IBM @server

Advanced Functions
and Administration

on DB2 Universal Database for iSeries

Learn about referential integrity
and constraints

See how Database Navigator
maps your database

Discover the secrets of
Visual Explain

Hernando Bedoya
Daniel Lema
Vijay Marwaha
Dave Squires
Mark Walas

ibm.com/redbooks REd h OOkS

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Advanced Functions and Administration
on DB2 Universal Database for iSeries

December 2001

SG24-4249-03

Take Note! Before using this information and the product it supports, be sure to read the general
information in “Special notices” on page 345.

Fourth Edition (December 2001)
This edition applies to Version 5, Release 1 of 0S/400, Program Number 5722-SS1.

Comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. JLU Building 107-2

3605 Highway 52N

Rochester, Minnesota 55901-7829

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in
any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 1997, 2000, 2001. All rights reserved.
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions set
forth in GSA ADP Schedule Contract with IBM Corp.

Contents

CoNteNtS iii
Preface iX
The team that wrote this redbook. ix
Special NOtiCE.o e Xi
IBM trademarks e e Xi
Comments WEICOME. o Xii
Part 1. BackgroUund. e 1
Chapter 1. Introducing DB2 UDB foriSeries 3
1.1 Anintegrated relational database 4
1.2 DB2 UDB foriSeries: AN OVEIVIEWottt e e e e 4
1.2.1 DB2 UDB foriSeries basiCs 5
1.2.2 DB2 UDB foriSeries advanced functions 6
1.3 DB2 Universal Database for iSeries sampleschema 8
Chapter 2. Using the advanced functions: An Order Entry application. 11
2.1 Introduction to the Order Entry application 12
2.2 Order Entry application overview e 12
2.3 Order Entry database overview. i 14
2.4 DB2 UDB for iSeries advanced functions in the Order Entry database 17
2.4.1 Referentialintegrity. e 17
2.4.2 Two-phase cCommit e 18
Part 2. Advanced fuNCtioNs 19
Chapter 3. Referentialintegrity 21
3.1 IntroduCtion e 22
3.2 Referential integrity concepts 22
3.3 Defining a referential integrity relationship il 24
3.3.1 Constraint prerequisites 24
3.3.2 Journaling and commitment control requirements 25
3.3.3 Referential integrity and accesspaths 25
3.4 Creating a referential constraint 28
3.4.1 Primary key and unique constraints 29
3.4.2 Referential constraint 30
3.4.3 Another example: Order Entry scenario, 32
3.4.4 Self-referencing constraints 34
3.5 Constraints enforcement. 35
3.5.1 Locking considerations e 35
3.5.2 Referential integrity rulesordering 36
3.5.3 ACASCADE example.o e 39
3.6 Journaling and commitmentcontrol 43
3.6.1 Referential integrity journalentries 45
3.6.2 Applying journal changes and referential integrity 49
3.7 Referential integrity applicationimpact 50
3.7.1 Referential integrity /O messages i 50
3.7.2 Handling referential integrity messages in applications 51

© Copyright IBM Corp. 1994, 1997, 2000, 2001 iii

3.8 Referential integrity constraint management. L. 52

3.8.1 Constraintstates. 52
3.8.2 Check pending it 53
3.8.3 Constraintcommands. e 53
3.8.4 Removingaconstraint e 56
3.8.5 Save and restore considerations 59
3.8.6 Restore and journal apply: Anexample 61
3.8.7 Displaying constraintinformation i 61
Chapter 4. Checkconstraint. 67
4.1 INtrodUCHiON . . . oo e 68
4.1.1 Domain ortable constraints e 68
4.1.2 Referential integrity constraints. 68
4.1.3 ASSEItiONS . . . o e e 68
4.2 DB2 UDB foriSeries check constraints. i i 69
4.3 Definingacheckconstraint. e 70
4.4 General considerations e 75
4.5 Check constraint integration into applications. 77
4.5.1 Check constraint /O messagesttt e 77
4.5.2 Check constraint application messages i 78
4.6 Check constraint management e 79
4.6.1 Checkconstraintstates. 80
4.6.2 Save and restore considerations 81
4.7 Tipsandtechniques 82
Chapter 5. DRDA and two-phase commitmentcontrol 83
5.1 Introduction 1o DRDA e 84
5.1.1 DRDA architecture 84
5.1.2 SQL as a common DRDA database access language 84
5.1.3 Application requester and applicationserver 84
5.1.4 Unit Of WOrK. . ..o e 85
5.5 OPBNNESS . . . ittt e 86
5.2 Comparing DRDA-1 and DRDA-2. e 86
5.3 DRDA-2 connection management 87
5.3.1 Connection managementmethods. 88
5.3.2 Connection states e 88
5.4 Two-phase commitmentcontrol 90
5.4.1 Synchronization Point Manager (SPM). i 90
5.5 DB2 UDB for iSeries SQL support for connection management. 92
5.5.1 Example of an application flow using DRDA-2 94
5.6 DRDA-1 and DRDA-2 coexistence e 95
5.7 Recovery fromfailure e 96
5.7.1 General considerations. e 96
B5.7.2 AUtOmMatiC rECOVEIY o o e 96
5.7.3 Manual reCoVery o e e 97
5.8 Application design considerations. 101
5.8.1 Moving from DRDA-1t0 DRDA-2 e 101
5.9 DRDA-2 program examples e 102
5.9.1 Order Entry main program e 102
5.9.2 Deleting an order e 103
5.9.3 Insertingthe detail rows 105
5.10 DRDA over TCP/IP . . . oo e 108
5.10.1 Configuring DRDA over TCP/IP e 108

iv Advanced Functions and Administration on DB2 Universal Database for iSeries

5.10.2 Examples of using DRDAover TCP/IP. 112

5.10.3 Troubleshooting DRDA over TCP/IP. 117
5.11 DB2 Connect access to an iSeries servervia TCP/IP. 120
5.11.1 OntheiSeries server 120
5.11.2 Ontheworkstation 122
5.11.3 Consideration 124
Chapter 6. DB2 Import and Export utilities. 125
6.1 Introduction L. e 126
6.2 DB2 UDB foriSeries Import utility.. 126
6.2.1 CPYFRMIMPE . .. e e 126
6.2.2 Data load example (file definitionfile). L. 130
6.2.3 Data load example (Data Definition Language) 133
6.2.4 Paralleldataloader. 137
6.3 DB2 UDB for iSeries Export utility. 138
B.3.1 CPYTOIMPE . . .o e 138
6.3.2 Creating the importfile (TOFILE) 140
6.3.3 Exportingthe TOFILE e 143
6.3.4 Creating the importfile (STMF). e i 144
6.3.5 Exportingthe STMF e 148
6.4 Moving data from DB2 UDB 7.2 to DB2 UDB foriSeries 149
6.4.1 First approach: Using the Export and Import utilities 149
6.4.2 Second approach: Using Export and CPYFRMIMPF 152
6.5 Moving data from DB2 UDB for iSeriesintoDB2UDB7.2..................... 152
6.5.1 Using the Import and Export utilities 152
6.5.2 Using the CPYTOIMPF command and the Import utility. 153
Part 3. Database administration 155
Chapter 7. Database administration 157
7.1 Database OVerview i e 158
711 Newin VoRT . o 159
7.2 DB2 Universal Database for iSeries through Operations Navigator overview 161
7.2.1 Database functions overview 163
7.2.2 Database library functions overview i 165
7.2.3 Creating an OS/400 library orcollection 166
7.2.4 Library-based functions. 168
7.2.5 Object-based functions 181
7.3 Run SQL SCripts . . . oot 197
7.3.1 ODBC and JDBC connecCtionottt e 202
7.3.2 Running a CL command under SQL script o i 206
7.3.3 Run SQL Scripts example usinga VPN journal 208
7.3.4 Run SQL Scripts Runoptions. 210
7.3.5 DDM/DRDA Run SQL Script configuration summary 216
7.4 Change Query Attributes. e 217
7.5 Current SQLforajob 218
7.6 SQL Performance Monitors. 220
7.6.1 Starting the SQL Performance Monitor. 222
7.6.2 Reviewing the SQL Performance Monitorresults. 226
7.6.3 Importing data collected with Database Monitor. 233
Chapter 8. Database Navigator i i 239
8.1 Introduction L. e 240
8.1.1 System requirements and planning. i i 240

Contents VvV

vi

8.2 Finding Database Navigator 240

8.3 Finding database relationships priorto VSR1MO 242
8.4 Database Navigator maps.t e 244
8.5 The Database Navigator mapinterface 246
8.5.1 Objects to Display WindOw e 253
8.5.2 Database Navigatormap display i 253
8.6 Available options on each activeicononamap............ 255
8.6.1 Table options e 255
8.6.2 INdeX OptioNS. o e 257
8.6.3 Constraint optioNs 258
8.6.4 View OptioNSo o e 259
8.6.5 Journal options e 260
8.6.6 Journalreceiver options 260
8.7 Creating a Database Navigatormap. i, 261
8.7.1 Addingnew objectstoamap 263
8.7.2 Changingthe objectstoincludeinamap......... 264
8.7.3 Changing object placement and arranging objectinamap 265
8.7.4 Creating a user-defined relationship. i L. 266
8.8 The Database Navigator mapicons 269
Chapter 9. Reverse engineering and GenerateSQL 271
9.1 IntrodUCtioNn L. L e 272
9.1.1 Systemrequirements and planning. i e 272
9.1.2 Generate SQL. e e 272
9.2 Generating SQL from the library in Operations Navigator. 276
9.2.1 Generating SQL to PC and data source files on the iSeries server 281
9.2.2 Generating SQL from the Database Navigatormap...................... 289
9.2.3 Generating SQLfrom DDS 297
Chapter 10. Visual Explain. e 301
10.1 A brief history of the databaseand SQL 302
10.2 Database tuning sofar e 302
10.2.1 Query optimizerdebugmessages 302
10.2.2 Database MoNnitor 303
10.2.3 The PRTSQLINF command 303
10.2.4 lterative approach e 303
10.3 Introducing Visual Explain. e 304
10.3.1 Whatis Visual Explain 304
10.3.2 Finding Visual Explain. 304
10.3.3 Data access methods and operations supported 305
10.4 Using Visual Explain with the SQL ScriptCenter 306
10.4.1 The SQL Script Center 306
10.4.2 Visual Explain Only 307
10.4.3 Runand EXplain e 307
10.5 Navigating Visual Explain e 308
10.5.1 Menu oplions o e 310
10.5.2 Action menu items e 310
10.5.3 Controlling diagram levelof detail. 313
10.5.4 Displaying the query environment. 314
10.5.5 Visual Explain query attributesandvalues 315
10.6 Using Visual Explain with Database Monitordata. 318
10.7 Non-SQL interface considerations 320
10.7.1 Query/400 and Visual Explain. 320

Advanced Functions and Administration on DB2 Universal Database for iSeries

10.7.2 The Visual EXplain icons. e 321

10.8 SQL performance analysis using Visual Explain. 323
10.8.1 Database performance analysis methodology 323
Appendix A. Order Entry application: Detailed flow 329
Program flow for the Insert Order Headerprogram oL, 330
Program description for the Insert Order Header program 330
Program flow for the Insert Order Detail program oo, 331
Program description for Insert Order Detail program 332
Program flow for the Finalize Order program. i 333
Program description for the Finalize Order program. 334
Appendix B. Referential integrity: Error handlingexample 337
Program code: Order Header entry program — T4249CINS. 338
Appendix C. Additional material L 341
Locating the Web material e 341
Using the Web material 341
System requirements for downloading the Web material 341
How to use the Web material 342
Related publications 343
IBM RedboOoKS e 343
Other reSOUICES . . . oo e e e e 343
Referenced Web sites 344
How to get IBM Redbooks 344
IBM Redbooks collections. 344
Special Notices e 345
INdeX . .. e 347

Contents Vii

viii Advanced Functions and Administration on DB2 Universal Database for iSeries

Preface

Dive into the details of DB2 Universal Database (UDB) for iSeries advanced functions and
database administration. This IBM Redbook aims to equip programmers, analysts, and
database administrators with all the skills and tools necessary to take advantage of the
powerful features of the DB2 Universal Database for iSeries relational database system. It
provides suggestions, guidelines, and practical examples about when and how to effectively
use DB2 Universal Database for iSeries.

This redbook contains information that you may not find anywhere else, including
programming techniques for the following functions:

» Referential integrity and check constraints

DRDA over SNA, DRDA over TCP/IP, and two-phase commit
DB2 Connect

Import and Export utilities

vYyy

This redbook also offers a detailed explanation of the new database administration features
that are available with Operations Navigator in V5R1. Among the tools, you will find:

» Database Navigator

» Reverse engineering and Generate SQL

» Visual Explain

» Database administration using Operations Navigator

This redbook is a follow-on from the previous redbook DB2 UDB for AS/400 Advanced
Database Functions, SG24-4249-02. With the focus on advanced functions and
administration in this fourth edition of the book, we moved the information about stored
procedures and triggers into a new redbook — Stored Procedures and Triggers on DB2
Universal Database for iSeries, SG24-6503.

Prior to reading this redbook, you should have some knowledge of the relational database
technology and application development environment on the IBM @server iSeries server.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization (ITSO) Rochester Center.

Hernando Bedoya is an IT Specialist at the IBM ITSO, in Rochester, Minnesota. He writes
extensively and teaches IBM classes worldwide in all areas of DB2 UDB for iSeries. Before
joining the ITSO more than one year ago, he worked for IBM Colombia as an AS/400 IT
Specialist doing presales support for the Andean countries. He has 16 years experience in
the computing field and has taught database classes in Colombian universities. He holds a
Masters Degree in computer science from EAFIT, Colombia. His areas of expertise are
database technology, application development, and data warehousing.

Daniel Lema is an IT Architect at IBM Andean with 13 years of experience. Some of his
projects include working with Business Intelligence, ERP implementation, and outsourcing.
Previously, he worked as a Sales Specialist for the Midrange Server Product Unit (formerly
the AS/400 Product Unit) helping customers and sales people in designing AS/400- and
DB2/400-based solutions. He is a lecturer in Information Management and Information

© Copyright IBM Corp. 1994, 1997, 2000, 2001 ix

X

Technology Planning in the Graduate School at EAFIT University and other colombian
universities. He is also an Information Systems Engineer and working on his project degree
for getting his Applied Mathematics Master Degree at EAFIT University in which he has
already finished the academic activities.

Vijay Marwaha is an IT Specialist with IBM Global Services - Business Innovation Services,
in Cranford, New Jersey. He has 30 years experience in the computing field. He has worked
with the System/38, AS/400, and iSeries for the last 16 years. His areas of expertise are
database design, application design, and development for performance, data warehousing,
and availability. He is also a chemical engineer and holds an MBA from the Indian Institute of
Management Calcutta.

David F Squires is an IT Specialist at the Technical Support center in the UK. He is a Level 2
Operations Specialist who deals with database and Main Storage issues. He has been
working with the AS/400 system since it was announced back in 1988 and continues to work
with the iSeries server today. He has more than 15 years experience in the computing field.

Mark Walas is the Technical Director of Sierra Training Services Limited in England. Sierra
Training is a leading iSeries and AS/400 education provider in the United Kingdom. He is
currently responsible for the education strategy and course development of Sierra Training
Services. He teaches iSeries and AS/400 courses extensively. He has 23 years of experience
in the computing field.

This redbook is based on the projects conducted in 1994, 1997, and 2000 by the ITSO
Rochester Center.

The advisor of the first edition of this redbook was:

Michele Chilanti
ITSO, Rochester Center

The authors of the first edition of this redbook in 1994 were:

Thelma Bruzadin, ITEC Brazil
Teresa Kan, IBM Rochester
Oh Sun Kang, IBM Korea
Alex Metzler, IBM Switzerland
Kent Milligan, IBM Rochester
Clarice Rosa, IBM ltaly

The advisor of the second and third editions of this redbook was:

Jarek Miszczyk
ITSO, Rochester Center

The authors of the second edition of this redbook in 1997 were:

Hernando Bedoya, IBM Colombia
Deepak Pai, IBM India

The authors of the third edition of this redbook in 2000 were:

Christophe Delponte, IBM Belguim
Roger H. Y. Leung, IBM Hong Kong
Suparna Murthy, IBM India

Advanced Functions and Administration on DB2 Universal Database for iSeries

Thanks to the following people for their invaluable contributions to this project:

Mark Anderson
Christopher Brandt
Michael Cain
Jim Cook

John Eberhard
Jim Flanagan
Mietek Konczyk
Kent Milligan
Kathy Passe
Tom Schrieber
IBM Rochester

Cintia Marques
IBM Brazil

Simona Pachiarini
IBM ltaly

Andrew Fellows
IBM UK

Special notice

This publication is intended to help programmers, analysts, and database administrators to
implement DB2 UDB for iSeries. The information in this publication is not intended as the
specification of any programming interfaces that are provided by DB2 UDB for iSeries. See

the PUBLICATIONS section of the IBM Programming Announcement for DB2 UDB for iSeries

for more information about what publications are considered to be product documentation.

IBM trademarks

The following terms are trademarks of the International Business Machines Corporation in the

United States and/or other countries:

e (logo)® @

IBM ®

AFP™

AIX®

APPN®

AS/400®

CICS®

COBOL/400®
DataPropagator™

DB2®

DB2 Connect™

DB2 Universal Database™
Distributed Relational Database Architecture™
DPI®

DRDA®

GDDM®

Informix™

iSeries™

MORE™

Redbooks™
Redbooks Logo (@
MVS™

Operating System/400®
0S/2®

0S/390®

0S/400®
PartnerWorld®
Perform™
RPG/400®

SAA®

S/390®

Sequent®

SPTM

SP1®

SP2®

System/36™

TME®

Notes®

Preface

Xi

Comments welcome

Your comments are important to us!
We want our IBM Redbooks to be as helpful as possible. Send us your comments about this
or other Redbooks in one of the following ways:
» Use the online Contact us review redbook form found at:
ibm.com/redbooks
» Send your comments in an Internet note to:
redbook@us. ibm.com

» Mail your comments to the address on page ii.

Xii Advanced Functions and Administration on DB2 Universal Database for iSeries

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Part 1

Background

This part introduces the basics concepts of DB2 Universal Database for iSeries. It provides a
description of the Order Entry application used to illustrate the use of the advanced features
used in DB2 Universal Database for iSeries. Plus, it describes the sample database provided
in DB2 Universal Database for iSeries in V5R1.

© Copyright IBM Corp. 1994, 1997, 2000, 2001 1

2 Advanced Functions and Administration on DB2 Universal Database for iSeries

Introducing DB2 UDB for iSeries

This chapter includes:

» A general introduction to DB2 UDB for iSeries
» An overview on the contents in this redbook
» A definition of the sample schema provided in V5R1

© Copyright IBM Corp. 1994, 1997, 2000, 2001

1.1 An integrated relational database

Integration has been one of the major elements of differentiation of the iSeries server platform
in the information technology marketplace. The advantages and drawbacks of fully integrated
systems have been the subject of endless disputes in the last few years. The success of the
iSeries server indicates that integration is still considered one of the premier advantages of
this platform. Security, communications, data management, backup and recovery. All of these
vital components have been designed in an integrated way on the iSeries server. They work
according to a common logic with a common end-user interface. They fit together perfectly,
since all of them are part of the same software—the Operating System/400 (OS/400).

The integrated relational database manager has always been one of the most significant
facilities that the iSeries server provides to users. Relying on a database manager integrated
into the operating system means that virtually all the user data on the iSeries server is stored
in a relational database and that the access to the database is implemented by the operating
system itself. Some database functions are implemented at a low level in the iSeries server
architecture, while some are even performed by the hardware.

A recent survey pointed out that a significant percentage of iSeries server customers do not
even know that all of their business data is stored in a relational database. This might sound
strange if you think that we consider the integrated database as one of the main technological
advantages of the iSeries server platform. On the other hand, this means that thousands of
customers use, manage, back up, and restore a relational database every day without even
knowing that they have it installed on their system. This level of transparency has been made
possible by the integration and by the undisputed ease of use of this platform. These have
been key elements of the success of the iSeries server database system in the marketplace.

During the last couple of years, each new release of 0S/400 has enhanced DB2 UDB for
iSeries with a dramatic set of new functions. As a result of these enhancements, the iSeries
server has become one of the most functionally rich relational platforms in the industry.

DB2 UDB for iSeries is a member of the DB2 UDB family of products, which also includes
DB2 for OS/390 and DB2 Universal Database. The DB2 UDB family is the IBM proposal in the
marketplace of relational database systems and guarantees a high degree of application
portability and a sophisticated level of interoperability among the various platforms that are
participating in the family.

1.2 DB2 UDB for iSeries: An overview

4

This section provides a quick overview of the major features of DB2 Universal Database for
iSeries. A full description of the functions that are mentioned in this section can be found in
several IBM manuals, for example:

» Database Programming, SC41-5701
» DDS Reference, SC41-5712
» SQL Reference, SC41-5612

Advanced Functions and Administration on DB2 Universal Database for iSeries

1.2.1 DB2 UDB for iSeries basics

As previously mentioned, the major distinguishing characteristic of the iSeries server
database manager is that it is part of the operating system. In practice, this means that the
large majority of your iSeries server data is stored in the relational database. Although the
iSeries server also implements other file systems in its design, the relational database on the
iSeries server is the most commonly used by the customers. Your relational data is stored in
the database, plus typical non-relational information, such as the source of your application
programs.

Physical files and tables

Data on the iSeries server is stored in objects called physical files. Physical files consist of a
set of records with a predefined layout. Defining the record layout means that you define the
data structure of the physical file in terms of the length and the type of data fields that
participate in that particular layout.

These definitions can be made through the native data definition language of DB2 UDB for
iSeries, called Data Description Specifications (DDS). If you are familiar with other relational
database platforms, you are aware that the most common way to define the structure of a
relational database is by using the data definition statements provided by the Structured
Query Language (SQL). This is also possible on the iSeries server. The SQL terminology can
be mapped to the native DB2 UDB for iSeries terminology for relational objects. An SQL table
is equivalent to a DDS defined physical file. We use both terms interchangeably in this book.
Similarly, table rows equate to physical file records for DB2 UDB for iSeries, and SQL
columns are a synonym for record fields.

Logical files, SQL views, and SQL indexes

By using DDS, you can define logical files on your physical files or tables. Logical files
provide a different view of the physical data, allowing columns subsetting, record selection,
joining multiple database files, and so on. They can also provide physical files with an access
path when you define a keyed logical file. Access paths can be used by application programs
to access records directly by key or for ensuring uniqueness.

On the SQL side, there are similar concepts. An SOL view is almost equivalent to a native
logical file. The selection criteria that you can apply in an SQL view is much more
sophisticated than in a native logical file. An SQOL index provides a keyed access path for the
physical data exactly the same way as a keyed logical file does. Still, SQL views and indexes
are treated differently from native logical files by DB2 UDB for iSeries, and they cannot be
considered to exactly coincide.

“Database file” refers to any DB2 UDB for iSeries file, such as a logical or physical file, an
SQL table, or view. Any database files can be used by applications for accessing DB2 UDB
for iSeries data.

DB2 UDB for iSeries in a distributed environment

It is becoming more and more common for companies and businesses to organize their
computing environment in a distributed way. The need to access remote data is constantly
growing. DB2 UDB for iSeries provides several options for operating with remote platforms,
both homogeneous and heterogeneous.

The Distributed Data Management (DDM) architecture is the basis for distributed file access.
You can create a DDM file on your iSeries server and have it direct your data access requests
to a remote database file. This remote file can be another DB2 UDB for iSeries database file
or a Customer Information Control System (CICS) managed data file residing on a host
platform. Only native data access is allowed for DDM files.

Chapter 1. Introducing DB2 UDB for iSeries 5

On top of the DDM architecture, IBM has created the Distributed Relational Database
Architecture (DRDA). DRDA defines the protocol by which an SQL application can access
remote tables and data. DB2 UDB for iSeries participates in this architecture, as do all the
products of the DB2 Family. This means that your DB2 UDB for iSeries database can be
accessed by any SQL application running on another iSeries server or on DB2 for 0S/390,
DB2 Universal Database, or DB2 for VM. A DB2 UDB for iSeries application with embedded
SQL can access relational data stored in a DB2 for 0S/390, DB2 for VM, or on another
iSeries server. The DRDA architecture is implemented directly into OS/400.

IBM has also licensed DRDA to many other companies, such as Informix Software Inc.,
Ingres Corporation, and Oracle Corporation.

The iSeries server provides several other interfaces for client platforms to access DB2 UDB
for iSeries data. Client Access for iSeries is a rich product that allows broad interoperability
between a PC client and the iSeries server. For database access, Client Access for iSeries
provides the PC with:

» A sophisticated file transfer function that allows subsetting of rows and columns

» Remote SQL APIs that you can embed in your PC programs to access data stored in DB2
UDB for iSeries tables

» An Open Database Connectivity (ODBC) interface to DB2 UDB for iSeries data that allows
applications that use this protocol to access the iSeries server database

Terminology

Since the AS/400 system (which today is the iSeries server) was developed before SQL was
widely-used, OS/400 uses different terminology than what SQL uses to refer to database
objects. The terms and its SQL equivalent are found in Table 1-1. The terms have been
interchanged throughout the book.

Table 1-1 SQL and 0S/400 term cross reference

SQAL term iSeries term

Table Physical file

View Non-keyed logical file
Index Keyed logical file

Column Field

Row Record

Schema Library, collection

Log Journal

Isolation level Commitment control level

1.2.2 DB2 UDB for iSeries advanced functions

The main purpose of this redbook is to describe, in detail and with practical examples, the rich
set of functions that have been implemented in DB2 UDB for iSeries. This section provides a
quick overview of the most important advanced features.

6 Advanced Functions and Administration on DB2 Universal Database for iSeries

Referential integrity

Referential integrity is a set of mechanisms by which a database manager enforces some
common integrity rules among database tables. An example of a referential integrity rule is a
customer master table and an invoice table. You do not want invoices related to non-existing
customers (every invoice must reference a valid customer). As a consequence of this rule, it
makes sense that, if somebody attempts to delete a customer with outstanding invoices, the
delete operation is rejected. Without referential integrity implementation, the only way to
ensure that these rules are enforced is by writing appropriate routines in the applications.

With referential integrity, this kind of rule can be implemented directly into the database. Once
the rules are defined, DB2 UDB for iSeries automatically enforces them for the users.

Check constraint

Check constraints are validity checks that can be placed on fields of database physical files
and columns of SQL tables. It ensures that the value being entered in a column of a table
belongs to the set of valid values defined for that column. For example, you may specify that
the “legal” values for an employee evaluation field are defined as an integer, such as 2, 3, 4,
or 5. Without the check constraint, a user can enter any integer value into such a column. To
ensure that the actual value entered is as specified, you must use a trigger or code the rule in
your application.

DRDA and two-phase commit

DRDA is the architecture that meets the needs of application programs requiring access to
distributed relational data. This access requires connectivity to and among relational
database managers. The database managers can run in like or unlike operating environments
and communicate and operate with each other in a way that allows them to execute SQL
statements on another computer system. There are several degrees of distribution of
database management system functions. DB2 UDB for iSeries currently supports the
following levels of distribution:

» Remote unit of work

With a remote unit of work, an application program executing in one system can access
data at a remote system using SQL. A remote unit of work supports access to one
database system within a unit of work (transaction). If the application needs to interact with
another remote database, it has to commit or rollback the current transaction, stop the
current connection, and start a new connection.

» Distributed unit of work

With a distributed unit of work, within one unit of work, an application executing in one
system can direct SQL requests to multiple remote database systems. When the
application is ready to commit the work, it initiates the commit, and commitment
coordination is provided by a synchronization point manager. Whether an application can
update multiple databases in one unit of work depends on the two-phase commit protocol
support between the application's location and the remote systems.

Procedures and triggers

Stored procedures and triggers used to be part of the original book. Due to their importance
we have decided to move them to the new redbook Stored Procedures and Triggers on DB2
Universal Database for iSeries, SG24-6503.

The first part of this book discusses, in detail, referential integrity, check constraints, and
DRDA and two-phase commit.

Chapter 1. Introducing DB2 UDB for iSeries 7

1.3 DB2 Universal Database for iSeries sample schema

8

Within the code of OS/400 V5R1MO, there is a stored procedure that creates a fully
functioning database. This database contains tables, indexes, views, aliases, and constraints.
It also contains data within these objects. This database is used in this book to illustrate the
new Database Navigator functions announced with Operations Navigator V5SR1MO.

This database also helps with problem determination since the program is shipped with the
0S/400 V5R1MO code. By calling a simple program, you can create a duplicate of this
database on any system running V5R1MO. This enables customers and support staff to work
on the same database for problem determination.

This database can also be used as a learning tool to explain the various functions available at
V5R1MO with Database Navigator. Furthermore, it provides a method for teaching
applications programmers or new database administrators how relationships can be built on
the iSeries server between tables, schemas, indexes, etc.

Working on the same database provides the ability for customers around the world to see the
new functionality at VSR1MO. It also simplifies the setup environment for the workshops that
are created in the future for use by customers.

You create the database by issuing the following SQL statement:
CALL QSYS.CREATE_SQL_SAMPLE('SAMPLEDBXX"')

This statement can be found in the pull-down box of the Run SQL Script window example
shown in Figure 1-1.

% Untitled - Run SQL Scripts - As27

File Edit ¥iew Run VisualExplain Options Connection Help
S| L EaR PPDO O Wy @
Examples ;I Insert

UPDATE table1 SET ROW = (columnt, “columnd), | <]
" Enter one or more SQL statements separated DY ppATE tablet SET (columni, colurnZ) = (SELECT

™ Miscellaneous Staternents =/

CALL (EATE_SQL_SA
CALL proceduret {'aaa’ b, MULLY,
LOCK TABLE table1 IN SHARE MODE; -

'LE('collection?;

Messages I

Figure 1-1 Example display showing the schema CREATE statement

Note: The schema name needs to be in uppercase. This sample schema will also be used in
future DB2 Universal Database for iSeries documentation.

Advanced Functions and Administration on DB2 Universal Database for iSeries

As a group, the tables include information that describes employees, departments, projects,
and activities. This information makes up a sample database demonstrating some of the
features of DB2 Universal Database for iSeries. An entity-relationship (ER) diagram of the
database is shown in Figure 1-2.

EMFPLOVEE

LASTHAME: VARCHARCS)
WORKDEPT: CHAR(Z)
FHOMENDO: CHAR(
HIREDATE: DATE

JOB: CHARE)

ECLEVWEL: SMALLINT
SEX: CHAR()

SALARY: DECIMALG,2)
BONUS: DECIMALD,Z)

BIRTHDATE: DATE — —

COMM: DECIMALD,2)

EMP_PHOTO

ERMPHO: CHARS)
FHOTO_FORMAT: WARCHARTO)

EMPHO: CHARS) E DEFARTMENT

DEFTHO: CHARCE) .
FIRSTHNME: WARCHARI12) g
RAICINIT: CHARC) — —) DEPTNAME: WARCHAR(IE)

ADMRDEF T: CHAREE) o]
LOCATION: CHAREE) |

EMF_RESUME

PROJECT

FROJNO: CHARME)

PROJHAME: WARCHARZD)
DEPTHO: CHARCZ)

RESFEMF: CHARIG) -
PRSTAFF: DECIMALIS 2)
FRSTDATE: DATE
FRENDATE: DATE

MAIPRO): CHARS)

ERPHO: CHARE)
RESUME_FORMAT: WARCHARCIO)

ERP_ROWID: CHARED)

FICTURE: BLOB(10Z2400)
DL_PICTURE: DATALIMKI1000)
.

CL_SCHED

CLASS_CODE: CHART)
DAY SMALLINT
STARTING: TIME
ENEING: TIME

RESUME: CLOB{S120)
EMP_ROWID: CHARED)
DL_RESUME: DATALINK{000)

ACTDESC: VARCHARZO)

IN_TRAY

RECEIWED: DATE

SOURCE: CHARCE)

SUBJECT: CHAR(GS)
HOTE_TEXT: WARCHARCZO00)

!
|
|

1 |

L

FROJACT

ACT PROJNO: CHARE)
ACTNOD: SMALLINT ACTHO: SMALLINT
ACTREUWD: CHARG) ACSTDATE: DATE

ACSTAFF: DECIMALIS,Z)
ACENDATE: DATE

T
|

EMFFROJACT

EMPHO: CHARS)
PROJNO: CHARS)
ACTHO: SMALLINT
EMPTIME: DECIMALIS,Z)
EMSTOATE: DATE
EMEMDATE: DATE

Figure 1-2 Sample schema: Entity-relationship diagram

The tables are:

Project Table (PROJECT)

Activity Table (ACT)

VYVYVYVYVYVYVYYVYY

In Tray Table (IN_TRAY)

Department Table (DEPARTMENT)

Employee Table (EMPLOYEE)

Employee Photo Table (EMP_PHOTO)

Employee Resume Table (EMP_RESUME)
Employee to Project Activity Table (EMPPROJACT)

Project Activity Table (PROJACT)

Class Schedule Table (CL_SCHED)

Indexes, aliases, and views are created for many of these tables. The view definitions are not
included here. There are three other tables created that are not related to the first set:

» Organization Table (ORG)
» Staff Table (STAFF)
» Sales Table (SALES)

Note: Some of the examples in this book use the sample database that was just described.

Chapter 1. Introducing DB2 UDB for iSeries

9

10 Advanced Functions and Administration on DB2 Universal Database for iSeries

Using the advanced functions:
An Order Entry application

This chapter provides:

>

>
>
>

A description of the Order Entry scenario

The database structure

The logical flow of each application component

A highlight of the advanced functions used in this application

© Copyright IBM Corp. 1994, 1997, 2000, 2001

11

2.1 Introduction to the Order Entry application

This chapter describes how a simple Order Entry application can take advantage of the
advanced functions that are available with DB2 UDB for iSeries. It provides a description of
the complete application, in terms of logical flow and database structure. The actual
implementation of this application can be found in the specific chapters where we exploit this
application scenario to show you how to use the DB2 UDB for iSeries functions.

By presenting an application scenario, we intend to show how the advanced DB2 UDB for
iSeries functions can be applied to a real-life environment and the technical implications of
using those functions. For this reason, the application may appear simplistic in some respects
(for example, the user interface or some design choices). We present a simple,
easy-to-understand scenario that includes most of the aspects we discuss throughout this
redbook.

We chose to develop the various components of the application using different programming
languages to show how the various languages can interact with the DB2 UDB for iSeries
functions.

As mentioned previously, the stored procedures and triggers moved to a separate redbook
called Stored Procedures and Triggers on DB2 Universal Database for iSeries, SG24-6503.

2.2 Order Entry application overview

12

The Order Entry application shown in Figure 2-1 represents a simple solution for an office
stationery wholesaler.

Advanced Functions and Administration on DB2 Universal Database for iSeries

Local System
(Branch Office)

Remote System
(Head Office)

Insert Order Supplier
Header i

@I Remote

Insert Order| ag—

Detail

‘ (Stock (
Finalize
Order \ 1

Remote

LEGEND
REFERRAL INTEGRITY
CONSTRAINT

TRIGGER STORED PROCEDURE

TWO PHASE COMMIT

Restart

Figure 2-1 Application overview: Interaction of DB2 UDB for iSeries functions

This application has the following characteristics:

>

>

The wholesale company runs a main office and several branch offices.

A requirement of the branch offices is their autonomy and independence from the main
office.

Data is, therefore, stored in a distributed relational database. Information about customers
and orders is stored at the branch office, where the central system keeps information
about the stock and suppliers.

A main requirement of this company is the logical consistency of the database. All orders,
for example, must be related to a customer, and all the products in the inventory must be
related to a supplier. This is why we need to use referential integrity in this database. See
3.4.3, “Another example: Order Entry scenario” on page 32, which describes how
referential integrity can be configured for this particular scenario.

The sales representative contacts the customer over the telephone. Each sales
representative is assigned a pool of customers. According to the policy of the sales
division of this company, a sales representative is allowed to place orders only for a
customer of their pool. This policy is needed to guarantee a fair distribution of the
commissions on the sales representative’s turnover. This requirement can be effectively
enforced by means of a trigger program that automatically checks the relationship
between a customer and the sales representative when the order is placed. This is
addressed in Stored Procedures and Triggers on DB2 Universal Database for iSeries,
SG24-6503.

Chapter 2. Using the advanced functions: An Order Entry application 13

In placing an order, the sales representative first introduces some general data, such as
the order date, the customer code, and so on. This process generates a row in the Order
Header table.

The sales representative then inserts one or more items for that specific order. If the
specific item is out of stock, we want the application to look in the inventory for an
alternative article. The inventory is organized in categories of products and, on this basis,
the application performs a search. Since the inventory table is located remotely, we use a
DRDAC(*) connection between the systems. In addition, since the process of searching the
inventory may involve many accesses to the remote database, a stored procedure is
called to carry out this task.

When the item or a replacement has been found, the inventory is updated, and a row is
inserted in the local order detail table.

At this point, we want to release the inventory row to allow other people to place a new
order for the same product. We commit the transaction at this time. DB2 UDB for iSeries
ensures the consistency of the local and remote databases, thanks to the two-phase
commitment control support.

When all order items have been entered, the order is finished and a finalizing order
program is called. This program can:

— Add the total amount of the order to the Customer table to reflect the customers'
turnover

— Update the total revenue produced by the sales representative on this customer
— Update the total amount of the order in the Order Header table

An update event of the Order Header table starts another trigger program that writes the
invoice immediately at the branch office.

As we mentioned, the “atomic” logical transaction is completed when a single item in the
order has been inserted to reduce the locking exposures. If the system or the job fails, we
must be able to detect incomplete orders. This can be done when the user restarts the
application. A simple restart procedure will check for orders having the total equal to zero
(not “finalized”). These orders are deleted and the stock quantity of all the items is
increased by the amount that we had reserved during the order placement. We can also
present a choice menu to the user, asking whether the incomplete orders should be
finalized.

2.3 Order Entry database overview

The Order Entry application is based on a distributed database. Each branch office location
keeps all the data related to its own customers in its local database. The information
concerning the items available in the warehouse is stored in the remote database at the head
office.

The local database consists of these physical files/tables:

>

'S

>

CUSTOMER table: Contains the information related to the customers
ORDERHDR table: With the data related to where the Order items are stored
ORDERDTL table: Where each row represents a Detail of an Order

SALESCUS table: Keeps the relationship between a sales representative and the
customers for whom that sales representative is authorized to place orders

14 Advanced Functions and Administration on DB2 Universal Database for iSeries

The central database consists of two tables:

» STOCK table: Contains information about the contents of the warehouse

» SUPPLIER table: Contains information related to the suppliers

Table 2-1 through Table 2-7 on page 16 show the record layouts for the files of both local and

central databases.
Table 2-1 CUSTOMER table

Field name Alias Type Description
CUSTOMER_NUMBER CUSBR CHAR(20) Customer number
CUSTOMER_NAME CUSNAM CHAR(20) Customer name
CUSTOMER_TELEPHONE CUSTEL CHAR(15) Customer phone
number
CUSTOMER_FAX CUSFAX CHAR(15) Customer fax number
CUSTOMER_ADDRESS CUSADR CHAR(20) Customer address
CUSTOMER_CITY CUSCTY CHAR(20) Customer city
CUSTOMER_ZIP cuszip CHAR(5) Customer ZIP code
CUSTOMER_CRED_LIM CUSCRD DEC(11,2) Customer credit limit
CUSTOMER_TOT_AMT CUSTOT DEC(11,2) Customer total amount
Table 2-2 ORDERHDR table
Field name Alias Type Description
ORDER_NUMBER ORHNBR CHAR(5) Order number
CUSTOMER_NUMBER CUSBR CHAR(5) Customer number
ORDER_DATE ORHTE DATE Order date
ORDER_DELIVERY ORHDLY DATE Order delivery date
ORDER_TOTAL ORHTOT DEC(11,2) Order total
ORDER_SALESREP SRNBR CHAR(10) Sales Rep. number
Table 2-3 ORDERHDR table
Field name Alias Type Description
ORDER_NUMBER ORHNBR CHAR(5 Order number
PRODUCT_NUMBER PRDNBR CHAR(5) Product number
ORDERDTL_QUANTITY ORDQTY DEC(5,0) Order detail quantity
ORDERDTL_TOTAL ORDTOT DEC(9,2) Order detail total

Chapter 2. Using the advanced functions: An Order Entry application 15

16

Table 2-4 SALESCUS table

Field name Alias Type Description
SALESREP_NUMBER SRNBR CHAR(10) Sales Rep. number
CUSTOMER_NUMBER CUSBR CHAR(5) Customer number
SALES_AMOUNT SRAMT DEC(11,2) Sales rep. total amount
for this customer

Table 2-5 SUPPLIER table
Field name Alias Type Description
SUPPLIER_NUMBER SPLNBR CHAR(5) Supplier number
SUPPLIER_NAME SPLNAM CHAR(20) Supplier name
SUPPLIER_TELEPHONE SPLTEL CHAR(15) Supplier phone number
SUPPLIER FAX SPLFAX CHAR(15) Supplier fax number
SUPPLIER ADDRESS SPLADR CHAR(20) Supplier address
SUPPLIER_CITY SPLCTY CHAR(20) Supplier city
SUPPLIER_ZIP SPLZIP CHAR(5) Suppler ZIP code

Table 2-6 STOCK table
Field name Alias Type Description
PRODUCT_NUMBER PRDNBR CHAR(5) Product number
PRODUCT_DESC PRDDES CHAR(20) Product description
PRODUCT_PRICE PRDPRC DEC(7,2) Product unit price
PRODUCT_AVAIL_QTY PRDPRC DEC(5,0) Product available quantity
SUPPLIER_NUMBER SPLNBR CHAr(4) Supplier number
PRODUCT_CATEGORY PRDCAT CHAR(4) Product category
PROD_MIN_STOCK_QTY PRDQTM DED(5,0) Product minimum stock quantity

Table 2-7 STOCKPIC table
Field name Alias Type Description
PRODUCT_NUMBER PRDNBR CHAR(5) Product number
PRODUCT_PICTURE PRDPIC BLOB Product picture

Advanced Functions and Administration on DB2 Universal Database for iSeries

2.4 DB2 UDB for iSeries advanced functions in the Order Entry

database

Figure 2-2 shows the Order Entry database structure and how the advanced database
functions have been implemented.

LOCAL SYSTEM
Trigger

CUSTOMER CUSNBR
Insert
Pi A
i FK =<
ORDERHDR | ORHNER | CUSNBR

PK
T Update
FK Trigger

ORHNBR : PRDNBR

ORDERDTL

SALESREP | SRNBR CUSNBR
L pk—

.................... TWO PHASE COMMIT

REMOTE SYSTEM

SUPPLIER | SPLNBR |

PK T—
FK

stock | PRDNBR SPLNBR
PK

STORED
PROCEDURE|

LEGEND: PK - PRIMARY KEY
FK - FOREIGN KEY

Figure 2-2 Order Entry application database structure

As stated in the overview of this chapter, the main objective of presenting this application
scenario along with this specific database design is to show how the functions provided by
DB2 UDB for iSeries can be used and how they can work together in a single application.
Let's analyze Figure 2-2 from each function standpoint.

2.4.1 Referential integrity

On both the local and the remote system, the physical files/tables previously described
represent entities tied to each other by logic and business relationships:

» Relationships among the CUSTOMER, ORDERHDR, and SALESCUS tables:

We want every order to refer to an existing customer, and we want to prevent anybody
from deleting a customer that has related orders. Similarly, each sales representative must
be in charge of existing customers, so that each sales representative in the SALESCUS
file must be associated to a customer code that exists in the CUSTOMER table.

Chapter 2. Using the advanced functions: An Order Entry application 17

These two relationships are described in Figure 2-2, where the referential integrity
network for our database is explained.

» Relationship between the ORDERHDR and ORDERDTL tables:

We require that every detail item in the Order Detail table be related to an existing header
in the Order Header table. Additionally, when an order has to be removed, we want the
detail information to be deleted as well. This business rule is translated into the arrow
linking the ORHNBR column in ORDERDTL to the same column in the ORDERHDR table.

