal when the local Network File System receives these updates. The local Metwaork File Systern
2iso impacts ocperations that retrieve file attributes, Recent changes at the server may not be avadable at your
chgnt yet, snd old values may be returned from oparations. (Several options on the add Mountad File Systam
{ADDMFE) command determung the time between refresh operations of local data.)

3. QOPT Fi= System Differences

If the ohjgct exists on a volume formatted in Universal Disk Format (LUOFY, the authonzation that is checked for
the object and preceding directories in the path nama follows the niles described in suthorization Reguired for
scoesshy o IF the ooject exists on a wolume formatted in some other media format, no authonzation checks are
made an the object ar preceding directories. The volume authorization list is chacked for the requested authority
regardless of the volume media format.

Figure 46 Usage Notes for the access() API

RPG: APIs

71

Figure 47 shows related information for the function. Related information lists include files
and other functions that relate to the functionality of this function.

Related Information

* The <unistod.hs M2 (gee Hesder Files Tor DMNEE=Tyoe Funcliong)

* The <limits h> file (see Hoacsr Files for UMTE-Typs Funcions)
*+ accesse--Datarming File sccassibility for Class of Users

chmod{i--Changa Fia Authorizations

* Faccesux l--Oatarmeme File sccessibility for Class of Users

* ppeni--0pan File

* Qlgaccess--Datarming Filg Accessibility using NLS-enabled path nama)

* Dlgaccassxj--Datarmine File Accassibility for Class of Users (using BLE-anabded path name)

* statih--Get Fie Information

Figure 47 Related information for the access() API

Figure 48 shows an example for the function. Although the example is written in C, you do not
need to be an expert in C to get an idea of how you must call the function.

Example

See Code disclammsy infarmabion for mformation pertaining to code examples.

The following example determines how a file 15 acoessed:

Hainclude <acdio. ke
fainc luds <unistd, b

madinll 4
char paep[]=ty/r;

if (access(path, F_OQE} !'= 0]
PELRCL|®' %8 dosa NoC &xiat!yR", path);
ela=
if (mecess (pach, B_OH) == 0j
pELIBRCE ["You have read acceas co 'fatin™, path);
if (mcocess(pach, W_OK) == 0]
PELHCE ["¥ou hawe VELILE accEss co 'ta'in®, pack):
if (mocess(pach, X OF) == 0]
pELREL ["Voiz have assacch accss=s Eo "i='\a", pathi:

i
Output:
Thie cutput frorm & user with resd and sxecute sccess 9

Tou have reoad assess ta *F)0
Tou have search access to '/

Figure 48 Example for the access() APl

Next, we look at an example of using the access() API.

Example of using a UNIX-Type API

API05 is a program that allows for the entry of a path name and indicates whether or not the
path exists, as shown in Figure 49.

B leot Fath

Fath f iy

Path exists

Figure 49 Using the access() API to check the existence of objects in the IFS

72 RPG: APIs

APIO5DSPF contains the definition of the display file, as shown in Example 42.

Example 42 Definition of the display file as contained in AP105DSPF

A* APIO5D - Display File for access() API Example

A DSPSIZ(24 80 *DS3)
INDARA

=

R SELECTPATH
CA03(03 'Exit')
1 36'Select Path'
DSPATR(HI)
9 2'Path:'
PATHNAME 70 B 9 8CHECK(LC)
MESSAGE 50 011 8
23 2'F3=Exit'
DSPATR(HI)
COLOR(BLU)

> > > > > > > > >

Create this display file by using the command:
CRTDSPFF FILE(REDBOOK/APIO5DSPF) SRCFILE(REDBOOK/APISRC)

API05 contains the definition of the program, as shown in Example 43.