» Relationship between the STOCK and SUPPLIER tables:

At the remote side, we have a business relationship between the STOCK and SUPPLIER
tables. We need to know who provides us with each of our products, so we do not want to
keep an item in the STOCK table if its supplier is not present in the SUPPLIER table. For
the same reason, we cannot allow the deletion of a supplier as long as we have a product
provided by that supplier stored in the STOCK table. This business rule is represented by
the arrow linking the SPLNBR column in the STOCK file to the same one in the
SUPPLIER table.

We want these relationships to be enforced at any time, even when data is changed through
interfaces, such as Interactive SQL or Data File Utility (DFU). For this reason, this scenario
provides a good example of referential integrity implementation.

As described in 3.2, “Referential integrity concepts” on page 22, these relationships can
easily be translated into a proper referential integrity constraint. Once these constraints are
defined, DB2 UDB for iSeries automatically keeps our data consistent with the business rules,
regardless of the kind of interface is used to change the contents of the database. Application
programmers do not need to implement any integrity checking in their applications, which
provides benefits in terms of ease of development and maintenance.

2.4.2 Two-phase commit

18

The company database is distributed between a central site, where the STOCK and
SUPPLIER table are located, and several remote branch offices. The warehouse is located at
the central site and is centrally managed there.

On the other hand, the information related to the customers and orders is independently
managed at each branch office.

Consequently, our application will access both the local and the remote database. In a single
unit of work, the application updates both the STOCK table on the remote side and the
ORDERDTL table at the local side.

DRDA-2 and two-phase commit guarantee the consistency of the entire database, even after
system failures. See Chapter 5, “DRDA and two-phase commitment control” on page 883, for a
complete discussion of DRDA-2 and two-phase commit.

Advanced Functions and Administration on DB2 Universal Database for iSeries

Part 2

Advanced
functions

This part describes, in detail and with practical examples, the rich set of functions that have

been implemented in DB2 UDB for iSeries. Among the most important advanced features,
you will find:

» Referential integrity

Check constraints

DRDA and two-phase commit
Import and Export utilities

vvyy

© Copyright IBM Corp. 1994, 1997, 2000, 2001

19

20 Advanced Functions and Administration on DB2 Universal Database for iSeries

Referential integrity

This chapter discusses:

Referential integrity concepts

Defining referential integrity relationships
Creating referential integrity constraints
Constraint enforcement

Application impacts of referential integrity
Constraint management

vVvyvyvyYYyy

© Copyright IBM Corp. 1994, 1997, 2000, 2001

21

3.1 Introduction

Referential integrity deals with relationships between data values in a relational database.
These data relationships are usually closely tied with business rules. For example, every part
order must reference a valid customer. In DB2 UDB for iSeries, once these relationships and
rules are defined to the database manager, the system automatically ensures that they are
enforced at all times, regardless of the interface used to change the data (an application, the
Data File Utility, Interactive SQL, and so on).

For example, in the Order Entry database described in 2.3, “Order Entry database overview”
on page 14, all the records in the Order file should have a customer number matching an
existing customer in the Customer file. Moreover, a customer should not be removed when it
has existing orders in the database. These are the types of data relationships that benefit
from referential integrity.

In a referential integrity environment, such relationships or business rules are defined to the
DB2 UDB for iSeries with referential constraints. DB2 UDB for iSeries supports both a native
and an SQL interface for associating constraints with your database files.

Before referential integrity was available in DB2 UDB for iSeries, application programmers
were responsible for enforcing these types of relationships in their programs. This
programming effort is no longer needed now that the referential integrity support has been
implemented in DB2 UDB for iSeries. Database management system (DBMS)-supported
referential integrity provides greater application development productivity since programmers
now have less code to write, test, and maintain. The integrity enforcement is done
automatically by DB2 UDB for iSeries.

Application integrity enforcement also had no protection against data changes made through
other interfaces, such as an interactive PC user. The constraints are now enforced in all
environments resulting in greater data integrity and consistency, leaving less room for user
error.

Referential integrity may also improve your application performance because the integrity
checks performed by DB2 UDB for iSeries are more efficient than those done in an
application program. The DBMS can use more efficient methods for enforcing these
relationships at a lower level in the system that eliminates a majority of the overhead
associated with application-level enforcement.

3.2 Referential integrity concepts

In DB2 UDB for iSeries, the following table (physical file) constraints have been introduced:

Unique constraints
Primary key constraints
Referential constraints
Check constraints

vVvyyy

You can find a detailed definition of these constraints in Database Programming, SC41-5701,
and SQL Reference, SC41-5612. This section provides the concepts and the basic definitions
that are necessary for referential integrity. The terms table and physical file constraints refer
to the same database definitions.

22 Advanced Functions and Administration on DB2 Universal Database for iSeries

Unique constraint

A unigue constraint is the rule that identifies a unigue key in a database file. A unique key is a
field or a set of fields in a physical file that must be unique, ascending, and can contain
null-capable fields.

Primary key constraint

A primary key constraint identifies a primary key in a database file. A primary key is a field or
a set of fields in a physical file that must be unique, ascending, and cannot contain
null-capable fields.

Note: A new function was added in V4AR2MO that allows a primary key constraint to be
defined where one or more columns in the key allow NULL values. When this condition is
detected, a check constraint is implicitly added to the file to ensure that the column will not
contain NULL values. This means that this check constraint will prevent any NULL values
from being inserted into columns defined for the primary key.

Parent key

A parent key is a field or a set of fields in a physical file that must be unique, ascending, and
contain null values. Both a primary and unique key can be the parent key in a referential
constraint.

Foreign key

A foreign key is a field or a set of fields in a physical file whose value, if not null, must match a
value of the parent key in the related referential constraint. The value of a foreign key is null if
at least one of the key fields is null.

Referential constraint
A referential constraint is the file attribute that causes the database to enforce referential
integrity for the defined relationship.

Referential integrity
Referential integrity is the state of a database in which the values of the foreign keys are valid.
That is, each non-null foreign key value has a matching parent key value.

Parent file
The parent file contains the parent key in a referential constraint.

Dependent file
The dependent file contains the foreign key in a referential constraint.

Referential constraint rules
The referential constraint definitions also include delete and update rules that define which
actions should be taken by the DBMS when a parent key value is updated or deleted.

» Delete rule

A delete rule is applied when a row in the parent file is deleted. A record is deleted from
the parent file. Its parent key has matching foreign key values in the dependent file with:

— A CASCADE rule: The system also deletes all of the matching records in the
dependent file.

— A SET NULL rule: The system sets all null-capable fields in the matching foreign keys
to null. The foreign key fields that are not null-capable are not updated.

Chapter 3. Referential integrity 23

— A SET DEFAULT rule: The system sets the matching foreign key values to their
corresponding default value. This default foreign key value must also have a matching
parent key value.

— A RESTRICT rule: If at least one dependent record exists, the system prevents the
parent key deletion. An exception is returned.

— A NO ACTION rule: This is similar to the restrict rule. However, enforcement is delayed
until the logical end of the operation. If the operation results in a violation, the system
prevents the parent key deletion and returns an exception to the user.

» Update rule

An update rule is applied when a parent key is updated. An update is issued for a parent
key value that is matching some foreign keys in the dependent file with:

— A RESTRICT rule: If at least one dependent record exists, the system prevents the
parent key update. An exception is returned.

— A NO ACTION rule: This is the same as the Restrict rule. However, enforcement is
delayed until the logical end of the operation. If the operation results in a violation, the
system prevents the parent key update and returns an exception to the user.

» Check constraint

Check constraint ensures that users authorized to change a column's value use only
values that are valid for that column.

Referential cycle or cyclic constraints

A set of referential constraints forms a referential cycle if any file in the chain depends on
itself. A simple example of a referential cycle is given by self-referencing constraints
(referential constraints that have a primary and foreign key in the same file). See 3.4.4,
“Self-referencing constraints” on page 34, for further discussion and an example.

Check pending
This is the state of a referential constraint when potential mismatches exist between foreign
and parent keys for a constraint relationship.

3.3 Defining a referential integrity relationship

This section describes the considerations that you should take into account when setting up a
referential integrity relationship:

Prerequisites for a referential integrity constraint

Journaling and commitment control requirements for referential integrity constraints
Referential integrity access path considerations

Verifying the current integrity of your database

vVvyyy

3.3.1 Constraint prerequisites

You can find a full description of the prerequisites and limitations on the database files and
the constraints themselves in Database Programming, SC41-5701. The basic requirement is
that your parent key and foreign key must have matching field attributes and definitions. This
section also points out some other considerations.

24 Advanced Functions and Administration on DB2 Universal Database for iSeries

When defining a referential constraint, the foreign key and parent key null attributes do not
have to exactly match. When a foreign key contains null-capable fields, DB2 UDB for iSeries
treats the entire foreign key value as null whenever any of the foreign key fields is null. This
behavior is defined in the standards as a match option of no match. Currently, this is the only
match option supported by DB2 UDB for iSeries. The null foreign key behavior is important
because referential integrity only ensures that non-null foreign keys have a matching parent
key value.

You will experience better performance when your foreign key fields and parent key fields
have identical null attributes. In fact, the non-null field attributes deliver the best performance.

Ideally, your parent and foreign key fields should be fairly stable, something similar to a
person's social security number. This is due to the fact that, to guarantee integrity, the system
must verify referential integrity each time your parent and foreign key values change.
Therefore, the less your foreign and parent keys change, the less time the DBMS spends
verifying referential integrity.

3.3.2 Journaling and commitment control requirements

When a referential constraint is defined with a delete or update rule other than RESTRICT,
the system has to perform some actions on the corresponding foreign keys each time a delete
or an update of the parent key takes place. For a delete case, for example, it deletes the
matching dependent records when the delete rule is CASCADE. The DBMS must ensure that
the parent key record and all matching dependent records are deleted. All of these record
deletions must be considered as one logical operation.

To ensure the atomicity of this operation, the system requires journaling and commitment
control in some cases. If the delete or update rule is other than RESTRICT, both the parent
and the dependent files must be journaled. In addition, the parent and dependent file must be
journaled to the same journal receiver. See 3.6, “Journaling and commitment control” on
page 43, for further discussion.

Since the restrict and no action rules cause similar rule enforcement, the restrict rule provides
better performance since journaling and commit are not required.

3.3.3 Referential integrity and access paths

DB2 UDB for iSeries uses access paths (or indexes) to perform the referential constraint
enforcement as efficiently as possible. The DBMS, however, does not require its own access
path for this enforcement. When a constraint is added to a physical file, the system first tries
to share an existing path. If one cannot be shared, a new access path is created. This sharing
is similar to the sharing performed for logical files today.

When a constraint is added to a physical file and an access path matching the constraint
criteria exists, this access path is shared, and the ownership of the access path itself is
transferred to the physical file. Similarly, if a logical file access path is shared, access path
ownership is transferred from the logical file to the physical file. If an existing access path
cannot be shared, a new one is created and owned by the physical file. The user does not
have direct access to this newly created access path.

Similarly, when a logical file or an SQL index is created on a physical file with existing
constraints, the system tries to share the constraint access paths. See Database
Programming, SC41-5701, for detailed information about access path sharing.

Chapter 3. Referential integrity 25

If the existing access path has more than one key field, the constraint only shares that access
path if they are defined with the same key fields in the same sequence. Partial sharing is not
allowed. If the existing access path has been created over FLD1, FLD2, and FLD3, when you
create a constraint, that access path is shared only if the key of the constraint exactly
matches FLD1, FLD2, and FLDS3. If, for example, the constraint is defined over just FLD1 and
FLD2, the system has to build a new access path.

When an SQL index or logical file is deleted and the associated access path is shared by a
constraint, the actual access path is left, and ownership remains with the associated physical
file. Similarly, when a file constraint is removed and the access path is being shared,
ownership is transferred back to the corresponding logical file or SQL index. If the constraint
is not sharing an access path, both the constraint and the associated access path are
removed.

Physical file constraints are not separate objects, such as logical files and SQL indexes.
Referential integrity constraints and their associated access paths are part of the file
description. In fact, when a physical file is saved, the system also saves all the constraints
and their associated access paths that have been defined for that file.

On the contrary, when you save a physical file that has related logical files, the user is
responsible for saving these logical files. For this reason, when a unique keyed access path is
required, define a unique constraint instead of a logical file or an SQL index.

Since they provide a keyed access path, physical file constraints are similar to logical files. If
you run an SQL query on a file with constraints defined over it, the query optimizer evaluates
all the access paths available: logical files, SQL indexes, and constraint access paths (see the
example in Figure 3-1).

For example, consider the ORDERDTL file in the Order Entry database. This file has a
primary key constraint defined on the ORHNBR and PRDNBR fields, and a referential
constraint with foreign key ORHNBR and parent key ORHNBR in the ORDERHDR file. We
may create an SQL index ORDDTLIDX with the key fields ORHNBR and PRDNBR:

CREATE INDEX ORDENTL/ORDDTLIDX
ON ORDENTL/ORDERDTL
(ORDER_NUMBER, PRODUCT_NUMBER)

In this case, we find the following message in the job log:
CPI3210: File ORDDTLIDX in ORDENTL shares access path.

The second-level text specifies that the logical owner of the access path is member
ORDERDTL in the ORDENTL/ORDERDTL file.

On the other hand, you may create the ORDERDTL file without a primary key constraint and
create a unique logical file over ORDER_NUMBER and PRODUCT_NUMBER. Afterwards, if
you add a referential constraint over the same fields (see 3.4, “Creating a referential
constraint” on page 28), you receive the following message:

CPI3210: File ORDERDTL in ORDENTL shares access path.

The second-level text specifies that the logical owner of the access path is member
ORDERDTL in the ORDENTL/ORDERDTL file. The system shares the existing access path
built when the logical file was created, but the ownership of the access path itself is
transferred to the physical fle ORDERDTL.

If you update a record in ORDERDTL, the message shown in Figure 3-1 appears in the job
log.

26 Advanced Functions and Administration on DB2 Universal Database for iSeries

Display All Messages
System: SYSTEMO3
Job . . : P23KRZ75D User . . : ITSCIDO7 Number . . . : 003869

4 > DSPJOB
ODP created.
Blocking used for query.
A11 access paths were considered for file ORDERDTL.
Additional access path reason codes were used.
Arrival sequence access was used for file ORDERDTL.
ODP created.
ODP deleted.
1 rows updated in ORDERDTL in ORDENTL.
More. ..
Press Enter to continue.

F3=Exit F5=Refresh Fl12=Cancel F17=Top F18=Bottom

Figure 3-1 SQL optimizer uses constraint access paths

The second-level text for the message (shown in bold) is shown in Figure 3-2.

Additional Message Information

Message ID : CPI432C Severity 00
Message type : Information

Date sent : 05/19/01 Time sent : 19:20:08
Message : All access paths were considered for file ORDERDTL.
Cause : The 0S/400 Query optimizer considered all access paths

built over member ORDERDTL of file ORDERDTL in library ORDENTL.

The Tist below shows the access paths considered. If file ORDERDTL in
library ORDENTL is a logical file then the access paths specified are actually
built over member ORDERDTL of physical file ORDERDTL in Tibrary ORDENTL.

Following each access path name in the Tist is a reason code which
explains why the access path was not used. A reason code of 0 indicates
that the access path was used to implement the query.

ORDENTL/ORDERDTL 4, ORDENTL/ORDDTL_HORD

The reason codes and their meanings follow:

1 - Access path was not in a valid state. The system invalidated the
access path.

2 - Access path was not in a valid state. The user requested that the
access path be rebuilt.

3 - Access path is a temporary access path (resides in library QTEMP) and
was not specified as the file to be queried.

4 - The cost to use this access path, as determined by the optimizer, was
higher than the cost associated with the chosen access method.

More. ..
Press Enter to continue.

F3=Exit F6=Print F9=Display message details F12=Cancel
F21=Select assistance Tevel

Figure 3-2 Physical file constraints evaluated by the optimizer

Chapter 3. Referential integrity

27

As highlighted in bold in Figure 3-2, ORDENTL/ORDERDTL is the access path shared by the
primary key and the SQL index ORDDTLIDX. ORDENTL/ORDDTL_HORD is the access path
created for the referential constraint ORDDTL_HORD.

File availability

When adding a referential constraint, the DBMS exclusively locks the file and access paths
involved. The system must then verify that every foreign key value is valid. This add and
verification process can take as little as several seconds or minutes to complete. When the
existing files contain a large number of records (hundreds of millions), this process can
possibly run for hours. The add process is much quicker when the constraint access paths are
shared instead of building them from scratch. Consider the impact on file availability before
you create a constraint during normal system activity.

Referential integrity verification queries

Before you create referential constraints over existing files, you may want to check if any
mismatches exist between your candidate parent and foreign keys. Unmatched (or orphan)
foreign key values can be determined with one of the following queries. In these queries,
DEPFILE is the dependent file with a foreign key consisting of FKEYFLD, while PARFILE and
PKEYFLD are the parent file and parent key:

SELECT * FROM mylib/DEPFILE
WHERE FKEYFLD NOT IN
(SELECT PKEYFLD FROM my1ib/PARFILE)

or

OPNQRYF FILE((mylib/DEPFILE) (mylib/PARFILE))
FORMAT (MYLIB/DEPFILE)
JFLD((DEPFILE/FKEYFLD PARFILE/PKEYFLD))
JDFTVAL (*ONLYDFT)

In most cases, the queries take longer to run than the system verification process performed
during the execution of the Add Physical File Constraint (ADDPFCST) or Change Physical
File Constraint (CHGPFCST) commands. Be careful with the verification queries on large
files. This may be a good place for using DB2 UDB for iSeries Query Governor (CHGQRYA).

3.4 Creating a referential constraint

This section discusses the interfaces and commands that you can use to add a referential
constraint and create a referential integrity network. A referential integrity network is a set of
physical files linked by referential constraints. We also use the term cascade network to
indicate a referential integrity network where the constraints are linked by delete cascade
rules.

Two interfaces are available for creating physical file (or table) constraints:

» The native interface that supplies the new CL command, Add Physical File Constraint
(ADDPFCST), to add a physical file constraint to a database file

» The SQL interface that provides:

— CREATE TABLE statement: Has been enhanced with the CONSTRAINT clause that
allows a table constraint to be added when creating a table.

— ALTER TABLE statement: Allows a table constraint to be added to an existing table
with the ADD clause.

28 Advanced Functions and Administration on DB2 Universal Database for iSeries

Either interface can be used to define a constraint over physical files or SQL tables. However,
only SQL supports a constraint definition at table creation time.

Note: In DB2 UDB for iSeries, the SQL interfaces allow you to specify a column-name
longer than 10 characters. If the column-name is longer than 10 characters, a
system-column name is automatically generated. The SQL constraint interface supports
both the column-name and the system-column-name. In contrast, only the
system-column-name can be specified when using the native interface for constraint
processing. See the SQL Reference, SC41-5612, for further information.

3.4.1 Primary key and unique constraints

The first step in creating a referential constraint is to identify the parent key. You can use a
unique or primary key constraint to identify the parent key.

Only one primary key constraint can be associated with a physical file. However, you can
define multiple unique constraints over the same file. When a primary key constraint is added
to a physical file, the associated access path becomes the primary access path of the file (for
example, the access path used to access the file when the OPNDBF command is issued).

If you want to define a primary key or a unique constraint over your CUSTOMER file with
customer number (CUSNBR) as the parent key, you have several options from which you can
choose.

At creation time, you can define the primary key or unique constraint on the SQL CREATE
TABLE statement:

CREATE TABLE my1ib/CUSTOMER
(CUSTOMER_NUMBER FOR COLUMN CUSNBR CHAR (5) NOT NULL ,
............ other fields ,
CONSTRAINT customer_key
PRIMARY KEY (CUSNBR))

Or, similarly, you can define:

CREATE TABLE my1ib/CUSTOMER
(CUSTOMER_NUMBER FOR COLUMN CUSNBR CHAR (5) NOT NULL ,
............ other fields R
CONSTRAINT customer_key
UNIQUE (CUSNBR))

You can also easily add constraints to existing files. In this case, the existing records must not
contain any duplicate values for the unique or primary key fields. If the system finds duplicate
values, the constraint is not added, and an error message is returned.

With the native interface, you must issue the ADDPFCST command with the following

parameters:

ADDPFCST FILE(mylib/CUSTOMER) or ADDPFCST FILE(mylib/CUSTOMER)
TYPE (*PRIKEY) TYPE (*UNQCST)
KEY (CUSNBR) KEY (CUSNBR)
CST(customer_key) CST(customer_key)

With SQL, the equivalent action takes place with the following two ALTER TABLE statements:

ALTER TABLE my1ib/CUSTOMER or ALTER TABLE mylib/CUSTOMER
ADD CONSTRAINT customer_key ADD CONSTRAINT customer_key
PRIMARY KEY (CUSNBR) UNIQUE (CUSNBR)

Chapter 3. Referential integrity 29

If the physical file that was created is uniquely-keyed (with DDS), the associated access path
is the primary access path and a potential parent key. In this case, a primary key constraint
can be created over this file only when its fields match those of the file's primary access path.
A unique constraint can be defined over any set of fields in the file capable of being a unique
key.

If a physical file was not created as a unique-keyed file, a user cannot add any primary key
constraint to the file. Only unique constraints can be added.

If the parent file does not have an existing keyed access path that can be shared for the
primary key or unique constraint, the system creates one constraint.

3.4.2 Referential constraint

30

Now consider the Order Entry Database structure and the business rule existing between
CUSTOMER and ORDERHDR files as described in 2.4.1, “Referential integrity” on page 17.
In that scenario, note these points:

» A user does not want anyone to create an order for a customer that does not exist in the
database. This means that we want to prevent anyone from inserting a new record in the
ORDERHDR file if its corresponding Customer Number (CUSNBR) is not in the
CUSTOMER file. This rule can be translated into a referential integrity constraint between
CUSTOMER (parent file) and ORDERHDR (dependent file), where CUSNBR in
CUSTOMER is the parent key and CUSNBR in ORDERHDR the foreign key.

» In addition, the user wants to prevent updates or removals of a customer in the
CUSTOMER file when outstanding orders exist in the ORDERHDR file for this customer.
To ensure this data relationship, the delete and update rule should be set to RESTRICT or
NOACTION. Both the delete and update rules use RESTRICT for this particular example.

Using SQL, the constraint can be defined when we create the ORDERHDR table:

CREATE TABLE my1ib/ORDERHDR

(ORDER_NUMBER FOR COLUMN ORHNBR CHAR (5) NOT NULL ,
CUSTOMER_NUMBER FOR COLUMN CUSNBR CHAR (5) NOT NULL ,
........ other fields s
CONSTRAINT orderhdr_cnbr

FOREIGN KEY (CUSNBR)

REFERENCES my1ib/CUSTOMER (CUSNBR)

ON DELETE RESTRICT

ON UPDATE RESTRICT)

Otherwise, if the ORDERHDR file already exists, use a native interface:

ADDPFCST FILE(my1ib/ORDERHDR)
TYPE(*REFCST)

KEY (CUSNBR)
CST(orderhdr_cnbr)

PRNFILE (my1ib/CUSTOMER)
PRNKEY (CUSNBR)

DLTRULE (*RESTRICT)

UPDRULE (*RESTRICT)

Or, use the SQL interface:

ALTER TABLE my1ib/ORDERHDR

ADD CONSTRAINT orderhdr_cnbr
FOREIGN KEY (CUSNBR)

REFERENCES my1ib/CUSTOMER (CUSNBR)
ON DELETE RESTRICT

ON UPDATE RESTRICT

Advanced Functions and Administration on DB2 Universal Database for iSeries

During the creation of this referential constraint, the DBMS first tries to share an existing
access path for the foreign key. If one cannot be shared, the DBMS creates an access path.
Once the foreign key access path is identified, DB2 UDB for iSeries then verifies that every
non-null foreign key value has a matching parent key.

If the system finds invalid foreign key values during the creation of the referential constraint,
the constraint is still added to the file. The DBMS also automatically disables the referential
constraint and marks the relationship as check pending. However, if invalid foreign key values
are found during constraint creation through the SQL interface, the constraint is not added to
the file.

Implicit creation of a primary key constraint

DB2 UDB for iSeries allows you, in some cases, to define a referential constraint on a
dependent file even if there is no primary or unique key constraint defined on the parent file.
In these cases, a primary key constraint with a system-generated name is implicitly added to
the parent file. A requirement for the implicit creation of the primary key constraint is that the
fields of the parent file, chosen as parent key fields, satisfy the conditions for parent keys:
unique and not null-capable. They must also exactly match the attributes of the foreign key.

Figure 3-3 shows a situation where an implicit primary key constraint is being created.

A B F1 F2
PARENTF DEPENDF
CREATE TABLE mycoll/parentf CREATE TABLE mycoll/dependf
(A char(10) NOT NULL, (F1 char(10) NOT NULL
(B char(15) NOT NULL,.... (F2 char(15),)

ADDPFCST FILE(MYCOLL/DEPENDF
TYPE(*REFCST)
KEY(F1)
CST(MYCST)
PRNFILE(MYCOLL/PARENTF
PRNKEY(A)
DLTRULE(*RESTRICT)
UPDRULE(*RESTRICT)

Figure 3-3 Implicit creation of a primary key constraint

In the scenario previously described, the ADDPFCST statement generates two constraints:

» MYCST, which is the referential constraint for the DEPENDF file
» A system-generated constraint that is a primary key constraint on the PARENTF file

This option is available only by using the ADDPFCST command. No implicit primary key is
ever created by a CREATE TABLE or ALTER TABLE specifying a FOREIGN KEY constraint.

Chapter 3. Referential integrity 31

Multiple constraints
You can add multiple constraints to a physical file in a single step by using the SQL CREATE
TABLE statement, for example:

CREATE TABLE my1ib/ORDERHDR

(ORDER_NUMBER FOR COLUMN ORHNBR CHAR (5) NOT NULL ,
CUSTOMER_NUMBER FOR COLUMN CUSNBR CHAR (5) NOT NULL ,
........ other fields s
CONSTRAINT orderhdr_key

PRIMARY KEY (ORHNBR)
CONSTRAINT orderhdr_cnbr

FOREIGN KEY (CUSNBR)

REFERENCES my1ib/CUSTOMER (CUSNBR)

ON DELETE RESTRICT

ON UPDATE RESTRICT)

This statement creates an ORDERHDR file with an ORHNBR field as the primary key and
CUSNBR as the foreign key in a referential constraint having CUSNBR in the CUSTOMER file
as a parent key and both the delete and the update rules set to RESTRICT.

3.4.3 Another example: Order Entry scenario

You now set up the referential integrity network for the Order Entry database. All the business
rules described in 2.4.1, “Referential integrity” on page 17, can be translated into physical file
constraints.

» Key fields definition:
— Customer_Number (CUSNBR) must be unique in the CUSTOMER file.
— Order_Number (ORHNBR) must be unique in the ORDERHDR file.

— Order_Number plus Product_Number (ORHNBR plus PRDNBR) must be unique in the
ORDERDTL file.

— SalesRep_Number plus Customer_Number (SRNBR plus CUSNBR) must be unique
in the SALESCUS file.

— Supplier_Number (SPLNBR) must be unique in the SUPPLIER file.
— Product_Number (PRDNBR) must be unique in the STOCK file.

Each of these identifies the primary access path and can potentially be defined as a
parent key.

» An order should not be inserted into the ORDERHDR file unless it references an existing
customer in the CUSTOMER file. This relationship identifies a referential constraint
between ORDERHDR and the CUSTOMER file. A customer should not be deleted or have
their customer number changed when outstanding orders for this customer exist in the
ORDERHDR file. This relationship can be enforced with the delete and update rules set to
RESTRICT.

» An order detail entry should not be inserted into the ORDERDTL file without referencing a
valid order number in the ORDERHDR file. This relationship identifies a referential
constraint between the ORDERDTL and ORDERHDR files. When an order is deleted, all
of its order detail rows have to be deleted. An order number should not be updated when it
has existing detail rows in the ORDERDTL file. This leads to choosing a delete rule of
CASCADE and an update rule of RESTRICT.

» A sales representative should not be inserted in the SALESCUS file until the associated
customer exists in the CUSTOMER file. This identifies a referential constraint between the
SALESCUS and CUSTOMER files. When a customer is removed, the corresponding
sales representative information should be removed. Again, the customer number cannot

32 Advanced Functions and Administration on DB2 Universal Database for iSeries

be changed if it is referenced by records in the SALESCUS. Therefore, the update rule
should be RESTRICT, and the delete rule should be CASCADE.

Let's focus on the local database (the CUSTOMER, ORDERHDR, ORDERDTL, and
SALESREP files) as shown in Figure 3-4.

CUSTOMER

delete CASCADE
update RESTRICT

delete CASCADE
update RESTRICT

SALESCUS ORDERHDR

delete CASCADE
update RESTRICT

ORDERDTL

Figure 3-4 Order Entry referential integrity network

To define referential constraints, the parent key has to exist before creating the referential
constraint. Follow this process:

1. Create the CUSTOMER file with a primary constraint on CUSNBR:

ADDPFCST FILE(mylib/CUSTOMER) TYPE(*PRIKEY)
KEY (CUSNBR)
CST(CustKey)

2. Create the SALESCUS file with:
— A unique constraint on SRNBR, plus CUSNBR:

ADDPFCST FILE(mylib/SALECUS) TYPE(*UNQCST)
KEY ((CUSNBR SRNBR))
CST(SalesCusKey)

— A referential constraint with CUSNBR as a foreign key and CUSTOMER as a parent
file:
ADDPFCST FILE(mylib/SALECUS) TYPE(*REFCST)
KEY (CUSNBR)CST(SalesCusCNbr)
PRNFILE(myT1ib/CUSTOMER)
PRNKEY (*PRIKEY)
DLTRULE (*CASCADE)
UPDRULE (*RESTRICT)

3. Create the ORDERHDR file with:
— A primary constraint on ORHNBR:

ADDPFCST FILE(my1ib/ORDERHDR) TYPE(*PRIKEY)
KEY (ORHNBR)
CST(OrderHKey)

— A referential constraint with CUSNBR as a foreign key and CUSTOMER as a parent
file:

ADDPFCST FILE(mylib/ORDERHDR) TYPE(*REFCST)
KEY (CUSNBR) CST(OrderHdrCNbr)

Chapter 3. Referential integrity 33

PRNFILE(my1ib/CUSTOMER) PRNKEY (*PRIKEY)
DLTRULE (*RESTRICT) UPDRULE(*RESTRICT)

4. Create ORDERDTL file with:
A referential constraint with ORHNBR as a foreign key and ORDERHDR as a parent file:

ADDPFCST FILE(mylib/ORDERDTL) TYPE(*REFCST)
KEY (ORHNBR) CST (OrderHdrNum)
PRNFILE(my1ib/ORDERHDR) PRNKEY (ORHNBR)
DLTRULE (*CASCADE) UPDRULE (*RESTRICT)

Here is an example of the SALESCUS file using the SQL Create Table interface:

CREATE TABLE ordent1/SALESCUST
(SALESREP_NUMBER FOR COLUMN SRNBR CHAR(10) NOT NULL,
CUSTOMER_NUMBER FOR COLUMN CUSNBR CHAR(5) NOT NULL,
SALES_AMOUNT FOR COLUMN SRAMT DEC(11,2) NOT NULL WITH DEFAULT,
CONSTRAINT salescus_key PRIMARY KEY (SRNBR, CUSNBR),
CONSTRAINT salescus_cnbr FOREIGN KEY (CUSNBR)
REFERENCES ordent1/CUSTOMER (CUSNBR)
ON DELETE CASCADE ON UPDATE RESTRICT)

3.4.4 Self-referencing constraints

A self-referencing constraint is a referential constraint that have a primary and foreign key in
the same physical file. You can use these constraints when you want to enforce a hierarchical
structure on your data because a self-referential constraint implements a tree-relationship
among the records of your file where the root of the tree has a null foreign key value.

When adding data to a file with a self-referential constraint, you have to follow a precise
sequence. You need to start by inserting the “root” value.

For example, in a company, the EMPLOYEE file contains all the employees;
Employee_Number (EMPNO) is the primary key of the file. On the other hand, the manager of
an employee must also be an employee and has to be the parent key of their associated
employee records in the same file.

In this case, you need to define a referential constraint with MGRID as a foreign key and
EMPNO as a parent key. EMPLOYEE is both a parent and a dependent file:

CREATE TABLE TEST/EMPLOYEE (EMPID INT NOT NULL WITH DEFAULT ,
NAME CHAR(30) NOT NULL WITH DEFAULT ,
MGRID INT >
DEPTNO INT s

POSITION CHAR(30) NOT NULL WITH DEFAULT ,

CONSTRAINT employee_key

PRIMARY KEY (EMPID),
CONSTRAINT employee_mgr

FOREIGN KEY (MGRID)

REFERENCES test/EMPLOYEE (EMPID)

ON DELETE SET NULL

ON UPDATE RESTRICT)

In the EMPLQOYEE file example, you can only insert an employee record if the corresponding
manager has already been inserted. Therefore, the first record to insert is for the Chief
Executive Officer. This record's foreign key value is NULL. Afterwards, your insertions follow
each branch of the hierarchy down to the lowest level.

34 Advanced Functions and Administration on DB2 Universal Database for iSeries

3.5 Constraints enforcement

The enforcement of referential constraints is performed during any update or deletion of
parent records and any time a dependent record is updated or deleted.

3.5.1 Locking considerations

The DBMS uses different locks on the parent and dependent rows when enforcing referential
constraints. The lock type depends on the type of enforcement being performed and the
delete and update rules.

Foreign key enforcement

The sequence for inserting a dependent row or updating a foreign key value to a non-null
value is:

» A shared lock (*SHRUPD) is obtained on the dependent file and file member.
» An update lock is obtained on the dependent record being inserted or updated.
» A read lock is established on the matching record of the parent file, if it exists.

If a matching parent key value does not exist, a referential constraint violation is signaled
(CPF502D), and the requested operation is rolled back. All locks are released at the end of
the operation.

NOACTION and RESTRICT rule enforcement

NOACTION and RESTRICT rule enforcement do not require any data changes to the
matching dependent records. The DBMS immediately performs RESTRICT enforcement.
NOACTION enforcement is delayed until the logical end of the operation (see the example in
Figure 3-7 on page 38).

The sequence for updating or deleting a parent key value with a NOACTION or RESTRICT
rule is:

1. A shared lock (*SHRUPD) is obtained on the parent file and file member.
2. An update lock is obtained on the parent record being deleted or updated.
3. Aread lock is established on the first matching record in the dependent file, if any.

If a matching foreign key value exists, a referential constraint violation is signaled (CPF503A),
and the requested operation is rolled back. All locks are released at the end of the operation.

CASCADE, SET NULL, and SET DEFAULT rules

When the delete rule is CASCADE, SET NULL, or SET DEFAULT, deleting a parent record
that has matching rows in the dependent file causes delete or update operations on the
matching dependent rows.

The sequence for deleting a parent key value with CASCADE, SET NULL, or SET DEFAULT
rules is:

» A shared lock (*SHRUPD) is obtained on the parent file and file member.

» An update lock is obtained on the parent record being deleted.

» A shared lock (*SHRUPD) is obtained only on the dependent file member. The system
also logically opens and allocates the dependent file at this time.

» All matching dependent records (if any) are allocated exclusively with an update lock, and
the corresponding update or delete operation is executed.

Chapter 3. Referential integrity 35

These locks are released at the end of the logical operation or the next explicit user commit.
The DBMS does not logically close and de-allocate the dependent file until the parent file is

closed. Therefore, other system functions, such as CLRPFM, that need exclusive access to a
file cannot work on the dependent file until the parent file is closed.

If the system is unable to obtain the required locks, constraint enforcement cannot be
performed and the requested operation is not allowed. This may happen, for example, when
you have just deleted a parent row with a parent key value of “X” and DB2 UDB for iSeries is
trying to “cascade” that deletion to the dependent file. However, another job is actually
updating the dependent row that has a foreign key value of “X” at the same time. Therefore,
the DBMS cannot obtain the required locks for a cascade rule. The parent row delete request
is not allowed, and the following error message is returned indicating that constraint
enforcement cannot be performed:

CPF502E: Referential constraints could not be validated for member...

See 3.7.1, “Referential integrity I/O messages” on page 50, for further discussion on the new
CPF messages associated with referential integrity.

3.5.2 Referential integrity rules ordering

When a physical file is the parent file for more than one referential constraint and these
constraints have different delete rules, the DBMS sequences the rules as follows:

1. The RESTRICT rule is applied first. Therefore, if at least one of the constraints has the
delete rule RESTRICT, the deletion is prevented, and none of the dependent records are
updated or deleted.

CASCADE rule
SET NULL rule
SET DEFAULT rule
NOACTION rule

o kM DN

If you have a cascade network, deleting a record in the parent file causes the deletion of all
the matching records in the dependent file. If the dependent file is itself a parent file in another
referential constraint, the deletion might propagate actions to the lower level and so on. If any
failure occurs, the system rolls back all the changes.

On the other hand, when you mix different delete rules in your referential integrity network,
you can delete a parent record. This is true only if no dependent file involved is a parentin a
referential constraint that has the delete rule RESTRICT or NOACTION, or none of the
records being deleted has any dependent record. Figure 3-5 shows this situation.

36 Advanced Functions and Administration on DB2 Universal Database for iSeries

PFO1
CASCADE bt CASCADE
PF11 PF12
SETNULL CASCADE restrict] | seTpEFaULT
PF21 PF22 PF23 PF24

Figure 3-5 Delete propagation in a referential integrity network

In the referential integrity network shown in Figure 3-5, a delete operation on PF01 causes:
» A deletion of the dependent records in PF11. Each of these deletions, in turn, issues:

— Updating the related dependent records in PF21, and setting the foreign key values to
NULL.

— Deleting all of the related dependent records in the PF22 file.
» By deleting the dependent records in PF12, each of these deletions, in turn, causes:

— Updating the related dependent records in PF24, and setting the foreign key values to
their default values.

— But, for the constraint existing between PF12 and PF23, the delete rule is RESTRICT.
Therefore, if the records that are about to be deleted in PF12 have dependent records
in PF23, their deletion is prevented. In turn, since it cannot delete all the records in the
PF12 file, the system prevents even the deletion of the original record in PFO1.

In this example, note these points:
» The delete operation from PFO1 is executed.

» The cascaded deletions to PF11 and PF12 are performed. As soon as the records are
deleted from PF12, the RESTRICT rule is enforced.

» The system issues an error message and rolls back the previous deletions, ending the
implicit commitment control cycle.

On the contrary, if you do not have a RESTRICT or NOACTION rule when the user or an
application issues a delete on PF01, as shown in Figure 3-6, the following actions occur:

The delete from PFO1 is executed.

The cascaded deletions to PF11 and PF12 are performed.
The cascaded deletions to PF22 are performed.

The SET NULL rule on PF21 is executed.

The SET DEFAULT rule on PF24 is handled.

If any failure occurs, the system rolls back all the changes.

vVvyvyvyyy

Chapter 3. Referential integrity 37

PFO1
CASCADE K CASCADE
| |
PF11 PF12
SETNULL CASCADE SET DEFAULT
PF21 PF22 PF24

Figure 3-6 Delete propagation in a referential integrity network

Whether you use a RESTRICT rule or a NOACTION rule broadly depends on your application
environment needs and whether you intend to add database triggers to your database. Even
if you do not intend to define any trigger on your database, you may still want to differentiate
between RESTRICT and NOACTION, especially if the parent key in the referential integrity
relationship is subject to operations that affect multiple rows, such as an SQL UPDATE
statement.

Note: For a discussion on how DB2 UDB for iSeries sequences the referential integrity rules
and the execution of trigger programs, refer to Stored Procedures and Triggers on DB2
Universal Database for iSeries, SG24-6503.

Consider the example shown in Figure 3-7.

PRICELINE INVENTORY
Category Price ItemNo Price Description
Cheap 10.00 5530| 15.00
4353| 10.00
Bargain 15.00
1233 | 20.00
Expensive 20.00
8163 | 15.00
Outrageous 25.00 9934 | 2000
PK
? FK

Figure 3-7 Impact of RESTRICT versus NOACTION

If you want to update your PRICETABLE and lower all the prices by five dollars, you may use
the following SQL statement:

UPDATE PRICETABLE SET PRICE = PRICE - 5.00

The statement runs successfully if the referential integrity rule for the constraint shown in
Figure 3-7 is NOACTION. After the first record is updated, a parent key value of $10.00 no
longer exists for the INVENTORY file. However, a NOACTION rule allows the enforcement to
be delayed until after all the rows have been updated. At this point, a parent key value of
$10.00 exists and no constraint violation is signaled.

38 Advanced Functions and Administration on DB2 Universal Database for iSeries

3.5.3 A CASCADE example

A database contains the following files:

» ORDERH: Contains the Order Headers
» DETAIL: Contains the items of any order
» FEATURE: Contains all the features associated with the products in the DETAIL file

In this case, a record cannot be inserted in FEATURE if the related product is not in the
DETAIL file. Likewise, you cannot insert an order item in DETAIL if the related order header is
not in ORDERH.

On the other hand, when you delete an order, you should remove all the related items and all
the corresponding features from the database. For this reason, you need to define two
referential constraints:

» The first one between FEATURE and DETAIL
» The second one between DETAIL and ORDERH

For both constraints, the delete rule must be CASCADE. The update rule can be either
RESTRICT or NOACTION.

Now, create the tables that were previously described:

CREATE TABLE TEST/ORDERH
(ORDER_NUMBER FOR COLUMN ORHNBR CHAR (5) NOT NULL,
CUSTOMER_NUMBER FOR COLUMN CUSNBR CHAR (5) NOT NULL,
ORDER_INS_DATE FOR COLUMN ORHDTE DATE NOT NULL,
ORDER_DELIV_DATE FOR COLUMN ORHDLY DATE NOT NULL,
ORDER_TOTAL FOR COLUMN ORHTOT DEC(11,2) NOT NULL WITH DEFAULT 0,
CONSTRAINT ORDERH_KEY PRIMARY KEY (ORHNBR))

CREATE TABLE TEST/DETAIL

(ORDER_NUMBER FOR COLUMN ORHNBR CHAR (5) NOT NULL,
PRODUCT_NUMBER ~ FOR COLUMN PRDNBR CHAR (5) NOT NULL,
PRODUCT_QUANTITY FOR COLUMN PRDQTY DEC (5, 0) NOT NULL,
PRODUCT_TOTAL FOR COLUMN PRDTOT DEC (9, 2) NOT NULL,
CONSTRAINT DETAIL _KEY PRIMARY KEY (ORHNBR, PRDNBR),
CONSTRAINT DETAIL_ORD FOREIGN KEY (ORHNBR)

REFERENCES TEST/ORDERH (ORHNBR)

ON DELETE CASCADE ON UPDATE RESTRICT)

CREATE TABLE TEST/FEATURE
(ORDER_NUMBER FOR COLUMN ORHNBR CHAR (5) NOT NULL,
PRODUCT_NUMBER ~ FOR COLUMN PRDNBR CHAR (5) NOT NULL,
FEATURE_NUMBER FOR COLUMN FTRNBR CHAR (5) NOT NULL,
FEATURE_QUANTITY FOR COLUMN FTRQTY DEC(5,0) NOT NULL,
FEATURE_TOTAL FOR COLUMN FTRTOT DEC(9,2) NOT NULL,
CONSTRAINT FTR_KEY PRIMARY KEY (ORHNBR, PRDNBR, FTRNBR),
CONSTRAINT FTR_PRD FOREIGN KEY (ORHNBR, PRDNBR)
REFERENCES TEST/DETAIL (ORHNBR,PRDNBR)
ON DELETE CASCADE ON UPDATE RESTRICT)

If TEST is not an SQL collection, you must explicitly start journaling the files to the same
journal. The following commands create the journal and journal receiver and start journaling
for ORDERH, DETAIL, and FEATURE:

Chapter 3. Referential integrity 39

40

CRTJIRNRCV JRNRCV (my1ib/JRNRCV)

CRTJIRN JRN(my1ib/JRN) JRNRCV(my1ib/JRNRCV)
MNGRCV (*SYSTEM) DLTRCV(*YES)

STRIRNPF FILE(TEST/ORDERH
TEST/DETAIL
TEST/FEATURE)
JRN (my1ib/JRN)

You can insert a complete order interactively or through an application according to the
following logic sequence:
1. Insert the order data into ORDERH.