Example 43 Definition of the program contained in AP105

(1) H DftActGrp(*NO) ActGrp(*New) BndDir('QC2LE")
H Option(*SrcStmt:*NoDebugl0)
(2) FAPIO5SDSPF CF E WorkStn IndDs(WorkStnInd)
(3) /Copy APISRC,STDAPIINFO
(4) /Copy APISRC,WORKSTNIND

/Free
ExFmt SelectPath;
(5) DoW Not F3Exit;
(6) If access(%Trim(PathName):F OK) = 0;
Message = 'Path exists';
Else;
(7) p_errno = Geterrno();
Select;
When (errno = ENOENT);
Message = 'Path does not exist';
When (errno = EACCES);
Message = 'Permission denied';
Other;
Message = %Char(errno);
EndST;
EndIf;
ExFmt SelectPath;
EndDo;
*InLR = *On;
/End-Free

RPG: APIs

73

Create this program by using the command:
CRTBNDRPG PGM(REDBOOK/API05) SRCFILE(REDBOOK/APISRC)

The numbers in the following explanation correspond to the numbered sections in
Example 43 on page 73. The main points to note in Example 43 on page 73 are:

1.

2

The H spec includes the QC2LE binding directory for the inclusion of the __errno()
function.

The INDDS keyword maps the display file indicators to a data structure, as opposed to the
RPG indicators.

All required prototype and named constants definitions are included in STDAPIINFO.
A copy member is used to include the standard indicators that are used with a display file.
The program loops until F3 is pressed.

The access() function is called for the requested path with the F_OK (test for existence of
a file) access mode. If the return value is zero (successful call), the Message is set to
indicate that the requested path exists.

Otherwise, Geterrno() retrieves the pointer to the errno global variable and the message
is set accordingly. Note the use of the named constants for the tests on errno.

Have some fun trying different permutations and combinations of paths!

As with the ILE CEE APIs, the UNIX-Type APlIs take a little getting used to. The greatest
difficulty is deciphering the documentation.

In Conclusion

74

You are now ready to tackle the wonderful world of APIs. The following list contains a few last
words of advice:

>

Before using an API, always scan the Internet to see if someone has invented the wheel
before you. There is no point in whiling away hours trying to figure out the permutations
and combinations of parameters and formats when someone else has already done the
work for you.

Ensure that the QSYSINC library is installed on your system—it contains prototypes for
many APIs, but it is just a pity that they are not all in RPG.

Create a binding directory for service programs that are not automatically included during
program creation, and make the binding directory part of your standard H spec.

Build up standard copy members for API prototypes and based formats that the APIs use.
Many of these formats, like the list header, are used by multiple APIs.

Encapsulate everything. Place all of your API procedures in service programs where you
can easily access them when you need them.

You should have enough to keep you going for quite a while. Have fun!

RPG: APIs

The team that wrote this IBM Redpaper

This paper was produced by a team of specialists from around the world working at the
International Technical Support Organization, Rochester Center.

Susan Gantner has experience that spans over 24 years in the field of application
development. She began as a Programmer developing applications for corporations in
Atlanta, Georgia, working with a variety of hardware and software platforms. She joined IBM
in 1985 and quickly developed a close association with the IBM Rochester Laboratory during
the development of the AS/400® system.

Susan worked in Rochester, Minnesota for five years in the AS/400 Technical Support
Center. She later moved to the IBM Toronto Software Laboratory to provide technical support
for programming languages and AD tools on the AS/400.

Susan left IBM in 1999 to devote more time to teaching and consulting. Her primary emphasis
is on enabling customers to take advantage of the latest programming and database
technologies on OS/400.

Susan is one of the founding members of System i Developer. She is a regular speaker at
COMMON conferences and other technical conferences around the world, and she holds a
number of Speaker Excellence medals from COMMON. Susan is a founding partner of
System i Developer:

http://www.systemideveloper.com

Jon Paris started his career with IBM midrange systems when he fell in love with the
System/38™ while working as a consultant. This love affair ultimately led him to join IBM.

In 1987, Jon was hired by the IBM Toronto Laboratory to work on the S/36 and S/38 COBOL
compilers. Subsequently, Jon became involved with the AS/400 and in particular
COBOL/400®.