2. Insert a product into DETAIL. If this item has features, insert the related features into
FEATURE.

3. Repeat this point down to the last order item.

If any error occurs during this process, issue a ROLLBACK. If all the operations end
successfully, you may COMMIT the inserts.

For example, you may insert the order data shown in Figure 3-10 on page 43.

If you try to insert a dependent record before you insert the related parent record, the system
cannot perform the insertion, and an error message is issued. In our example, the following
insert statement may be performed before you insert the corresponding order header data in
ORDERH:

INSERT INTO TEST/DETAIL VALUES ('77120', '00200', 5, 500)

In this case, the system issues the message:

CPF502D: Referential constraint violation on member DETAIL.

The second-level text explains that you cannot insert that record because it does not match
any parent key (Figure 3-8).

Advanced Functions and Administration on DB2 Universal Database for iSeries

Additional Message Information

Message ID : CPF502D Severity 30
Message type : Notify

Date sent : 06/05/01 Time sent : 18:11:17
Message : Referential constraint violation on member DETAIL.

Cause : The operation being performed on member DETAIL file

DETAIL in library TEST failed. Constraint DETAIL_ORD prevents record number
0 from being inserted or updated in member DETAIL of dependent file DETAIL
in 1ibrary TEST because a matching key value was not found in member ORDERH
of parent file ORDERH in Tibrary TEST. If the record number is zero, then
the error occurred on an insert operation. The constraint rule is 1. The
constraint rules are:
1 -- *RESTRICT
2 -- *NOACTION
Recovery . . . : Either specify a different file, change the file, or
change the program. Then try your request again.
More...
Press Enter to continue.

F3=Exit F6=Print F9=Display message details Fl2=Cancel
F21=Select assistance Tevel

Figure 3-8 Inserting a foreign key that does not match any parent key value

Likewise, you may try to update a row in DETAIL having matching records in FEATURE, for
example:
UPDATE TEST/DETAIL SET PRDNBR = '99999'
WHERE PRDNBR = '00420'
In this case, the system issues the following message:
CPF503A: Referential constraint violation on member DETAIL.

The second-level text explains that you cannot update that product number because it has
depending features (Figure 3-9).

Chapter 3. Referential integrity 41

Additional Message Information

Message ID : CPF503A Severity 30
Message type : Sender copy

Date sent : 06/05/01 Time sent : 18:27:26
Message : Referential constraint violation on member DETAIL.
Cause : The operation being performed on member DETAIL file

DETAIL in library TEST failed. Constraint FTR_PRD prevents record number 3
from being deleted or updated in member DETAIL of parent file DETAIL in
library TEST because a matching key value exists in member FEATURE of
dependent file FEATURE in Tibrary TEST. The constraint rule is 1. The
constraint rules are:
1 -- *RESTRICT
2 -- *NOACTION
Recovery . . . : Either specify a different file, change the file, or
change the program. Then try your request again.
Possible choices for replying to message « . « . « .« . ¢

Press Enter to continue.

F3=Exit F6=Print F9=Display message details Fl2=Cancel
F21=Select assistance Tevel

Figure 3-9 Updating a parent key that has matching foreign keys

Figure 3-10 shows how deleting from one of the files propagates to the dependent files. For
example, the deletion of product number 00420 from DETAIL issues the deletion of three
records in FEATURE. Deleting order number 77120 causes the deletion of three records in
DETAIL. Each of these propagates the deletion to its matching records in FEATURE. With a
single statement, all the matching rows in the cascade network are deleted:

DELETE FROM TEST/ORDERH

Here, ORHNBR = '77120".

42 Advanced Functions and Administration on DB2 Universal Database for iSeries

ORDERH
ORHNBR CUSNBR ORHDTE ORHDTY | ORHTOT
77120 00123 1994-05-31 | 1994-06-30 1300
PK
DETAIL FK
ORHNBR PRDNBR PRDQTY PRDTOT
— 77120 00200 5 500
— 77120 00420 10 400
— 77120 00500 8 400
I_PfKJ
FK
FEATURE
ORHNBR PRDNBR FTRNBR FTRQTY FTRTOT
77120 00500 GKo004 1 50 -
77120 00500 RF321 1 20 -~
77120 00420 QQ997 1 60 -~
77120 00420 QQO001 2 40 -~
77120 00420 RD441 1 10 -~
77120 00200 YH532 2 80 -

Figure 3-10 Example of a cascade network

In a cascade network with multiple levels, DB2 UDB for iSeries implements what is called the
breadth cascade as opposed to the depth cascade implemented elsewhere. In the scenario
described in Figure 3-10, DB2 UDB for iSeries deletes the record from the Order Header file
first. Then, it deletes all the records from the DETAIL file, and then, all the records from the
FEATURE file.

3.6 Journaling and commitment control

As stated in 3.3.2, “Journaling and commitment control requirements” on page 25, if a
referential integrity network has update and delete rules other than RESTRICT, the DBMS
requires journaling and commitment control. Again, this requirement helps DB2 UDB for
iSeries ensure the atomicity of operations that change or delete multiple records due to
referential constraints. Either all or none of the record operations must complete.

For example, you may delete a record that activates a chain of cascaded deletes. If some
failure occurs during the cascade process before the DBMS can delete all the dependent
records, all the records deleted so far are undeleted and the parent and dependent files are
returned to their previous state. Journaling and commitment control enable the DBMS to
ensure this type of transaction atomicity.

Both the parent and dependent files must be journaled and journaled to the same receiver.
Technically, only the parent file needs to be journaled for NO ACTION rules. In addition, the
user is responsible for starting the journaling of their physical files.

Chapter 3. Referential integrity 43

44

However, the user can use system change journal management when setting up the
journaling environment to offload journal management responsibilities to the system. If
MNGRCV(*SYSTEM) and DLTRCV(*YES) are specified on the CRTJRN or CHGJRN
commands, the system automatically manages the attachment of a new journal receiver and
deletes the old receiver after the new one has been attached. Therefore, the user can choose
to start journaling and let the system take care of the management work.

In contrast, the system implicitly starts a commitment control cycle for the user if the delete or
update rule requires commitment control whenever the current application or user is running
with no commitment control.

This implicit commitment control cycle is transparent to the user and application program. If
any failure occurs before the update or delete operation has been carried out by the system,
all the changes related to the database operation are rolled back automatically. Other
changes previously made by the application are not affected by this automatic rollback.

Let's consider the example shown in Figure 3-11, where the application working on those files
is not using commitment control.

UPDATE remove 77120 from ORDERH 4 -§
S

INSERT remove 00200 from DETAIL ;cg
DELETE FROM TEST/ORDERH remove 00420 from DETAIL '(%
WHERE ORHNBR = '77120' _ | = ... g
remove GKO004 from FEATURE 5

<

remove RF321 from FEATURE

remove RD441 from FEATURE

remove YH532 from FEATURE

Figure 3-11 System-started commitment control cycle

When the DELETE operation is performed, DB2 UDB for iSeries activates an implicit
commitment control cycle f. If a failure occurs in], the records that were removed are placed
back into the files. Any changes in fl are not affected by an automatic rollback.

Figure 3-12 shows the same scenario as previously described, but with a native RPG ILE
program handling the delete cascade.

Advanced Functions and Administration on DB2 Universal Database for iSeries

FORDERH UF A E
FAnother UF E

(o UPDATE
C WRITE
(o MOVEL
C keyval DELETE

K DISK
K DISK COMMIT
AnotherFmt
ORDERH recordstr
'77120' keyval
ORDERH 99

remove 77120 from ORDERH
remove 00200 from DETAIL
remove 00420 from DETAIL
remove GK004 f-rom FEATURE
remove RF321from FEATURE

remove RD441 from FEATURE

remove YH532 from FEATURE

Figure 3-12 A native application and a delete cascade

3.6.1 Referential integrity journal entries

A new attribute has been added to the journal entries to identify which journal entries were

created as a result of referential constraint enforcement. The term side-effect journal entries

is used in this discussion to refer to these

new entries.

This side-effect information is identified by the new Ref Constraint (Yes/No) parameter in the
Display Journal Entry Details display. If a record is deleted from a dependent file directly, the
change is recorded into the journal with an entry specifying Ref Constraint is No. If the same
record is deleted by DB2 UDB for iSeries as the result of enforcing a Delete CASCADE rule,

the system records a side-effect journal e

ntry having Ref Constraint set to Yes.

If you consider the example in Figure 3-10 on page 43, when you delete a record from
ORDERH, the system automatically removes all the related products and, for each product,

all the corresponding features. When you remove order 77120, the system logs the journal

entries shown in Figure 3-13:
DELETE FROM TEST/ORDERH

Here, ORHNBR = '77120".

Chapter 3. Referential integrity

45

Display Journal Entries
Journal : QSQJRN Library : TEST
Type options, press Enter.
5=Display entire entry

Opt Sequence Code Type Object Library Job Time
2304 F 0P ORDERH TEST P23KRZ75D 22:37:02
2305 C BC P23KRZ75D 22:37:03
2306 C SC P23KRZ75D 22:37:03
2309 R DL ORDERH TEST P23KRZ75D 22:37:03
2311 R DL DETAIL TEST P23KRZ75D 22:37:04
2312 R DL DETAIL TEST P23KRZ75D 22:37:04
2313 R DL DETAIL TEST P23KRZ75D 22:37:04
2315 R DL FEATURE TEST P23KRZ75D 22:37:05
2316 R DL FEATURE TEST P23KRZ75D 22:37:05
2317 R DL FEATURE TEST P23KRZ75D 22:37:05
2318 R DL FEATURE TEST P23KRZ75D 22:37:05
2319 R DL FEATURE TEST P23KRZ75D 22:37:05
2320 R DL FEATURE TEST P23KRZ75D 22:37:05
2322 F CL ORDERH TEST P23KRZ75D 22:37:05
2323 C EC P23KRZ75D 22:37:06

Figure 3-13 Journal entries after deleting a parent record

Referring to Figure 3-13, OP means Open Member, CL is Close Member, and DL means
Delete Record. The BC entry corresponds to a Start Commitment Control operation, and the
SC entry is a Start of Commit cycle (the delete action was performed with Commitment
Control level *CHG).

After the parent file is opened and the commitment control cycle is started, an application first
deletes the parent record (Entry# - 2309). The DBMS then gains control and enforces the
associated delete CASCADE rules, causing all the matching rows in the dependent file (all
the products) and eventually all the features related to the products to be deleted. Side-effect
journal entries (2311 through 2320) are logged as a result of the constraint enforcement
performed by DB2 UDB for iSeries.

Note: Until the parent file is closed (entry 2322) in this delete cascade operation, you
cannot run the Change Journal (CHGJRN) command on this journal. This is due to the fact
that the system requires all of the files involved in this logical transaction to be closed so
that a synchronization point can be established for this journal. After this synchronization
point is established, the system de-allocates the journal, making it available to any system
function.

If you use option 5 on the DL entry for the ORDERH file, the complete entry for the explicit
parent key delete is shown in Figure 3-14.

46 Advanced Functions and Administration on DB2 Universal Database for iSeries

Display Journal Entry

Object : ORDERH Library : TEST
Member : ORDERH Sequence : 2309
Code : R - Operation on specific record

Type : DL - Record deleted

Entry specific data
Column e D T K T Y S .
00001 '77120001232001-05-312001-06-30 '

Bottom
Press Enter to continue.
F3=Exit F6=Display only entry specific data
F10=Display only entry details F12=Cancel F24=More keys
Figure 3-14 Journal entry information for a delete cascade operation
The corresponding entry details are shown in Figure 3-15.
Display Journal Entry Details
Journal : QSQJRN Library : TEST
Sequence : 2309
Code : R - Operation on specific record
Type : DL - Record deleted
Object : ORDERT Library : TEST
Member : ORDERT Flag : 1
Date : 06/07/01 Time 22:37:03
Count/RRN : 2 Program : QCMD
Job : 005547/ITSCIDO7/P23KRZ75D
User profile : USERIDO7 Ref Constraint . . . : No
Commit cycle ID . . : 2306 Trigger : No

Press Enter to continue.

F3=Exit F10=Display entry F12=Cancel F14=Display previous entry
F15=Display only entry specific data

Figure 3-15 Application-related journal entry

As shown in bold in Figure 3-15, the system reports that this delete operation was not the
result of referential constraint enforcement.

Chapter 3. Referential integrity

47

In contrast, the side-effect entry details all specify Ref Constraint as yes. For example, the
complete entry 2311 is shown in Figure 3-16.

Display Journal Entry

Object : DETAIL Library : TEST
Member : DETAIL Sequence : 2311
Code : R - Operation on specific record

Type : DL - Record deleted

Entry specific data
Column o A T S T Y S .
00001 7712000420 '

Bottom
Press Enter to continue.

F3=Exit F6=Display only entry specific data
F10=Display only entry details F12=Cancel F24=More keys

Figure 3-16 Journal entry information for a dependent record

This deletes product 00420. The corresponding detailed information is shown in Figure 3-17.

Display Journal Entry Details

Journal : QSQJRN Library : TEST
Sequence : 2311

Code : R - Operation on specific record

Type : DL - Record deleted

Object : DETAIL Library : TEST
Member : DETAIL Flag : 1
Date : 06/07/01 Time 22:37:04
Count/RRN : 3 Program : QCMD
Job 005547/ITSCIDO7/P23KRZ75D

User profile : USERIDO7 Ref Constraint . . . : Yes
Commit cycle ID . . : 2306 Trigger : No

Press Enter to continue.

F3=Exit F10=Display entry F12=Cancel F14=Display previous entry
F15=Display only entry specific data

Figure 3-17 Journal entry details for a referential integrity side-effect journal entry

48 Advanced Functions and Administration on DB2 Universal Database for iSeries

Notice that the field marked in bold in Figure 3-17 means that this delete operation was
performed by the DBMS due to referential constraint enforcement.

3.6.2 Applying journal changes and referential integrity

When you apply or remove journal changes, DB2 UDB for iSeries does not allow referential
constraints to prevent the recovery of your database files. Although each apply or remove
change is allowed, the associated referential constraints are constantly verified to prevent you
from violating the referential integrity of your database. If the journal change violates
referential integrity, the constraint is marked as check pending, and the system continues on
to the next journal entry. See the check pending discussion in 3.8.1, “Constraint states” on
page 52.

Moreover, during the process of applying or removing journal changes, update and delete
rules are ignored. If you have a cascade delete rule, for example, removing a record from the
parent file does not remove any of the dependent records. This is because the dependent
record changes are also recorded in your journal with the side-effect journal entries discussed
in 3.6.1, “Referential integrity journal entries” on page 45. These entries can be applied as
well.

This design allows you to use the journal entries to recover your database files to a known
state without violating the integrity of your database.

To avoid check pending situations, you must apply or remove journal changes on all files in
your referential integrity network to ensure that your related parent and dependent files are
recovered to the same data level.

Consider the example in Figure 3-10 on page 43. If you experience a data loss, you may need
to restore all the files in the referential integrity network. When you apply the journal changes,
include all the files involved in the referential integrity network:

APYJRNCHG JRN(TEST/QSQJRN)
FILE((*ALL))
CMTBDY (*YES)

This way, you are protected from check pending conditions and from data inconsistencies.

On the other hand, if you apply the journal entries only to ORDERH, order 77120 is deleted,
but all the related products are still in the database. The system allows you to apply the
journal changes with the following command:

APYJRNCHG JRN(TEST/QSQJRN)
FILE((TEST/ORDERH))
CMTBDY (*YES)

The DETAIL_ORD constraint (between ORDERH and DETAIL) is found in the established or
enabled state, with a check pending status of YES. To bring the two files back to the same
data level, you may also apply the journal changes to the other files in the network. Consider
our example, DETAIL and FEATURE:

APYJRNCHG JRN(TEST/QSQJRN)
FILE((TEST/DETAIL) (TEST/FEATURE))
CMTBDY (*YES)

At this point, you have to re-enable the constraints so that the system can re-verify this
relationship.

Chapter 3. Referential integrity 49

Figure 3-18 summarizes the database changes that can cause a check pending condition
(marked with CP) when they are applied through an Apply Journal Changes (APYJRNCHG)
command only to a parent or only to a dependent file and, similarly, when they are removed
from some, but not all, of the network files.

On dependent files On parent files
APY | RMV APY | RMV
Insert CcP -- Insert -- CP
Update CP CP Update CP CP
Delete - - CP Delete CP - -

Figure 3-18 Check pending after APYJRNCHG

Always apply or remove journal entries within commit boundaries, starting from the beginning
of a logical unit of work down to the end of a logical unit of work, because the system
guarantees the data consistency within the commit boundaries. Therefore, when you apply
journal changes, set the CMTBDY value to *YES in the APYJRNCHG command.

3.7 Referential integrity application impact

Before referential integrity is implemented, referential integrity validations must be performed
by the application program. Now you can let DB2 UDB for iSeries ensure your data integrity
through the referential integrity constraints.

As mentioned earlier, using referential integrity may improve your application performance.
The integrity checks are much more efficient and quicker when performed at the operating
system level rather than by an application.

However, once a programmer has defined referential constraints to the DBMS, the existing
integrity checks should be removed from the application program. Otherwise, the application
performance will degrade because the same checking is being performed twice (at the
application level and at the system level).

The application programmer must also consider the fact that, once the referential integrity
constraints are defined to the DBMS, referential integrity enforcement is performed at all
times on all interfaces. If you have applications that only need the data to be consistent at
specific points in time or applications where the inconsistency is accepted because another
program will correct it, DBMS referential constraints may prevent these applications from
running smoothly. A programmer must verify that the DBMS-supported referential integrity
matches the integrity and business rules currently enforced by their applications.

3.7.1 Referential integrity /0 messages

Several new error messages have been defined to handle the errors occurring during
referential integrity enforcement. Instead of coding integrity checks into your application
programs, coding is now needed to handle the new referential integrity error conditions that
can be raised by DB2 UDB for iSeries during referential constraint enforcement.

50 Advanced Functions and Administration on DB2 Universal Database for iSeries

Notify messages
There are three new notify messages for referential integrity errors:

» CPF502D: Referential constraint violation member <member name>

This message is issued when the user or the application tries to insert or update a foreign
key, and a matching parent key value does not exist.

» CPF502E: Referential constraints could not be validated for member <member name>

This message is issued when the system cannot validate a referential constraint because
of a record or a file lock.

» CPF503A: Referential constraint violation on member <member name>
This message is issued when the delete rule is NOACTION or RESTRICT and the user or
the application tries to delete or update a parent key having matching foreign key values.

These messages have a severity level of 30, and the default reply is “Cancel”.

Escape messages

There are two new escape messages for referential integrity errors:

» CPF523B: Referential constraint error processing member <member name>
This message is issued when the system cannot enforce a referential constraint.

» CPF523C: Referential constraints journal error

This message is issued when the system cannot enforce a referential constraint because
the corresponding parent and dependent files are not journaled, or they are not journaled
to the same journal.

Both messages have a severity level of 30 and fall into the range of escape messages that
are unrecoverable.

3.7.2 Handling referential integrity messages in applications

To handle these messages, new file status codes have been provided for ILE languages. In
the original program model (OPM) environment, any message due to errors in referential
integrity enforcement maps to the existing 1/0O error status codes “01299” for RPG/400 and
“90” for COBOL/400.

Referential integrity messages in ILE RPG programs

You can check the new status “01222” if you want to handle the CPF502E message. There is
also a corresponding inquiry message RNQ1222 and a corresponding escape message
RNX1222. Both of them have severity level 99 and the following text:

Unable to allocate a record in file &7 due to referential
constraint error (RC G D F).

Status “01022” handles CPF502D and CPF503A. There is also a corresponding inquiry
message RNQ1022 and a corresponding escape message RNX1022. Both of them have
severity level 99 and the following text:

Referential constraint error on file &7.

The existing status code “01299” and the corresponding inquiry message RNQ1299 and
escape message RNX1299 are used to handle escape messages CPF523C and CPF523B.

Chapter 3. Referential integrity 51

Referential integrity messages in ILE COBOL programs

Status “9R” handles all the notify messages previously listed for referential integrity
exceptions. Both escape messages are handled by the status code “90” set for the exceptions
in the CPF5200 range.

Referential integrity messages in ILE C programs
ILE/C maps these messages to the existing error number values.

SQLCODE values mapping referential integrity messages
The SQLCODE values are:

» SQLCODE 530 handles the notify message CPF502D.

» SQLCODE 531 indicates that you are updating a parent key with matching dependent
records.

» SQLCODE 532 indicates that you are deleting a parent key with matching dependent
records.

See Appendix B, “Referential integrity: Error handling example” on page 337, for a coding
example about error handling when using referential integrity.

3.8 Referential integrity constraint management

This section describes:

Constraint states

Check pending condition

Commands you can use to manage referential integrity constraints
Save and restore

How to obtain information about referential integrity constraints

vVvyyvyVvyy

3.8.1 Constraint states

A referential constraint can be in one of the following states:

» DEFINED state: The constraint definition exists at the file level, but the constraint is not
enforced. Defined constraints are purely by definition and not by function. The file
members do not have to exist for the constraint to be defined.

— Defined/enabled: A constraint that remains enabled when it is moved to the established
state

— Defined/disabled: A constraint that remains disabled when it is moved to the
established state

» ESTABLISHED state: A referential constraint is established when the foreign key
attributes match those of the parent key and both files contain a member. The constraint
has now been formally created in the DBMS. In this state, the constraint can be:

— Established/enabled: DB2 UDB for iSeries enforces referential integrity for this
constraint.

— Established/disabled: DB2 UDB for iSeries does not enforce referential integrity for a
constraint in this state. However, the access paths associated with the constraint are
still maintained.

See Database Programming, SC41-5701, for a complete discussion of constraint states.

52 Advanced Functions and Administration on DB2 Universal Database for iSeries

3.8.2 Check pending

A referential constraint is placed in check pending status if the DBMS determines that
mismatches may exist between the parent and foreign keys. The check pending status only
applies to referential constraints in the established/enabled state.

There are several operations that can cause a check pending condition:

Adding referential constraints to existing files with invalid data
Abnormal system failures

Save/restore operations

Apply/remove journal changes

vVvyyy

When a referential constraint relationship has been marked as check pending, the associated
parent and dependent files can be opened, but the system imposes some restrictions on the
I/O operations to those files:

» Only read and insert operations are allowed on the parent file.
» No I/O operations are allowed on the dependent file.

The system imposes these restrictions to ensure that applications and users are not
accessing and changing records that are possibly inconsistent and, therefore, violating
referential integrity.

To move a constraint relationship out of check pending, you must use disable (CHGPFCST)
to disable the constraint that allows any I/O operations to be performed on the parent and
dependent file. You can then correct your parent and foreign key values so that they again
meet referential integrity. Once the data corrections are completed, you can enable the
constraint that causes DB2 UDB for iSeries to process and verify that every non-null foreign
key value is valid. If this verification finds mismatches, the relationship is again marked as
check pending and the process repeats itself.

The check pending status of a file can be determined with the Work with Physical File
Constraints (WRKPFCST) command (refer to Figure 3-20 on page 57) and the Display
Physical File Description (DSPFD) command (refer to Figure 3-23 on page 62).

3.8.3 Constraint commands

The commands provided to manage referential integrity constraints are:

Change Physical File Constraint (CHGPFCST)
Display Check Pending Constraint (DSPCPCST)
Work with Physical File Constraints (WRKPFCST)
Edit Check Pending Constraint (EDTCPCST)
Remove Physical File Constraint (RMVPFCST)

vVvyyvyyvyy

CHGPFCST command
The Change Physical File Constraint (CHGPFCST) command provides a way to:

» Enable a referential constraint:

Enable causes the system to verify the data integrity of the specified constraint (for
example, every non-null foreign key value has a matching parent key). If the verification is
successful, the referential constraint is enforced by DB2 UDB for iSeries. Remember that
this enable process may not be a short-running operation when the associated files
contain a large number of records.

Chapter 3. Referential integrity 53

» Disable a referential constraint:

Disabling a constraint essentially turns off referential integrity for that constraint
relationship. Although the constraint is still defined in the DBMS, the DBMS no longer
enforces referential integrity for the disabled constraint relationship. Any I/O operation is
allowed on the parent and dependent file, even if that operation violates referential
integrity.

As mentioned in the check pending section, the disable option is used with check pending
constraints so that users can clean up their parent and foreign key data before having the
system re-verify the constraint.

Disabling a constraint can allow faster file I/O operations in performance-critical situations.
However, you must consider the trade-off in this situation. While the constraint is disabled,
the data can violate referential integrity, and you are unaware of the violation until the
constraint is re-enabled. In addition, you must wait for the system to re-verify all of your
foreign key values on the re-enable.

To limit your data integrity exposure when a constraint is disabled, first use the Allocate
Object (ALCOBJ) command to exclusively lock the files associated with the constraint to
be disabled. This allocation prevents other users from changing the file data while the
constraint is disabled. Then, use the De-allocate Object (DLCOBJ) command to free the
files once the referential constraint has been re-enabled.

Before enabling or disabling a constraint, the system obtains:

» Exclusive allow-read locks on the parent file, member, and access paths
» Exclusive no-read locks on the dependent file, member, and access paths

These locks are released at the end of the CHGPFCST command.

DSPCPCST command

The Display Check Pending Status (DSPCPCST) command can be used on referential
constraints that are in a disabled state to display which records in the dependent file do not
have matching parent key values, thereby causing the check pending condition.

The following example shows how the DSCPCPCST output can be used to fix a constraint
that is currently marked as check pending. In the Order Entry database, we define a
referential constraint ORDERHDR_CNBR (Parent Key and foreign key is the
Customer_Number field in both files) between existing CUSTOMER and ORDERHDR files
having the contents listed in Table 3-1 and Table 3-2.

Table 3-1 CUSTOMER table

CUSTOMER_NUMBER CUSTOMER_NAME
10509 Benson Mary

15006 Smith Steven

14030 Peterson Robert
13007 Robinson Richard
21603 White Paul

54 Advanced Functions and Administration on DB2 Universal Database for iSeries

Table 3-2 ORDERHDR table

ORDER_NUMBER CUSTOMER_NUMBER ORDER_DATE
00010 10509 05/08/01
00020 10509 05/09/01
02020 12312 02/03/01
02021 12312 04/13/01
02022 12312 04/25/01

The constraint is marked as check pending because ORDERHDR contains records related to
Customer 12312, which does not exist in the CUSTOMER file.

In this case, follow these steps:

1. Lock up your referential integrity network with the ALCOBJ command while you are
correcting your parent and foreign key data:

ALCOBJ OBJ((CUSTOMER *FILE *EXCL *FIRST)
(ORDERHDR *FILE *EXCL *FIRST))

2. If the constraint is not yet disabled, disable the constraint so that the DSPCPCST
command can read the dependent file:

CHGPFCST FILE(ORDERHDR)
CST(ORDERHDR_CNBR)
STATE (*DISABLED)

3. Display which records in ORDERHDR have a customer number that does not exist in the
CUSTOMER file:

DSPCPCST FILE(ORDENTL/ORDERHDR)
CST(ORDERHDR_CNBR)

The output of this command is shown in Figure 3-19.

Display Report

Width . . .: 142

Column . .: 1

Control

Line+. .. loooho 0200 heoc3naha bl L,

000001 02020 12312 02/03/2001
000002 02021 12312 04/13/2001
000003 02022 12312 04/25/2001

*kkkkx * *x % *x % END OF DATA * *x *x % %

Figure 3-19 DPSCPCST output

4. According to the DSPCPCST output, clean up your foreign and parent keys value. In this
case, it appears that Customer 12312 needs to be added to the CUSTOMER file.

5. Once the data is corrected, enable the constraint so that the DBMS can verify that your
parent and foreign key data is now in sync:

CHGPFCST FILE(ORDERHDR)
CST(ORDERHDR_CNBR)
STATE (*ENABLED)

Chapter 3. Referential integrity 55

6. Now that the constraint has been successfully enabled, release the locks on your
referential integrity network with the DLCOBJ command:

DLCOBJ OBJ((CUSTOMER *FILE *EXCL *FIRST)
(ORDERHDR *FILE *EXCL *FIRST))

3.8.4 Removing a constraint

This section shows how to remove physical file (or table) constraints. Both the native and SQL
interfaces can be used to remove file constraints:

» The native interface provides the Remove Physical File Constraint (RMVPFCST)
command.

» The SQL interface allows you to remove an existing constraint from a file through the
DROP clause of the ALTER TABLE statement.

The SQL interface supports the removal of one constraint at a time. The following statement
removes the customer_key constraint from the CUSTOMER file:

ALTER TABLE my1ib/CUSTOMER
DROP CONSTRAINT customer_key

The following statements remove (respectively) the primary key, the constraint_name unique
constraint, and the constraint_name referential constraint from the CUSTOMER file:

ALTER TABLE my1ib/CUSTOMER
DROP PRIMARY KEY

ALTER TABLE my1ib/CUSTOMER
DROP UNIQUE constraint_name

ALTER TABLE my1ib/CUSTOMER
DROP FOREIGN KEY constraint_name

In contrast, the native interface allows you to remove more than one constraint at a time. In
addition, you can sub-select the physical file constraints you want to remove by specifying the
option that only referential constraints, marked as check pending, should be removed.

Let's examine the impact of the RMVPFCST command according to the different values of its
parameters. The following statement removes the constraint_name constraint from
CUSTOMER file:

RMVPFCST FILE(myl1ib/CUSTOMER)
CST(constraint_name)
TYPE(constraint_type)

If CST(*CHKPND) is specified, all the referential constraints in the check pending condition
are removed, regardless of the value of the TYPE parameter. The following statement
removes all the constraint_type constraints from the CUSTOMER file in mylib:

RMVPFCST FILE(myl1ib/CUSTOMER)
CST(*ALL)
TYPE(constraint_type)

In this case, the system removes the unique or referential constraints following the sequence
in which they have been created:

RMVPFCST FILE(my1ib/CUSTOMER)
CST(*ALL)

56 Advanced Functions and Administration on DB2 Universal Database for iSeries

The RMVPFCST statement removes all the constraints defined over the CUSTOMER file in
mylib, including the damaged constraints since the TYPE default value is *ALL.

In this case, the system removes the primary key constraint first, then all of the unique
constraints (in their creation sequence), and finally, all of the referential constraints (in their
creation sequence).

WRKPFCST command

The Work with Physical File Constraints (WRKPFCST) command is similar to the other
Control Language Work commands. With this command, you can gain access to most of the
constraint operations from a single display. The WRKPFCST command lets you see one or all
the physical file constraints defined over one or more files, depending on the values you set
for the WRKPFCST parameters. Figure 3-20 displays the sample output from the
WRKPFCST command.

Work with Physical File Constraints

Type options, press Enter.
2=Change 4=Remove 6=Display records in check pending

Check
Opt Constraint File Library Type State Pending
CUSTOMER_K > CUSTOMER ORDENTL *PRIKEY
ORDDTL_KEY ORDERDTL ORDENTL *PRIKEY
ORDDTL_HOR > ORDERDTL ORDENTL *REFCST EST/ENB NO
ORDERHDR_K > ORDERHDR ORDENTL *PRIKEY
ORDERHDR_C > ORDERHDR ORDENTL *REFCST EST/ENB YES
SALESREP_K > SALESCUS ORDENTL *PRIKEY
SALESREP_C > SALESCUS ORDENTL *REFCST EST/ENB NO
STOCK_KEY STOCK ORDENTR *PRIKEY
STOCK_SNBR STOCK ORDENTR *REFCST EST/ENB NO
SUPPLIER_K > SUPPLIER ORDENTR *PRIKEY
Parameters for options 2, 4, 6 or command Bottom
===>
F3=Exit F4=Prompt F5=Refresh F12=Cancel F15=Sort by

Fl16=Repeat position to Fl7=Position to F22=Display constraint name

Figure 3-20 Work with Physical File Constraints display

On this display, you can:
» Change the state of constraints (option 2):

This option invokes the CHGPFCST command (see “CHGPFCST command” on page 53).
» Remove a constraint (option 4):

This option invokes the RMVPFCST command (see 3.8.4, “Removing a constraint” on
page 56, for more details).

» Display constraints in check pending status (option 6):
This option executes the DSPCPCST command (see “DSPCPCST command” on
page 54).

The state column lists the status of the referential constraints: defined or established and
enabled or disabled. The check pending status column displays which constraints are
currently in check pending. Disabled constraints are always shown as being in check pending
condition although check pending does not apply to disabled constraints.

Chapter 3. Referential integrity 57

EDTCPCST command

The Edit Check Pending Constraints (EDTCPCST) command allows you to manage the
verification of referential constraints that have been marked as check pending. The system
displays the constraints marked as check pending and the estimated time it takes the system
to verify the constraint once the parent and foreign key data have been corrected.

From our previous example (Figure 3-20), the corresponding EDTCPCST display output is
shown in Figure 3-21 with the ORDERHDR_CNBR constraint that was placed in check
pending status.

Edit Check Pending Constraints SYSTEMO3
05/14/01 18:39:36
Type sequence, press Enter.
Sequence: 1-99, *HLD
---------- Constraints----------- Verify Elapsed
Seq Status Cst File Library Time Time
1 RUN STOCK > STOCK ORDENTR 00:10:00 00:02:40
2 READY SALES > SALESCUS ORDENTL 00:01:48 00:00:00
*HLD CHKPND ORDER > ORDERHDR ORDENTL 00:00:01 00:00:00
Bottom
F3=Exit F5=Refresh F12=Cancel F13=Repeat all F15=Sort by
Fl16=Repeat position to Fl7=Position to F22=Display constraint name

Figure 3-21 Edit Check Pending Constraints display

From this display, you can set a sequence for the constraints verification. You can also delay
the verify process to a later time, specifying *HLD on the sequence field. DB2 UDB for iSeries
starts verifying the constraints right after you specify the sequence. The elapsed time since
the beginning of the process is also displayed. During this process, the constraint status is set
to RUN. Other constraints waiting for verification are marked with READY.

Verifying at IPL time

The Edit Check Pending Constraints display (Figure 3-22) is shown during a manual mode
IPL if there are constraints in check pending condition.

58 Advanced Functions and Administration on DB2 Universal Database for iSeries

Edit Check Pending Constraints SYSTEMO3
05/24/01 11:14:25
IPL threshold 50 0-99

Type sequence, press Enter.
Sequence: 1-99, *HLD

---------- Constraints----------- Verify Elapsed
Seq Status Cst File Library Time Time
*HLD CHKPND ORDER > ORDERHDR ORDENTL 00:45:30 00:05:15
*HLD CHKPND SALES > SALESCUS ORDENTL 00:01:43 00:00:36
*HLD CHKPND STOCK > STOCK ORDENTR 00:00:25 00:00:05
Bottom
F5=Refresh F13=Repeat all F15=Sort by F16=Repeat position to

F17=Position to F22=Display constraint name

Figure 3-22 Editing Check Pending Constraint display at IPL time

On this display, you have three alternatives:

» If you want the system to suspend the IPL and verify a constraint at this time, for that
constraint, you have to type a Sequence value less than or equal to the IPL threshold
number.

» If you need the system to verify a constraint after the IPL, you have to use a sequence
value greater than the threshold. The IPL then continues, and at the IPL completion, the
system automatically starts verifying that constraint.

» If you want to handle the check pending condition by yourself during the normal activity,
hold the constraint verification by leaving the Sequence value set to *HLD.

If several constraints must be verified at the same time, either during IPL or at the end, you
can specify an ordering sequence for them by inserting ordered values into the Sequence
field.

3.8.5 Save and restore considerations

As mentioned in 3.3.3, “Referential integrity and access paths” on page 25, when a set of
database files is saved, all the physical file constraints and associated access paths are
saved as well. At restore time, the system attempts to re-establish the constraints for the user.

During the restore operation, the system determines whether the parent and dependent files
associated with the referential constraints are at the same data level (in other words, at the
same integrity level according to their constraints). If the system determines that the related
files and constraints are not at the same level, the constraint relationship is marked as check
pending. The system does not spend time verifying every foreign key value during the restore.
It only checks the data level of the associated files. This data level verification is much quicker
than the DBMS verification of every foreign key value and still preserves referential integrity.

Chapter 3. Referential integrity 59

Other DBMS automatically either place the constraints in check pending or verify every
foreign key value when you load backup copies of your database files onto the system. DB2
UDB for iSeries gives you the benefit of the doubt when restoring database backups. For
example, you always save both your parent and dependent files every Monday night. A
system failure on Thursday necessitates that you load the backup tape copies of your
dependent and parent file. DB2 UDB for iSeries then quickly verifies that the dependent and
parent files being restored are at the same data level (which is true since they were backed up
together) and leaves the referential integrity constraint in a valid state. This allows you to
move your backup onto the system as quickly as possible while still guaranteeing referential
integrity.

Here’s an example of DB2 UDB for iSeries protecting your data integrity. You restore a version
of the dependent file without restoring the corresponding version of the parent file. This only
leads to a check pending condition when some parent records have changed since the save
operation took place, which now causes your parent and newly restored dependent files to be
at different data levels. For this example, we assume that some parent records have changed
since the save operation. The associated referential constraint is marked as check pending
since data inconsistencies may exist due to the different data levels detected by the DBMS.
You are responsible for cleaning up this check pending situation before users and applications
can fully access these files.

To avoid check pending and the associated recovery work, always save your referential
integrity network in the same save request. This keeps the associated parent and dependent
files at the same level so that you can restore the network with one request.

When your referential integrity network is split across different libraries, you cannot save and
restore the network with a single request. In this case, you need to prevent other jobs from
changing your file data levels during your multiple request save or restore operation by using
the Allocate Object (ALCOBJ) command to lock up your referential integrity network.

Here's an example of the steps to follow in this situation:

» When saving your referential integrity network:

a. Allocate the files you have to save with the ALCOBJ command, and set Lock State to
*EXCL.

b. Save your network.
c. Release the locks on the files by using the De-allocate Object (DLCOBJ) command.
» When restoring your referential integrity network:

a. Allocate the libraries your files are restored into by using the ALCOBJ command and
setting Lock State to *EXCLRD.

b. Restore your files in any sequence.
c. Release the locks previously established on the libraries using the DLCOBJ command.

When a dependent file is restored and the parent file is still missing, the constraint is left in a
defined/enabled state. As soon as the parent file is restored, the constraint is established and
the data levels immediately are verified. Therefore, the parent and dependent files can be
restored in any sequence while still avoiding check pending.

When you restore files belonging to a referential integrity network, the system can determine
whether the files are at different data levels for every single constraint. Restoring files at
different data levels may result in a mix of check pending and non-check pending constraints.
Only the constraints potentially affected by the database changes that caused the data level
mismatch are put into check pending.

60 Advanced Functions and Administration on DB2 Universal Database for iSeries

If you restore a database file over an existing one, the existing constraints are preserved. For
example, if you remove some constraints from the file currently on the system, the additional
constraints saved on the media are not restored.

3.8.6 Restore and journal apply: An example

Consider the example described in 3.5.3, “A CASCADE example” on page 39. You may want
to save this referential integrity network. Since all the files are in the same library, issue a
single save request:

SAVOBJ OBJ(ORDERH DETAIL FEATURE)
LIB(TEST) DEV(device)
OBJTYPE(*FILE)

Consider the example where a system failure has caused you to lose the DETAIL file, and you
now need to recover your referential integrity network. Follow these steps:

1. Allocate the involved files to avoid changes by other jobs. Use the ALCOBJ command with
Lock Type set to *EXCL to prevent other users from reading inconsistent data.

2. Restore all of the referential integrity network:

RSTOBJ OBJ(ORDERH DETAIL FEATURE)
SAVLIB(TEST) DEV(device) OBJTYPE(*FILE)

3. Apply journal changes to all of the involved files:

APYJRNCHG JRN(TEST/QSQJRN)
FILE((TEST/ORDERH) (TEST/DETAIL) (TEST/FEATURE))
CMTBDY (*YES)

4. De-allocate the ORDERH, DETAIL, and FEATURE files.

For details on journaling, commitment control, and applying journal entries, see Backup and
Recovery Guide - Advanced, SC41-3305.

3.8.7 Displaying constraint information

You can display or output the constraints and their related attributes and states for a file in the
following ways:

» Run the Display Physical File Description (DSPFD) command
» Run the Display Database Relations (DSPDBR) command
» Query the system catalog tables

DSPFD and DSPDBR commands

The DSPFD command also provides a complete description of all the constraints defined for
a file. You can select this specific information by specifying:

DSPFD FILE(ORDENTL/ORDERHDR) TYPE(*CST)

This command shows which constraints are defined for the ORDERHDR file and their
description as shown in Figure 3-23.

Chapter 3. Referential integrity 61

Display Spooled File

File : QPDSPFD Page/Line 1/1
Control Columns 1-78
Find
B TP A DU S R TR DU D DEPIE SR A T
5/16/01 Display File Description
DSPFD Command Input
File o oo o v oo v oo« . FILE ORDERHDR
Library . . v o o v v 0 o000 e e e e ORDENTL
Type of information : TYPE
File attributes : FILEATR *ALL
System SYSTEM *LCL
File Description Header
File oo v v oo v oo« . FILE ORDERHDR
Library . . ¢ o v v 0 0 v v e e e e e e ORDENTL
Type of file Physical
File type FILETYPE *DATA
Auxiliary storage pool ID: 01

Constraint Description
Primary Key Constraint

Constraint :CST ORDERHKEY
Type . v v v v v v v v e v« « . . . TYPE *PRIMARY
Key . .« o v o o o o oo o . . .t KEY ORHNBR
Number of fields in key : 1
Key Tength 5

Referential Constraint

Constraint :CST ORDERHDRCNBR
Type . v v v v v v v v e v« « . . . TYPE *REFCST
Check pending: NO
Constraint state : STATE ESTABLISHED

*ENABLED

Parent File Description

File : PRNFILE CUSTOMER
Library :LIB ORDENTL
Parent key : PRNKEY CUSNBR

Foreign key : FRNKEY CUSNBR

Delete rule : DLTRULE *RESTRICT

Update rule : UPDRULE *RESTRICT

Figure 3-23 Physical file constraints from DSPFD

In the Constraint Description section (highlighted in bold) in Figure 3-23, all of the parameter
values set through the ADDPFCST command or ALTER TABLE/CREATE TABLE statements
for each constraint are listed.

The DSPFD command issued for a given file shows a referential constraint definition only for
the parent file. To determine which referential constraints refer to this file as a parent file, you
must use the DSPDBR command. This command lists these constraints in the Dependent
Files section, where some new information has been added to differentiate among referential
constraints, logical files, SQL indexes, or SQL views.

Figure 3-24 shows this information for the ORDERHDR file.

62 Advanced Functions and Administration on DB2 Universal Database for iSeries

Display Spooled File
File : (QPDSPDBR Page/Line 1/1
Control Columns 1-78
Find
e T B T SO o P T R O S
5/16/01 Display Data Base Relations
DSPDBR Command Input
File o oo o v oo v oo« . FILE ORDERHDR
Library . . v o o v v 0 o000 e e e e ORDENTL
Member MBR *NONE
Record format : RCDFMT *NONE
Qutputo oo OUTPUT *
Specifications
Type of file Physical
File . . o v v v v v v v v o e e ORDERHDR
Library . . v o o v v 0 o000 e e s ORDENTL
Member 000000 *NONE
Record format *NONE
Number of dependent files :
Files Dependent On Specified File
Dependent File Library Dependency JREF Constraint
SALE ORDENTL Data
TOTALSALE ORDENTL Data
YEARSALE ORDENTL Data
ORDERDTL ORDENTL Constraint ORDERHDRNUM
Bottom
F3=Exit F12=Cancel F19=Left F20=Right F24=More keys

Figure 3-24 Referential constraints from DSPDBR on the parent file

As you can see by comparing the Constraint Description line (in bold) from Figure 3-23 and
the last line in bold in Figure 3-24, the DSPFD and DSPDBR commands provide complete
information about the constraints involving the physical files in question.

Catalog inquiry

DB2 UDB for iSeries provides a system-wide catalog. The SQL catalog is a set of views in the
QSYS2 library built over the cross-reference files where DB2 UDB for iSeries maintains all
information related to the structure and the contents of all database files. The catalog also
keeps information related to the physical file constraints. You can retrieve any information you
need about the constraints defined over your database files using the system views provided
in the QSYS2 library:

» SYSCST: General information about constraints. The underlying catalog tables are
QADBFCST and QADBXREF.

» SYSCSTCOL.: Information about the columns referenced in a constraint. This is a view
defined over the QADBCCST and QADBIFLD catalog tables.

» SYSCSTDEP: Information about the constraint dependencies on tables. The catalog
tables involved are QADBFCST and QADBXREF.

» SYSKEYCST: Information about the primary, unique, and foreign keys. The underlying
catalog tables are QADBCCST, QADBIFLD, and QADBFCST.

» SYSREFCST: Information about referential constraints from the cross-reference file table
QADBFCST.

Chapter 3. Referential integrity 63

Consider this example:

SELECT *
FROM SYSCST
WHERE TABLE_NAME = 'ORDERDTL' AND TABLE_SCHEMA = 'ORDENTL'

This query returns information at the constraint level about the constraints defined over the
ORDERDTL file in the ORDENTL library. The most significant details are shown in
Figure 3-25.

ELECT * FROM SYSCST WHERE TABLE_NAME = 'ORDERDTL' AND TABLE_ScC... M=l
CONSTRAINT_SCHEMA CONSTRAINT_NAME CONSTRAINT_TYPE

1 |ORDENTL ORDERDTL_KEYS PRIMARY KEY

2 |ORDENTL ORDERHDRNUM FOREIGN KEY

K |

Figure 3-25 Constraint information

To see which fields constitute the key of the constraint, you have to query SYSCSTCOL. Use
the previous example:

SELECT *

FROM SYSCSTCOL

WHERE TABLE_NAME = 'ORDERDTL' AND TABLE_SCHEMA = 'ORDENTL'
ORDER BY CONSTRAINT_NAME

This query returns the names of the fields forming the various constraint keys of ORDERDTL
file. See Figure 3-26.

ORDER BY C... M=l

= SELECT * FROM SYSCSTCOL

WHERE TABLE_NAME = '"ORDERDTL' AND TABLE_SCHEMA = '"ORDENTL'

TABLE_SCHEMA TABLE_NAME |COLUMN_NAME CONSTRAINT_SCHCONSTRAINT_NAME |SYSTEM_COLUMN_NAME
1 |ORDENTL ORDERDTL |ORDER_MUMBER |ORDENTL ORDERDTL_KEYS |ORHNBR
2 |ORDENTL ORDERDTL |PRODUCT_NUMBER |ORDENTL ORDERDTL_KEYS |PRDNBR
3 |ORDENTL ORDERDTL |ORDER_NUMBER |[ORDENTL ORDERHDRNUM ORHNBR

Figure 3-26 Constraint column information

The catalog table, SYSKEYCST, keeps more detailed information regarding key fields in a
physical file constraint, such as the ordinal position of the field, in the key, and this position in
the table layout:

SELECT *FROM SYSKEYCST
WHERE CONSTRAINT_SCHEMA = 'ORDENTL'
AND CONSTRAINT_NAME = 'ORDERDTL_KEYS'
AND TABLE_SCHEMA "ORDENTL'
AND TABLE_NAME "ORDERDTL'

This statement returns the information shown in Figure 3-27.

& SELECT *FROM SYSKEYCST WHERE CONSTRAINT_SCHEMA = 'ORDENTL' AND CONSTRAINT_NAME ='ORDERDTL_KEYS' ... M= E3

CONSTRAINT_NAME

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

ORDINAL_POSITION

COLUMN_POSITION

ORDERDTL_KEYS

ORDENTL

ORDERDTL

ORDER_NUMBER

1

1

ORDERDTL_KEYS

ORDENTL

ORDERDTL

PRODUCT_NUMBER

2

2

L

Figure 3-27 Detailed constraint key information

For a referential constraint, detailed information can be selected from SYSREFCST (in the

ORDERDTL case, for example):

Advanced Functions and Administration on DB2 Universal Database for iSeries

SELECT * FROM SYSREFCST
WHERE CONSTRAINT_NAME = 'ORDERHDRNUM'
AND CONSTRAINT_SCHEMA = 'ORDENTL'

This statement returns the information shown in Figure 3-28.

& SELECT *FROM SYSREFCST WHERE CONSTRAINT_NAME ='ORDERHDRNUM' AND CONSTRAINT_SCHEMA -... M=l E3

CONSTRAINT_SCHEMA [CONSTRAINT_NAME UNIQUE_CONSTRAINT_NAME UPDATE_RULE DELETE_RULE

ORDENTL ORDERHDRNUM ORDERHKEY RESTRICT RESTRIC

K| il

Figure 3-28 Referential constraint information

To determine the complete definition of a referential constraint through catalog views, you
need to perform a join:

>

'S

From SYSREFCST, you can retrieve the name of the unique or primary key constraint
identifying the parent key.

By using the name of the constraint, SYSCST provides the name and library of the
corresponding parent file and the type of the constraint itself (primary key or unique
constraint).

SYSCSTCOL gives the parent key (unique or primary key) fields.

These actions can be expressed through the following query:

SELECT C.UNIQUE_CONSTRAINT_ SCHEMA
.UNIQUE_CONSTRAINT NAME
.CONSTRAINT TYPE
.TABLE_SCHEMA
.TABLE_NAME
.UPDATE_RULE
.DELETE_RULE
.COLUMN_NAME
FROM SYSCST A, SYSCSTCOL B, SYSREFCST C
WHERE C.CONSTRAINT SCHEMA = 'ORDENTL'
AND C.CONSTRAINT NAME ' ORDERHDRNUM'
AND B.CONSTRAINT SCHEMA = C.UNIQUE_CONSTRAINT SCHEMA
AND B.CONSTRAINT NAME C.UNIQUE_CONSTRAINT NAME
AND A.CONSTRAINT SCHEMA = C.UNIQUE_CONSTRAINT SCHEMA
AND A.CONSTRAINT NAME = C.UNIQUE_CONSTRAINT NAME
GROUP BY C.UNIQUE_CONSTRAINT SCHEMA
, C.UNIQUE_CONSTRAINT NAME
, A.CONSTRAINT TYPE
, A.TABLE_SCHEMA
, A.TABLE_NAME
, C.UPDATE_RULE
, C.DELETE_RULE
, B.COLUMN_NAME

OO0

The output of the previous query consists of as many rows as the parent key fields. In the
example of the ORDDTL_HORD constraint (see 3.4.3, “Another example: Order Entry
scenario” on page 32), the query returns the output shown in Figure 3-29.

&= SELECT * FROM SYSREFCST WHERE CONSTRAINT_NAME ='ORDERHDRNUM' AND CONSTRAINT_SCHEMA -... =] E3
CONSTRAINT_SCHEMA CONSTRAINT_NAME UNIQUE_CONSTRAINT_NAME UPDATE_RULE DELETE_RULE

ORDENTL ORDERHDRNUM ORDERHKEY RESTRICT RESTRIC

KN [

Figure 3-29 Parent key information

Chapter 3. Referential integrity

65

66 Advanced Functions and Administration on DB2 Universal Database for iSeries

Check constraint

This chapter explains:

DB2 UDB for iSeries check constraints
Defining a check constraint

General considerations

Application impacts of check constraint
Check constraint management

Tips and techniques

vVvyvyvyYYyy

© Copyright IBM Corp. 1994, 1997, 2000, 2001

67

4.1 Introduction

One of the main contributions of the SQL-92 standard is the specification of a rich collection
of integrity constraints. The constraints in SQL-92 can be classified into three categories:

» Domain or table constraints
» Referential integrity constraints
» General assertions

Each of these constraints are explained in the following sections.

4.1.1 Domain or table constraints

Table or domain constraints in SQL-92 are used to enforce restrictions on the data allowed in
particular columns of particular tables. Any column in a table may be declared as NOT NULL.
This indicates that null values are not permissible for that column. In addition, a set of one or
more columns may be declared as UNIQUE. This indicates that two rows may not have the
same values for certain columns, which are those that form the key for the table. Each table
also can have, at most, one designated PRIMARY KEY consisting of a set of one or more
columns. Primary keys must be both unique and not null.

Note: New function was added in V4R2MO to allow a primary key constraint to be defined
where one or more columns in the key allow NULL values. When this condition is detected,
a check constraint is implicitly added to the file to ensure that the column will not contain
NULL values. This means that this check constraint will prevent any NULL values from
being inserted into columns defined for the primary key.

The permissible values of a column may also be restricted by means of a CHECK constraint.
A CHECK clause specifies a condition that involves the column whose values are restricted.
Semantically, a CHECK constraint is valid if the condition evaluates to true or unknown for
every row in the table.

4.1.2 Referential integrity constraints

A referential integrity constraint involves two tables called the parent table and the dependent
table. Intuitively, every row in the referencing table must be a “child” of some row in the
referenced table. Referential integrity disallows “orphans” that are created by insertions (of
child rows), updates (of child or parent rows), or deletions (of parent rows). Referential
integrity can be violated by insertions or updates to the referencing table or by updates or
deletions to the referenced table.

4.1.3 Assertions

Assertions in SQL-92 constraints provide the ability for expressing general constraints that
may involve multiple tables. As in CHECK constraints, the condition that is evaluated can be
an arbitrary SQL predicate. The assertion is satisfied if the condition evaluates to true or
unknown.

This chapter describes how DB2 UDB for iSeries supports the CHECK constraint that is part
of the table constraints of SQL-92.

68 Advanced Functions and Administration on DB2 Universal Database for iSeries

4.2 DB2 UDB for iSeries check constraints

Check constraints in DB2 UDB for iSeries let you ensure that users authorized to change a
column's value use only values that are valid for that column. It ensures that the value being
entered in a column of a table belongs to the set of valid values defined for that field. For
example, you may specify that the “legal” values for an employee evaluation field defined as
an integer might be 2, 3, 4, or 5. Without the check constraint, users can enter any integer
value into such a field. To ensure that the actual value entered is 2, 3, 4, or 5, you must use a
trigger or code the rule in your application program.

A check constraint increases the data integrity because the constraints are validated against
every interface (RPG, Data File Utility, ODBC client programs, Interactive SQL, etc.) that
updates or inserts database records. The operating system enforces the rules, not the
application program. For this reason, there is no way to bypass any control, and the integrity
is assured. The programmer no longer has to add this verification code to every application
program that updates or inserts a database record.

A check constraint is associated with a file and contains check conditions that are enforced
against every row in the file. Whenever a row is inserted or updated, the database manager
evaluates the check condition against the new or changed row to guarantee that all new field
values are valid. If invalid values are found, the database manager rejects the insert or update
operation.

Here are some examples:

» Range checking: The field value must be between 1 and 50
» Domain or value checking: The field can be one of the following values: 1, 3, 5, 7, or 9
» Field comparisons: total_sales < credit_limit

Remember that the check constraint is valid if the condition evaluates to true or unknown.

Some of the current alternatives to the check constraint are to:

» Code the constraints in the application programs. This may give more flexibility in coding
the business rules, but the rules are not enforced in all of the iSeries interfaces (for
example, DFU or ODBC client programs).

» Use the DDS keywords (COMP, RANGE, VALUES) in the display and logical files. The
problem with this approach is that the rules are only enforced in green-screen
applications.

» Use before triggers. In this case, the rule is enforced on all interfaces, but it is not a part of
a database table. It is not a declarative approach.

There are some obvious advantages for using the CHECK constraint option in the iSeries

server:

» There is much less coding to do if the business rules are defined only once in the
database.

» The administration is much easier because the business rules become part of the
database.

» The data integrity of the database is improved because the rules are enforced on all
interfaces.

» Since the database manager is performing the validation, the enforcement is more
efficient than the application level enforcement.

Chapter 4. Check constraint 69

4.3 Defining a check constraint

This section discusses the interfaces and commands that you can use to add a check
constraint. We refer to the native interface and the SQL interface. Let's start with the native CL
command ADDPFCST. In the following example, we define a check constraint in the
CUSTOMER file, where the customer_total (CUSTOT) cannot be greater than the
customer_credit_limit (CUSCRD).

Enter the ADDPFCST command, and press F4. The display shown in Figure 4-1 appears.

Add PF Constraint (ADDPFCST)

Type choices, press Enter.

File . . . o v v v v v v 0oL > CUSTOMER Name

Libraryo oo .. > ORDAPPLIB Name, *LIBL, *CURLIB
Constraint type > *CHKCST *REFCST, *UNQCST, *PRIK
Constraint name CUSCRD_LIMIT_CUSTOT

F3=Exit F4=Prompt F5=Refresh Fl2=Cancel F13=How to use this display
F24=More keys

Figure 4-1 Prompt for the ADDPFCST command

Note that the type of constraint is *CHKCST. The name of the constraint must be unique in
the library where it is being created. The display shown in Figure 4-2 prompts you for the
check condition.

Add PF Constraint (ADDPFCST)
Type choices, press Enter.

Check constraint > 'CUSTOT <= CUSCRD'

F3=Exit F4=Prompt F5=Refresh Fl2=Cancel F13=How to use this display
F24=More keys

Figure 4-2 Check condition for a check constraint

The condition clause of a check constraint can be up to 2000 bytes long.

70 Advanced Functions and Administration on DB2 Universal Database for iSeries

Important: The condition clause of a check constraint is a restricted form of the
search-condition of the WHERE and HAVING clauses of the SQL statements. You do not
need the DB2 Query Manager and SQL Development Kit for iSeries product to define the
condition through the native interface.

When you add a constraint to an existing file, the existing records must not violate the
constraint condition. If the system finds records violating the constraint, a diagnostic message
is issued for the first 25 rows that failed the check, and the constraint is set to the check
pending condition. The display in Figure 4-3 shows the diagnostic message issued by the
system.

Additional Message Information

Message ID : CPD32D3 Severity 20

Message type : Diagnostic

Date sent : 10/16/01 Time sent : 11:20
Message : Field values are not valid for check constraint.
Cause ¢ Check constraint CUSCRD_LIMIT_CUSTOT for file

CUSTOMER in Tibrary ORDAPPLIB is in check pending.
The constraint is in check pending because record 1 in the file has a
field value that conflicts with the check constraint expression.
If the record number for the file is 0, then the record either cannot
be identified or does not apply to the check pending status.
Recovery . . . :
Use the CHGPFCST command for the file to disable the constraint.
Use the DSPCPCST command for the file to display the records that are
causing the constraint to be in check pending.
Update the file to make sure each field value does not conflict with
the check constraint expression.

Press Enter to continue.

F3=Exit F6=Print F9=Display message details
F10=Display messages in job log Fl2=Cancel F21=Select assistance level

Figure 4-3 Detailed message for CPD32D3

You can use the Relative Record Number (RRN) scalar function to identify the record that is
violating the constraint. This is accomplished by typing the following command in an
Interactive SQL session:

SELECT rrn(customer), cusnbr FROM customer

Figure 4-4 shows the results of this query. In this case, the record with the customer number
equal to 100 violates the constraint since its relative record number happens to be 1.

Chapter 4. Check constraint 71

Display Data
Data width :

Position to T1ine Shift to column
R R I Y,
RRN (CUSTOMER) CUSNBR

1 00100

2 00001

3 00003

5 00009

6 00990

7 00008

8 00500

9 00007

11 55555

12 00400

13 00201

14 00101

15 00102

16 00103

17 00045

More

F3=Exit F12=Cancel F19=Left F20=Right F21=Split

Figure 4-4 Query result

Now let's see how to create a check constraint using the SQL interface. The SQL interface
provides two ways to create a check constraint:

» CREATE TABLE statement, which has the constraint clause

» ALTER TABLE statement, which allows a table constraint to be added to an existing table
with the ADD constraint option

At creation time, you can define the check constraint with the SQL CREATE TABLE
statement:

CREATE TABLE ORDAPPLIB/CUSTOMER
(CUSTOMER_NUMBER FOR COLUMN CUSNBR CHAR(5) NOT NULL WITH DEFAULT,
CUSTOMER_NAME FOR COLUMN CUSNAM CHAR (20) NOT NULL WITH DEFAULT,

CONSTRAINT CUSCRD_LIMIT_CUSTOT
CHECK (CUSTOT <= CUSCRD))

The CREATE TABLE statement also allows you to define a check constraint at the column
level. The restriction is that a column-level constraint cannot reference any other column.
Here is an example:

CREATE TABLE ORDAPPLIB/EMPLOYEE (
EmpID# CHAR(2),
EmpName CHAR(30),
Salary INTEGER CONSTRAINT salarychk
CHECK(Salary > 0 AND Salary < 10000),
Bonus INTEGER CHECK(Bonus >=0),
CONSTRAINT BonusSalaryChk
CHECK (bonus<= salary))

72 Advanced Functions and Administration on DB2 Universal Database for iSeries

There is an advantage that SQL CREATE TABLE has over CRTPF when you define
constraints. CREATE TABLE allows both the DB file object and associated constraints to be
created on a single command. CRTPF is always a two-step process:

1. Use CRTPF to create the DB object.
2. Use ADDPFCST to create your constraints.

You can also add check constraints to existing files. This is illustrated in the following example:

ALTER TABLE ORDAPPLIB/CUSTOMER
ADD CONSTRAINT CUSCRD_LIMIT_CUSTOT
CHECK(CUSTOT <= CUSCRD)

When you are adding a constraint to an existing file, the existing records must not violate the
constraint. If the system finds records violating the constraint, an error is issued, similar to the
one shown in Figure 4-5, and the constraint is not created.

Additional Message Information

Message ID : SQLO544 Severity 30

Message type : Diagnostic

Message . . : CHECK constraint CUSCRD_LIMIT_CUSTOT cannot be added

Cause . . . : Existing data in the table violates the CHECK constraint
rule in constraint CUSCRD_LIMIT_CUSTOT. The constraint cannot be added
Recovery . : Change the data in the table so that it follows the

constraint specified in CUSCRD_LIMIT_CUSTOT. Try the request again.

Press Enter to continue.

F3=Exit F6=Print F9=Display message details
F10=Display messages in job Tog F12=Cancel F21=Select assistance level

Figure 4-5 Additional message for SQL0544

In this case, you must correct the records that are violating the constraint before you try to
create it again.

Important: The behavior of the ADDPFCST command is different than the ALTER TABLE
SQL statement when they encounter violating records during the creation of the check
constraint. In the first case, the constraint is added, while in the second case, it is not
added. This is also true for the CREATE TABLE statement. The SQL interface complies
with the SQL-92 standard, while the native interface follows the traditional OS/400
approach.

After the constraint is successfully created, you can see its definition by using the DSPFD
ORDAPPLIB/CUSTOMER command. Press the Page Down key to see the display shown in
Figure 4-6.

Chapter 4. Check constraint 73

74

Display Spooled File
File : QPDSPFD Page/Line 2/21
Control Columns 1-178
Find
S R N T N TR S N LT DU P, 6....+. . 7.
Constraint Description
Primary Key Constraint
Constraint CST QSYS_CUSTOMER_
TYPE v v v e e e e e e e e e e e TYPE *PRIMARY
Key « « v o v v o o oo oo o oo o .t KEY CUSNBR
Number of fields in key : 1
Key length: 5
Check Constraint
Constraint: CST CUSTOT_LIMITED
Type . . ¢« v 0 v i e e e e e e e e e TYPE *CHKCST
Check pending : NO
Constraint state: STATE ESTABLISHED
*ENABLED
Check constraint expression : CHKCST CUSTOT <= CUSCRD
F3=Exit F12=Cancel F19=Left F20=Right F24=More keys

Figure 4-6 Spooled file for the DSPFD command

You can also see constraints associated with the file by entering the WRKPFCST command. The

display shown in Figure 4-7 appears.

Work with Physical File Constraints
Type options, press Enter.
2=Change 4=Remove 6=Display records in check pending
Opt Constraint File Library Type State
QSYS_CUSTO > CUSTOMER ORDAPPLIB *PRIKEY
CUSTOT_LIM > CUSTOMER ORDAPPLIB *CHKCST EST/ENB
Parameters for options 2, 4, 6 or command
===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F15=Sort
Fl16=Repeat position to Fl7=Position to F22=Display constraint name

Figure 4-7 Result of the WRKPFCST command

Let’s look at some examples:

ALTER TABLE ORDAPPLIB/STOCK 1]
ADD CONSTRAINT PRODUCT_PRICE_MIN
CHECK(PRODUCT_PRICE >

Advanced Functions and Administration on DB2 Universal Database for iSeries

0 AND PRODUCT_AVAILABLE_QTY >= 0)

ALTER TABLE ORDAPPLIB/CUSTOMER 2
ADD CONSTRAINT CUSTOMER_TYPE
CHECK(CUSTYP IN ('O1', '02', '03, '04','05, '08', '10'))

ALTER TABLE ORDAPPLIB/EMPLOYEE 3]
ADD CONSTRAINT SALARY_RANGE
CHECK(EMPSAL BETWEEN 1000 AND 300000)

ALTER TABLE ORDAPPLIB/EMPLOYEE_TRANSAC 4
ADD CONSTRAINT HOURS_LABORED
CHECK(ORDINARY_HOURS + EXTRA_HOURS < 168)

Explanation:

This check constraint in the STOCK file checks that every price of a product has a price
greater than 0 and, at the same time, that the quantity available of a product is greater
than or equal to 0.

B This check constraint in the CUSTOMER file checks that each customer is associated
with one of the enumerated types.

This check constraint in the EMPLOYEE file checks that the salary of an employee is in
the range of $1,000 and $300,000.

Bl This check constraint in the EMPLOYEE_TRANSAC file checks that an employee
cannot work more than 168 hours in a week. Note the calculations involving two fields of
the same row.

4.4 General considerations

This section highlights some considerations that you must take into account when you define
CHECK constraints. Let's start with the condition clause of the check constraint.

The condition clause of a check constraint can contain any expression or functions allowed on
an SQL WHERE clause with the following exceptions:
» You cannot reference columns of a different table.

» You cannot reference rows of the same table, which means you cannot use the following
column functions:

- SUM

— AVERAGE
- MIN

- MAX

— COUNT

» Subqueries are not allowed.

» Host variables are not allowed.

» Parameter markers are not allowed.

» The following special registers cannot be used:

— CURRENT TIMEZONE
— CURRENT SERVER
- USER

The condition clause of a check constraint can reference more than one column of the same
record of the file.

Chapter 4. Check constraint 75

DB2 UDB for iSeries does not prevent conflicting constraints from being defined. Suppose
you just created the CUSTOMER file and then you define the following two CHECK
constraints before you enter the first record:

ALTER TABLE ORDAPPLIB/CUSTOMER
ADD CONSTRAINT IMPAIR_TYPE
CHECK(CUSTYP IN ('O1', '03', '05, '07','09'))

ALTER TABLE ORDAPPLIB/CUSTOMER
ADD CONSTRAINT PAIR_TYPE
CHECK(CUSTYP IN ('02', '04', '06, '08','10'))

In the preceding example, the two constraints that are defined prevent the insertion of any
record to the CUSTOMER file. If one check condition is valid, the other one is not valid.

Let's try to insert the following record into the CUSTOMER file:

INSERT INTO ORDAPPLIB/CUSTOMER
(CUSNBR, CUSTYP) VALUES('00001', '01')

The message shown in Figure 4-8 is displayed.

Additional Message Information

Message ID : SQLO545 Severity 30

Message type : Diagnostic

Message : INSERT or UPDATE not allowed by CHECK constraint.

Cause : The value being inserted or updated does not meet the
criteria of CHECK constraint PAIR_TYPE. The operation is not allowed.

Recovery . . . : Change the values being inserted or updated so that

CHECK constraint is met. Otherwise, drop the CHECK constraint PAIR_TYPE

Press Enter to continue.

F3=Exit F6=Print F9=Display message details
F10=Display messages in job Tog F12=Cancel F21=Select assistance leve

Figure 4-8 Additional message for SQL0545

If we change the CUSTYP value to “02”, the other constraint is violated.

Important: It is the developer’s responsibility to ensure that check constraints are not
mutually exclusive.

Other considerations of which you should be aware are:

» The constraint name has to be unique across all constraint types that exist in the file's
library.

» A table or file has a limit of 300 combined constraints (referential constraints, primary,
unique, and check constraints).

» Only single member files are supported.

76 Advanced Functions and Administration on DB2 Universal Database for iSeries

» When you add a check constraint, DB2 UDB for iSeries makes an exclusive lock on the
table for the verification of the condition clause.

Note: The verification for adding a check constraint to large files can take some time. In our
test environment, it took about 10 minutes to verify a 5 million row table on a 50S machine.

4.5 Check constraint integration into applications

Before check constraint support was implemented in DB2 UDB for iSeries, check constraint
validations had to be performed by the application program. Now you can let DB2 UDB for
iSeries ensure your data integrity both through the referential integrity and check constraint
definitions.

Using the check constraint definitions may improve your application's performance. The
domain checks are much more efficient and quicker when performed at the operating system
level rather than by an application code.

However, once a programmer has defined check constraints and referential constraints to the
DBMS, the existing integrity checks should be removed from the application program.
Otherwise, the application performance will degrade since the same checking is being
performed twice (at the application level and at the system level).

4.5.1 Check constraint /0 messages

The enforcement of the check constraint definitions is done when:

» Aninsert is being done to the table with check constraints.

» An update is being done to the table with check constraints.

» A delete is being done on a parent table that has a referential integrity constraint defined
with their dependent tables and a SET DEFAULT or SET NULL is specified.

A new message has been defined to handle the error occurring during a check constraint
enforcement. Instead of coding domain checks in the application programs, coding is needed
for handling check constraint error conditions. The text of the message is shown in Figure 4-9.

Chapter 4. Check constraint 77

Display Formatted Message Text

System: SY
Message ID : CPF502F
Message file : QCPFMSG
Library QSYS
Message : Check constraint violation on member CUSTOMER.
Cause : The operation being performed on member CUSTOMER

file CUSTOMER in library ORDAPPLIB failed. Constraint PAIR_TYPE
prevents record number 2 from being inserted or updated because the
field value conflicts with the check constraint.
If the record number is zero, then the error occurred on a
insert operation. The reason code is 0l1. The reason codes and their
meanings are as follows:
01 - Violation due to insert or update operation.
02 - Violation caused by a referential constraint.
Recovery . . . : Either specify a different file, change the file, or
change the program. Then try your request again.
Possible choices for replying to message:
C -- The request is canceled.

Press Enter to continue.

F3=Exit Fll=Display unformatted message text F12=Cancel

Figure 4-9 Detailed message for CPF502F

4.5.2 Check constraint application messages

To handle these messages in SQL procedures or in embedded SQL statements, new SQL
codes have been provided for this purpose. In Figure 4-10, you can see the new messages
added to the SQL run time.

Display Message Descriptions
System: SYS

Message file: QSQLMSG Library: QSYS

Position to Message ID

Type options, press Enter.

5=Display details 6=Print

Op Message ID Severity Message Text
SQL0543 30 Constraint &1 conflicts with SET NULL or SET Default
SQL0544 30 CHECK constraint &1 cannot be added.

5 SQLO0545 30 INSERT or UPDATE not allowed by CHECK constraint.

SQL0546 30 CHECK condition of constraint &1 not valid.
SQL0551 30 Not authorized to object &1 in &2 type *&3.
SQL0552 30 Not authorized to &l.
SQLO557 30 Privilege not valid for table or view &1 in &2
SQL0569 10 Not all requested privileges revoked from object
SQL0570 10 Not all requested privileges to object &1 in &2
SQL0573 30 Table &1 in &2 does not have a matching parent

F3=Exit F5=Refresh F12=Cancel

Figure 4-10 SQL messages for the check constraint

78 Advanced Functions and Administration on DB2 Universal Database for iSeries

The SQL message, SQL0545, is the most important for the application programmers. The
detailed description is shown in Figure 4-11.

Display Formatted Message Text
System: SYSTEM1

Message ID : SQLO545
Message file : QSQLMSG
Library QSYS
Message : INSERT or UPDATE not allowed by CHECK constraint.
Cause : The value being inserted or updated does not meet the
criteria of CHECK constraint &1. The operation is not allowed.
Recovery . . . : Change the values being inserted or updated so that

the CHECK constraint is met. Otherwise, drop the CHECK constraint &1.

Press Enter to continue.

F3=Exit Fll=Display unformatted message text F12=Cancel

Figure 4-11 Detailed message for SQL0545

SQL0545 has an SQLSTATE of “23513”, which is useful for a condition or handler
declarations in SQL procedures. Refer to Stored Procedures and Triggers on DB2 Universal
Database for iSeries, SG24-6503, for a detailed discussion on SQL procedures.

Now let's see how the errors are reported in ILE programs:

In ILE RPG, you can check the new status 1022, which handles the CPF502F message.
In ILE COBOL, the file status “9W” handles the check constraint violation.

ILE C maps these messages to the existing error codes.

OPM programs map these messages to the existing generic error codes.

vVvyyy

4.6 Check constraint management

This section discusses the management considerations of the check constraints. The
managing part of a check constraint is the same as a referential integrity constraint. The
commands to manage the constraints are exactly the same as for referential integrity. These
commands are:

» Change Physical File Constraint (CHGPFCST)

» Display Check Pending Constraint (DSPCPCST)
» Work with Physical File Constraint (WRKPFCST)
» Edit Check Pending Constraint (EDTCPCST)

» Remove Physical File Constraint (RMVPFCST)

For a complete description of these commands, refer to 3.8, “Referential integrity constraint
management” on page 52.

Chapter 4. Check constraint 79

4.6.1 Check constraint states

A check constraint is the same as a referential constraint in terms of its possible states. The
four states of a check constraint are:

Defined and enabled
Defined and disabled
Established and enabled
Established and disabled

vVvyyy

Each term is explained in the following list:

Defined The constraint definition has been added to the file, but not all the pieces of
the file are there for enforcement. For example, the file's member does not
exist.

Established The constraint definition has been added to the file, and all the pieces of the
file are there for enforcement.

Enabled The check constraint is enforced if the constraint is also established. If the
constraint is defined, the file member does not exist for enforcement.

Disabled The constraint definition is not enforced regardless of whether the constraint
is established or defined.

Use the WRKPFCST command to see the constraints defined for the CUSTOMER file.

Work with Physical File Constraints

Type options, press Enter.
2=Change 4=Remove 6=Display records in check pending

Check
Opt Constraint File Library Type State Pending
QSYS_CUSTO > CUSTOMER ORDAPPLIB *PRIKEY
CUSTOT_LIM > CUSTOMER ORDAPPLIB *CHKCST EST/ENB NO
CUSCRD_VS_ > CUSTOMER ORDAPPLIB *CHKCST EST/DSB YES

Parameters for options 2, 4, 6 or command

===>

F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel F15=Sort
Fl16=Repeat position to Fl7=Position to F22=Display constraint name

Figure 4-12 Physical file constraints

There are two check constraint definitions for this file. One is established and enabled, and
the other one is established and disabled. At the same time, the constraint that is disabled
has some records in a check pending condition. If you want to see the records that are
causing the check condition, type option 6 next to the constraint with the check pending
status.

Figure 4-13 shows the job log of the job in which the ADDPFCST command was executed
and caused the check pending condition.

80 Advanced Functions and Administration on DB2 Universal Database for iSeries

Display A1l Messages
System: RC
Job . . : QPADEV0004 User . . : HERNANDO Number . . . : 00

CHECK constraint CUSTOT_LIMIT_CUSCRD cannot be added.
3 > ADDPFCST FILE(ORDAPPLIB/CUSTOMER) TYPE(*CHKCST) CST(CUSCRD_VS_CUSTOT
ST('CUSCRD < CUSTOT')
Field values are not valid for check constraint. fl
Field values are not valid for check constraint.
Field values are not valid for check constraint.
Field values are not valid for check constraint.
Field values are not valid for check constraint.
Field values are not valid for check constraint.
Field values are not valid for check constraint.
Field values are not valid for check constraint.
Constraint is in check pending. B
Constraint was added. 3]
1 constraint(s) added to file CUSTOMER but constraint(s) in error.

Press Enter to continue.

F3=Exit F5=Refresh F12=Cancel F17=Top F18=Bottom

Figure 4-13 Check constraint messages

Notes:

The condition is checked for every single record in the file. In this case, there are several
records that do not meet the condition.

A Since there are records that violate the condition, a check pending status is set for the
constraint.

Since the native interface has been used, the constraint is added to the file.

4.6.2 Save and restore considerations

When a table is saved, all of its check constraints are saved. For restores, if the check
constraints are on the save media and the saved file does not exist, the check constraint is
added to the file. However, if the file exists in the system, any check constraint on the SAVE
media is ignored.

If you are restoring data and the data results in a check constraint violation, the data is
restored and the constraint goes into a check pending condition. The state of the constraint
stays the same.

When you run the CRTDUPOBJ command from a file with check constraints, the check
constraints are propagated from the original file to the new file. Both the constraint state and
the check pending status are replicated from the original to the destination file.

Chapter 4. Check constraint 81

4.7 Tips and techniques

We complete this chapter with some tips for those of you who are responsible for moving the
business rules to the database. This applies to both check constraints and referential integrity
constraints.

Start identifying and isolating the application code that is responsible for the referential
integrity and check constraint checks. These pieces of code that are duplicated in several
different programs should be rewritten in ILE procedures that can be bound and reused by
several application programs. These procedures can then be defined as trigger programs to
make the concerning checks.

At the same time, start to clean up your data. This can be done by queries that highlight
records that are violating the constraints, or you can natively define the constraints and use
the WRKPFCST command to see the records that are in check pending. At this step, carefully
schedule the time for these queries so you do not interrupt the normal operation of the
business.

Once your data is clean, it is time to enable all the constraints and remove the trigger
programs that are no longer needed.

Before you decide on your check constraint naming convention, consider this tip: It might
make it easier to turn system constraint errors into meaningful user feedback by defining your
constraint name to be the message number that you really want displayed to the end user.

When you define the check constraints, a question may arise: Is it better to have one large
check constraint or multiple check constraints? When there is more than one check constraint
for a file, the system implicitly ANDs the result of each constraint during the enforcement
phase. From the performance point of view, one large constraint performs slightly better than
multiple check constraints because the implicit AND processing is eliminated. On the other
hand, it is easier to manage and identify multiple but simpler check constraints. It is easier to
identify problems when the system detects violations of the constraint. It is up to the
application programmer or the DBA to decide which approach is better. Let's look at an
example:

ALTER TABLE ORDAPPLIB/STOCK
ADD CONSTRAINT PRODUCT_PRICE_MIN
CHECK (PRODUCT_PRICE > 0)

ALTER TABLE ORDAPPLIB/STOCK
ADD CONSTRAINT PRODUCT_AVAIL_MIN
CHECK (PRODUCT_AVAILABLE_QTY >= 0)

ALTER TABLE ORDAPPLIB/STOCK
ADD CONSTRAINT PRODUCT_MIN_STOCK
CHECK (PRODUCT_MIN_STOCK QTY >= 0)

These three check constraints can be combined in one constraint as shown in the following
example:

ALTER TABLE ORDAPPLIB/STOCK
ADD CONSTRAINT STOCK_CONSTRAINTS
CHECK(PRODUCT_PRICE > O AND PRODUCT_AVAILABLE QTY >= 0
AND PRODUCT MIN_STOCK QTY >= 0)

Note: Keep in mind that, if you have multiple check constraints that are violated on an insert
operation, only a single error message is returned. The system stops enforcement and
signals the error on the first check constraint violation it finds.

82 Advanced Functions and Administration on DB2 Universal Database for iSeries

DRDA and two-phase
commitment control

This chapter presents:

DRDA evolution from DRDA-1 to DRDA-2
DRDA-2 connection management
Two-phase commitment control

SQL support for DRDA-2

Coexistence between DRDA-1 and DRDA-2
Recovering from failures

Application design considerations

A DRDA-2 program example

DRDA over TCP/IP

DB2 Connect setup over TCP/IP

VYVYVYYVYVYVYYVYY

© Copyright IBM Corp. 1994, 1997, 2000, 2001

83

5.1 Introduction to DRDA

The Distributed Relational Database Architecture (DRDA) represents IBM'’s proposal in the
arena of distributed database access. This architecture defines the rules, the protocols, and
the semantics for writing programs implementing distributed data access. All the platforms
participating in this architecture must comply with these rules and definitions.

This chapter does not discuss, in detail, every component of DRDA. The purpose is to provide
you with a brief outlook on DRDA evolution and to describe the implementation of DRDA in
the DB2 UDB for iSeries environment.

5.1.1 DRDA architecture

Distributed Relational Database Architecture allows you to access data in a distributed
relational database environment by using SQL statements in your applications. The
architecture has been designed to allow distributed data access for systems in /ike and unlike
operating environments. This means that your applications can access data residing on
homogeneous or heterogeneous platforms.

DRDA is based on these IBM and non-IBM architectures:

SNA Logical Unit Type 6.2 (LU 6.2)

TCP/IP Socket Interface

Distributed Data Management (DDM) architecture
Formatted Data Object Content Architecture (FD:OCA)
Character Data Representation Architecture (CDRA)

vVvyyvyyvyy

On the iSeries server, DRDA is part of DB2 UDB for iSeries, which is part of the OS/400
operating system.

5.1.2 SQL as a common DRDA database access language

SQL has become the most common data access language for relational databases in the
industry. SQL was chosen as part of DRDA because of its high degree of standardization and
portability.

In a distributed environment, where you want to access data at remote locations, the SQL
requests are routed to the remote systems and they are executed remotely. Prior to sending
the remote SQL request, a DRDA application must establish a connection with the remote
relational database where the data is located. This is the purpose of the CONNECT SQL
statement provided by DRDA.

5.1.3 Application requester and application server

In a distributed relational database environment, the system running the application and
sending the SQL requests across the network is called an application requester (AR). Any
remote system that executes SQL requests coming from the application requester is also
known as an application server (AS). Some platforms can participate in a distributed
database environment as both an application requester and an application server. The
diagram in Figure 5-1 shows the current application requester and application server
capabilities of different database management systems.

84 Advanced Functions and Administration on DB2 Universal Database for iSeries

DB2 for MVS g DB2 for MVS

DB2 for VM i DB2 for VM
DB2 for iSeries DB2 for iSeries

DB2 UDB DB2 UBD
Non - IBM Non - IBM
AR (Local DB) AS (Remote DBs)

Figure 5-1 Current support for application requester (AR) and application server (AS)

Note: Currently, the DB2 Universal Database and DB2 Connect offer different levels of DRDA
implementation depending on the OS platform. The support level equivalent to that of 0S/400
is available for AlX, Windows NT, HP-UX, and OS/2. Consult the appropriate documentation
for the latest additions.

5.1.4 Unit of work

Unit of work (UoW), unit of recovery (UR), or logical transaction are different ways to refer to
the same concept. The DRDA terminology prefers the term unit of work. Unit of work refers to
a sequence of database requests that carry out a particular task, such as in a banking
application when you transfer money from your savings account to your checking account.
This task has its logical independence and should be treated “atomically”, which means that
either all its components are executed or none of them are. You do not want your savings
balance to be updated without your checking balance being updated too. A unit of work is
generally terminated by a commit operation if the entire task completes successfully. For
more information about UoW, refer to Distributed Database Programming, SC41-5702.

DRDA defines the following levels of service regarding UoW:

» Level 0, Remote Request (RR):

— One request within one UoW to one DBMS. Remember that DB2 UDB for iSeries
provides one DBMS. DB2 for OS/390 or DB2 Universal Database can provide multiple
DBMSs on the same system.

— Remote request was available before DRDA, thanks to DDM support.
» Level 1, Remote Unit of Work (RUW):
— One or more SQL requests within one UoW to a single DBMS.

— Switching to a different location is possible, but a new UoW must be started and the
previous one must be completed.

— Remote Unit of Work is supported by both the SNA and TCP/IP implementations of
DRDA.

» Level 2, Distributed Unit of Work (DUW):
— Many SQL requests within one UoW to several DBMS.
— Two-phase commit is required.
— A single request may reference objects residing on the same DBMS.

Chapter 5. DRDA and two-phase commitment control 85

— The Distributed Unit of Work is currently supported only by the SNA implementation of
DRDA.

» Level 3, Distributed Request (DR):

— In addition to the services provided by Distributed UoW, DR allows a single SQL
request to include references to multiple DBMSs, such as joining tables stored at
different locations.

— This is an architected level and will be available in the future.

The diagram in Figure 5-2 may be helpful in understanding the levels of DRDA.

Distributed
Request (DR) |

Distributed Unit Of Work (DUW) > |
Remote Unit Of Work (RUW), |

Remote Requestl (RR)
—>

future
V3R1

wrm<mr

NMNFmMm< mr

V2R1 .1

=rrm<mr

SQL Request | saL Request| | saL Request| SQL Request

Y '—I

Zurich | Rochester | | Seoul

Y

Figure 5-2 Architected service levels of DRDA

5.1.5 Openness

Many non-IBM relational database providers (for example, Informix, Oracle Sybase, XDB
Systems, and others) implement different levels of DRDA support in their products. DRDA
offers the ability to access and exchange data in /ike and unlike system environments,
therefore, contributing to the openness of IBM platforms in regard to interoperability.

5.2 Comparing DRDA-1 and DRDA-2

The difference between DRDA-1 and DRDA-2 from an application point of view is illustrated in
Figure 5-3. DRDA-2 introduces:

Two-phase commit protocol to keep multiple databases in synchronization
Synchronization Point Manager (SPM) to manage the two-phase commit
A new connection management

New SQL statements to manage multiple connections

vVvyyy

DRDA-1 cannot maintain multiple connections in one unit of work. To connect to a different
application server, the application must be in a connectable state, which is achieved by
ending the unit of work with a COMMIT or ROLLBACK statement.

86 Advanced Functions and Administration on DB2 Universal Database for iSeries

DRDA-2 can connect to multiple servers without losing the existing connections. A single unit
of work can span multiple servers. Keep in mind that a single SQL statement still cannot
address more than one server at a time. For example, it is still not possible to join two files
residing on different systems.

DRDA- 1 DRDA-2
Zurich Zurich
UOW 1
iSeries (e— Request 1 ———— | [Series

- Request 2 ——
or any other
"DRDA" system
Rochester Rochester
Uow 2
- Request 3 ——
iSeries |=— Request 4———— | {Series
-4——— Request 5——
Seoul Seoul
Uuow 3
iSeries | Request 6 —— iSeries
<4—— Request 7 -
. Application .
Application Application
Servers Requester Servers

Figure 5-3 Remote Unit of Work (DRDA-1) versus Distributed Unit of Work (DRDA-2)

Figure 5-3 shows three units of work. The arrows pointing to the left indicate the only possible
way to access data in a DRDA-1 application. The arrows pointing to the right show the new
flexibility of a DRDA-2 application accessing multiple systems in the same UoW. Let's
consider, for example, the Rochester system on the right-hand side. It issues three requests:
Request2, Request4, and Request6. Each of these requests belong to a different unit of work.
The Rochester system on the left-hand side also issues three requests (Request 3,

Request 4, and Request 5), each targeting a different application server within one UoW.

5.3 DRDA-2 connection management

Connection management refers to the set of mechanisms by which you can direct your
database requests in a distributed database network. DRDA-2 has enhanced connection
management, which allows an application program to keep alive the existing connections and
perform I/O operations on multiple relational databases within the same unit of work.
Currently, this architected level of DRDA is available only over SNA. It will also be available in

Chapter 5. DRDA and two-phase commitment control 87

future releases over the TCP/IP implementation of DRDA. There are also some changes to
the way the CONNECT statement behaves in DRDA-2 if you compare it with the DRDA-1
CONNECT behavior. In DRDA-1, the current connection is destroyed when a new CONNECT
statement is issued. In DRDA-2, another CONNECT statement does not destroy the existing
connections. A new one is created instead and becomes the current connection.

Also, if you issue a CONNECT statement toward an existing connection, you receive negative
SQLCODE if your programs use DRDA-2 connection management and the current
connection does not change. In a DRDA-1 program, this operation is legitimate and does not
return an error.

5.3.1 Connection management methods

As we previously indicated, DB2 UDB for iSeries allows you to use both the DRDA-1
connection management method and the DRDA-2 connection manager. When you create
your SQL program or module, you specify which connection method you want to use:

» DRDA-1 connection management is set on the CRTSQLxxx command by specifying
RDBCNNMTH(*RUW).

» DRDA-2 connection management is specified on the CRTSQLnnn command by specifying
RDBCNNMTH(*DUW), which is also the default for the creation commands.