In early 1989 Jon was transferred to the Languages Architecture and Planning Group, with
particular responsibility for the COBOL and RPG languages, where he played a major role in
the definition of the new RPG IV language and in promoting its use with IBM Business
Partners and Users. He was also heavily involved in producing educational and other support
materials and services related to other AS/400 programming languages and development
tools, such as CODE/400 and VisualAge® for RPG.

Jon left IBM in 1998 to focus on developing and delivering education that was focused on
enhancing AS/400 and iSeries® application development skills.

Jon is one of the founding members of System i Developer. He is a frequent speaker at User
Groups meetings and conferences around the world, and he holds a number of speaker
excellence awards from COMMON. Jon is a founding partner of System i Developer.

Paul Tuohy has worked in the development of IBM midrange applications since the '70s. He
was an IT manager for Kodak Ireland Ltd. and Technical Director of Precision Software Ltd.
He is currently the CEO of ComCon, which is a midrange consulting company that is based in
Dublin, Ireland. He has been teaching and lecturing since the mid-'80s.

Paul is the author of:

» “Re-engineering RPG Legacy Applications”
» “The Programmers Guide to iSeries Navigator”
» The self-teach course “iSeries Navigator for Programmers.”

RPG: APIs 75

http://www.systemideveloper.com
http://www.systemideveloper.com
http://www.systemideveloper.com

76

He writes regular articles for many publications and is one of the quoted industry experts in
the IBM Redbooks Publication Who Knew You Could Do That with RPG IV? A Sorcerer's
Guide to System Access and More, SG24-5402.

As well as speaking at RPG & DB2® Summits, Paul is also an award winning speaker who
speaks regularly at US COMMON and other conferences throughout the world. Paul is a
founding partner of System i Developer.

Gary Mullen-Schultz is a certified Consulting IT Specialist at the ITSO, Rochester Center.
He leads the team that is responsible for producing RoadRunner and Blue Gene/L™
documentation. Gary and the team focus on i5/0S application development topics, such as
PHP, Java, and WebSphere®. He is a Sun™ Certified Java Programmer, Developer, and
Architect, and has three issued patents.

Thanks to the following people for their contributions to this project:

Jenifer Servais
International Technical Support Organization, Rochester Center

RPG: APIs

http://www.systemideveloper.com

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp. 77

Send us your comments in one of the following ways:

» Use the online Contact us review Redbooks form found at:
ibm.com/redbooks

» Send your comments in an e-mail to:
redbooks@us.ibm.com

» Mail your comments to:
IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400 U.S.A.

Redpaper™

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AS/400® IBM® System i™
Blue Gene/L™ iSeries® System/38™
COBOL/400® Language Environment® VisualAge®
DB2® 0S/400® WebSphere®
Integrated Language Environment® Redbooks®

i5/0S® Redbooks (logo) (@@ ®

The following terms are trademarks of other companies:

Java, Sun, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

78 RPG: APIs

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

	Go to the current abstract on ibm.com/redbooks
	RPG: APIs
	Introduction
	What is an API?
	Why use APIs?
	Finding APIs
	The API page

	Types of APIs
	Deciphering the documentation
	Parameter data types
	Execute command (QCMDEXC)
	Using the QCMDEXC API
	Error structure
	Retrieve Library Description (QLIRLIBD)
	Using the QLIRLIBD API

	The List APIs
	User spaces
	The List API documentation
	User space format for List APIs
	List Record Formats (QUSLRCD)
	List Fields (QUSLFLD)
	Using QUSLRCD and QUSLFLD

	ILE APIs
	Regular ILE APIs
	ILE CEE APIs

	UNIX-Type APIs
	Interpreting the interface
	Identifying errors
	Other Documentation
	Example of using a UNIX-Type API

	In Conclusion
	The team that wrote this IBM Redpaper

	Notices
	Trademarks