Because the connection method changes the semantics of the CONNECT statement, you
must be aware of this parameter when you are recompiling existing applications, because
they can behave in a different way if compiled with the *DUW option. For more details, see
5.6, “DRDA-1 and DRDA-2 coexistence” on page 95.

DB2 UDB for iSeries also allows you to specify that an implicit connection must take place
when the program is started. This is the purpose of the RDB parameter on the precompiler
commands. This implicit CONNECT will be of the type specified in the RDBCNNMTH
parameter.

If an RDB name is specified, the connection to this remote database is established
automatically at program start time. Therefore, the first re-connection statement in the
program has to be SET CONNECTION. If CONNECT is initiated to this application server by
the program logic, the SQL0842 message (SQLCODE = -842 - “Connection to relational
database xxx already exists”) is sent to the application. Check for this SQLCODE explicitly
after every CONNECT statement. In general, this SQLCODE can be ignored by the
application. Remember that a CONNECT statement followed by SQLCODE = -842 does not
change the current connection.

5.3.2 Connection states

DRDA-2 introduces new connection states. A connection may be either held or released and
current or dormant. For clarification, see Figure 5-4.

88 Advanced Functions and Administration on DB2 Universal Database for iSeries

Current

W\
OO(\/'

€
£ Release X Current
o |
(@) Released
> > oS
X |[>|€& c < [}
ko] c o g g > c %
3 S|2/3 g el o
T ©o |0 c c |—=| © []]
0|9 |c c |9 @ (e
S|E|Q Q |&| €
5|8 |© O |c| §
AR 5 3] O
3| y° @ @
N o
-E Dormant Release X Dormant
£ Held 7 _ Released
o
(@]
Dormant

Figure 5-4 Connection states

Figure 5-4 shows a general picture of the architecture. The application goes into an
UNCONNECTED state when the current connection is destroyed. The application ends in an
unconnected state if all the connections are released and a commit is performed. The
CONNECT and RELEASE statements allow the application to change a connection state
from held to released:

» Released state: Means that a disconnect will occur at the next successful commit
operation (a rollback has no affect on connections). Therefore, a released state can be
thought of as a pending disconnect.

» Held state: Means that a connection will not be lost at the next commit operation. A
connection in the released state cannot be put back into a held state. This means that a
connection may remain in a released state across unit of work boundaries if a ROLLBACK
is issued.

Regardless of whether a connection is in a held or released state, a connection can also be in
a current or dormant state:

» Current state: Means that the connection is the one used for SQL statements that are
executed.

» Dormant state: Means that the connection is suspended. While in this state, no SQL
statements can use this connection. Nevertheless, SQL statements can always be
executed against the current connection.

If you want a dormant connection to become the current connection, use the SET
CONNECTION SQL statement. The existing current connection will become dormant. In fact,
there can be only one connection in the current state at a time. All other connections are in a
dormant state. You cannot use the CONNECT statement to make a dormant connection
current in a DB2 UDB for iSeries application. The semantic of the CONNECT statement is
different in DB2 UDB for iSeries and DB2 for OS/390, where a CONNECT to an existing
connection equates to a SET CONNECTION statement.

Chapter 5. DRDA and two-phase commitment control 89

When a connection goes to the dormant state, all the open cursors, locks, and prepared
statements are preserved. When this connection becomes current again in the same unit of
work, all locks, cursors, and prepared statements are restored to their previous values.

In a network where systems at different levels coexist, you may have connections to DRDA-2
servers and to DRDA-1 servers at the same time. Connection to DRDA-1 servers must be
dropped by using the DISCONNECT statement.

Once disconnected, an application must connect to the database again before it can direct
SQL statements to it.

5.4 Two-phase commitment control

Synchronizing multiple databases requires additional effort compared to the process of
keeping data consistent on a single system. Because multiple physical locations are involved,
the synchronization process is split into two phases to ensure data consistency across
multiple locations. The database managers involved in the distributed unit of work must make
sure that either all of them commit their changes or roll all the changes back consistently.

The protocol by which multiple database managers can keep their data in sync is called
two-phase commitment control.

In an application using two-phase commit, the COMMIT statement generates a rather
complex sequence of operations that allows the various agents in the network to keep their
data in a consistent state. Also, a two-phase commit protects your applications against
network or system failures that may occur during the transaction. In these cases, the
database managers involved in the unit of work automatically roll back their changes.

As mentioned already, current DRDA-2 implementation is based on LU 6.2 architecture.
When an LU 6.2 conversation supports a two-phase commitment control data flow, we say
that it is a protected conversation. Some new verbs have been added to the APPC protocol to
support protected conversations. You have direct access to this support on the iSeries server
by using ICF files or CPI-C functions in your applications.

Any LU 6.2 conversation not capable of a two-phase commitment control flow is called
unprotected conversation. DRDA-1 supports only unprotected conversations.

5.4.1 Synchronization Point Manager (SPM)

To control the two-phase commit flow, DB2 UDB for iSeries implements a component called
Synchronization Point Manager. The SPM also controls rollback among the various protected
resources. Either all changes are committed or they are rolled back.

With distributed updates, sync point managers on different systems cooperate to ensure that
resources reach a consistent state. The example in Figure 5-5 shows the type of information
that flows between the application requesters and application servers to commit work on
protected conversations.

90 Advanced Functions and Administration on DB2 Universal Database for iSeries

Requestor SPM SPM Server

> Sync Point

|

Prepare

3 Take Sync Point
Phase 1 —_—

Sync point

Request Commit
-

Committed

Phase 2 Forget
-1 oK

> - OK

Figure 5-5 Technical view of two-phase commit flow

Each application requester and each application server have a sync point manager attached.
DBMS participating in a Distributed Unit of Work has to cooperate to ensure the
synchronization. Phase one consists of this process:

1. The application requester issues a COMMIT. All participating application servers and the
application requester must be synchronized. The requester must wait now until it receives
the OK from its SPM.

2. The SPM of the application requester sends a prepare for commit request to the SPMs of
the servers.

3. All the SPMs at the server systems initiate the process of logging all the database
changes and reaching the sync point.

4. The servers send a completion message to their SPMs.
5. The SPM requests a commit from the application servers SPM.

For phase two, proceed with the following actions:

1. Once the SPMs have received the responses and logged them, they return a committed
message.

2. The server SPMs send Forget to the application requester SPM and OK to their
application servers. Everything has been synchronized now.

3. The application requester receives the OK from its SPM and can continue.

Figure 5-6 shows the application view of the two-phase commit flow.

Chapter 5. DRDA and two-phase commitment control 91

Coordinator

Application
requests CC
Database .C.O.MMIT Database
#1 : #2
Coordinator
i starts CC:)
Prepare Commit Prepare Commit
Phase 1: —— P> Phase 1:
Journal Journal
—® disk, | Readyforcc Ready for CC B disk,
participants
OK: "End of
phase 1"
= Journal
Phase‘ 2 Execute Commit Execute Commit Phase 2:
Commit —= i al Commit —
Journal a. . Journal
release parFl(jlpantS release
locks OK: "End of locks
) phase 2"
_Commitdone = g Journal Commit done
-
(Committment
Boundary)
Application
continues

Figure 5-6 Application view of two-phase commit flow

Note: The more database management systems (DBMS) that are involved in one Distributed
Unit of Work, the more messages have to flow. This requires more resources and causes

additional communication line traffic.

5.5 DB2 UDB for iSeries SQL support for connection
management

92

With DRDA-2, some SQL connection statements were added or have changed. They are
listed here in alphabetical order. For more details, refer to Distributed Database

Programming, SC41-5702.

CONNECT (Type 1)

The CONNECT (Type 1) statement connects an activation group within an application
process to the identified application server, using the rules for the Remote Unit of Work. The
term activation group refers to a substructure of a job that contains the resources necessary
to run programs. For more details on activation groups, see ILE Concepts, SC41-5606.

Advanced Functions and Administration on DB2 Universal Database for iSeries

If your application runs multiple activation groups, each connection is private to the activation
group that issued it. The connection terminates if the activation group ends. This termination
occurs whether the application is using the DRDA-1 or DRDA-2 connection methods.

A program compiled with the RDBCNNMTH parameter of the CRTSQLpgm command set to
*RUW runs with the CONNECT Type 1 connection method.

Consecutive CONNECT statements can be executed successfully because CONNECT does
not remove the activation group from the connectable state. A connect to the application
server to which the activation group is currently connected is executed similar to any other
CONNECT statement. CONNECT cannot execute successfully when it is preceded by any
SQL statement other than CONNECT, COMMIT, or ROLLBACK. To avoid an error, execute a
COMMIT or ROLLBACK operation before the CONNECT.

CONNECT (Type 2)

The CONNECT (Type 2) statement connects an activation group within an application
process to the identified application server using the rules for the Distributed Unit of Work.
This server is then the current server for the process.

A program runs with this connection management method if it is compiled with the
RDBCNNMTH parameter of the CRTSQLpgm command set to *“DUW.

Note: CONNECT (Type 2) cannot be issued a second time to the same server as long as
the connection is still alive. Use SET CONNECTION to activate another server.

DISCONNECT

The DISCONNECT statement destroys one or more connections for unprotected connections
(connections without two-phase commit). See 5.4, “Two-phase commitment control” on
page 90.

You cannot issue a DISCONNECT statement toward a protected conversation or toward any
connection that sent SQL statements during the current unit of work.

RELEASE

The RELEASE statement places one or more connections in the released state. This
statement is allowed only for protected conversations.

If the statement is successful, each identified connection is placed in the released state and
is, therefore, destroyed during the execution of the next COMMIT operation. Keep in mind that
a ROLLBACK will not end the connection.

Note: Creating and maintaining active connections requires some effort on behalf of the
systems involved in the database network. This is why your applications should drop active
connections if they are not going to be reused.

If the current connection is in the released state when a commit operation is executed,
destroying that connection places the activation group in the unconnected state. In this case,
the next SQL statement to this application server must be CONNECT. If SET CONNECTION
is used to this application server, an error (SQL0843, “Connection to relational database xxx
does not exist.”) is encountered. SET CONNECTION is only possible to an application server
other than the previously released one.

Chapter 5. DRDA and two-phase commitment control 93

SET CONNECTION

SET CONNECTION activates an already connected server so that all SQL statements, from
now on, are directed to this server until another SET CONNECTION is issued, a CONNECT
to a new server is executed, or the connection is ended. The SET CONNECTION statement
brings the state of the connection from dormant to current.

After the activation group is reconnected to the server, it finds that its environment is in the
same status as when it left this connection. The connection reflects its last use by the
activation group with regard to the status of locks, cursors, and prepared statements.

5.5.1 Example of an application flow using DRDA-2

In Figure 5-7, you can find a high-level description of a DRDA-2 application flow. Notice that
the environment includes the coexistence of both the DRDA-2 and DRDA-1 systems.

ZURICH

CONNECT TO SEOUL DRDA-1
SELECT _ _ _ _

iSeries
CONNECT TO ROCHESTER
ENTER_

ROCHESTER

SET CONNECTION SEOUL

DRDA-2

UPDATE_ _ _ _

CONNECT TO ZURICH |Ser|eS

SELECT__ _ _ —l

RELEASE SEOUL

SEOUL
SET CONNECTION ROCHESTER (AR) DRDA-2
DELETE These iSeries servers could also be
any other "DRDA" platform ISe rl eS
COMMIT
DISCONNECT ZURICH

Figure 5-7 Application flow example using the new connection management

The systems located in Rochester and Seoul support DRDA-2, where the system in Zurich is
running at DRDA-1. The AR in Rochester connects to Seoul, does some work, connects back
to the local database without COMMIT, and reconnects to Seoul through the new SET
CONNECTION statement. Then Rochester connects to Zurich, Seoul is released, and
Rochester reconnects to the local database. Before we finish our unit of work, we release and
disconnect Zurich. After finishing the unit of work, no more remote connections are active
because we released Seoul and disconnected Zurich. Finally, we are connected to our local
database, Rochester.

94 Advanced Functions and Administration on DB2 Universal Database for iSeries

5.6 DRDA-1 and DRDA-2 coexistence

As Figure 5-7 shows, DRDA-2 and DRDA-1 systems can coexist in the same network, and a
DRDA-2 application can access both types of application servers during its execution. Since
DRDA-1 application servers do not support a protected conversation, some limitations may
apply as to which systems can be accessed in update mode. An application requester
determines, at the initial connect time, whether a DRDA-1 application server can be updated.
A DRDA-2 application requester connection to a DRDA-1 application server can be used to
perform updates when:

» The program was compiled with an isolation level other than *"NONE.
» There are no other connections or they all are DRDA-1 read-only connections.

Note: COMMIT(*NONE) on DB2 UDB for iSeries means that no transaction isolation is done
and no logs are written. It can only be used in a DB2 UDB for iSeries-like environment.

At connect time, the DB2 UDB for iSeries application requester chooses whether a sync point
manager is used and, thus, whether the application server can be updated. Depending on
this decision, different DRDA and commitment control protocols are used. Table 5-1 shows
how the different flows can be mixed together.

Table 5-1 Mixing DRDA levels

Application server requesters Application servers

DRDA-1 DRDA-2 1PC DRDA-2 2PC
DRDA-1 DRDA-1 DRDA-1 DRDA-1
DRDA-2 1PC DRDA-1 DRDA-2 1PC DRDA-2 1PC
DRDA-2 2PC DRDA-1 DRDA-2 1PC DRDA-2 2PC
Notes:
1PC = Single phase commit
2PC = Two-phase commit

Table 5-1 indicates:
» Application requester is at DRDA-1:

All application servers use the DRDA-1 flow. This implies a single-phase commit and
unprotected conversations.

» Application requester is at DRDA-2 supporting a single-phase commit (1PC):

When the application server is at DRDA-1, DRDA-1 protocol is used. All others use a
DRDA-2 flow with single-phase commit.

» Application requester is at DRDA-2 with a two-phase commit:

When the application server is at DRDA-1, DRDA-1 flows are used. When the application
server is at DRDA-2 with single-phase commit capability, DRDA-2 single-phase commit
flow is used. When the application server is at DRDA-2 with two-phase commit capability,
DRDA-2 two-phase commit flow is used.

In a heterogeneous environment, the protocol used depends on the application requester
according to Table 5-1.

Chapter 5. DRDA and two-phase commitment control 95

5.7 Recovery from failure

As we mentioned earlier, in most cases the recovery is totally automatic. When the systems
detect a failure, the current transaction is automatically rolled back on all the systems. Still,
there is a narrow window in the two-phase commit cycle where a network failure or a system
failure may leave the transaction in a pending state because the application requester cannot
determine which action to take. This window is located right before the last step of the
two-phase commit process, when the application server may already have committed a
transaction, but for some reason cannot send the final acknowledgment. When the
transaction hangs, all the locks are preserved and the application receives an 1/O error.

This section describes how the system or the users can recover after a network or a system
failure in a two-phase commit environment.

5.7.1 General considerations

To control the synchronization over multiple systems, DB2 UDB for iSeries uses a Logical
Unit of Work ID. This identifier is the same on all systems involved, whether they are
application requesters or application servers with like or unlike platforms.

On DB2 UDB for iSeries, the unit of work ID looks similar to the following example:
APPNET.ROCHESTER.X'F2DEB3D611CA"'.00001

Note: This ID is composed of four parts, where:

APPNET is the APPN Net-ID

ROCHESTER is the application requester system name
X'F2DE.... is related to the job, running a protected conversation
000... relates to the program call within the job

vVvyyy

On the iSeries server, this identifier should actually be called activation group ID because the
number remains the same over the life of an activation group. The program or activation
group can start a large number of units of work.

Ending the program and calling it again changes the last part of the identification number,
which then looks similar to this example:

APPNET.ROCHESTER.X'F2DEB3D611CA"'.00003
If you start a new job on the iSeries server and run the same application, the identifier will
change its third component:

APPNET.ROCHESTER.X'F2E1B36111CB'.00001

Note: A new job changes the last two parts of the identification number.

5.7.2 Automatic recovery

DB2 UDB for iSeries with DRDA-2 and two-phase commitment control provides a
comprehensive recovery mechanism after system, network, or job failures.

Automatic recovery was tested with programs from the Order Entry Application example
described in Chapter 2, “Using the advanced functions: An Order Entry application” on

page 11, particularly with the Insert Order Detail program documented in Appendix A, “Order
Entry application: Detailed flow” on page 329. This program (INSDET) calls a stored

96 Advanced Functions and Administration on DB2 Universal Database for iSeries

procedure (STORID) on a remote iSeries server. The stored procedure updates a STOCK
table on the remote system. Then, the calling program inserts an order detail record in a
ORDERDTL table on the local system. After doing this, the Distributed Unit of Work (DUW) is
completed.

Note: ROCHESTER is the local system (AR). ZURICH is the remote system (AS).

In this test scenario, the stored procedure program on the remote system was abruptly
terminated, cancelling the job before the database changes on both systems were committed.

In this case, the remote system (application server) rolled back the one database change
automatically and provided information in the job log. At the application requester, information
provided in the program ended, but not before rolling back the local database change, which
was a record insert. The rollback operation is needed since the calling program received SQL
error return code -918, which corresponds to message SQL0918. The details are shown in

Figure 5-8.
Display Formatted Message Text
System: ROCHESTER
Message ID : SQL0918
Message file : QSQLMSG
Library QSYS
Message : ROLLBACK is required.
Cause : The activation group requires a ROLLBACK to be performed
prior to running any other SQL statements.
Recovery . . . : Issue a ROLLBACK CL command or an SQL ROLLBACK statement
and then continue.

Figure 5-8 Message SQL0918

The job log of the remote system (ZURICH) reported the following information:

CPI9152 Information Target DDM job started by source system.
CPI3EO1 Information Local relational database accessed by ROCHESTER.
CPC1125 Completion Job ../ITSCIDO6/ROCHESTER was ended by user ITSCIDO3.
CPD83DD Diagnostic Conversation terminated; reason 02.

02 -- The conversation was issued a Deallocate Type

(Abend) to force the remote location to roll back.

CPF4059 Diagnostic System abnormally ended the transaction with device ROCHESTER.
CPI8369 Information 1 pending changes rolled back; reason 01.

01 -- The commitment definition is in a state of Reset.
CPF83E4 Diagnostic Commitment control ended with resources not committed.

5.7.3 Manual recovery

The Work with Commitment Definition (WRKCMTDFN) command allows users to manage
commitment definitions for any job on the system. This command becomes particularly useful
when a system or line failure causes transactions to hang while waiting for synchronization.

A commitment definition reports information about a job commitment control status after
commitment control has been started with either the Start Commitment Control
(STRCMTCTL) command or by a program containing embedded SQL commitment
statements.

Chapter 5. DRDA and two-phase commitment control 97

Using Work with Commitment Definitions

This command provides detailed information about the commitment control status of an
activation group. The main display may look similar to the example in Figure 5-9, where only
one active commitment definition is shown.

Work with Commitment Definitions
System: ROCHESTER
Type options, press Enter.
5=Display status 12=Work with job 14=Forced commit
16=Forced rollback ...

Commitment Resync In
Opt Definition Job User Number Progress
5 *DFTACTGRP P23KXC48E ITSCIDO6 004590 NO

Bottom
3=Exit F5=Refresh F9=Command line F11=Display logical unit of work
12=Cancel F16=Sort by Togical unit of work ID F24=More keys

Figure 5-9 Work with Commitment Definition command display

If more activation groups are involved, more commitment definitions are listed. When you
choose option 5 (Display status), three more displays with further details of the commitment
definition shown in Figure 5-10 through Figure 5-12 appear.

Display Commitment Definition Status ROCHESTER
05/25/01 23:03:42

Job: P23KXC48E User: ITSCIDO6 Number: 004590
Commitment definition : *DFTACTGRP
Activation group 2
Logical Unit of Work ID : APPNET.ROCHESTER.X'F32D995711EE'.00003
Job active VYES
Server job0
Resource location : REMOTE
Default lock level : *CHG
Role
State+ RESET

Date/time stamp :
Resync in progress : NO
Number of commits : 2
Number of rollbacks : 0

More. ..

Press Enter to continue.
F3=Exit F5=Refresh F6=Display resource status F9=Command Tine
F12=Cancel

Figure 5-10 Display Commitment Definition Status (Part 1 of 3)

98 Advanced Functions and Administration on DB2 Universal Database for iSeries

Display Commitment Definition Status ROCHESTER
05/25/01 23:03:42

Job: P23KXC48E User: ITSCIDO6 Number: 004590
Commitment definition : *DFTACTGRP
Activation group 2

Heuristic operation :
Default journal :

Library L
Notify object : *NONE
Library L
Object type
Member L. L
More. ..
F3=Exit F5=Refresh F6=Display resource status F9=Command Tine
F12=Cancel
Figure 5-11 Display Commitment Definition Status (Part 2 of 3)
Display Commitment Definition Status ROCHESTER
05/25/01 23:03:42
Job: P23KXC48E User: ITSCIDO6 Number: 004590
Commitment definition : *DFTACTGRP
Activation group 2
Commitment options:
Wait for outcome : WAIT
Action if problems : ROLLBACK
Vote read-only permitted . . . : NO
Action if End WAIT
Bottom

F3=Exit F5=Refresh F6=Display resource status F9=Command Tine
F12=Cancel

Figure 5-12 Display Commitment Definition Status (Part 3 of 3)
Press F6 to look more into the details of a commitment definition. A window is displayed

about the status of the single resources that are protected by commitment control
(Figure 5-13).

Chapter 5. DRDA and two-phase commitment control

99

Display Commitment Definition Status ROCHESTER
05/25/01 23:03:42

Job: P23KXC48E User: ITSCIDO6 Number: 004590
Commitment definition : *DFTACTGRP
Activation group 2

Display Resource Status

Type option, press Enter.

1=Select
Opt Resource
1 Record Tevel

Object level
Conversation
Remote file
Remote RDB
API

Bottom :
F5=Refresh F12=Cancel :

Figure 5-13 Display Resource Status display

When you select option 1 (Record level), the system displays the local files whose records are
involved in the commitment definition (Figure 5-14).

Display Record Level Status
System: ROCHESTER

Job: P23KXC48E User: ITSCIDO6 Number: 004590
Commitment definition : *DFTACTGRP

------------- Changes--------------
File Library Member Commit RolTback Pending
ORDERDTL ORDENTL ORDERDTL 0 0 1

Bottom
Press Enter to continue.

F3=Exit F5=Refresh F6=Display resource status F9=Command Tine
F11=Display status F12=Cancel F16=Job menu

Figure 5-14 Display Record Level Status display

Press F11 (Display status) to view more details. In addition to the number of database
changes committed, rolled back, or still pending, the display shows the lock level, the status,
the journal, and commit cycle identifier for the file.

100 Advanced Functions and Administration on DB2 Universal Database for iSeries

Showing an example of manual recovery is not an easy task, since there is really little chance
that the transaction will be interrupted when it is in an undecided state. The two-phase
commitment control critical window is very narrow.

In these rare situations, the WRKCMTDFN command provides a way to complete the
transaction and release all the locks. It is up to the user to determine whether to use a commit
or a rollback and force the transaction boundary by using either of the following methods on
the display shown in Figure 5-9 on page 98:

» Option 14 (Forced commit)
» Option 16 (Forced rollback)

The manual recovery process may violate the alignment of the various databases in the
network. Avoid this procedure if the automatic resynchronization is still possible by restoring
the communication among the systems. Force the end of the transaction if the environment
where the transaction was running before the failure cannot be restored, such as in the case
of data loss or other serious system or network outages.

5.8 Application design considerations

This section describes how application developers should design their programs to fully
exploit the flexibility provided by DRDA-2 in a distributed environment.

5.8.1 Moving from DRDA-1 to DRDA-2

The essential advantage of the Distributed Unit of Work (DRDA-2) over Remote Unit of Work
(DRDA-1) is represented by the ability to access different locations within the same
transaction, allowing much more flexibility to database and application design.

The flexibility offered by DRDA-2 introduces more complexity in regard to handling the
connections within your applications. Multiple connections may be active at the same time,
and you may need to determine whether your application is already connected to a specific
location. To obtain this information, check the SQLCODE after issuing a CONNECT
statement directed to that particular location. If you receive SQLCODE = -842, this means
that the connection is already active and that you may need to perform a SET CONNECTION
to establish that location as the current connection. If you receive SQLCODE = 0, the
connection has just been activated and becomes the current connection.

Performance in a DRDA-2 environment

The higher the number is of the connections concurrently active, the higher the impact is on
the application and system performance. Design your applications by trying to find the right
balance between keeping your connections active, so that you do not need to restart them
when you need them, and releasing the idle connections to reduce the system overhead.

The behavior of the initial connection depends on the programming model used by your

application:

» OPM programs:
In a DRDA-1 program, each initial call of a program implicitly connects to the database
specified in the RDB parameter of the CRTSQLxxx command. When the program
terminates its execution, the connection is destroyed. If the same program is called several

times within a job, the implicit connection is established each time. In a DRDA-1 program,
you can count on this behavior and avoid coding the initial connection.

Chapter 5. DRDA and two-phase commitment control 101

» ILE programs:

If ILE programs are created using the default parameters, the initial connection to the
location specified in the RDB parameter will occur once in the life of an activation group.
The connection will last as long as the activation group exists. In general, this behavior
depends on the value of the CLOSQLCSR parameter, which defaults to *ENDACTGRRP. If
your program runs in the default activation group or in a named activation group, you may
need to check for existing connections.

5.9 DRDA-2 program examples

This section gives three examples of programs using DRDA-2 connection management and
two-phase commitment control. The programs are taken from the Order Entry scenario.

5.9.1 Order Entry main program

The main program of our application only has the purpose of establishing the connections to
the local and remote databases and of calling the various subprograms. The design choice of
establishing all the necessary connections at the beginning allows the developers of the
subprograms to rely on the existing connections. In the subprograms, there are only SET
CONNECTION statements.

The following code listing shows a COBOL version of the main program:

IDENTIFICATION DIVISION.
PROGRAM-ID. T4249MAIN.

This is the main program of the order entry application.
The program establishes all the connections, so that the
various sub-programs will need to issue only SET CONNECTION
statements. At the end of the cycle, this program will
release all the connections and commit all the changes.

EE N T

ENVIRONMENT DIVISION.

*

DATA DIVISION.

*

WORKING-STORAGE SECTION.

The error flag parameter is used by the various sub-programs
to communicate a failure.

No Errors: ERRFLG = 0

Failure : ERRFLG =1

EE T

01 ERR-FLG PIC X(1).

01 TOTAMT PIC S9(11) PACKED-DECIMAL.

01 CUSNBR PIC X(5).

01 ORDNBR PIC X(5).

*
EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.

*
EXEC SQL CONNECT TO RCHASMOZ
END-EXEC.

*

* Establish connections and check for successfull connect
*

IF SQLCODE NOT = O AND SQLCODE NOT = -842 THEN

102 Advanced Functions and Administration on DB2 Universal Database for iSeries

DISPLAY "Error connecting to RCHASMO2"
END-IF.
EXEC SQL CONNECT TO RCHASMO3
END-EXEC
IF SQLCODE NOT = O AND SQLCODE NOT = -842 THEN
DISPLAY "Error connecting to RCHASMO3"
END-IF.
* Calling the restart procedure, that checks for
* incomplete orders and deletes them.
CALL "T4249RSTR" USING ERR-FLG.
IF ERR-FLG = O THEN
* Calling the insert order header program
CALL "T4249CINS" USING CUSNBR, ORDNBR, ERR-FLG
IF ERR-FLG = O THEN
* Calling the insert detail rows program
CALL "T4249RIDT" USING CUSNBR, ORDNBR, ERR-FLG
IF ERR-FLG = O THEN
* Calling the finalize order program
CALL "T4249FNLO" USING CUSNBR,

ORDNBR,
TOTAMT,
ERR-FLG

IF ERR-FLG = O THEN

STOP RUN
END-IF
END-IF
END-IF
END-IF.

* In case of errors, perform a ROLLBACK
EXEC SQL ROLLBACK
END-EXEC.
STOP RUN.

5.9.2 Deleting an order

This program may be invoked either at the beginning of the application execution (if some
incomplete orders are found for the user) or at the end of it (if the user requests a cancellation
of the order). The program scans the order detail rows and, for each item, it updates the
quantity in the stock file at the remote site. At the end, the program deletes the order header.
This operation causes all of the detail rows to go away as well because of the CASCADE rule
that we implemented. If no errors are encountered in the process, the program commits the
entire transaction.

The following code listing shows a COBOL implementation of this procedure:

IDENTIFICATION DIVISION.
PROGRAM-ID. T4249CORD.

This program scans all the details referring to the input
order number; it updates the available quantity of each
detail in the remote STOCK file.

* %k X X %

ENVIRONMENT DIVISION.

*

DATA DIVISION.

*

WORKING-STORAGE SECTION.

*

01 H-ORDQTY PIC S9(5) PACKED-DECIMAL.
01 H-PRDQTA PIC S9(5) PACKED-DECIMAL.

Chapter 5. DRDA and two-phase commitment control 103

01 H-PRDNBR PIC X(5).
01 H-ORHNBR PIC X(5).

*

EXEC SQL INCLUDE SQLCA END-EXEC.

EXEC SQL DECLARE DETAIL CURSOR FOR
SELECT PRDNBR
,ORDQTY
FROM ORDENTL/ORDERDTL
WHERE ORHNBR = :h-ORHNBR
END-EXEC.

*

LINKAGE SECTION.
*
01 WK-ORHNBR PIC X(5).
01 ERR-FLG PIC X(1).
*
PROCEDURE DIVISION USING WK-ORHNBR
ERR-FLG.

MOVE WK-ORHNBR TO H-ORHNBR.
MOVE "0" TO ERR-FLG.

EXEC SQL SET CONNECTION RCHASMO3 END-EXEC.

IF SQLCODE = O THEN
EXEC SQL OPEN DETAIL END-EXEC
ELSE
MOVE "1" TO ERR-FLG
END-IF.

*

Read each detail's ordered quantity and update STOCK
PERFORM UNTIL SQLCODE NOT = 0 OR ERR-FLG NOT = 0
EXEC SQL FETCH DETAIL INTO :h-PRDNBR
, :h-0RDQTY
END-EXEC
IF SQLCODE = 0 THEN
EXEC SQL SET CONNECTION RCHASM02 END-EXEC
IF SQLCODE = 0 THEN
EXEC SQL UPDATE ORDENTR/STOCK
SET PRDQTA = PRDQTA + :h-ORDQTY
WHERE PRDNBR = :h-PRDNBR
END-EXEC
IF SQLCODE NOT = O THEN
MOVE "1" TO ERR-FLG
END-IF
ELSE
MOVE "1" TO ERR-FLG
END-IF
EXEC SQL SET CONNECTION RCHASMO03 END-EXEC

IF SQLCODE NOT = O THEN

104 Advanced Functions and Administration on DB2 Universal Database for iSeries

MOVE "1" TO ERR-FLG
END-IF

END-IF
END-PERFORM.

IF SQLCODE < O AND ERR-FLG = 0 THEN
MOVE "1" TO ERR-FLG
END-IF.

IF ERR-FLG = O THEN
EXEC SQL DELETE FROM ORDENTL/ORDERHDR
WHERE ORHNBR = :h-ORHNBR
END-EXEC

IF SQLCODE NOT = O THEN
MOVE "1" TO ERR-FLG
END-IF
END-IF.

IF ERR-FLG = "0" THEN

EXEC SQL COMMIT END-EXEC
ELSE

EXEC SQL ROLLBACK END-EXEC
END-IF.

GOBACK.

5.9.3 Inserting the detail rows

The following example is an excerpt of the Insert Detail program. This fragment of code
shows only the statements that are relevant to a DRDA-2 connection and two-phase
commitment control. The full implementation of this program (INSDET) can be found in

Stored Procedures and Triggers on DB2 Universal Database for iSeries, SG24-6503, since

this program activates a remote stored procedure.

This program inserts the detail order item in the ORDERDTL file at the local database and
updates the quantity in the inventory by calling a remote stored procedure, which accesses
the STOCK file at the remote system:

This program excerpt (from program INSDET)

shows the vital statements for
-- DRDA-2 connection management and
-- two-phase commitment control ...

ROCHESTER is local database system
ZURICH 1is remote database system

EE R T R R R S

*

* % *

The following Two-Phase Commit for Tocal and remote system
is only executed, if the conditions are met ...

The first COMMIT after one DUW therefore is done only after
the ordered quantity has been deducted from STOCK file on
the remote system and the first order record has been

Chapter 5. DRDA and two-phase commitment control

*

* % *

105

106

* inserted correctly in the ORDERDTL file on the local system.*
* Every item record for an order is committed, because *
* of releasing the record Tock on STOCK file. *
* Note: SQL COMMIT in the program starts commitment control *
* for the activation group automatically: *

B R R R R R R R R R R R R R R T R R R R R R T R R

*

C/EXEC SQL
C+ COMMIT
C/END-EXEC

B R S R R

-- Connection to the REMOTE database: --

At start of the program DRDA connection mgmt. establishes
connection automatically to the remote sys. as according to
the relational database specified in the compil. parameter
in command CRTSQLxxx RDB(....). Therefore this program

is connected to remote database ZURICH already.

For further remote re-connections SET CONNECTION is used:
ER R R R R S R R R R R R R R R R R R R R S R R R S R R R R R R R R R R R R R R R R R R

* % X %k X X %
* % X X X X *

C/EXEC SQL
C+ SET CONNECTION ZURICH After 1.connect
C/END-EXEC remote

R T R R R R

* The CALL of the stored procedure (at the remote system) *
* is prepared and executed. *
* It updates the STOCK file, and searches for alternatives, *
* if necessary. *

R o R

Code for stored procedure, see chapter "Stored Procedures".

kkkhkkhkhkhkhhhkhhkkhhkhkhkhkhhhhhhkkhhkhkhkkhkhhkhhhhhkkhkkhkhhkhhhkhhkkhkkhkhkhkhkhkhkhhkkhkkxk

-- Connection to the LOCAL database: --

At this point, connection to the local database is estab-
lished. For the first time in the execution of the program
the CONNECT statement has to be executed.

The connection to the local database then goes to dormant
state, after connecting to the remote DB (above) again.

For further Tocal re-connections SET CONNECTION is used:

kkkhkkhkhkhkhhhkhhkkhhkhkhkhkhhhhhhkhhkhkhkkhkhhkhhhhhkkhkkhkhhkhhhhhkkhkkhkhkhkhkhhkhhkkhkkxk

* % X % kX
* % X % kX

*

C *IN51 IFEQ '0' 1st connect
C/EXEC SQL -- local

C+ CONNECT TO ROCHESTER

C/END-EXEC

C MOVE '1' *IN51 After 1l.connect
C ELSE local

Advanced Functions and Administration on DB2 Universal Database for iSeries

C/EXEC SQL

C+ SET CONNECTION ROCHESTER
C/END-EXEC

C END

*

B R R R R R R R R R R R R R R T R R R R R R T R R

An order detail record is inserted in the local database,
if referential integrity rules are not violated, i.e.
the primary key of ORDERDTL file must be unique, and/or a
corresponding order number must exist in the ORDERHDR
parent file. Otherwise an SQL error message is sent from

database management:
kkkhkkkhkhkhkhhhkhhkkhhkhkhkhkhhhkhhhkkhhkhkhkkhkhhkhhhhhkkhkkhkhhkhhhkhhkkhkkhkhkhkhkhhkhhkkkkxk

EE T
L R

*

C/EXEC SQL

C+ INSERT INTO ORDENTL/ORDERDTL (ORHNBR, PRDNBR, ORDQTY, ORDTOT)
C+ VALUES(:ORDNBR, :DPRDNR, :DQUANT, :DITTOT)

C/END-EXEC

C SQLCOD IFEQ -530 RI Constraint

B R S R

* If ORDERHDR parent file does not have corresponding *
* order number (RI rule violated), *
* update of order quantity in STOCK file on remote system *

* s rolled back by two-phase commitment control management: *
kkkhkkhkhkhkhhkkhhkkhhkhkhkhkhhhhhhkkhhkhkhkkhkhhkhhhhhkkhkkhkhhkhhhkhhkkhkkhkhkhkhkhhkhhkkkkxk

*

C/EXEC SQL
C+ ROLLBACK
C/END-EXEC

kkkhkkhkhkhkhhhkhhkkhhkhkhkhkhhhhhhkkhhkhkhkkhkhhkhhhhhkkhkkhkhhkhhhkhhkkhkkhkhkhkhkhkhkhhkkhkkxk

* If PF3 is pressed, order entry has finished. All *
* connections are released in order to save on resources: *

kkkhkkhkhkhkhhhkhhkkhhkhkhkhkhhhhhhkhhkhkhhkhkhhkhhhhhkkhkkhkhhkhhhhhkkhkkhkhkhkhkhhkhhkkkkxk

*

C/EXEC SQL
C+ RELEASE ALL
C/END-EXEC

*

EE R R R R S R R R S R R R R R R S R R R S R R R S R
* The following COMMIT statement activates previous RELEASE: *
E R R R R S R R R R R R R R R R R R R R S R R R S R

*

C/EXEC SQL
C+ COMMIT

Chapter 5. DRDA and two-phase commitment control

107

C/END-EXEC

5.10 DRDA over TCP/IP

So far, we have dealt with either DRDA over SNA or with the DRDA implementation on the
iSeries server in general. This section discusses the iSeries server implementation of DRDA
over TCP/IP. The requirement for DRDA over TCP/IP stems from the explosive growth in
usage of this protocol and the fact that many large accounts are already running TCP/IP or
are moving all new applications to TCP/IP. The support for DRDA over TCP/IP on the iSeries
server has been made available with OS/400 version V4R2MO0. The implementation of DRDA
over TCP/IP up to V4R5 supports DRDA level 1. This satisfies the UNIX or Windows NT client
and DataPropagator needs. It is in V5R1 that the implementation of DRDA over TCP/IP
supports DRDA level 2.

The DRDA application server is based on multiple connection-oriented server jobs running in
the QSYSWRK subsystem. A DRDA background program (listener) listens for TCP connect
requests on well-known DRDA port 446. The DRDA server jobs are defined by prestart job
entries. Once the application requester connects to the listener at the AS, the listener issues
a request to wake up a prestarted server job. The listener then passes the socket descriptor
to the server job, and any further communication occurs directly between the client
application and server job.

If you use the SNA implementation of DRDA, you need to configure the controller that
governs the communication between the local and the remote system. Then, you need to
refer to this controller in the device description parameter of the ADDRDBDIRE command. If
you use the TCP/IP implementation of DRDA, you can refer to the IP address of the remote
server on the Remote Location Name parameter of the ADDRDBDIRE command, and
specify the port if it is other than the default DRDA port of 446. The iSeries server always
uses the default port. This eliminates all of the complexity of configuring the communications
between the two servers.

5.10.1 Configuring DRDA over TCP/IP

This section covers the configuration process for DRDA over TCP/IP between two iSeries
servers. The system located in Rochester takes the role of the application server, and the
system in Zurich accesses the database located on the Rochester machine as an application
requester.

The configuration process for this simple scenario consists of these phases:

» Setting up the application server: This phase involves the following configuration
activities:

a. Configuring TCP/IP on the AS system
b. Setting the attributes for the DDM server job
c. Starting the DDM server job

» Setting up the application requester: This phase involves the following configuration
activities:

a. Configuring TCP/IP on the AR system
b. Adding the AS system to the Relational Database Directory
c. Defining the user profile under which the connect to the AS is being done

108 Advanced Functions and Administration on DB2 Universal Database for iSeries

Configuring TCP/IP on the application server

First you have to make sure that there is an appropriate host table entry for the local
ROCHESTER machine. At this point, you may also want to add a host name for the AR
machine located in Zurich. An alternative approach is to specify a remote domain name
server in your TCP/IP configuration for automatic host name resolution.

In our example, we outline the steps required for defining the TCP/IP host table entry:
1. Atthe CL command line, enter the G0 CFGTCP command.

2. The TCP/IP configuration menu is shown. Here, select option 10.

3. The Work with TCP/IP Host Table Entries display is shown. Check that there is a valid
entry for the local host.

4. Choose the ADD option, and enter the Internet address of the remote AR in the column
named Internet Address (Figure 5-15).

Work with TCP/IP Host Table Entries
System: ROCHESTER
Type options, press Enter.
1=Add 2=Change 4=Remove 5=Display 7=Rename

Internet Host
Opt Address Name
1 10.10.10.2
_lo.10.10.1 ROCHESTER
_127.0.0.1 LOOPBACK
LOCALHOST

Figure 5-15 Working with the host table entries

5. This invokes the Add TCP/IP Host Table Entry (ADDTCPHTE) command. On this
command, you can define the name and the alias names of the remote host (Figure 5-16).

Add TCP/IP Host Table Entry (ADDTCPHTE)

Type choices, press Enter.

Internet address > '10.10.10.2'
Host names:
Name ZURICH

+ for more values _
Text 'description' HOST TABLE ENTRY FOR AS/400 SYSTEM AT
ZURICH

Figure 5-16 Adding the host table entries

Setting the attributes for the DDM server job

Before you start the server job on the AS system, you can change the job's attributes by using
the Change DDM TCP/IP Attributes (CHGDDMTCPA) command. There are two attributes
that can be changed with this command:

» AUTOSTART: Specifies whether to automatically start the DDM server when TCP/IP is
started. This parameter takes effect the next time the STRTCP command is run.

Chapter 5. DRDA and two-phase commitment control 109

» PWDRAQD: Specifies whether client systems are required to have a password in addition
to a user ID on incoming connection requests to this system as a server. This parameter
takes effect on the next DRDA or DDM connect request over TCP/IP.

Now, follow these steps:

1. On the CL command line, enter the CHGDDMTCPA command, and press PF4 so you can see
the current settings.

2. Change the DDM server job attributes to the values shown in Figure 5-17.

Change DDM TCP/IP Attributes (CHGDDMTCPA)
Type choices, press Enter.

Autostart server AUTOSTART *YES
Password required PWDRQD *YES

Figure 5-17 Changing the DDM server job attributes

Note: The value of the PWDRQD attribute has some implications for the Change
Relational Database Directory Entry (CHGRDBDIRE) and Remove Relational Database
Directory Entry (RMVRDBDIRE) commands. A bit in the *LOCAL RDB directory entry is
used to store if a password is required to access this iSeries server by an AR. An inquiry
message CPA3EO1 is issued if the local entry is changed to a non-local entry or if the
*LOCAL entry is deleted. The following text is associated with this message:

Removing the *LOCAL directory entry may cause loss of configuration data.
(C 6)

We strongly recommend that you record the current setting before you proceed.

Starting the DDM server job

Use the STRTCPSVR SERVER(*DDM) command to start the DDM server job. Now you can find a
new job, QRWTLSTN, running in the QSYSWRK subsystem. This is the listener job waiting
for connect requests on port 446.

Configuring TCP/IP on the application requester

Configuring TCP/IP on the application requester involves exactly the same steps as for the
application server. Refer to “Configuring TCP/IP on the application server” on page 109.

Adding the AS system to the relational database directory

Probably the most important step in DRDA over TCP/IP configuration is adding the relational
database entry for the remote database to which you want to connect. The relational
database entry defines the location of the remote server and the method of connection.

1. Use the ADDRDBDIRE command to add the RDB entry for the application server located in
Rochester (Figure 5-18).

110 Advanced Functions and Administration on DB2 Universal Database for iSeries

Add RDB Directory Entry (ADDRDBDIRE)

Type choices, press Enter.

Relational database ROCHESTER
Remote location:
Name or address 10.10.10.1
Type .« « « « ¢ v o 0 0o *IP_ *SNA, *IP
Text o o 00000 RDB ENTRY FOR THE AS/400 SYSTEM IN RO
CHESTER

Figure 5-18 Adding the relational database entry

2.

On the Relational Database parameter of the ADDRDBDIRE command, specify the name
of the database on the remote server.

On the Remote Location parameter of the ADDRDBDIRE command, specify the Internet
address of the remote application server. If you already specified the Internet address of
the remote server in TCP/IP host table entry, you can use the host name in place of the
Internet address. In our example, we specified ROCHESTER rather than 10.10.10.1. This
allows you to have some flexibility if, for some reason, you change the Internet address of
the remote server.

. On the Type parameter of the ADDRDBDIRE command, specify the value *IP. This

signifies to the local system that you are using the TCP/IP implementation of DRDA to
connect to the remote server. Note that *SNA is the default setting for this parameter.

On the PORT parameter, specify the default value *DRDA. Some servers, such as DB2
Universal Database, use a different port. You need to find out which port to specify from
the documentation for the specific server product and set that port number.

Defining a user profile for DRDA over the TCP/IP connection

You can use the Add Server Authentication Entry (ADDSVRAUTE) command to add
authentication information for a given user under which the connect is being done. The user
ID and password are associated with the user profile and remote application server. This
information flows to the AS each time the AR issues a connect request.

1.

Make sure that you have *SECADM special authority, as well as *OBJMGT and *USE
authorities, to the user profile to which the server authentication entry is being added.

Check whether the retain server security data (QRETSVRSEC) system value is set to 1. If
the value is 0 (do not retain data), the password is not saved in the entry.

3. Type the ADDSVRAUTE command and press F4.
4. Add the authentication entry shown in Figure 5-19 and Figure 5-20.

Chapter 5. DRDA and two-phase commitment control 111

Add Server Auth Entry (ADDSVRAUTE)
Type choices, press Enter.
User profile > JAREK Name, *CURRENT
Server 0w e > ROCHESTER
User ID *USRPRF
More...

Figure 5-19 Adding the authentication entry

Add Server Auth Entry (ADDSVRAUTE)
Type choices, press Enter.

User password PASSWORD

Bottom

Figure 5-20 Adding the authentication entry
Note: Make sure the server name is in uppercase.

Along with ADDSVRAUTE command, there are two additional commands available:

» Change Server Authentication Entry (CHGSVRAUTE): Allows you to change the user
ID and password for an authentication entry added by the ADDSVRAUTE command.

» Remove Server Authentication Entry (RMVSVRAUTE): Allows you to remove
authentication entries added by the ADDSVRAUTE command.

5.10.2 Examples of using DRDA over TCP/IP

The discussion in the previous section contains details about the method of configuring
DRDA over TCP/IP. This section discusses how to actually access the data in the remote
server. It examines two different scenarios:

» Using Interactive SQL
» Using C programming

112 Advanced Functions and Administration on DB2 Universal Database for iSeries

Interactive SQL example

Probably the easiest way to take advantage of a DRDA connection to a remote database is to
use Interactive SQL. The following simple SQL session documents all major points to
remember while running DRDA over TCP/IP:

1. Start Interactive SQL with the Start SQL (STRSQL) command. Make sure that the
commitment control level you are running at is at least *CHG. At the SQL prompt, press the
F13 key, and then select option 1. Change the Commitment Control Attribute to *CHG.
Return to the SQL session by pressing F3. Now you are ready to test the SQL statements
shown in Figure 5-21.

Enter SQL Statements

Type SQL statement, press Enter.
Session was saved and started again.
STRSQL parameters were ignored.
Current connection is to relational database ZURICH.H
> release all §
RELEASE of all relational databases completed.
> commit §
Commit completed.
> connect to rochester
Current connection is to relational database ROCHESTER. [
> select * from ordapplib/customer
SELECT statement run complete.
> update ordapplib/customer set cuscrd = cuscrd * 1.1 J
where cusnbr = '99995'
1 rows updated in CUSTOMER in ORDAPPLIB.
> select * from ordapplib/customer
SELECT statement run complete.
> commit [§
Commit completed.
> call caseproc ('99995',0)]
CALL statement complete.
> select * from ordapplib/customer
SELECT statement run complete.
> commit
Commit completed.

Bottom

Figure 5-21 Using DRDA over TCP/IP with SQL

The following list explains the SQL statements that are numbered in Figure 5-21:

When you start your Interactive SQL session, you are connected, by default, to your
local database.

A The initial connection to the local system is protected by two-phase commit protocols. If
a subsequent connection is made to a system that has only RUW capability, that
connection is read-only. Therefore, you cannot perform any committable transactions,
including automatically creating an SQL package for the Interactive SQL program, if the
connection is to a non-iSeries server and this is the first time the connection is
attempted. The solution to this is to drop the connection to the local database before
you connect to the remote server. You may use the SQL statement RELEASE ALL to
accomplish this task. When you execute this command, the resources held by any
database in the system are released and any pending transaction is rolled back.

Chapter 5. DRDA and two-phase commitment control 113

The COMMIT statement is required to move the connection from a released to an
unconnected state. See the discussion in 5.3.2, “Connection states” on page 88, for
more information.

Bl After you establish the connection to the remote AS, make sure that the connection type
is 1. Place the cursor on the connection message, and press F1. A message display
with the information shown in Figure 5-22 appears.

Additional Message Information

Message ID : SQL7971 Severity 00
Message Type : Information

Message . . . : Current connection is to relational database ROCHESTER.
Cause : The product identification is QSQ04020, the server class

name is QAS, and the user ID is JAREK. The connection method used is *DUW
The connection type is 1. A list of the connection types follows:

-- Type 1 indicates that committable updates can be performed and either
the connection uses an unprotected conversation, is a connection to an
application requester driver program using *RUW connection method, or is
local connection using *RUW connection method.

-- Type 2 indicates that the conversation is unprotected and no
committable updates can be performed.

-- Type 3 indicates that the conversation is protected and it is unknown
if committable updates can be performed.

-- Type 4 indicates that the conversation is unprotected and it is
unknown

More...

Figure 5-22 Connection type for DRDA over TCP/IP

B Because this is the first “RUW connection, committable updates can be performed.

[Changes to the remote database should be committed before the connection is
dropped.

One of the most powerful features of the DRDA architecture is the ability to run remote
stored procedures. The stored procedure in this step performs exactly the same action
as the update statement in . For a detailed discussion on DB2 UDB for iSeries stored
procedure implementation, refer to Stored Procedures and Triggers on DB2 Universal
Database for iSeries, SG24-6503.

2. To finish the SQL session, press F3. You may want to save your current session by using
option 1.

ILE C example

The way you code your application program, which accesses remote AS with DRDA over
TCP/IP support, is similar to the procedure described for the Interactive SQL session. The
following example code highlights the most important considerations:

1. Compile your program with an isolation level of *CHG or above. If you have a connection to
the remote AS at compile time, you may create an appropriate SQL package on the target
system. The following Create C-embedded SQL (CRTSQLCI) command creates the
program object on the local system and the SQL package at the remote server:

CRTSQLCI OBJ(ORDAPPLIB/SQLCNCT) SRCMBR(SQLCNCT) RDB(ROCHESTER)
OBJTYPE(*PGM) OUTPUT(*PRINT) RDBCNNMTH(*RUW)

2. The ILE C code is listed here:

114 Advanced Functions and Administration on DB2 Universal Database for iSeries

#include <stdio.h>

#include <string.h>
#include <stdlib.h>
#include <decimal.h>

EXEC

EXEC

EXEC

SQL BEGIN DECLARE SECTION;

char Chr_CusNbr[5]

char Chr_CusNam[20];
char Chr_CusTel[15];
char Chr_CusFax[15];
char Chr_CusAdr[20];
char Chr_CusCty[20];
char Chr_CusZip[5 1;

decimal(11,2) Nmpd_CusCrd;
decimal(11,2) Nmpd_CusTot;
SQL END DECLARE SECTION;

SQL INCLUDE SQLCA;

void main()

{

char Chr_Commit;

printf("Please enter
gets(Chr_CusNbr);
printf("Please enter
gets(Chr_CusNam);
printf("Please enter
gets(Chr_CusTel);
printf("Please enter
gets(Chr_CusFax);
printf("Please enter
gets(Chr_CusAdr);
printf("Please enter
gets(Chr_CusCty);
printf("Please enter
gets(Chr_CusZip);

the

the

the

the

the

the

the

printf("Please ener ythe
scanf("%D(11,2)", &Nmpd_CusCrd);

EXEC SQL
release all;
if (sqlca.sqlcode !=

{

1

0)

value

value

value

value

value

value

value

value

for

for

for

for

for

for

for

for

Customer

Customer

Customer

Customer

Customer

Customer

Customer

Customer

Number :\n"
Name :\n"
Tel :\n"
Fax :\n"
Address \n"
City :\n"
Zip :\n"

Credit Limit :\n"

printf("Error occured in the release of databases\n");
printf("The SQLCODE is %d\n", sqlca.sqlcode);
printf("The Error Message :\n");

printf("%s\n", sqglca.sqlerrmc);

exit(-1);
}

printf("Released all Databases...\n");

EXEC SQL
commit;
if (sqlca.sqlcode !=

{

0)

printf("Error occured in commit release of database\n");
printf("The SQLCODE is %d\n", sqlca.sqlcode);
printf("The Error Message :\n");

printf("%s\n", sqglca.sqlerrmc);

exit(-1);

Chapter 5. DRDA and two-phase commitment control

115

}

EXEC SQL

connect to ROCHESTER; 3

if (sqlca.sqlcode != 0)

{
printf("Error occured in Connecting to Database\n");
printf("The SQLCODE is %d\n", sqlca.sqlcode);
printf("The Error Message :\n");
printf("%s\n", sqlca.sqlerrmc);
exit(-1);

}

printf("Successfully connected to ROCHESTER..\n");

EXEC SQL

commit;

if (sqlca.sqlcode != 0)

{
printf("Error occured in commit of connection\n");
printf("The SQLCODE is %d\n", sqlca.sqlcode);
printf("The Error Message :\n");
printf("%s\n", sqlca.sqlerrmc);
exit(-1);

}

printf("Commited the Connection...\n");

EXEC SQL
call 4
ordapplib/inscst(
:Chr_CusNbr,
:Chr_CusNam,
:Chr_CusTel,
:Chr_CusFax,
:Chr_CusAdr,
:Chr_CusCty,
:Chr_CusZip,
:Nmpd_CusCrd

)s
if (sqlca.sqlcode != 0)
{
printf("Error occured in calling stored procedure\n");
printf("The SQLCODE is %d\n", sqlca.sqlcode);
printf("The Error Message :\n");
printf("%s\n", sqglca.sqlerrmc);
EXEC SQL
rollback;
if (sqlca.sqlcode != 0)
{
printf("Error occured in rollback\n");
printf("The SQLCODE is %d\n", sqlca.sqlcode);
printf("The Error Message :\n");
printf("%s\n", sqlca.sqlerrmc);
exit(-1);
}
printf("Rollback Complete...\n");
}
else
{
EXEC SQL
commit;

116 Advanced Functions and Administration on DB2 Universal Database for iSeries

if (sqlca.sqlcode != 0)
{

printf("Error occured in commit\n");
printf("The SQLCODE is %d\n", sqlca.sqlcode);
printf("The Error Message :\n");
printf("%s\n", sqlca.sqlerrmc);
exit(-1);
}
printf("Commit Complete...\n");

}
exit(0);
}

Notes:

» Disconnect from the local database since it is protected by a two-phase commit. If
you have a connection to a *DUW capable database, all subsequent connections to
*RUW capable databases are read-only.

» The COMMIT statement is needed to change the local database status from
released to unconnected.

» Connect to the remote AS using DRDA over TCP/IP. The connection method is
*RUW, and committable updates are permitted.

» Call the remote stored procedure. This procedure inserts a new record into the
customer file.

5.10.3 Troubleshooting DRDA over TCP/IP

DRDA over TCP/IP works fine until someone changes something. While handling the
problems, you need to be single-minded about isolating them. First, ask yourself these simple
questions:

'S

Is the server job running on the application server?

Make sure that QRWTLSTN is running in the QSYSWRK subsystem. Start the NETSTAT
command, and select option 3 to check whether the listener job listens on the well-known
port 446.

Are you authorized to use the connection?

Does the server require a password along with the user ID on the connection request? If a
password is needed, add your profile by using the ADDSVRAUTE command to the server
authorization entry list.

Does your connection permit committable updates?

Use Interactive SQL to check the connection type to the remote application server. Refer
to “Interactive SQL example” on page 113, for a detailed discussion on this subject.

If you went over this simple checklist and still encounter problems with your DRDA over
TCP/IP connection, it is time to take a more systematic approach:

1.

On the AS system, find the prestart job that is servicing your requests. When you start the
listener job with the STRTCPSVR command, one or more prestart jobs are started in the
QSYSWRK subsystem. The name of this prestart job is QRWTSRVR, and the user profile
under which the job runs initially is QUSER. When your request to start a connection is
accepted by the prestart job, it swaps QUSER to your user profile. The easiest way to
identify the fully-qualified name for the prestart job servicing your requests is to look into
the history log. There should be a log entry pertaining to your user ID (Figure 5-23).

Chapter 5. DRDA and two-phase commitment control 117

118

Display History Log Contents

Job 034557/QUSER/QRWTSRVR started on 12/17/01 at 11:44:41 in subsystem QSYSWRK
Job 034558/QUSER/QRWTSRVR started on 12/17/01 at 11:44:41 in subsystem QSYSWRK
DDM job 034509/QUSER/QRWTSRVR ey icing user JAREK on 12/17/01 at 11:44:42.

Figure 5-23 Identifying a server job servicing your profile

An alternative method is to use the WRKACTJOB command.

2. Once you identify your prestart job, you can start a service job with the STRSRVJOB
command (Figure 5-24).

Start Service Job (STRSRVJOB)

Type choices, press Enter.

Jobnameo ouu ... QRUTSRVR N ame
USEr v v v v v e e e QUSER Name
Number 034509 900000-999999

Figure 5-24 Starting a service job

3. Enter the STRDBG command, and press F4. Change the Update production Files parameter
to *YES (Figure 5-25).

Start Debug (STRDBG)
Type choices, press Enter.
Program PGM *NONE

Library oL L.
+ for more values

Default program DFTPGM *PGM
Maximum trace statements MAXTRC 200
Trace full TRCFULL *STOPTRC
Update production files UPDPROD *YES

Figure 5-25 Starting debug for the prestart job

4. If the connection to the AS is still active, you can check the AR-AS interaction by looking at
the job log of the prestarted job that is servicing your requests. Use the following
command on the AS to display the job log:

DSPJOBLOG JOB(034509/QUSER/QRWTSRVR)

Advanced Functions and Administration on DB2 Universal Database for iSeries

Display All Messages
ROCHESTER
034509

System:
Job . . : QRWTSRVR User . . : QUSER Number . . . :
Job 034557/QUSER/QRWTSRVR started on 12/17/01 at 11:44:41 in subsystem
QSYSWRK in QSYS. Job entered system on 12/17/01 at 11:44:41.
Target job assigned to handle DDM connection started by source system ove
TCP/IP.
ACGDTA for 034557/QUSER/QRWTSRVR not journaled; reason 1.
Local relational database accessed by ZURICH.
Number of parameters on CALL not valid for procedure INSCST in ORDAPPLIB.

Figure 5-26 Job log of the prestart job

Looking at the job log entries (Figure 5-26), you can now see that you were trying to call
the INSCST stored procedure with an incorrect number of parameters.

5. Close your connection to the AS system. Since the prestart job was being serviced, the
job log associated with this job is saved in a spooled file. This spooled file is stored with
your user ID.

Note: The job log is also saved when the system detects that a serious error occurred in
processing the request that ended the connection.

6. Use the Work with Spooled File (WRKSPLF) command to display the content of the spooled
file (Figure 5-27).

5769SS1 V4R2MO 980228

Display Job Log ROCHESTER 12/17/01 14:28:56

........... QRWTSRVR User : QUSER Number
034558
Job description QUSER Library : QGPL
MSGID TYPE SEV DATE TIME FROM PGM LIBRARY INST TO PGM
LIBRARY INST
CPF1124 Information 00 12/17/01 11:44:41 QWTPIIPP QSYS 0599 *EXT
*N
Message : Job 034558/QUSER/QRWTSRVR started on 12/17/01 at 11:44:41
in subsystem QSYSWRK in QSYS
SQL0440 Diagnostic 30 12/17/01 14:26:56 QSQXCUTE QSYsS 1B9A QSQXCUTE QSYS
1B9A
Message : Number of parameters on CALL not valid for procedure
INSCST in ORDAPPLIB.
Cause : The number of parameters specified on a CALL statement is

not the same as the number of parameters declared for procedure INSCST in
ORDAPPLIB. Recovery Specify the same number of parameters on the
CALL as on the procedure definition. Try the request again.

Figure 5-27 Spooled file content

7. Stop debugging with the End Debug (ENDDBG) command, and stop the service job with the
End Server Job (ENDSRVJOB) command.

Chapter 5. DRDA and two-phase commitment control

119

5.11 DB2 Connect access to an iSeries server via TCP/IP

Since 0OS/400 V4R2, it is possible to connect to an iSeries server from DB2 Connect on a
Windows machine using TCP/IP. The following example employs OS/400 V4R5 and the DB2
UDB for Windows NT Version 7.1.

5.11.1 On the iSeries server

The following process lists the necessary steps to be performed on the iSeries server:

1. Verify that the TCP/IP stack is working correctly. To do this, obtain the IP address of the
iSeries server or hostname, and ping the iSeries server from the DB2 Connect machine.
To find the IP address, go to the Configure TCP/IP menu. Enter CFGTCP, and choose Work
with TCP/IP interface. The IP address should be displayed as shown in Figure 5-28.

Work with TCP/IP Interfaces
System: AS23
Type options, press Enter.
1=Add 2=Change 4=Remove 5=Display 9=Start 10=End

Internet Subnet Line Line
Opt Address Mask Description Type

10.10.10.10 255.255.255.0 TRNLINE *TRLAN

Bottom

F3=Exit F5=Refresh F6=Print Tist F11=Display interface status
F12=Cancel F17=Top F18=Bottom

Figure 5-28 Work with TCP/IP Interfaces

2. To find the hostname, go to the Configure TCP/IP menu, and choose Work with TCP/IP
host table entries. You should find the hostname that has been assigned to the IP
address.

3. You need a relational database (RDB) name for the iSeries server. If it has already been
created, you can display it by using the DSPRDBDIRE command. The RDB with a location of
*LOCAL is the one you need, as shown in Figure 5-29. If it has not been created, use the
ADDRDBDIRE command to add the RDB entry. For example, the following command would
add an RDB entry named DALLASDB:

ADDRDBDIRE RDB(DALLASDB) RMTLOCNAME (*LOCAL)

120 Advanced Functions and Administration on DB2 Universal Database for iSeries

Display Relational Database Directory Entries
Position to

Type options, press Enter.
5=Display details 6=Print details

Relational Remote

Option Database Location Text
AS23 *LOCAL DB entry for local AS23
AS24 10.10.10.20 RBD Entry for AS24

Bottom
F3=Exit F5=Refresh F6=Print Tlist F12=Cancel
(C) COPYRIGHT IBM CORP. 1980, 2000.

Figure 5-29 Display Relational Database Directory Entries

4. You must create a collection called NULLID. The reason for this is that the utilities shipped
with DB2 Connect and DB2 UDB store their packages in the NULLID collection. Since it
does not exist by default in the iSeries server, you must create it using the following
command:

CRTLIB LIB(NULLID)

5. Products that support DRDA automatically perform any necessary code page conversions
at the receiving system. For this to happen, both systems need a translation table from
their code page to the partner code page. The default Coded Character Set Identifier
(CCSID) on the iSeries server is 65535. Since DB2 Connect does not have a translation
table for this code page, you need to change the individual user profiles to contain a page.
You need to change the individual user profiles to contain a CCSID that can be converted
properly by DB2 Connect. For US English, this is 037. For other languages, see DB2
Connect Personal Edition Quick Beginning, GC09-2967. The following command changes
the CCSID for an individual user profile to 037:

CHGUSRPRF userid CCSID(037)

6. Verify that you are using the default port 446 for DRDA service. To do this, go to the
Configure TCP/IP menu (CFGTCP), select Configure Related Tables, and then select
Work with service table entries. Verify that the DRDA service is set for port 446, as
shown in Figure 5-30.

Chapter 5. DRDA and two-phase commitment control 121

Work with Service Table Entries
System: AS23

Type options, press Enter.

1=Add 4=Remove 5=Display

Opt Service Port Protocol
drda 446 udp
echo 7 tcp
echo 7 udp
exec 512 tcp
finger 79 tcp
finger 79 udp
ftp-control 21 tcp
ftp-control 21 udp
ftp-data 20 tcp
ftp-data 20 udp
gopher 70 tcp

More. ..

Parameters for options 1 and 4 or command

===>

F3=Exit F4=Prompt F5=Refresh F6=Print 1ist F9=Retrieve F12=Cancel
F17=Top F18=Bottom

Figure 5-30 Work with Service Table Entries

7.

The Distributed Data Management (DDM) job must be started for DRDA to work. If you
want the DDM job to be automatically started whenever TCP/IP is started, you can change
the attributes of the DDM job using the CHGDDMTCPA command and set the Autostart server
parameter to *YES.

If you choose not to autostart the server, issue the following command to start the DDM
server job:

STRTCPSVR (*DDM)

Make sure you have user IDs defined on the iSeries server for the users that will be
connecting.

5.11.2 On the workstation
The following steps are required on DB2 UDB:

1.

Launch Client Configuration Assistant (db2cca from the command prompt).

2. Click the Add button to add a new data source.
3.
4

. On the Protocol tab, choose TCP/IP for protocol, and select the item The database

On the Source tab, choose Manual configuration, and click Next.

physical residence on a host or AS/400. Then, select the option Connect directly to
the server, as shown in Figure 5-31. Click Next.

122 Advanced Functions and Administration on DB2 Universal Database for iSeries

1 Add Database Wizard E

1.Souce 2 Protocal | 3 TCRAP | 4 Database | 5 ODBC | & Node Options | 7. Security Options | & Hast or AS/400 iptions |
Step 2 Select a communications protocol.

Select the communications protocol that you want to uze to connect to the DB2 databaze. |f pou are uging SHA,
zelect APPL as the protocol.

Fratacal

f* TCP/AP) [E=YEE

" APPC = Mamed pipes
 MetBlOS Local

¥ The database physically resides on a host or A5 /400 systern.
{* Connect directly to the server

= Connect to the server via the gateway

Mexts> | Einish | Eancell Helpl

Figure 5-31 Protocol tab of the workstation configuration

5. On the TCP/IP tab, fill in the host name of the iSeries server. The port number should be
446. Click Next.

On the Database tab, fill in the relational database name, and click Next.

If you plan to use the ODBC applications, click the ODBC tab and select Register this
database for ODBC as a system data source.

Click Finish.

Click Test Connection to verify that the connection works. You are prompted for an
iSeries server user ID and password, as shown in Figure 5-32.

D atabase alias A523
User ID IIeungrhy
Paszword I “““““““ 1

™ Change password

Idew passwand I

et new password I

Connection mode
’7 & Share ' Exclusive

Ok I Cancel |

Figure 5-32 Prompt for iSeries server user ID and password

10.Enter your user ID and password, and then click OK. If the connection test passed, a
successful message box appears, as shown in Figure 5-33.

Chapter 5. DRDA and two-phase commitment control 123

iDB2 Message |]

The connection test was successful. ;I

Databasze product = 05/40045.0
S0L authorization 1D = leungrhy
% D atabase alias = 4523

Figure 5-33 Message box for successful connection

5.11.3 Consideration

Once you complete the configuration in the previous section, you should be able to access
iSeries server data. However, you may notice that there are some areas that work differently
in the iSeries server and other platforms. These areas are discussed in the following sections.

Administrative interface

In the current implementation, you cannot perform administrative functions for the iSeries
server database through the UDB control center. The best tool for the iSeries server database
is Operations Navigator. The differences in the administrative interface are due to the
variation of administrative requirements and the operation of the underlying operating system.
Several administrative functions are not available by DB2 Universal Database for iSeries
because the database manager and operating system automatically handle the tasks. For
example, DB2 Universal Database for iSeries doesn't provide a RUNSTATS utility for
optimizer statistics because its database manager keeps these statistics current at all times.
Likewise, there is no concept of table spaces in DB2 Universal Database for iSeries. DB2
Universal Database for iSeries does not support the notion of independent, isolated
databases on the iSeries server. Instead, DB2 Universal Database for iSeries is implemented
as a single system-wide database.

Journaling in DB2 Universal Database for iSeries

DB2 Universal Database for iSeries is so reliable that database administrators may not
journal all their tables. However, if you are connecting to an iSeries server database through
DB2 Connect, tables must be journaled before the database can be accessed for update.
Otherwise, you only have read-only access to the table. If you attempt to update the table
without journaling, you would see an error message such as this example:

--------------------------- Command entered ------------cmmmmmmmm-
insert into result values ('Insert','Insert from UDB/NT command center');
DB21034E The command was processed as an SQL statement because it was not a
valid Command Line Processor command. During SQL processing it returned:
SQL7008N REXX variable "RESULT " contains inconsistent data.
SQLSTATE=55019

124 Advanced Functions and Administration on DB2 Universal Database for iSeries

DB2 Import and Export utilities

This chapter covers the following topics:

» Explains the CPYFRMIMPF command (Import utility)
» Explains the CPYTOIMPF command (Export utility)
» Explains how to use the Import and Export utilities from DB2 UDB V7.2

© Copyright IBM Corp. 1994, 1997, 2000, 2001 125

6.1 Introduction

A data loader utility enables the loading of data exported from other database servers into
DB2 UDB for iSeries.

Two commands in OS/400 are available for users to import (load), and export (unload) data to
and from the iSeries server:

» Copy From Import File (CPYFRMIMPF): Loads the imported data into the DB2 UDB for
iSeries table

» Copy To Import File (CPYTOIMPF): Prepares the DB2 UDB for iSeries table data for
export from the iSeries server

6.2 DB2 UDB for iSeries Import utility

Database tables from heterogenous databases, such as Oracle, Sybase, Microsoft SQL
Server, etc., can be ported to DB2 UDB for iSeries tables using this utility.

6.2.1 CPYFRMIMPF

The Copy From Import File (CPYFRMIMPF) command is used to load data to DB2 UDB for
iSeries after the file is copied to a source file (FROMFILE) and then into a DB2 UDB for
iSeries table (TOFILE). This is shown in Figure 6-1.

de;f:gg:!a CA/400 iSeries server
ODBC (FROMFILE)
Final DB2 UDB Field Definition
for iSeries - File CPYFRMIMPF
(TOFILE) (optional)

Figure 6-1 Data load flow

The following steps summarize a data load from a database table:

1. Create an import file for the data that will be copied to DB2 UDB for iSeries. The format for
this data can be in delimited format or fixed format.

2. Send the data to the import file (typically with FTP or Client Access).

3. Create a DB2 UDB for iSeries externally described database file(table) or DDM file that
contains the resulting data (target file) of the import file.

4. Create the Field Definition File if a *FIXED data format is used.

126 Advanced Functions and Administration on DB2 Universal Database for iSeries

5. Use the CPYFRMIMPF command to copy (translate or parse the records) from the import file
to the target file.

The source file (FROMFILE)
The source file (FROMFILE) can be any one of the following file types:

Stream file

DDM file

Tape file

Source physical file

Distributed physical file

Program described physical file

Single format logical file

Externally described physical file with one field (of non-numeric data type)

vVVyVYyVYVvYVYYVvVYYy

Note: If an externally described physical file has one field, the data type must be
CHARACTER, IGC OPEN, IGC EITHER, IGC ONLY, GRAPHIC, or variable length.

The file can be copied or imported to the iSeries server using several methods, including:

» TCP/IP file transfer (text transfer)
» CA/400 support (file transfer, ODBC)
» Copy From Tape (CPYFRMTAP) command

Sending the data into the import file causes the necessary ASCII to EBCDIC data
conversions to occur.

The target file (TOFILE)

The source file is copied to the database target file, also referred to as the TOFILE. The target
file can be any one of the following file types:

Source file

DDM file

Distributed physical file

Program described file
Externally described physical file

vVvyyvyyvyy

Data format

The data contained in the imported file can be in either the delimiter format or the fixed
format:

» Character delimited: A delimiter format import file has a series of characters (delimiters)
that are used to define where fields begin and end. The parameters of the command
defines what characters are used for delimiters.

» Fixed format: A fixed format import file uses the user-defined Field Definition File (FDF)
that defines the format of the import file. The Field Definition File is used to define where
fields begin, end, and are null. The record format of import file (DTAFMT) parameter
determines if the source file is delimited (*DLM) or fixed (*FIXED).

Field definition file

The field definition file to describe fixed formatted files must use the format shown in
Table 6-1.

Chapter 6. DB2 Import and Export utilities 127

Table 6-1 Field definition format

Field name Starting position Ending position Null character
position

Field1 1 12 13

Field2 14 24 0

Field3 25 55 56

*END

In reference to Table 6-1, note the following statements:

>

>

>

Field name is the name of the field in the TOFILE. FDF is case sensitive.
The Starting position is the byte in the FROMFILE from where the data is copied.
The Ending position is the byte in the FROMFILE from where the data is copied.

The Null character position is the byte in the FROMFILE that indicates if the field is null. A
value of “Y” means the field is null. A value of “N” means the field is not null. If this value is
“0”, no null character is provided.

*END is the indicator for the end of the field definition file and must be included.

Delimited format import file
The import file’s data is interpreted by the following characters and data types for a delimited
format import file:

>

Blanks

— All leading and trailing blanks are discarded for character fields unless enclosed by
string delimiters.

— Afield of all blanks is interpreted as a null field for character data.
— Blanks cannot be embedded within a numeric field.

— A blank cannot be selected as a delimiter.

Null fields

A null field is defined as:

— Two adjacent field delimiters (no data in between)
— Afield delimiter followed by a record delimiter (no data in between), an empty string
— Afield of all blanks

If the field is null, the following statement is true:

If the output field is not nullable and the import is a null field, the record is not copied,
and an error is signaled.

Delimiters
— A delimiter cannot be a blank.

— A string delimiter cannot be the same as a field delimiter, record delimiter, date
separator, or time separator.

— A string delimiter can enclose all non-numeric fields (character, date, time, and so on).
The string delimiter character should not be contained within the character string.

— A field and record delimiter can be the same character.

— The defaults for delimiters are as follows:

128 Advanced Functions and Administration on DB2 Universal Database for iSeries

String: Double quote (")
Field: Comma (,)

Decimal point: Period (.)
Record: End of record (*EOR)

If the data type of the from parameter is CHARACTER, OPEN, EITHER, or ONLY, all
double-byte data must be contained within string delimiters or shift characters (for
OPEN, EITHER, or ONLY data types).

Numeric field

Numeric fields can be imported in decimal or exponential form.

Data to the right of the decimal point may be truncated depending on the output data
format.

Decimal points are either a period or a comma (command option).
Signed numeric fields are supported, + or -.

Character or Varcharacter fields

Fields too large to fit in the output fields are truncated (right), and a diagnostic
message is sent.

An empty string is defined as two string delimiters with no data between them.

For a character to be recognized as a starting string delimiter, it must be the first
non-blank character in the field. For example, 'abc' with ' as the delimiter is the same
as abc for input.

Data after an ending string delimiter and before a field or record delimiter is discarded.

IGC or VarlGC fields

The data from the FROMFILE is copied to the TOFILE, and if any invalid data is
received, a mapping error is generated.

Data located between the Shift Out and Shift In characters is treated as double byte
data and is not parsed for delimiters. The Shift characters, in this case, become “string
delimiters”.

Graphic, VarGraphic fields
The data from the FROMFILE is copied to the TOFILE.
CCSIDs (coded character set identifiers)

The data from the FROMFILE is read into a buffer by the CCSID of the FROMFILE.
The data in the buffer is checked and written to the TOFILE. The CCSID of the open
TOFILE is set to the value of the FROMFILE, unless a TOFILE CCSID is used. If a
TOFILE CCSID is used, the data is converted to that CCSID. If the FROMFILE is a
tape file, and the FROMCCSID(*FILE) parameter is specified, the job CCSID is used,
or the FROMFILE CCSID is requested by the user.

The character data (delimiters) passed in on the command is converted to the CCSID
of the FROMFILE. This allows the character data of the FROMFILE and command
parameters to be compatible.

Date field

All date formats supported by the iSeries server can be imported, including: *ISO,
*USA, *EUR, *JIS, *MDY, *DMY,*YMD, *JUL, and *YYMD.

A date field can be copied to a timestamp field.

Chapter 6. DB2 Import and Export utilites 129

» Time field

— All time formats supported by the iSeries server can be imported, including: *ISO,
*USA, *EUR, *JIS, and *HMS.

— Atime field can be copied to a timestamp field.
» Date and time separators

All valid separators are supported for date and time fields.
» Timestamp field

Timestamp import fields must be 26 bytes. The import ensures that periods exist in the
time portion and a dash exists between the date and time portions of the timestamp.

» Number of fields mismatch

If the FROMFILE or TOFILE do not have the same number of fields, the data is either
truncated to the smaller TOFILE size, or the extra TOFILE fields receives a null value. If
the fields are not null capable, an error message is issued.

6.2.2 Data load example (file definition file)

A source file, IMPF_TEST, was created using the Create Physical File (CRTPF) command
specifying a record length of 258 bytes. The customer data was then transferred to the iSeries
server source file using FTP. A sample of the data is shown in Figure 6-2.

Display Physical File Member
File : IMPF_TEST Library : TPSTAR
Member : IMPF_TEST Record : 1
Control Column : 1
Find
I A I DI SR DAV U DO U DUPIUIPE JUDAPIPY e DUPI PP A S
1 , "Customer#000000001 ",15 Monroe Ave, Chicago IL 60601
2 , "Customer#000000002 ","Stewartville MN 55976
3 , "Customer#000000003 ","389 Dexter P1, Fargo ND
4 , "Customer#000000004 ","10 N Main, Wausau WI
5 ,"Customer#000000005 ","Bailey Bldg, Bedford Falls
6 , "Customer#000000006 ","101 Superior St, Duluth MN
7 , "Customer#000000007 ","1921 N 5th St, St Louis MO
8 ,"Customer#000000008 ","32891 Park Ave, New York NY
9 , "Customer#000000009 ","1032 S Broadway, Littleton CO
10 , "Customer#000000010 ","5672 Cobb Pkwy, Bldg 3, Atlanta GA
11 ,"Customer#000000011 ","8192 River Rd, Aurora IL
12 , "Customer#000000012 ","County Rd 9, Pine Island MN
13 , "Customer#000000013 ","25th and Main, Appleton WI
14 , "Customer#000000014 ","2342 Center St, Earlville IL
15 , "Customer#000000015 ","444 Michigan Ave, Chicago

Figure 6-2 Customer data sample

A target file, or TOFILE, was created using Data Definition Specification (DDS) called
CUST_IMPF. At this time, the CPYFRMIMPF command can be used to format the delimited
file as shown in Figure 6-3.

130 Advanced Functions and Administration on DB2 Universal Database for iSeries

Copy From Import File (CPYFRMIMPF)
Type choices, press Enter.

From stream file

From file:
File v v o o v o o .. IMPF_TEST Name
Library *LIBL Name, *LIBL, *CURLIB
Member *FIRST Name, *FIRST
To data base file:
T CUST_IMPF Name
Library *LIBL Name, *LIBL, *CURLIB
Member *FIRST Name, *FIRST
Replace or add records *ADD *ADD, *REPLACE, *UPDADD
Stream file record Tength . . . *TOFILE Number, *TOFILE
From CCSID *FILE 1-65533, *FILE
Record delimiter *EOR Character value, *ALL...
Record format of import file . . *DLM *DLM, *FIXED
String delimiter e Character value, *NONE

More. ..

Figure 6-3 CPYFRMIMPF example

A fixed format using a field definition file (FDF) can also be used to convert the data. The
example in Figure 6-4 of the FDF, CUST.FDF, was created in the Screen Edit Utility (SEU) as
a TEXT file.

LEVEL O SCREEN CHECK YOUR LEVEL This is screen.Columns . . . : 1 71 Browse
V2KEA45/QTXTSRC
SEU==> CUST.FDF

L e T T T s . R T - T I

*kkhkkkhhkkkhkkhkkx Beg-inn-ing of data KAkRKkkkhkhkkhkhhhhkhhkhhhkhhhhhhhhhhhxhrxx

001.00 CUSTKEY 1 12 0
002.00 CUSTOMER 14 40 0
003.00 ADDRESS 42 83 0
004.00 PHONE 85 101 0
005.00 MKTSEGMENT 103 114 0
006.00 COUNTRY 116 142 0
007.00 CONTINENT 144 170 0
008.00 REGION 172 198 0
009.00 TERRITORY 200 226 0
010.00 SALES00001 228 254 0
011.00 DUMMYKEY 256 258 0
012.00 *END

kkkkkhkkkhkhkhkhhkkhkkkx End of data kkkhkkhkhkhkhhhkhkkhhkkhkhkhkhkhhhkhhkhkkhkhkhkhkhkhkhhkkhkkk

Figure 6-4 Field definition file

The CPYFRMIMPF command for the *FIXED format is shown in Figure 6-5 and Figure 6-6.

Chapter 6. DB2 Import and Export utilites 131

Copy From Import File (CPYFRMIMPF)
Type choices, press Enter.
From stream file
From file:
File v v o o v o o .. > IMPF_TEST Name
Library *LIBL Name, *LIBL, *CURLIB
Member *FIRST Name, *FIRST
To data base file:
File o o o o o o ... > CUST_IMPF Name
Library *LIBL Name, *LIBL, *CURLIB
Member *FIRST Name, *FIRST
Replace or add records *ADD *ADD, *REPLACE, *UPDADD
Stream file record Tength . . . *TOFILE Number, *TOFILE
From CCSID *FILE 1-65533, *FILE
Record delimiter > *ALL Character value, *ALL...
Record format of import file . . > *FIXED *DLM, *FIXED
String delimiter e Character value, *NONE
More...
Figure 6-5 CPYFRMIMPF Command (Part 1 of 3)
Copy From Import File (CPYFRMIMPF)
Type choices, press Enter.
Remove leading blanks *LEADING *LEADING, *NONE
Field delimiter ! Character value, *TAB
Field definition file:
File . . .« . .« o o o o o .. > QTXTSRC Name
Library > TPSTAR Name, *LIBL, *CURLIB
Member > CUST_FDF Name, *FIRST
Decimal point *PERIOD *PERIOD, *COMMA
Date format *1S0 *1S0, *USA, *EUR, *JIS...
Date separator e /s =5 «s »» *BLANK
Time format *1S0 *1S0, *USA, *EUR, *JIS, *HMS
Time separator bt t, ., *BLANK
Copy from record number:
Copy from record number . . . *FIRST Number, *FIRST
Number of records to copy . . *END Number, *END
Errors allowed *NOMAX Number, *NOMAX
More. ..

Figure 6-6 CPYFRMIMPF command (Part 2 of 3)

132 Advanced Functions and Administration on DB2 Universal Database for iSeries

Copy From Import File (CPYFRMIMPF)
Type choices, press Enter.

Error record file:

File o o o oo .. *NONE Name, *NONE
Library Name, *LIBL, *CURLIB
Member Name, *FIRST
Replace or add records *ADD *ADD, *REPLACE
Replace null values *NO *NO, *FLDDFT

Bottom
F3=Exit F4=Prompt F5=Refresh Fl2=Cancel F13=How to use this display
F24=More keys

Figure 6-7 CPYFRMIMPF Command (Part 3 of 3)
If a field in the source file is not included in the target file, omit the field in the FDF file.

Enhancements have been made to the CPYFRMIMPF Import utility by adding the following
parameters:

» Remove leading blanks (RMVBLANK)

— If *LEADING is specified along with STRDLM(*NONE), then DB2 UDB for iSeries strips
leading blanks from a character string before placing the resulting string in the
specified character column.

— With *NONE, all leading blanks are included in the result string that is copied into the
specified target character column.

» Replace null values (RPLNULLVAL)

— When *FLDFT is specified, if the data being imported (for example, blanks in a numeric
field) causes DB2 UDB for iSeries to place a null value in a target column that does not
allow nulls, then DB2 UDB for iSeries will assign the default value to the target column
instead.

— When the default value *NO is specified, no replacement of null values is performed.

6.2.3 Data load example (Data Definition Language)

The Data Definition Language (DDL) source file STAFF.ddI and the Database extract file
STAFFA.csv in comma-separated variable (CSV) format reside on the source system. The
database extract file has to be exported to DB2 UDB for iSeries on the target iSeries server
AS23. A TCP/IP connection exists between the two systems.

Chapter 6. DB2 Import and Export utilites 133

134

To transfer these two files to the iSeries server, follow these steps:

1.

FTP the ddl file and csv file to the iSeries server as shown here:

C:\>ftp as23
Connected to AS23.

220-QTCP at rchasm23.rchland.ibm.com.

220 Connection will close if idle more than 5 minutes.

User (AS23:(none)): vijay 2
331 Enter password.

Password: 3]
230 VIJAY logged on.

ftp> put c:\vijay\staff.dd1 vijay/sqlsrc.staff 4

200 PORT subcommand request successful.
150 Sending file to member STAFF in file SQLSRC in Tibrary VIJAY.
250 File transfer completed successfully.

ftp:

317 bytes sent in 0.00Seconds 317000.00Kbytes/sec.

ftp> put c:\vijay\staffa.csv vijay/staffa.staffa 5
200 PORT subcommand request successful.

150 Sending file to member STAFFA in file STAFFA in Tibrary VIJAY.

250 File transfer completed successfully.

ftp:

2205 bytes sent in 0.01Seconds 220.50Kbytes/sec.

ftp>quit 6

Notes:

B
4

From a command line, type FTP to the iSeries server AS23.
Enter your user ID and press Enter.
Type your password and press Enter.

Type the PUT sub-command to copy the staff.ddlfile in the vijay directory to member
STAFF in source physical file SQLSRC in the library VIJAY. Note the use of the
forward slash (/) and the period (.) in the target file name (library/file.member)
format.

Type the PUT sub-command to copy the extracted database file staffa.csvin the vijay
directory to the single field physical file member STAFFA in the physical file STAFFA
in the library VIJAY. Note the use of the forward slash (/) and the period (.) in the
target file name (library/file.member) format.

Type QUIT and press Enter to exit the FTP session.

Figure 6-8 shows the DDL source imported to create the table STAFFI on the iSeries
server.

Advanced Functions and Administration on DB2 Universal Database for iSeries

Columns . . . : 1 71 Browse VIJAY/SQLSRC
SEU==> STAFF
FMT ** .. +... 1 ... L . B R T RS SR R T
kkhkkkkkkkhkkhkhkkhkkx Beg-inn-ing of data kkkhkkhkhkhkhkhkkhhkkhkkkhkhkhkhhkhhhkhkkhkkkhkhkhkhkkx*k
0001.00
0002.00 CREATE TABLE VIJAY.STAFFI (
0003.00 ID SMALLINT NOT NULL ,
0004.00 NAME VARCHAR(9) CCSID 37 DEFAULT NULL ,
0005.00 DEPT SMALLINT DEFAULT NULL ,
0006.00 JOB CHAR(5) CCSID 37 DEFAULT NULL ,
0007.00 "YEARS" SMALLINT DEFAULT NULL ,
0008.00 SALARY DECIMAL(7, 2) DEFAULT NULL ,
0009.00 COMM DECIMAL(7, 2) DEFAULT NULL
0010.00);
0011.00
kkhkkkkhkkkhkkhkhkhkhkhkkhkkx End of data kkkkkhkhkhkhhkhhkhkkhkhkhkhhhkhhhkhhkhkhkkhkhkhkhhkkhkkkkx
F3=Exit F5=Refresh F9=Retrieve F10=Cursor Fl1=Toggle F12=Cancel

F16=Repeat find F24=More keys

(C) COPYRIGHT IBM CORP. 1981, 2000.

Figure 6-8 Imported DDL for the STAFFA table

Figure 6-9 shows the STAFFA data file imported in the CSV data format to the VIJAY

library.

Chapter 6. DB2 Import and Export utilities

135

B T Ty . B T S TR I S B
10 ,"Sanders ",20 ,"Mgr ",7 ,18357.50 ,300.00
20 ,"Pernal ",20 ,"Sales",8 ,18171.25 ,1112.45
30 ,"Marenghi ",38 ,"Mgr ",5 ,17506.75 ,500.00
40 ,"0'Brien ",38 ,"Sales",6 ,18006.00 ,846.55
50 , "Hanes ",15 ,"Mgr ",10 ,20659.80 ,.00
60 ,"Quigley ",38 ,"Sales",0 ,16808.30 ,650.25
70 ,"Rothman ",15 ,"Sales",7 ,16502.83 ,1152.00
80 , "James ",20 ,"Clerk",0 ,13504.60 ,128.20
90 ,"Koonitz ",42 ,"Sales",6 ,18001.75 ,1386.70
100 ,"Plotz ",42 ,"Mgr ",7 ,18352.80 ,.00
110 ,"Ngan ",15 ,"Clerk",5 ,12508.20 ,206.60
120 ,"Naughton ",38 ,"Clerk",0 ,12954.75 ,180.00
130 ,"Yamaguchi",42 ,"Clerk",6 ,10505.90 ,75.60
140 ,"Fraye ",51 ,"Mgr ",6 ,21150.00 ,.00
150 ,"Williams ",51 ,"Sales",6 ,19456.50 ,637.65
160 ,"Molinare ",10 ,"Mgr ",7 ,22959.20 ,.00
170 ,"Kermisch ",15 ,"Clerk",4 ,12258.50 ,110.10
180 ,"Abrahams ",38 ,"Clerk",3 ,12009.75 ,236.50
190 ,"Sneider ",20 ,"Clerk",8 ,14252.75 ,126.50
200 ,"Scoutten ",42 ,"Clerk",0 ,11508.60 ,84.20
210 ,"Lu ", 10 ,"Mgr ",10 ,20010.00 ,.00
220 ,"Smith ",51 ,"Sales",7 ,17654.50 ,992.80
230 ,"Lundquist",51 ,"Clerk",3 ,13369.80 ,189.65
240 ,"Daniels ",10 ,"Mgr ",5 ,19260.25 ,.00
250 ,"Wheeler ",51 ,"Clerk",6 ,14460.00 ,513.30
260 ,"Jones ", 10 ,"Mgr ",12 ,21234.00 ,.00

270 ,"Lea ",66 ,"Mgr ",9 ,18555.50 ,.00
280 ,"Wilson ",66 ,"Sales",9 ,18674.50 ,811.50
290 ,"Quill ",84 ,"Mgr ",10 ,19818.00 ,.00

300 ,"Davis ",84 ,"Sales",5 ,15454.50 ,806.10
310 ,"Graham ",66 ,"Sales",13 ,21000.00 ,200.30
320 ,"Gonzales ",66 ,"Sales",4 ,16858.20 ,844.00
330 ,"Burke ",66 ,"Clerk",1 ,10988.00 ,55.50

340 ,"Edwards ",84 ,"Sales",7 ,17844.00 ,1285.00
350 ,"Gafney ",84 ,"Clerk",5 ,13030.50 ,188.00

Figure 6-9 Imported STAFFA.csv data file

2. Use the Run SQL Statement (RUNSQLSTM) command from the iSeries server command
line to use the DDL source to create the STAFFI table in library VIJAY:

RUNSQLSTM SRCFILE(VIJAY/SQLSRC) SRCMBR(STAFF) COMMIT(*NONE) NAMING(*SQL)

This command has the *SQL naming convention specified as used in the DDL in
Figure 6-8. Also the COMMIT parameter is specified with the value *"NONE as because
just want to create the table in library VIJAY and do not plan to use commitment control.

3. The last step imports the STAFFA file in the CSV data format using the CPYFRMIMPF
command. It also includes populating the STAFFI table in the library VIJAY. Type the
following command from a command line and press Enter to accept the defaults for string
a delimiter and field separator:

CPYFRMIMPF FROMFILE(VIJAY/STAFFA) TOFILE(VIJAY/STAFFI) MBROPT(*REPLACE)
Member STAFFI file STAFFI in VIJAY cleared.
35 records copied from member STAFFA.

Use the RUNQRY command to look at the data in table STAFFI:
RUNQRY *N VIJAY/STAFFI

136 Advanced Functions and Administration on DB2 Universal Database for iSeries

This command produces the report shown in Figure 6-10.

Display Report
Report width : 64

Position to line Shift to column
Line ...+ ...l i 02000000030l Al L H L Bl Ll

ID NAME DEPT JOB YEARS SALARY COMM
000001 10 Sanders 20 Mgr 7 18,357.50 300.00
000002 20 Pernal 20 Sales 8 18,171.25 1,112.45
000003 30 Marenghi 38 Mgr 5 17,506.75 500.00
000004 40 0'Brien 38 Sales 6 18,006.00 846.55
000005 50 Hanes 15 Mgr 10 20,659.80 .00
000006 60 Quigley 38 Sales 0 16,808.30 650.25
000007 70 Rothman 15 Sales 7 16,502.83 1,152.00
000008 80 James 20 Clerk 0 13,504.60 128.20
000009 90 Koonitz 42 Sales 6 18,001.75 1,386.70
000010 100 Plotz 42 Mgr 7 18,352.80 .00
000011 110 Ngan 15 Clerk 5 12,508.20 206.60
000012 120 Naughton 38 Clerk 0 12,954.75 180.00
000013 130 Yamaguchi 42 Clerk 6 10,505.90 75.60
000014 140 Fraye 51 Mgr 6 21,150.00 .00
000015 150 Williams 51 Sales 6 19,456.50 637.65
000016 160 Molinare 10 Mgr 7 22,959.20 .00

More...

F3=Exit F12=Cancel F19=Left F20=Right F21=Split

Figure 6-10 RUNQRY report for the STAFFI table

6.2.4 Parallel data loader

When using the CPYFRMIMPF command, you can take advantage of loading data into DB2
Universal Database for iSeries in parallel when the DB2 UDB for iSeries Symmetric
Multiprocessing (SMP) licensed feature of OS/400 is installed and activated on the iSeries
server to activate parallelism.

DB2 UDB for iSeries uses multiple tasks to load the large file. The command breaks the file
into blocks and submits the blocks in parallel; the entire file is processed at the same time.
The number of tasks used during the copy is determined by DEGREE(*NBRTASKS) on the
Change Query Attributes (CHGQRYA) command.

Table 6-2, based on the results of performance testing by the Teraplex Center using a
12-processor iSeries server, shows the advantages of parallel processing. The test used an
import file containing 350 million rows with 100 GB of data.

Table 6-2 Parallel data load

Load time Degree of parallel processing
47+ hours 1
4+ hours 12

Chapter 6. DB2 Import and Export utilities 137

6.3 DB2 UDB for iSeries Export utility

DB2 UDB for iSeries tables can be exported into a flat file with the CPYTOIMPF CL command
(single threaded only).

6.3.1 CPYTOIMPF

The Copy To Import File (CPYTOIMPF) command is used to export data from a DB2 UDB for
iSeries table to either a source physical file or a stream file. The command copies an
externally defined file to an import file; the term import file is used to describe a file created
for the purpose of copying data between heterogenous databases. The import file (TOSTMF
or TOFILE parameter of the command) can be sent to an external system using FTP or Client
Access. The export data flow is shown in Figure 6-11.

DB2 UDB for Stream file or
iSeries table \4 CPYTOIMPF source file

v

External FTP or
system < Client Access

Figure 6-11 Data export flow

The following steps summarize a data load from a database file:

1. Create an import file (TOFILE) for the data that will be copied to the external system. The
format for this data can be in delimited format or fixed format.

2. Use the CPYTOIMPF command to copy (translate or parse the records) from the source DB2
UDB for iSeries file (FROMFILE) to the import file (TOFILE).

3. Send the data in the import file (typically with FTP or Client Access) to the external
system.

The source file (FROMFILE)
The source file (FROMFILE) can be any one of the following file types:

Source physical file

Distributed physical file

Single format logical file

Externally described physical file with one field (of non-numeric data type)

vVvyyy

Note: If an externally described physical file has one field, the data type must be
CHARACTER, IGC OPEN, IGC EITHER, IGC ONLY, GRAPHIC, or variable length.

138 Advanced Functions and Administration on DB2 Universal Database for iSeries

The file can be copied or exported from the iSeries server using several methods, including:

>
>
>

TCP/IP file transfer (text transfer)
CA/400 support (file transfer, ODBC)
Copy To Tape (CPYTOTAP) command

Sending the data into the import file causes the necessary EBCDIC to ASCII data
conversions to occur.

The target file (TOFILE)

The source file (FROMFILE) is copied to the import file, also referred to as the TOFILE or
TOSTMF. The import file can be any one of the following file types:

'S

>

Parameter TOFILE
— Source physical file

— If the file is not a source file, the file can have only one field; the field of the file cannot

be a numeric data type
— Program described physical file

— Externally described physical file that can have only one field; the field of the file can
be a numeric data type

Parameter TOSTMF
Specifies the path name of the output stream file to which the source file is copied.

Data format (DTAFMT)
The data can be copied to the TOFILE as either delimiter format or fixed format:

>

Delimited format (*DLM): A series of characters as delimiters to define where strings,
fields, and records begin and end.

— Delimiters cannot be blank.

— A period cannot be a string delimiter.

— A string delimiter cannot be the same as a field or record delimiter.
— The defaults for delimiters are:

e String: Double quote (%)
e Field: Comma (,)
e Record: End of record (*EOR)

Fixed format (*FIXED): Each field of the file is copied without delimiters
— The NULLS parameter can only have the value *YES if DTAFMT(*FIXED) is used.
This places either a “Y” or “N” after field data indicating if the field is null or not null.
— The NULLS parameter can also have the default value *NO.
This does not place a “Y” or “N” after field data.
— A field definition file is not needed.

Additional function has been added to the following parameters of the CPYTOIMPF
command:

'S

Stream file code page (STMCODPAG)

not

Allows you to specify the code page of the target stream file. In the past, you would use

another tool or command to first create the stream file with the desired code page to
override the default behavior of the command.

Chapter 6. DB2 Import and Export utilities

139

» Replace or add records (MBROPT)

If the CPYTOIMPF command is given an empty database table to copy, then DB2 UDB for
iSeries now clears the target stream file when MBROPT (*REPLACE) is specified.

6.3.2 Creating the import file (TOFILE)

This section shows the creation of the TOFILE using the *FIXED and *DLM data formats. The
DB2 UDB for iSeries STAFF table in the library VIJAY is exported to another database server
along with the DDL source for the file from the member STAFF in the SQLSRC source
physical file in the library VIJAY:

1. Use the CRTPF command to create a single field physical file with a record length of 72
bytes:

CRTPF FILE(VIJAY/PF72) RCDLEN(72) MAXMBRS (*NOMAX)
2. Use the RMVM command to remove the PF72 member from the PF72 file:
RMVM FILE(VIJAY/PF72) MBR(PF72)

More members are added to the file PF72 as we use the Export utility to create the import
file (TOFILE).

3. Use the CPYTOIMPF command to copy the STAFF file and add the STAFFNLN member
to the file PF72; the command specifies the DTAFMT (*FIXED) and NULLS(*NO)
parameters as shown here:

CPYTOIMPF FROMFILE(VIJAY/STAFF) TOFILE(VIJAY/PF72 STAFFNLN) MBROPT (*REPLACE)
DTAFMT (*FIXED) NULLIND(*NO)

Figure 6-12 shows a partial list of the resulting member STAFFNLN.

Display Physical File Member
File : PF72 Library : VIJAY
Member : STAFFNLN Record : 1
Control Column : 1
Find
P R I DT SN DUV PP SN TIPS, DUPIPE UV ¢ PRPE SR A
10 Sanders 20 Mgr 7 18357.50 300.00
20 Pernal 20 Sales8 18171.25 1412.45
30 Marenghi 38 Mgr 5 17506.75 500.00
40 0'Brien 38 Salesb 18006.00 846.55
50 Hanes 15 Mgr 10 20659.80 0.0
60 Quigley 38 Sales0 16808.30 650.25
70 Rothman 15 Sales7 16502.83 1152.00
80 James 20 Clerk0 13504.60 128.20
90 Koonitz 42 Salesb 18001.75 1386.70
100 Plotz 42 Mgr 7 18352.80 0.0
110 Ngan 15 Clerkb5 12508.20 206.60
120 Naughton 38 Clerk0 12954.75 180.00
130 Yamaguchi42 Clerké 10505.90 75.60
140 Fraye 51 Mgr 6 21150.00 0.0
150 Williams 51 Salesb 19456.50 637.65
More. ..
F3=Exit F12=Cancel F19=Left F20=Right F24=More keys

Figure 6-12 TOFILE with DTAFMT(*FIXED) NULLS(*NO)

140 Advanced Functions and Administration on DB2 Universal Database for iSeries

4. Use the CPYTOIMPF command to copy the STAFFfile and add the STAFFNLY member to
the file PF72; the command specifies the DTAFMT (*FIXED) and NULLS(*YES)
parameters as shown here:

CPYTOIMPF FROMFILE(VIJAY/STAFF) TOFILE(VIJAY/PF72 STAFFNLY) MBROPT(*REPLACE)
DTAFMT (*FIXED) NULLIND(*YES)

Figure 6-13 shows a partial list of the resulting member STAFFNLY; notice the “Y” after
each field that has a null value and “N” after each field that does not have a null value.

Display Physical File Member

File : PF72 Library : VIJAY
Member : STAFFNLY Record : 1
Control Column : 1
Find
P O R DI DRI IV PP SN PUPINS. DUV PO ¢ PRPIE ORI A
10 NSanders N20 NMgr N7 N18357.50 N300.00 N
20 NPernal N20 NSalesN8 N18171.25 N1412.45 N
30 NMarenghi N38 NMgr N5 N17506.75 N500.00 N
40 NO'Brien N38 NSalesN6 N18006.00 N846.55 N
50 NHanes N15 NMgr N10 N20659.80 NO.0O Y
60 NQuigley N38 NSalesNO Y16808.30 N650.25 N
70 NRothman N15 NSalesN7 N16502.83 N1152.00 N
80 NJames N20 NCTerkNO Y13504.60 N128.20 N
90 NKoonitz N42 NSalesN6 N18001.75 N1386.70 N
100 NPlotz N42 NMgr N7 N18352.80 NO.0O Y
110 NNgan N15 NCTerkN5 N12508.20 N206.60 N
120 NNaughton N38 NCTerkNO Y12954.75 N180.00 N
130 NYamaguchiN42 NCTerkN6 N10505.90 N75.60 N
140 NFraye N51 NMgr N6 N21150.00 NO.O Y
150 NWilliams N51 NSalesN6 N19456.50 N637.65 N
More...

F3=Exit Fl12=Cancel F19=Left F20=Right F24=More keys

Figure 6-13 TOFILE with DTAFMT(*FIXED) NULLS(*YES)

5. Use the CPYTOIMPF command to copy the STAFF file and add the STAFFDLM member
to the file PF72; the command specifies the DTAFMT (*DLM) parameter and uses the
default delimiter values as follows:

CPYTOIMPFFROMFILE(VIJAY/STAFF) TOFILE(VIJAY/PF72 STAFFDLM)MBROPT (*REPLACE)

Figure 6-14 shows a partial list of the resulting STAFFDLM member; this member shows
the data ready for export in the most common CSV format that is used to port data
between heterogenous databases.

Chapter 6. DB2 Import and Export utilites 141

142

Display Physical File Member

File : PF72 Library : VIJAY
Member : STAFFDLM Record : 1
Control Column : 1
Find

foP U IR TS/ AP DUPIE RPN SN U D U ¢ DU P A
10 ,"Sanders ",20 ,"Mgr ",7 ,18357.50 ,300.00

20 ,"Pernal ",20 ,"Sales",8 ,18171.25 ,1412.45

30 , "Marenghi ",38 ,"Mgr ",5 ,17506.75 ,500.00

40 ,"0'Brien ",38 ,"Sales",6 ,18006.00 ,846.55

50 , "Hanes ",15 ,"Mgr ",10 ,20659.80 ,,

60 ,"Quigley ",38 ,"Sales",,16808.30 ,650.25

70 ,"Rothman ",15 ,"Sales",7 ,16502.83 ,1152.00

80 ,"James ",20 ,"Clerk",,13504.60 ,128.20

90 ,"Koonitz ",42 ,"Sales",6 ,18001.75 ,1386.70

100 ,"Plotz ",42 ,"Mgr ",7 ,18352.80 ,,

110 ,"Ngan ",15 ,"Clerk",5 ,12508.20 ,206.60

120 ,"Naughton ",38 ,"Clerk",,12954.75 ,180.00

130 ,"Yamaguchi",42 ,"Clerk",6 ,10505.90 ,75.60
140 ,"Fraye ",51 ,"Mgr ",6 ,21150.00 ,,
150 ,"Williams ",51 ,"Sales",6 ,19456.50 ,637.65
More. ..
F3=Exit F12=Cancel F19=Left F20=Right F24=More keys

Figure 6-14 TOFILE with DTAFMT(*DLM)

6. Use the CPYTOIMPF command to copy the DDL source from the STAFF member in the
SQLSRC source physical file in the VIJAY library and add the STAFFDDL member to the
file PF72; the command specifies the DTAFMT(*FIXED) parameter as shown here:

CPYTOIMPF FROMFILE(VIJAY/SQLSRC STAFF) TOFILE(VIJAY/PF72 STAFFDDL) MBROPT (*REPLACE)

DTAFMT (*FIXED)

Figure 6-15 shows a partial list of the resulting member STAFFDLM.

Advanced Functions and Administration on DB2 Universal Database for iSeries

Display Physical File Member

File : PF72 Library : VIJAY
Member : STAFFDDL Record : 1
Control Column : 1
Find

CREATE TABLE VIJAY.STAFFI (

ID SMALLINT NOT NULL ,

NAME VARCHAR(9) CCSID 37 DEFAULT NULL ,
DEPT SMALLINT DEFAULT NULL ,

JOB CHAR(5) CCSID 37 DEFAULT NULL ,
"YEARS" SMALLINT DEFAULT NULL ,

SALARY ~ DECIMAL(7, 2) DEFAULT NULL ,

COMM DECIMAL(7, 2) DEFAULT NULL

)s

*kkkkkk END OF DATA *kkkkkk

Bottom
F3=Exit F12=Cancel F19=Left F20=Right F24=More keys

Figure 6-15 TOFILE for DDL source

6.3.3 Exporting the TOFILE

The members STAFFDDL and STAFFDLM in the import file PF72 in the VIJAY library are
exported to the external system. A TCP/IP connection exists between the iSeries server and
the external database server. FTP is used for the data transfer between the two database
servers. The FTP dialogue from the external system is shown here:

C:\>ftp as23 1]

Connected to AS23.

220-QTCP at rchasm23.rchland.ibm.com.

220 Connection will close if idle more than 5 minutes.

User (AS23:(none)): vijay 2
331 Enter password.
Password: 3]
230 VIJAY logged on.
ftp> get vijay/pf72.staffddl c:\vijay\staff.ddl 4

200 PORT subcommand request successful.

150 Retrieving member STAFFDDL in file PF72 in library VIJAY.

250 File transfer completed successfully.

ftp: 305 bytes received in 0.00Seconds 305000.00Kbytes/sec.

ftp> get vijay/pf72.staffdlm c:\vijay\staff.csv 5|
200 PORT subcommand request successful.

150 Retrieving member STAFFDLM in file PF72 in library VIJAY.

250 File transfer completed successfully.

ftp: 2136 bytes received in 0.00Seconds 2136000.00Kbytes/sec.

ftp> quit 6

Chapter 6. DB2 Import and Export utilites 143

Notes:

From a command line, type FTP to the iSeries server AS23.
B Enter your user ID and press Enter.

B Type your password and press Enter.

B Type the GET sub-command to copy the STAFFDDL member in the file PF72in the VIJAY library to
the staff.ddlfile in the vijay directory. Note the use of the forward slash (/) and the period (.) in the
target file name (library/file.member) format.

B Type the GET sub-command to copy the STAFFDLM member in the PF72 file in the VIJAY library to
the staff.csvfile in the vijay directory. Note the use of the forward slash (/) and the period (.) in the
target file name (library/file.member) format.

B Type QUIT and press Enter to exit the FTP session to iSeries server AS23.

6.3.4 Creating the import file (STMF)

144

This section shows the creation of the STMF import file in the integrated file system (IFS) on
the iSeries server using the *FIXED and *DLM data formats. The DB2 UDB for iSeries file
STAFF in library VIJAY are exported to another database server along with the DDL source
for the file from the member STAFF in source physical file SQLSRC in library VIJAY.

1. Use the make directory command to create the vijay directory in the integrated file
system:

md vijay

2. Use the CPYTOIMPF command to copy the STAFF file and add the staffnin.txt stream file
to the vijay directory; the command specifies the DTAFMT(*FIXED) and NULLS(*NO)
parameters as shown here:

CPYTOIMPF FROMFILE(VIJAY/STAFF) TOSTMF('/vijay/staffnin.txt') MBROPT(*REPLACE)
RCDDLM(*LF) DTAFMT(*FIXED)

Figure 6-16 shows a partial list of the resulting staffnin.txt stream file.

Advanced Functions and Administration on DB2 Universal Database for iSeries

Browse : /vijay/staffnin.txt

Record : 1 of 36 by 14 Column : 1 63 by 79
Control :

P P R L . DS P SR SIPIPY. DU O ¢ JRPRPE SR A

************Begi nn-ing of data**************

10 Sanders 20 Mgr 7 18357.50 300.00
20 Pernal 20 Sales8 18171.25 1412.45
30 Marenghi 38 Mgr 5 17506.75 500.00
40 0'Brien 38 Sales6 18006.00 846.55
50 Hanes 15 Mgr 10 20659.80 0.0
60 Quigley 38 Sales0O 16808.30 650.25
70 Rothman 15 Sales7 16502.83 1152.00
80 James 20 Clerk0 13504.60 128.20
90 Koonitz 42 Sales6 18001.75 1386.70
100 Plotz 42 Mgr 7 18352.80 0.0
110 Ngan 15 Clerk5 12508.20 206.60
120 Naughton 38 Clerk0 12954.75 180.00
130 Yamaguchi42 Clerké 10505.90 75.60
140 Fraye 51 Mgr 6 21150.00 0.0
F3=Exit F10=Display Hex F12=Exit F15=Services F16=Repeat find
F19=Left F20=Right

(C) COPYRIGHT IBM CORP. 1980,

2000.

Figure 6-16 STMF DTAFMT(*FIXED) NULLS(*NO)

3. Use the CPYTOIMPF command to copy the STAFF file and add the staffnly.txt stream file
to the vijay directory; the command specifies the DTAFMT(*FIXED) and NULLS(*YES)
parameters as shown here:

CPYTOIMPF FROMFILE(VIJAY/STAFF) TOSTMF('/vijay/staffnly.txt') MBROPT(*REPLACE)
RCDDLM(*LF) DTAFMT(*FIXED) NULLS(*YES)

Figure 6-17 shows a partial list of the resulting staffnly.txt stream file.

Chapter 6. DB2 Import and Export utilities

145

146

Browse : /vijay/staffnly.txt
Record : 1 of 36 by 14 Column : 1 72 by 79
Control :

************Begi nn-ing of data**************

10 NSanders N20 NMgr N7 N18357.50 N300.00 N
20 NPernal N20 NSalesN8 N18171.25 N1412.45 N
30 NMarenghi N38 NMgr N5 N17506.75 N500.00 N
40 NO'Brien N38 NSalesN6 N18006.00 N846.55 N
50 NHanes N15 NMgr N10 N20659.80 NO.0 Y
60 NQuigley N38 NSalesNO Y16808.30 N650.25 N
70 NRothman N15 NSalesN7 N16502.83 N1152.00 N
80 NJames N20 NCTerkNO Y13504.60 N128.20 N
90 NKoonitz N42 NSalesN6 N18001.75 N1386.70 N
100 NPlotz N42 NMgr N7 N18352.80 NO.0 Y
110 NNgan N15 NCTlerkN5 N12508.20 N206.60 N
120 NNaughton N38 NCTerkNO Y12954.75 N180.00 N
130 NYamaguchiN42 NClerkN6 N10505.90 N75.60 N
140 NFraye N51 NMgr N6 N21150.00 NO.0O Y

F3=Exit F10=Display Hex F12=Exit F15=Services F16=Repeat find
F19=Left F20=Right
(C) COPYRIGHT IBM CORP. 1980, 2000.

Figure 6-17 STMF DTAFMT(*FIXED) NULLS(*YES)

4. Use the CPYTOIMPF command to copy the STAFF file and add the staffdim.csv stream
file to the vijay directory; the command specifies the DTAFMT(*DLM) parameter and uses
the default delimiters as shown here:

CPYTOIMPF FROMFILE(VIJAY/STAFF) TOSTMF('/vijay/staffdim.csv') MBROPT(*REPLACE)
RCDDLM(*LF)

Figure 6-18 shows a partial list of the resulting staffdim.csv stream file. This stream file
shows the data ready for export in the most common CSV format that is used to port data
between heterogenous databases.

Advanced Functions and Administration on DB2 Universal Database for iSeries

Browse : /vijay/staffdim.csv
Record : 1 of 36 by 14 Column : 1 59 by 79
Control :
P P R L . DS P SR SIPIPY. DU O ¢ JRPRPE SR A
************Beginning of data**************
10 ,"Sanders ",20 ,"Mgr ",7 ,18357.50 ,300.00
20 , "Pernal ",20 ,"Sales",8 ,18171.25 ,1412.45
30 , "Marenghi ",38 ,"Mgr ",5 ,17506.75 ,500.00
40 ,"0'Brien ",38 ,"Sales",6 ,18006.00 ,846.55
50 , "Hanes ",15 ,"Mgr ",10 ,20659.80 ,,
60 ,"Quigley ",38 ,"Sales",,16808.30 ,650.25
70 ,"Rothman ",15 ,"Sales",7 ,16502.83 ,1152.00
80 , "James ",20 ,"Clerk",,13504.60 ,128.20
90 ,"Koonitz ",42 ,"Sales",6 ,18001.75 ,1386.70
100 ,"Plotz ",42 ,"Mgr ",7 ,18352.80 ,,
110 ,"Ngan ",15 ,"Clerk",5 ,12508.20 ,206.60
120 ,"Naughton ",38 ,"Clerk",,12954.75 ,180.00
130 ,"Yamaguchi",42 ,"Clerk",6 ,10505.90 ,75.60
140 ,"Fraye ",51 ,"Mgr ",6 ,21150.00 ,,
F3=Exit F10=Display Hex F12=Exit F15=Services F16=Repeat find
F19=Left F20=Right

(C) COPYRIGHT IBM CORP. 1980, 2000.

Figure 6-18 STMF DTAFMT(*DLM)

5. Use the CPYTOIMPF command to copy the DDL source from the STAFF member in the
SQLSRC source physical file in the VIJAY library and add the staff.ddl stream file to the
vijay directory; the command specifies the DTAFMT(*FIXED) parameter as shown here:

CPYTOIMPF FROMFILE(VIJAY/SQLSRC STAFF) TOSTMF('/vijay/staff.dd1') MBROPT(*REPLACE)
RCDDLM(*LF) DTAFMT (*FIXED)

Figure 6-19 shows a list of the resulting staff.dd! stream file.

Chapter 6. DB2 Import and Export utilities

147

Browse : /vijay/staff.ddl
Record : 1 of 11 by 14 Column : 1 59 by 79
Control :

************Begi nn-ing of data**************

CREATE TABLE VIJAY.STAFFI (

ID SMALLINT NOT NULL ,

NAME VARCHAR(9) CCSID 37 DEFAULT NULL ,
DEPT SMALLINT DEFAULT NULL ,

JOB CHAR(5) CCSID 37 DEFAULT NULL ,
"YEARS" SMALLINT DEFAULT NULL ,

SALARY DECIMAL(7, 2) DEFAULT NULL ,

COMM DECIMAL(7, 2) DEFAULT NULL
)s

************End of Data********************

F3=Exit F10=Display Hex F12=Exit F15=Services F16=Repeat find
F19=Left F20=Right
(C) COPYRIGHT IBM CORP. 1980, 2000.

Figure 6-19 STMF for DDL source

6.3.5 Exporting the STMF

The stream files staff.ddl and staffdim.csv in the vijay directory in the iSeries server Integrated
File System are exported to the external system. A TCP/IP connection exists between the
iSeries server and the external database server. FTP is used for the data transfer between
the two database servers. The FTP dialogue from the external system is shown here:

C:\>ftp as23 1}
Connected to AS23.

220-QTCP at rchasm23.rchland.ibm.com.

220 Connection will close if idle more than 5 minutes.

User (AS23:(none)): vijay 2
331 Enter password.
Password: 3]
230 VIJAY logged on.
ftp> get /vijay/staff.dd1 c:\vijay\staff.ddl 4

200 PORT subcommand request successful.

150-NAMEFMT set to 1.

150 Retrieving file /vijay/staff.ddl

250 File transfer completed successfully.

ftp: 294 bytes received in 0.00Seconds 294000.00Kbytes/sec.

ftp> get /vijay/staffdim.csv c:\vijay\staff.csv 5

200 PORT subcommand request successful.

150 Retrieving file /vijay/staffdim.csv

250 File transfer completed successfully.

ftp: 1987 bytes received in 0.03Seconds 66.23Kbytes/sec.

ftp> quit 6

148 Advanced Functions and Administration on DB2 Universal Database for iSeries

Notes:

From a command line, type FTP to the iSeries server AS23.
B Enter your user ID and press Enter.

B Type your password and press Enter.

B Type the GET sub-command to copy the staff.ddl stream file in the vijay directory in the integrated
file system to the staff.ddl file in the vijay directory.

B Type the GET sub-command to copy the staffdim.csv stream file in the vijay directory in the
integrated file system to the staff.csv file in the vijay directory.

B Type QUIT and press Enter to exit the FTP session to the iSeries server AS23.

6.4 Moving data from DB2 UDB 7.2 to DB2 UDB for iSeries

This section illustrates two approaches for moving data, among many other valid options. The
first approach is based exclusively on the Import and Export utilities in a very direct way. The
second approach combines the Export utility with the CPYFRMIMPF CL command for better
performance.

6.4.1 First approach: Using the Export and Import utilities

In the first approach we found a very direct way to move data that was also very friendly to
users already familiarized with DB2 UDB 7.2:

1. Before starting, define the target iSeries database in DB2 UDB V7.2.

2. Use the DB2 UDB Export utility for exporting data from DB2 UDB V7.2 to an integrated
exchange file (IXF).

3. Use the DB2 UDB V7.2 Command Center or other DB2 UDF V7.2 SQL interface to
connect to DB2 Universal Database for iSeries.

4. Use the Import utility for importing the IXF file into a predefined target table.

The Export utility can be used to export DB2 UDB V7.2 information into an operating system
file in one of the following formats:

» Integrated exchange file (IXF): A data format explicitly designed for exchanging
relational data. IXF files are the preferred file format for exchanging information between
DB2 UDB V7.2 databases.

» Delimited ASCII file (DEL): A very popular family of flat files for exchanging information,
in which text fields are enclosed by quotations, fields are separated by commas, and
decimals are delimited by a point. Those delimiter characters can be changed if needed.
Delimited ASCII files are very popular also for exchanging information among personal
productivity tools, such as spreadsheets, where they are known as CSV files.

» Worksheet format file (WSF): Highly used for exchanging information between
spreadsheets and other tools, including relational databases.

In order to use the export utility, you can use the interactive Control Center interface or a DB2
UDB V7.2 SQL interface such as Command Center or DB2CMD.

Exporting relational data using the Control Center

From the Control Center, expand the object tree until you find the Tables or Views folder. Then
right-click the table or view you want in the contents pane. Select Export from the pop-up
menu, as shown in Figure 6-20.

Chapter 6. DB2 Import and Export utilites 149

[Control Center

Control Center Selected Edit View Tools Help

B 2 @ &0a @

D @ 3

=10l x|

D Systems | [|[DEMOSDLEMA - DBZ - MwWS_DiWH - Tahles
gﬂ CBOLIMAR Mame |Schema |Type |Tab|e Space |Indextab|e ShE
=) DEMOSDLEMA ER ADVISE_W.. DBZADMIN T CLASSIFICAT... =
=) Instances bRigTo T lciassrioar. |
=4 DBZ B Ass Aler... — J
EID Databases R AS5_ClA Renarre...
=[] NwS_DiH B\ asg_col DIOF

..... E ables B Ass FTF Co.;:fy...

..... 7] views B Ass FTF Privilages...

----- {7 Mliases B Ags FTF Sample Contents

..... D Trigoers - Impart...

BR ASS_FTF

""" D Schemas w

..... 7 Indeses B ASS_LIBI | gaq..

..... D Table Spaces B ass_twW Quiesce...

.....) connections B AT Rearganize... RE...

_____ D Replication Sources BH BLD_ClA Run Statistics...

----- D Replication Subscriptions B BLo_co Set Integrity...

..... {7 Buffer Paals ER BLD_LIB Define as Replication Source ¥

#-[7] Application Objects BH BLD_hv Show Related

&[T User and Group Ohjects ||| BB campios Estimate Size.. .

=[] Federated Database Objects 7| Se:rerate DD;-- — n _,|_I

H[jrifﬂffl“:n _ 4 B e 3 orrr:‘emcel’6 onitaring

Figure 6-20 Starting Control Center’s Export notebook

This takes you to the Export notebook. Follow the instructions for providing necessary

information as output file, output file format, message file, select sentence, etc. as shown in

Figure 6-21.
[# Export Table - ARIDSTO x|
DEMOSDLEMA - DB2 - MWS_DWWH - ARIOSTO - ARIOSTO
File | Large Objectsl Columns
Cutput file |c:1temp‘tariost0.ixr _l
Export file type
© Delimited ASCI format (DEL) Dptinns:. |
" Work shest format (ASF) Dptinns:. |
* Integrated exchange format (XF)
SELECT statement
SELECT * FROM ARIOSTOARIOSTO
Message file |c:1templariost0.log _l
ak | Show Command,\J Cancel I Help |
b

Figure 6-21 Export notebook

You can choose between running the Export command immediately by clicking the OK button
or reviewing the export command by clicking the Show Command, as shown in Figure 6-22.

150 Advanced Functions and Administration on DB2 Universal Database for iSeries

I Show Command x|

EXFORT TO cMemplariosto.ixf OF [XF MESSAGES cMempiariosto.log
SELECT * FROM ARIOSTO.ARIOSTO

Select Save Scriptto create a new script.

{"Gave Script.. | Close | Help |

Figure 6-22 Export command as generated by the Control Center

For general information about the Control Center, you can find detailed information in online
help facility within the Control Center.

Exporting relational information using the Export command

You can also use the Export command from an SQL interface, such as DB2CMD, which is a
very practical approach when you need to export data periodically, because it lets you create
a batch file.

An example of the Export command issued through the CLP is shown here:

db2 export to staff.ixf of ixf select * from userid.staff

Exporting relational information using Export API

You can also use the provided export application programming interface (API), sqgluexpr. For
general information about creating applications containing DB2 administrative APIs, see DB2
UDB Application Development Guide V6, SC09-2845.

Importing an IXF file into DB2 UDB for iSeries

From a DB2 UDB V7.2 SQL interface, you connect to the target DB2 UDB for iSeries
database using the following command:

CONNECT TO RCHASM23 USER DLEMA USING MYPASS

Then you use the following Import command to import data into the target table:
IMPORT FROM SOURCE_IXF_FILE.IXF OF IXF INSERT INTO DLEMA.DESTTABLE

Here SOURCE_IXF_FILE.IXF is the IXF file located in the workstation where the SQL
interface is being used.

Important: A destination table with compatible columns must exist previously, and it must
be journaled. If it is not, you will receive an SQL error -7008.

The Import utility in DB2 UDB for iSeries V5R1 is limited to importing IXF files into existing
tables.

All in a batch

As a convenient way to move multiple tables in a periodic way, you can create a batch file as
shown in the following example:

-- CONNECTION TO DB2 UDB 7.2 SOURCE DATABASE
CONNECT TO NWS_DWH USER MYUSER USING MYPASWRD;
-- EXPORTING DATA INTO IXF FILES

Chapter 6. DB2 Import and Export utilites 151

EXPORT TO C:\TEMP\ASS.IXF OF IXF SELECT * FROM DB2ADMIN.ASS WHERE END DT IS NULL;

EXPORT TO C:\TEMP\ACT.IXF OF IXF SELECT * FROM DB2ADMIN.ACT
WHERE ACT_TS > €2001-01-01 00:00:00.000000°;

EXPORT TO C:\TEMP\USR.IXF OF IXF SELECT USR_IP_ID, NM, DEPT_OU_ID, CC_OU_ID, BLD_ID
FROM DB2ADMIN.USR;

-- AND MANY MORE...

-- CONNECTION TO DB2 UDB FOR ISERIES

CONNECT TO RCHASM23 USER AS400USR USING AS400PWD;

-- IMPORTING IXF DATA INTO ISERIES SERVER

IMPORT FROM C:\TEMP\ASS.IXF OF IXF INSERT INTO DLEMA.ASS;

IMPORT FROM C:\TEMP\ACT.IXF OF IXF INSERT INTO DLEMA.ACT;

IMPORT FROM C:\TEMP\USR.IXF OF IXF INSERT INTO DLEMA.USR;

You run this batch file with the following DB2 UDB V7.2 command:

db2cmd -w -c db2 -f c:\temp\export_import.sql -z c:\temp\export_import.log -t

Here c:\templexport_import.sql is the batch file and c:\templexport_import.log is a text file,
where the informational, warning, and error conditions will be stored for review in case of
failure.

6.4.2 Second approach: Using Export and CPYFRMIMPF

The second approach is more appropriate for moving large data sets because it performs
better:

1. Use the DB2 UDB Export utility for exporting data from DB2 UDB V7.2 to a DEL file.
2. Move the DEL file to the iSeries server.
3. Use the CPYFRMIMPF CL command to load the DEL file into the target table.

Using Export utility for exporting data to a DEL file

You can use the Export utility from the Control Center as shown in “Exporting relational data
using the Control Center” on page 149, but export to a delimited ASCII file. You can also use
an interactive or batch command interface for executing a sentence as shown in the following
example:

EXPORT TO C:\TEMP\FILE.DEL OF DEL SELECT * FROM SAMPLEDBO02.STAFF
The resulting delimited ASCII file can now be loaded into the iSeries server using FTP and

then loaded into the target table using the CPYFRMIMPF command, as explained in 6.2,
“DB2 UDB for iSeries Import utility” on page 126.

6.5 Moving data from DB2 UDB for iSeries into DB2 UDB 7.2

You can move data from DB2 UDB for iSeries into DB2 UDB V7.2 using the same two
approaches shown in 6.4, “Moving data from DB2 UDB 7.2 to DB2 UDB for iSeries” on
page 149.

6.5.1 Using the Import and Export utilities

152

Using any SQL interface to DB2 UDB V7.2 such as Command Center or DB2CMD, you can
connect to the source iSeries server database and use the Export command to export any
table to an IXF file, as shown here:

CONNECT TO RCHASM23 USER AS400USR USING AS400PWD;
EXPORT TO C:\TEMP\IXF_FILE.IXF OF IXF SELECT * FROM SCHEMA.TABLE

Advanced Functions and Administration on DB2 Universal Database for iSeries

Here, c:\templixf_file.ixfis the target file on the workstation in which you execute the
command.

After you export the iSeries server data into an IXF file, you can import into DB2 UDB V7.2
using the Import utility. In this case, you have some extra functionality, like importing into a
new table as shown in the following example:

IMPORT FROM C:\TEMP\IXF_FILE OF IXF CREATE INTO DB2ADMIN.TARGETTABLE

Here, c:\templixf_file is the source IXF file, and DB2ADMIN.TARGETTABLE is the destination
table.

You can find valuable options that enable you to import appending into an existing table,
import replacing an existing table, or import updating an existing table. For a detailed
discussion on the Import and Export utilities in DB2 UDB V7.2, refer to Data Movement
Utilities Guide and Reference, which you can find on the Web at:
http://www-4.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/document.d2w/
report?fn=db2v7dmdb2dm07 . htm#HDREXPOVW

6.5.2 Using the CPYTOIMPF command and the Import utility

Similarly, you can use the CPYTOIMPF command to create a delimited file (also known as a
CSV file) and FTP it into a DB2 UDB V7.2 workstation as described in 6.3, “DB2 UDB for
iSeries Export utility” on page 138. Then you can use the Import utility on the DB2 UDB V7.2
workstation as shown in the following example:

IMPORT FROM C:\TEMP\DEF_FILE OF DEF INSERT INTO DB2ADMIN.TARGETTABLE
IMPORT FROM C:\TEMP\DEF_FILE OF DEF CREATE INTO DB2ADMIN.TARGETTABLE2
IMPORT FROM C:\TEMP\DEF_FILE OF DEF INSERT_UPDATE INTO DB2ADMIN.TARGETTABLE2

Chapter 6. DB2 Import and Export utilites 153

http://www-4.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/document.d2w/report?fn=db2v7dmdb2dm07.htm#HDREXPOVW

154 Advanced Functions and Administration on DB2 Universal Database for iSeries

Part 3

Database
administration

Operations Navigator offers a Windows-like graphical interface to configure, monitor, and
manage the OS/400 environment. This part gives you insight into the wide range of DB2
Universal Database for iSeries database administration functions available through the
Operations Navigator graphical interface, which comes packaged with Client Access Express
for Windows V5R1.

This part of the book covers the following topics:

Database functions using Operations Navigator
The use of Database Navigator

Reverse engineering and Generate SQL

Visual Explain

vVvyyy

© Copyright IBM Corp. 1994, 1997, 2000, 2001 155

156 Advanced Functions and Administration on DB2 Universal Database for iSeries

Database administration

This chapter discusses using the Database component of Operations Navigator to administer,
view, and manipulate your databases.

This chapter discusses:

Basic database operations
SQL scripts

Query attributes

SQL Performance Monitors

vVvyyy

© Copyright IBM Corp. 1994, 1997, 2000, 2001 157

7.1 Database overview

158

The Database component of Operations Navigator provides a graphical interface for many
DB2 Universal Database for iSeries database operations, including:

» Creating and managing tables, views, indexes, SQL, and stored procedures

» Creating and managing OS/400 journals (record changes to the database and other
functions supporting journals)

» Entering new, or modifying already created, SQL statements

» Running and debugging previously created SQL statements (referred to as scripts)
» Saving SQL statements for later use

» Doing performance analysis of SQL statements

» Capturing current SQL statements for any job running on the system

The Database component of AS/400 Operations Navigator is not installed by default when

choosing a Typical installation option of IBM AS/400 Client Access Express. If the Database
component is not currently installed, you can run Selective Setup to install it as discussed in
Managing OS/400 with Operations Navigator V5R1 Volume 1: Basic Functions, SG24-6226.

With proper authorization to the database objects, the user of the database graphical
interface has easy access to OS/400 server administration tools, has a clear overview of the
entire database system, can perform remote database management, and receives assistance
for complex tasks.

For OS/400 V4R4, key enhancements to DB2 Universal Database for iSeries included an
interface to the SQL-specific performance monitor and new Universal Database Object
Relational Support functions, such as various types of binary large objects (LOBs), user
defined data types (UDTs), user defined functions (UDFs), and DataLinks.

0S/400 V4R5 delivered a mix of enhancements across a wide variety of DB2 UDB functions
and interfaces including:

» Distributed Relational Database Architecture (DRDA) password encryption to improve the
security of Internet and intranet solutions.

» The iSeries Data Loader utilities (Copy From Import File (CPYFRMIMPF) and Copy To
Import File (CPYTOIMPF) CL commands) were enhanced and made easier to use in
V4R5.

» iSeries external stored procedure support was upgraded in V4R5 with the addition of Java
as a supported language

» Further Java database improvements were made to the iSeries SQLJ support. For
example, the implementation was re-engineered to deliver performance similar to static,
embedded SQL and extended dynamic SQL.

» The iSeries SQL CLI was significantly enhanced to make it more compatible with the
ODBC standard.

» On the performance front, the database engine was enhanced to reduce the number of
cases where SQL open data paths (ODPs) are non-reusable.

» Operations Navigator was enhanced to improve the manageability of DB2 Universal
Database for iSeries. The major additions include a Display Physical File Description
(DSPFD) type of output for tables, views, and indexes and Visual Explain for graphical
analysis of query implementations.

Advanced Functions and Administration on DB2 Universal Database for iSeries

>

Porting the database components of an application to the iSeries server was much
improved in V4R5. Improvements to the SQL Stored Procedure language and the SQL
Call Level Interface (CLI) top the list of portability enhancements. The SQL Stored
Procedure language has been available since V4R2 and has been widely used to
successfully port procedures written in proprietary languages such as Transact SQL and
PL/SQL to DB2 Universal Database for iSeries.

Full autocommit support that improves the integrity transactions performed by ODBC- and
JDBC-based client applications and lifts the restrictions that prevented stored procedures
and triggers from making committable database changes.

7.1.1 New in V5R1

The new features in V5R1 include:

>

Database Navigator: A new component that gives a pictorial representation of a schema
and DB objects and can generate SQL for those objects

Support for SQL Triggers creation from table properties
Generate SQL from existing DB objects (including DDS created)
RUN SQL script enhancements

The ability to print Visual Explain graphs

Database (SQL) V5R1 functions

— Database Text Extenders (including Text Search Engine and XML Extenders)
— DRDA 2 Phase Commit Over TCP/IP

— DRDA Result Sets

— RIGHT OUTER Join

— Expressions in INSERT

— SQL Triggers

— Up to 300 triggers per table

— Column triggers

— Read only triggers

— Longer than 80 character columns in C and C++ pre-compilers

— RUNSQLSTM support in 0S/400 V5R1

— Support for user-defined functions implemented in Java

— Increased large object (LOB) size — now 2 GB up from 15 MB

— Maximum total size for all large objects in a table row is now 3.5 GB, up from 1.5 MB

The maximum number of rows allowed in a table increased from 2.1 billion to 4.2 billion in
V4R5. The maximum table size remains half of a terabyte (TB). In addition, you can
reference more tables — up to 256 — on a single SQL statement. A journal receiver
maximum size increased from 2 GB to 1 TB, which reduces the frequency of changing
journal receivers. Similarly, the maximum number of journal sequence numbers increased
from 2 billion to 10 billion to reduce the frequency of sequence-number resets. These
remain unchanged at V5R1.

Although OS/400 integrated DB2 Universal Database for iSeries support is one of the major
strengths of iSeries servers, a complete description of this support is beyond the goal of this
redbook. Good sources for details of DB2 Universal Database for iSeries capabilities are:

>

iSeries Information Center: http://www.iseries.ibm.com/infocenter

Here you can select Database and File Systems->Database management. Under
Database management, by selecting DB2 Universal Database for iSeries books online,
you can find a list of publications that contain even more information. Most of these
publications are listed here.

Chapter 7. Database administration 159

http://www.iseries.ibm.com/infocenter

160

Database Programming, SC41-5701

This book describes database capabilities that are primarily outside of SQL terminology.
This includes physical files (correspond to SQL tables), logical files (correspond to SQL
views), fields (correspond to SQL columns), records (correspond to SQL rows), file
management, and file security.

SQL Programming Guide, SC41-5611
SQL Reference, SC41-5612

DB2 UDB for AS/400 Database Performance and Query Optimization:
http://submit.boulder.ibm.com/pubs/htm1/as400/b1d/v5rl/ic2924/index.htm

Distributed Data Management, SC41-5307

Cross-Platform DB2 Stored Procedures: Building and Debugging, SG24-5485
DB2/400: Mastering Data Warehousing Functions, SG24-5184

DB2 UDB for AS/400 Object Relational Support, SG24-5409

DB2 Universal Database for iSeries home page:
http://www.iseries.ibm.com/db2/db2main.htm

Use this link to learn about the iSeries database, recent announcements, support
information, and related products.

This page features many useful links to database related issues and products (like
Business Intelligence) and gives you access to a wealth of articles, white papers, coding
examples, tips, and techniques.

Self-study lab exercise with sample OS/400 database, installation instructions, and lab
instructions that can be downloaded from PartnerWorld for Developers iSeries Web site

at: http://www.iseries.ibm.com/developer

Select Education->Internet Based Offerings->DB2 UDB->Piloting DB2 UDB for
iSeries with Operations Navigator in V5R1.

Under OS/400, you can use SQL interfaces to access a database file or an SQL table since
these terms refer to the same object, classified within OS/400 as a *FILE object type. You can
use SQL interfaces to access the file regardless of whether the object was created with the
0S/400 Create Physical File (CRTPF) command or the CREATE TABLE SQL statement.
0S/400 also supports access to the physical file or table through a logical file (Create Logical
File (CRTLF) command) or an SQL view (SQL CREATE VIEW).

Table 7-1 shows the corresponding OS/400 term and SQL term for physical files or tables,
records or rows, fields or columns, logical files or views, aliases, and indexes.

Table 7-1 0S/400 term and SQL term cross reference

0S/400 Create SQL Create 0S/400 object 0S/400 object SQAL term

statement or statement type attribute

term

CRTPF CREATE TABLE *FILE Physical File (PF) | Table

CRTLF CREATE VIEW *FILE Logical File (LF) View

CRTDDMF CREATE ALIAS *FILE DDM File Alias
(DDMF)

CRTLF CREATE INDEX | *FILE Logical File (LF) Index

Field Column

Record Row

Advanced Functions and Administration on DB2 Universal Database for iSeries

http://www.iseries.ibm.com/developer
http://www.iseries.ibm.com/db2/db2main.htm
http://submit.boulder.ibm.com/pubs/html/as400/bld/v5r1/ic2924/index.htm
http://www.iseries.ibm.com/db2/db2main.htm
http://www.iseries.ibm.com/developer

Note: A DDM File represents a Distributed Data Management File. This is the original
0OS/400 object on the local iSeries server used to provide a link to a file on a remote system.
In the context of Table 7-1, an alias created by SQL has no remote system specification. To
determine if the DDMF/alias has any remote system specification, you can use the Work with
DDM File (WRKDDMF) command.

Note: OS/400 supports an object type of table (*TBL). This object type is for data
translation.

Throughout the remainder of this chapter, the SQL terms table, row, and column are used
more frequently than their corresponding OS/400 terms file, record, and field. In some cases,
both corresponding terms, such as field or column, are used.

7.2 DB2 Universal Database for iSeries through Operations
Navigator overview

In the Operations Navigator window, click the + (plus) sign next to the Database function for
the system to which you are attached to see the three major function areas as shown in the
left pane and right pane in Figure 7-1.

3 AS /7400 Dperations Mavigator
File Edit “iew Options Help

E%@%ﬂ|%|éﬁﬁ|><|@0 106 minutes old
| Environment: My Connections | Az01: Database
EI} Management Central [4:01) 1| Mame | Description |
=8 My Connections (B Libraries wiork with DE2 UDE for 45/400 objects.
B ! Az _ _ & [atabaze Mavigator work, with D atabaze Mavigator maps.
-85 Basic Operations Bl 50L Performance Maritors Collect and view SGL performance information,

B8 Wwork Management
B2 Configuration and Service
L@ Metwork

0 G

% [atabaze Mavigator

------ SOL Performance onitors —
-2 File Systems

{&d Backup

@ Application Development

-8, AFP Manager

=@l As01b =l
aba:
I55) Select libraries to display B Map your database
ﬁ Create new summary SOL performance monitor g Fun an SOL script
ﬁ Create new detailed SGL performance monitor 4 ? Help for related tasks LI
4

[[1-30f 3 objects [
Figure 7-1 Database function list view

There are several other ways to make the same three database function areas also appear in
the right pane as shown. This chapter discusses some of these ways. However, Operations
Navigator database capabilities are actually grouped under four functional branches:

» Database

» Libraries

» Database Navigator

» SQL Performance Monitors

Chapter 7. Database administration 161

162

The following sections summarize the capabilities under each of these four major database
function groupings. Examples and tips on usage are given for selected sub-functions under
each major function group to highlight Operations Navigator interfaces into the wide range of
DB2 Universal Database for iSeries capabilities.

These sections do not explain every action on every pull-down menu, but instead emphasize
the actions that are most significant. Such actions as Explore, Open, Shortcuts, and Print
options are very similar to these same actions described for Operations Navigator interface in
Managing OS/400 with Operations Navigator V56R1 Volume 1: Basic Functions, SG24-6226.
For some other database-specific actions or options, you must refer to Operations Navigator
online help information.

For the database functions described in the following sections, you need the appropriate
authority to perform the functions. You can use the SQL GRANT and REVOKE statements to
define authority to a table, view, procedure, user-defined functions, and user-defined types.
For tables and views, these statements may also specify processing authority, such as
SELECT (read), INSERT (write), DELETE, and UPDATE. SQL GRANT and REVOKE can
also specify column-level authorities.

The Operations Navigator Database interface supports table, view, index, procedure, column,
etc. database-related object levels of authority through the Permissions action by
right-clicking the database object name within a library. You can specify permissions for all
0S/400 objects, including database-related objects through Operations Navigator File
Systems interface.

An alternative to column-level authority is to use an SQL CREATE VIEW to a table or a
Create Logical File (CRTLF) command based on a file and specify only certain columns or
fields. Then you specify authorities or permissions to the logical file or view. SQL CREATE
VIEW or CRTLF can also specify compare values for columns or fields that limit the rows or
records that can be seen by those authorized to the view or logical file.

For additional details on the Object Relational Support items (functions and types), refer to
DB2 UDB for AS/400 Object Relational Support, SG24-5409. For authority implications of
using *SYS or *SQL naming convention when creating new DB objects with Operations
Navigator, refer to document number 9570127 in the Support Line Knowledge Base at:
http://as400service.ibm.com/supporthome.nsf/document/10000051

Advanced Functions and Administration on DB2 Universal Database for iSeries

http://as400service.ibm.com/supporthome.nsf/document/10000051
http://as400service.ibm.com/supporthome.nsf/document/10000051

Important iSeries software requirements: Base OS/400 provides SQL “run time
support”, not “program development for SQL support”. Run time support includes the
following uses of SQL with no SQL software installation required:

'S

All Open Database Connectivity (ODBC) support, which includes Operations Navigator
functions and Run SQL Scripts jobs and client workstation jobs using Client Access
ODBC support, such as a Visual Basic program

All Java Database Connectivity (JDBC) support, which includes client workstation Java
applets and local iSeries Java servlets accessing JDBC

DB2 Universal Database for iSeries support from an already compiled (created) local
iSeries program using embedded SQL in the RPG, COBOL, or C program

» DB2 Universal Database for iSeries support from an already compiled (created) local
iSeries program using the SQL Call Level Interface (CLI) in RPG, COBOL, C, or Java

» Use of the RUNSQLSTM command

To use DB2 Query Manager support or to compile (create) local iSeries programs using

embedded SQL, such as iSeries RPG, COBOL, and C programs, you must have licensed
program DB2 Query Manager and SQL Development Kit, 5722-ST1 (5769-ST1 for
releases prior to V5R1MO). This is for program development support.

7.2.1 Database functions overview

In the Operations Navigator window, right-click Database to access the pop-up menu shown

in Figure 7-2.

3 AS /7400 Dperations Mavigator

File Edit “iew Options Help

EREEdA B iR XY RE e

124 minutes old

| Environment: My Connections

| Azl Databaze

EI} Management Central [A01]
=8 My Connections

= !

Az

| v

Mame

[Description

@ Libraries

& D atabase Mavigator

785 Basic Operations
‘work, Management
B2 Configuration and Service

Create Shartcut
Change Query Attributes
Current SGL for aJab...
Fiun SOL Scripts...

Froperties

ﬁ Create new summary SGL perfarmance monitor
B Create new detailed S0L performance maonitar

Dizplays contents of this item in the right pane.

BB 50L Performance Manitors

work, with DBZ UDE for AS /400 objects.
work, with D atabaze Mavigator maps.

Collect and view SGL performance information,

Eﬁn Map pour database
g Fun an SOL script
b ‘2 Help for related tasks

K

Figure 7-2 Database pop-up menu functions

The possible actions are:

» Explore: The right pane displays the three other major database function areas:

— Libraries
— Database Navigator
— SQL Performance Monitors

Chapter 7. Database administration

163

http://as400service.ibm.com/supporthome.nsf/document/10000051

164

» Open: This is the same as choosing Explore, except that the contents of the selected file

system are displayed in a separate window.

Change Query Attributes: This enables you to specify attributes for database queries
and database file keyed access path (index) builds, rebuilds, and maintenance that are
run in a job. Query attributes may be specified through the OS/400 Change Query
Attributes (CHGQRYA) command.

In Operations Navigator, Change Query Attributes provides a graphical interface to apply a
superset (more than CHGQRYA provides) of query attributes as stored in a file. These
attributes can be applied to one or more active jobs that can be selected from a list.

0S/400 supplies a read-only version of the query attributes file—QAQQINI in library QSYS.
Run SQL Scripts within Operations Navigator defaults to using the QAQQINI file in library
QUSRSYS. You must copy the base QAQQINI file in QSYS into library QUSRSYS if you
want Operations Navigator to use its values system wide. Or use the following CL
command in the Run SQL Scripts window to default your job to another library where you
previously copied the QAQQINI file:

CL: CHGQRYA QRYOPTLIB (yourlib);
If there is no QAQQINI file in QUSRSYS, internal defaults are used.

You can use the Change Query Attribute graphical interface to easily make a copy of the
default QAQQINI file in a library of your choice and to change the default values to what is
most suitable for your job. We document this interface in 7.4, “Change Query Attributes”
on page 217. Any changes to the attribute values are typically determined by an
experienced query programmer. You can find the best explanation of how to use these
attributes in DB2 UDB for iSeries Database Performance and Query Optimization, which
you can find on the Web at:
http://submit.boulder.ibm.com/pubs/htm1/as400/b1d/v5rl/ic2924/index.htm

In addition to CHGQRYA, you can specify a subset of the query attributes available under
Operations Navigator through the OS/400 system values QQRYTIMLMT (time limit) and
QQRYDEGREE (degree).

Restriction: You must have job control (*JOBCTL) special authority to use this
function.

Current SQL for a Job: With this feature, you can select any active job on the iSeries
server and display it through the automatically linked Run SQL Scripts option, the SQL
statement, if any, currently being executed in the job. In addition to displaying the SQL
statement, you can edit or rerun it; you can also display the job log for the selected job or
end the job.

This can also be used for database usage and performance analysis, linking into the
Visual Explain tool documented in Chapter 10, “Visual Explain” on page 301.

Run SQL Scripts: This enables you to enter, edit, run, save, and debug SQL statements
across tables within all libraries (includes SQL collections).

You can run all supported SQL statements from this action. OS/400 provides a set of base
SQL statements for all supported functions that you can select and insert into your SQL
statements. You can enter a completely new SQL statement or modify an already available
statement for your own unique queries. You can also run CL commands. You can save
your own newly created or modified base statements for later use.

You must have appropriate file or table and field or column authorities (permissions) to
perform the functions at run time.

Section 7.3, “Run SQL Scripts” on page 197, shows several examples of building and
running SQL script.

Advanced Functions and Administration on DB2 Universal Database for iSeries

http://submit.boulder.ibm.com/pubs/html/as400/bld/v5r1/ic2924/index.htm

» Properties: This enables you to specify to refresh the current display every time a list is
displayed or after a time interval is specified in minutes.

There are several actions or functions available from the menu bar options for the Database,
Libraries, Database Navigator, and SQL Performance Monitors function groupings. This
chapter discusses a subset of all of these actions or functions. You must review the online
help text for a description of the entire set of actions or functions.

7.2.2 Database library functions overview

You can create, delete, and assign permissions (authority) to an OS/400 library under this
group of functions. You can also display the list objects within a library and create, change,
delete, or assign authorities (permissions) to an SQL table, view, alias, index or OS/400
journal, or OS/400 journal receiver listed within the library.

Figure 7-3 shows an example display after expanding the Libraries function and then
right-clicking Libraries to see the context menu.

3 AS /7400 Dperations Mavigator

File Edit “iew Options Help

E%@E$|@|%E|X|@° 1 minutes old
| Environment: My Connections | As01: Libraries
EI} Management Central [4s01) A1 | Name [Description [
=8 My Connections ITSCIDE3 COLLECTION - created by SOL
=@ A0) [EPORTERL Lindsay Parter's Library
% Basic Operations GQGPL General Purpose Library

‘work Management SOLLIE COLLECTION - created by SOL
Configuration and Service

Metwark.

+-if® Users and Groups
E-E Databass

QGF Create Shorteout

SsoL Mew Library
Databas Select Libraries to Display

; SOL Per
"C'_Dcn File: Spstem:

Eroperties

r— g

I55) Select libraries to display i) Map pour database

ﬁ Create new summary SOL performance monitor g Flun an SOL script

ﬁ Create new detailed SGL performance monitor 4 ? Help for related tasks LI
Dizplays contents of this item in the right pane. i

Figure 7-3 Database library actions

In this example, you see the library names ITSCID63, PORTERL, QGPL, and SQLLIB. These
libraries were currently specified in the Initial Library List (INLLIBL) parameter of the OS/400
job description object used by the Operations Navigator session to the iSeries server. The job
description is associated with the OS/400 user profile you used to sign on under Operations
Navigator when connecting to your iSeries server. By default, only the libraries in the user
portion of your iSeries library list are included under the Database component, plus any other
library you asked to add here in previous Operations Navigator working sessions.

You can add more libraries. Simply click Select Libraries to Display in the pop-up window by
either entering a library name or selecting from a list of library names on the system. Then,
click the Add button as shown in Figure 7-4.

Chapter 7. Database administration 165

Select Libraries to Display - As25 EHE |

" Enter libraries: Libraries to dizplay:

| OGPL

TEZCMDS

& Select from list Add - I

ADTSLAR -

AFPTEST :II

Hemove |
QK | Cancel | Help |

Figure 7-4 Database: Adding a library to your library list

This change is retained across subsequent new Operations Navigator working sessions. This
is done by maintaining a table on the host iSeries, QAUGDBLL in QUSRSYS, which lists all
users for the Database portion of Operations Navigator and all the libraries that were chosen
to work with using this interface.

If you want to remove a library from this list, repeat the previous steps, but select Remove.

Note: Any library added here may be used when you perform actions or functions under
this Libraries function of Database. Any library added here is not automatically used by the
actions or functions under other database sub-components such as Run SQL Scripts. Nor
is it added to the user’s library list on the iSeries server. In other words, while the original
list of libraries shown in Operations Navigator is built on the user’s library list, a change in
the library list for this interface is not going to affect the user’s library list on the iSeries
server.

7.2.3 Creating an OS/400 library or collection

There are several Operations Navigator higher level branches from which you can create an
0S/400 library. This section discusses creating a library by selecting Database->Libraries
and going to the New Library function as shown in Figure 7-5.

166 Advanced Functions and Administration on DB2 Universal Database for iSeries

A AS/400 Dperations Navigator

Fle Edit “iew Options Help

EQEEW|5|%E‘X|@Q 1 mirwtes old
I Environment: My Cannections I As01: Libraries
El:f Management Central [2:01) [| Mame ‘ Description |
=B My Cannections [E=ITSCIDE3 COLLECTION - created by SOL
’-:-‘"g A PDHTEHL Lindzay Porter's Library
B % Basic Uperations =[N General Purpose Library
B Wtk M T L1 M - created by SOL
=B Configuratior New Library - 4301 2] ¥
L Natwork
- Secuiity Library: INEWUE
- @if® Users and G
= Database Description: INew Library
@

Librariest
g ¥ Add to list of libraries displaped

BGF rﬁleate &5 ah SOL collaction
- 500

% Databas [T Greate & datadictionar,

~Hinl SOL Per

g, File Spstems Create in ausiiary storage pool: |1 =1
C ——
[Select libraries to disy base
& Create new sUmmary! oK I Cancel | Help | cript
R Create new detailed | d tasks LI
Digplays contents of this item in the right pane. 5

Figure 7-5 Database: Creating a new library

A library can contain any supported iSeries object type. However, under the Operations
Navigator's Database interface, you only work with objects related to database support.
Under the New Library function, you can create a new library, or you can create an SQL
collection. In OS/400, an SQL collection automatically builds a library, and within that library, it
creates:

» Ajournal

» A journal receiver

» A catalog

» Optionally, a data dictionary

A data dictionary is used for migrated System/36 application environments.

When you select the Add to list of libraries displayed check box (circled in Figure 7-5), the
newly created library is added to the user’s list of libraries in Operations Navigator working
session. This has no affect on the iSeries library list.

The library can be placed into the system auxiliary storage pool, ASP1 (default) or a
user-defined ASP2 (up to 32). An ASP is a defined set of disk devices that contain only
objects created into a library within that ASP. As shipped from IBM, ASP1 contains all disk
devices. A user-defined ASP is typically used for a specific performance requirement to
reduce disk arm movement or for a specific backup and recovery procedure.

For more information about ASP support, journaling support, and overall backup and
recovery, please refer to:
» iSeries Information Center at: http://www.iseries.ibm.com/infocenter

When you reach this site, select Backup, Recovery, and Availability.
» Backup and Recovery, SC41-5304
All database-related objects, such as tables, views, journals, and other system objects, like
programs, message queues, output queues, and so on, can be created, moved, or restored

into any iSeries library. All iSeries tables or files can be created or moved into an SQL
collection if the SQL collection does not contain a data dictionary.

Chapter 7. Database administration 167

http://www.iseries.ibm.com/infocenter
http://www.iseries.ibm.com/infocenter

An SQL collection can also contain catalog views that have descriptions and information for
all tables, views, indexes, files, packages, and constraints created in the library. All tables
created in the SQL collection automatically have journaling performed on them. When
referring to an SQL collection in iSeries documentation and screen panels, the collection
name and the library name refer to the same object.

7.2.4 Library-based functions

168

Refer to the display shown in Figure 7-6 to see an overview of the functions that are available
when you select a specific library. These database functions include:

» Assigning authorities (Permissions) to the library and objects within the library

» Totaling the number of files and folders (directories) in the library and the storage size of
all objects within the library (Properties)

» Creating new tables (Table) in the library
» Creating new views (View) and aliases (Alias) in the library

A view is an object that permits access to a subset of all rows in a table and columns
within a row. An alias is an object that allows SQL applications to reference a table or view
by another name.

In addition, aliases provide an easy way for SQL applications to access data in
multiple-member DB2 UDB for iSeries files.

In SQL standards, a table represents only one set of data (rows). OS/400 file support
includes multiple members, which are sets of records or rows that contain the same field
or column definitions, but different sets of data. For example, the MONTHS file can contain
a set of rows for January data (member name JAN) and another set of rows for February
data (member name FEB). At run time, a command parameter for Member Name (MBR)
could specify JAN one time and FEB another time. Opening an SQL alias provides an
equivalent function.

» Creating new journals to be used with the tables, views, or aliases
» Creating new SQL procedures
» Creating new user defined functions (Function)

» Creating new user defined types (Type)

Advanced Functions and Administration on DB2 Universal Database for iSeries

U Uperations Navigator

Fi Edit “iew Options Help

EHER B L BRRXeEeEe | mims alld
I Environment: My Connections I A301: PFRExP
EI% Management Central [4:07) A~ | Hame — | Type | Description |
=88 g}' Connections B CSTRLTST Aliag Accesses CSTFIL member CST
- As BRI TMFILIX Index
%5 Basic Operations B surirn Joumal
% WU'I_‘ Man.agement . EDEURIRA Receiver Journal receiver a for bupirm
g Eunflguliallun and Service B BURIRADDD Receiver Journal receiver a for bupir
- Hetwor B EURIRATO00 FReceiver Journal receiver a for bupiin
: Security o N N .
i EUFRIRE Receiver Journal receiver B for bupim
@ Users and Groups
£ Database ESCSTFIL Table custamer masterfor cooks bup dats
= [E5) Libraries EECSTMSTR Table CUSTOMER MASTER FILE 7 char name [KEY = C5T...
1 ERCUSTMSTR Table CUSTOMER MASTER FILE [KEY = CSTMER)
Explore THFIL Table ITEM pt for BUPsx parns (KFLD i pos. 36
QGPL Open CELLESRC Table ILE RPG source file
. Database W Create Shortout CLSRC Table ol src for appe bup
53 SOL Perfor Generats SOL CMDSAC Table COMMAND SOURCE
=2 File Systems Pramiszions CSRC Tabls
: Backup. Tl Table
@ Application Dey " Tahle
H I
Gf AFP Manager | Fasiz s Table ILE RPG source file
B As01b Faste Definitizn
! A0l Journal Table
g ASEDC Delete... Procedus » | 13blE Containg Brian Moordpke's SQLof LDAP file
= I —
i s Propertics Function » | Table FIELD REFERENCE FILE
! s Type Wiew E CUSTOMER MASTER FILE & char name [logical file)
= Ig !
B asoh LI Wiew CUSTOMER MASTER FILE
[E55) Select ibraries ta dizplay Map vour database
ﬁ Create new summary SOL performance monitar &% Fun an SOL script
B Create new detailed SOL performance manitor 4 ? Help far related tasks LI
i

Figure 7-6 Database Library functions

To bring up the Library functions, right-click a specific library (PFREXP in our example). In this
example, we double-clicked PFREXP or selected the Open option in the pull-down menu (fl)
to see the database-related objects in this library in the right pane.

By selecting New in the Library pull-down menu, the next level of objects to create (Table,
View, and so forth) are shown in the menu (B).

Before we explain more about creating these objects, we discuss the existing objects shown
for library PFREXP.

We created an alias CSTFILTST (§)), which accesses the CSTFIL file, with the member name
CST. CSTFIL is shown as a table (fj), but was originally created with the OS/400 Create
Physical File (CRTPF) command.

SQL index object ITMFILIX is at[l. This object was created, based on the ITMFIL table.
Section 7.2.5, “Object-based functions” on page 181, explains how to create an index.
0S/400 files created through the Create Physical File (CRTPF) and Create Logical File
(CRLF) OS/400 commands have access paths (indexes) if key fields are specified, but they
are not visible as a separate object of type index.

The BUPJRN journal is at] Each journal can have one or a pair (dual) of attached journal
receivers (where actions on the table or data within the table are actually recorded). BUPJRA
and BUPJRB, as the original dual journal receivers, are shown at [J. In our example, BUPJRA
and BUPJRB already reached their maximum space for journal entry information. Through
journal configuration parameters, a second set of dual journal receivers, BUPJRA1000 and
BUPJRB1000, have been created by OS/400, with the system generated 1000 suffix. They
are now the attached (receiving entries) journal receivers.

A series of tables including CSTFIL, CSTMSTP, CSTMSTRP, and ITMFIL are shown at [J.

The two views CSTMST and CSTMSTR are shown at .

Chapter 7. Database administration 169

Physical file and SQL TABLE differences

The OS/400 Create Physical File (CRTPF) command and the SQL CREATE TABLE
statement (implicitly used by the Operations Navigator New->Table dialogue) create an
0S/400 object type of *FILE. There are CRTPF command OS/400 parameters that have no
corresponding CREATE TABLE parameter. These parameters are part of every *FILE object
within OS/400 and affect the operating environment when accessing the file or table.
Therefore, when you use an SQL-based interface to create a table, OS/400 uses default
values for these CRTPF-only parameters. These CRTPF-only parameters include:

» Maximum members (MAXMBR parameter): OS/400 physical files can have multiple
members (same record layout and field attributes, different sets of records or rows). All
SQL tables default to a value of 1. This is also the default for CRTPF, but the user can
specify a number or “NOMAX (no limit on the number of members).

» Member size (SIZE parameter): OS/400 uses the number of records or rows value to
implicitly allocate the initial amount of storage for the file or table. Other values in this
parameter optionally specify how to allocate additional storage when the initial storage is
exceeded.

CRTPF defaults to 10000 records with up to an additional allocation of up 3000 records in
1000 record increments. A system operator message communicates each additional
allocation.

CREATE TABLE defaults to *"NOMAX.

» Reuse of deleted record or row storage (REUSEDLT and DLTPCT parameters): When
a row or record is deleted, the storage previously occupied by the record or row remains
as part of the total file or table storage allocation.

DLTPCT is the percent of deleted records or rows compared to all active records or rows
in the file or table. At file or table close time, if the number of deleted records or rows
exceeds this percentage, a message is issued to the OS/400 History Log (viewed with the
Display Log (DSPLOG) command).

REUSEDLT specifies to OS/400 whether to insert a new record or row into a new physical
storage space (REUSEDLT(*NO)) or into the storage of a previously deleted record or row
(REUSEDLT(*YES).

CRTPF defaults to DLTPCT(*NONE) and REUSEDLT(*NO). CREATE TABLE defaults to
DLTPCT(*NONE) and REUSDLT(*YES).

Note: Regardless of the DLTPCT and REUSDLT parameter values for a file or table,
you may have an application environment that you know or suspect may have files or
tables with a large number of deleted records (for example, disk storage is increasing
with no known increase in the number of new records). In this case, you should
consider running the OS/400 Reorganize Physical File Member (RGZPFM) command
or its equivalent Operations Navigator Database Reorganize function (see “Managing
tables and views” on page 182) on a specific file or table. You can use the DLTPCT
parameter message to assist you. Alternatively, you can periodically use the Display
File Description (DSPFD) command with TYPE parameter specifying “MBRLIST to see
both the number of records or rows in the file or table and the number of deleted
records in each member of the file or table.

You can specify, change, and view the values for these and additional OS/400 parameters for
a file or table by using the following OS/400 commands:

» Create Physical File (CRTPF) command
» Change Physical File (CHGPF) command
» Display File Description (DSPFD) command

170 Advanced Functions and Administration on DB2 Universal Database for iSeries

For more information on these and other file attributes, refer to Database Programming,
SC41-5701, and CL Reference, SC41-5722.

You can view the above mentioned settings and other file or table parameters, such as
database constraints and triggers, in Operations Navigator by right-clicking the table and
selecting the menu options Table Description and Properties.

Create Table example

To create a new table (or file) on the iSeries server with the traditional interface, you can use
DDS or the CREATE TABLE SQL statement. In both cases, you need the appropriate skill,
whether it is programming with DDS or SQL knowledge.

Follow these steps in Operations Navigator to create a new table:

1. Click Database->Libraries. Then, right-click the library PORTERL in which you want to
create the new object. You are presented with a list of choices, as shown in Figure 7-7.

3 AS /7400 Dperations Mavigator
File Edit “iew Options Help

E%@%ﬂ|@|éﬁﬁ|><|@0 0 mirwtes old
| Environment: My Connections | Az01: PORTERL
EI} Management Central [A01] || Mame | Type | Description |
E‘m My Connections E=0B) Table Output file for DSPOBID
E-F As01

Hg Basic Operations

ER work Management

B2 Configuration and Service
[@ Metwork

B Security

Users and Groups

EIE Database

@ Libraries
PFRE=P
OGPL Explore
D atabase Ma Oz
. S0L Performa Create Shortcut
[]__c.% File Systems Generate SEL..
[].. Backup Permissions
[]---@ Application Deveh Table
M- AFP Manager | e iew
-l Al Easte Alias
Eazte [efinition
Delet Journal
(28] Select libraries to display i Procedure » B Map your database
@ EreaFe = slul.'nTarIyHSHQIL Properties Function » = Hun an SQL SCI:[.IptI LI
Creates a new table. Type i

Figure 7-7 Create Table example (Part 1 of 3)

2. Select New->Table to access the panel where you specify the table name and description
for the new table (see Figure 7-8).

Mew Table in PORTERL - AsD1 K E3
Table: IF'roduc:ts
Diescription: IM}I product table

QK I Cancel | Help |

Figure 7-8 Create Table example (Part 2 of 3)

3. Click OK and you see the panel where you can specify the columns for the new table (see
Figure 7-9). Click the Insert button (fl) to insert a new column, and specify the column

Chapter 7. Database administration 171

name, type, length, and an optional description. You can also specify a short name (up to
10 characters), column heading (up to three lines of 20 characters each), must contain a
value (not null), default value, CCSID and a length to allocate (for VARCHAR and

VARGRAPHIC datatypes).

Mew Table - Products

Calumn Mame

| Type

| Len... | Diescription

prodcode
Mew_Column

CHARACTER 5
CHARACTEIZ] 1

Product Code

m

OWEE ...

INTEGER
SMALLINT

BIGINT
DECIMAL
NUMERIC

YARCHAR
GRAPHIC
YARGRAPHIC

Column | Key Eonstraintsl

The properties below af DATE

TIME
TIMESTAMP
DATALINE
ELOB

CLOB
NECINR

4

Short column name:

Heading:

4 | FLOAT

Pelete

Er. |
=
ED |

1

ol

™ Must contain a valug [rot ol

Default value: I

o

CCSID:

=

0K

Help

| Cancel |

Figure 7-9 Create Table example (Part 3 of 3)

4.

Use the pull-down list in the Type column (#) to choose the data type for the column. The
content of this list depends on the version and release of OS/400 installed on your iSeries
server. Since V4R4 DB2 UDB for iSeries added support for BLOB, CLOB, DBCLOB, and
datalink data types, these values only appear in the list if your iSeries server is running

V4R4 or a later release.

When finished with inserting columns, click OK to create the table or select any other item
you may need to work on (constraints, indexes, triggers, etc.).

Create SQL View example
A view is typically used to represent a subset of the columns in a table and, if specified, a
subset of the rows in the table.

For example, you have a customer table file that has several columns describing the
customer, including customer number (key field), customer description, customer address,
and customer telephone number. You want to show someone the customer number, customer
name, and customer telephone number, but not their address. You also know that customers
with a customer number greater than 500 do not want their telephone numbers known.

The following steps show you how to create a view (CUST_DIMVU) over the CUST_DIM
table:

1.

Right-click the library (PORTERL), and select New->View to access the new view panel

shown in Figure 7-10.

Advanced Functions and Administration on DB2 Universal Database for iSeries

Mew Yiew in PORTERL - AsD1 K E3

View: IEUST_DIMVU

Description: IView on CUST_DIM

Check option:
@ None
 Local
 Cascaded

QK I Cancel | Help |

Figure 7-10 Create View example (Part 1 of 6)

2. Enter the name, CUST_DIMVU, for the new view and the description.

New View - CUST_DIMYU ed e

The Check option specifies whether some type of data validity checking will be performed
on an update or insert operation. You must view the help information for additional details.
We selected None (default) in our example.

Click OK to see the panel with blank input areas, as shown in Figure 7-11. Click the Select
Tables button () to bring up the current library list for your current Operations Navigator
working session.

2

Select Bows

21|

|

|
Select Libraries to Dizplay

I

I

E@ Libraries
DLERA
PFRE=P

[TEAMOZ

[-[EE TPSTAR

Table | Column Mame | Diescription

oK Cancel add | Hebp |J

QK Cancel Help

Figure 7-11 Create View example (Part 2 of 6)

4. Previously we selected library PORTERL to create the view. However, the view can be

created to use tables in various libraries. To keep this example simple, we select the tables
from library PORTERL.

To see the tables within a library, either click the + (plus) sign next to the library name or
position the mouse on the library and double-click. Select the table, and click the OK
button, which places the column names in the upper pane in the area (in Figure 7-11).

As shown in Figure 7-11, select your table from the library. We selected the CUST_DIM
table from the PORTERL library, and clicked OK. We can select another table from the

Chapter 7. Database administration 173

library. We selected the PART_DIM table from the PORTERL library and then clicked the
Add button.

This places the columns of both the CUST_DIM (il) and PART_DIM (#) tables into the
upper pane (see Figure 7-12). We chose two tables to show an example of how
Operations Navigator assists you in building SQL statements that could become quite
complex.

As shown in Figure 7-12, we selected the CUSTKEY and CUSTOMER columns from
CUST_DIM and dragged and dropped them into the lower pane. You can see the arrow to
the left of the CUSTOMER column (E)), which indicates that the next column selection will
be inserted after this statement.

New View - CUST_DIMYU 2] x|

Column Mame yﬁe | Diescription
CUSTKEY INTEGER

Select Tabl
CUSTOMER CHAR Column Name | Deseription | ﬂl
DHESS CHAR PARTEEY INTEGER
PHOME CHAR PaRT CHaR E Select Bows
METSEGMEMT — CHAR MFGR CHAR
COUMTRY CH&R BRAND CHAR g R
COMTIMENT CH&R TYPE CHAR s et
REGION CH&R SIZE INTEGER
TERRITORY CH&R CONTAINER CHAR Show SOL |
SALESPERSON CHAR RETAILPRICE ~ DECIMAL

DUMMYREY CHAR |
DUMMYREY CHAR Edit 5GL

Table | Column Mame | Diescription | Colurmn Headings | Group By |
PORTERL.CUST_DIM CUSTKEY
PORTERL.CUST_DIM CUSTOMER

Delete

i

Farmula

QK I Cancel Help

Figure 7-12 Create View example (Part 3 of 6)

You can reposition this arrow for the next insert of a new column by clicking any existing
column in the lower pane. In this example, we selected the PHONE column, but have not
yet dragged it to the lower pane.

In this example, we create a view using only columns from the CUST_DIM table. If you
select multiple tables to appear in the upper pane, Operations Navigator expects a JOIN
clause in the VIEW statement and issues a message indicating this later if you continue
showing more than one table in the upper pane. Since we are only going to use the
CUST_DIM table, we select the PART_DIM table in the upper pane and press the Delete
key to delete this table from the upper pane. The PART_DIM column names no longer
appear in the following displays.

7. As shown in Figure 7-13, we completed a column selection for the CUST_DIMVU view
and clicked the Select Rows button. The Select Rows button enables a WHERE clause.
The Select Rows window shows the table columns, operators, and functions available in
the upper pane. Once a column operator or function is selected (by double-clicking), it is
inserted into the Clause pane. You may also manually enter your own text into the Clause
area as we did by entering the value 500.

Note: If you click the Summary Rows button, the HAVING clause is enabled.

174 Advanced Functions and Administration on DB2 Universal Database for iSeries

New View - CUST_DIMVU

Column Mame | Type | Description
CUSTKEY INTEGER
CUSTOMER CHAR Select Tables |
ADDRESS CHAR
PHOME T
MKTSEGMENT Bl
COUMTRY Cal 0 Functi
CONTINENT olumns peratars unchions Summary Flnwsl
REGION PORTERL.CUST_DIM.CUSTKEY + N |AII j
TERRITORY PORTERL.CUST_DIM.CUSTOMER -
SALESPERSON PORTERL.CUST_DIMADDRESS * AR5 Show SOL E’
DUMMYKEY PORTERL.CUST_DIM.PHONE 4 ABSVAL ﬁl
PORTERL.CUST_DIM.MKTSEGMENT < ACOS Edit SOL |
PORTERL.CUST_DIM.COUNTRY <= ANTILOG
PORTERL.CUST_DIM.CONTINENT = ASIN
PORTERL.CUST_DIM.REGION ¥ ATAM
PORTERL.CUST_DIM.TERRITORY 3= ATAM2
PORTERL.CUST_DIM.SALESPERSON < ATAMH
PORTERL.CUST_DIM.DUMMYKEY - AVG
Table r— I =l |eGinT =L
FPORTERLCUST
PORTERL.CUST hwHERE PORTERL.CUST_DIM.CUSTKEY <= 500 =
PORTERLCUST
E Delete |
LI Formula |
oK I Cancel | Help |
oK | Cancel | Help

Figure 7-13 Create View example (Part 4 of 6)

As soon as you have at least one SQL column in the Table pane (fl) or text in the Clause

pane (@), you can use the Show SQL (§) button to view the current SQL statement.

We clicked the Show SQL button to generate the Show Generated SQL window shown in
Figure 7-14.

New View - CUST_DIMYU

Column M ame | Type | Deescription |
CUSTKEY INTEGER
CUSTOMER CHAR
ADDRESS CHAR
PHONE CHAR
METSEGMEMT CHAR
COUNTRY CHAR Show Generated S5O0L 2] x|
CONTINENT CHAR
REGIONM CHAR CREATE VIE'W PORTERL.CUST_DIMVU AS SELECT]
TERRITORY CHAR PORTERL.CUST_DIM CUSTKEY,
SALESPERSON CHAR PORTERL.CUST_DIM.CUSTOMER,
DUMMYKEY CHAR PORTERL.CUST_DIM.PHOME FROM PORTERL.CUST_DIM
'WHERE PORTERL.CUST_DIM.CUSTKEY <= 500
Check Spntax
Table Calumn EBE I
PORTERL.CUST_DIM CUSTK
PORTERL.CUST_DIM CUSTC
PORTERL.CUST_DIM ~ PHONE
ok Cancel | Help |
Ok Cancel

Select Tables

Select Rows

Summary Rows

Show SOL

Edit SOL

R

Delete

Farmula

i

Help

Figure 7-14 Create View example (Part 5 of 6)

Chapter 7. Database administration

175

8. In this window, click the Check Syntax button to view the generated SQL and have syntax
checking performed. You cannot edit any text on this window.

9. If you are satisfied with the current SQL statement, you can click the OK button twice on
successive windows, and the View is created, assuming no errors are detected.
Depending on your Operations Navigator refresh setting, a new view appears in an
updated display showing the contents of the library, such as the example shown in
Figure 7-7 on page 171.

10.To edit the generated SQL, click the Edit SQL button (il), which opens the Edit Generated
SQL window shown in Figure 7-15.

New View - CUST_DIMVU 2] x]
CUST_DIM |
Column Mame | Type | Deseriplion |
CUSTKEY INTEGER
CUSTOMER CHAR Seect Tables |
ADDRESS CHAR
PHOME CHAR Edit G ted SQL
MCTSEGMENT CHAR it Genal MEEAEE 2]
v CREATE YIEW PORTERL CUST_DIMVL 43 SELECT = Summany Rows|

PORTERL.CUST_DIM CUSTKEY.

REGION CHAR PORTERL.CUST_DIM.CUSTOMER,
TERRITORY ~ CHAR PORTERL.CUST_DIM PHONE FROM PORTERL CUST_DIM ol
SALESPERSON CHAR \WHERE PORTERL.CUST_DIM.CUSTKEY <= 500 i _I

DUMMYEEY CHAR

i! Edit 5L |
B

Check Syntax |

Table I Colurnn b Bg I
PORTERL.CUST_DIM CUSTKE
PORTERL.CUST_DIM CUSTOW
PORTERL.CUST_DIM PHONE J

AS 7400 Operations Mavigator B3 o

Subrmit I Cancel | Help | Ltel
@ Yiew created successhully. o |
OK Cancel Help

Figure 7-15 Create View example (Part 6 of 6)

11.In Figure 7-15, the SQL statement area now has a white background. Here, you can enter
any characters and also have your syntax checked by using the Check Syntax button (&).

12.After we validated the SQL syntax, we clicked the Submit button) in Figure 7-15). Then,
the view was created successfully as indicated by the Information window shown.

Edit SQL tip: If you make changes through this Edit SQL process, the changes are not
saved. You may make changes and successfully create the view as we have done by using
the Submit button. However, the changes are not saved in this dialogue because you must
exit the Edit SQL function by clicking the Cancel button or using the Windows cancel

(X button).

SQL changes are not saved because they could be extensive. You can even change the
name of the view and the library that is already specified.

176 Advanced Functions and Administration on DB2 Universal Database for iSeries

Create journal example

A journal is an object used to record actions on database tables or files and other objects or
software that support journaling, such as system auditing. For DB2 UDB for iSeries, journals
are typically used to recover from application errors or unscheduled iSeries server outages.
Commitment control, as discussed in 7.3.1, “ODBC and JDBC connection” on page 202,
requires journaling to implement its COMMIT and ROLLBACK functions.

0S/400 uses the journal object as a front-end interface to an attached object, which is a
journal receiver that actually contains the journaled data. Each set of related journal data is
recorded as a journal entry.

Examples of non-DB2 UDB for iSeries software functions that optionally use journals and
journal receivers include:

» 0OS/400 security: Action auditing
» 0S/400 job accounting

» TCP/IP-based functions, including IP filters, IP network address translation (NAT), and
virtual private network (VPN)

» 0S/400 software license management tracking

Applications can also use OS/400 commands and System Application Program Interfaces
(APIs) to write to and read journal entries.

0S/400 supports defining and using remote journals as well. A journal associated with a local
journal can be defined to reside on a remote iSeries server. The remote journal can be
defined so that OS/400 automatically sends journal entries made on the local iSeries server
to the corresponding remote iSeries server journal. The primary intent of remote journal
support is to quickly and easily replicate data onto a backup iSeries server in a high
availability environment where the backup iSeries server can switch over to become the
production iSeries server, if an unscheduled outage occurs on the primary iSeries server.

To create and set up remote journaling through Operations Navigator, you must first create
the local journal and journal receiver. Then use the Properties support for the journal to
access actions that set up a remote journal. “Managing journals and journal receivers” on
page 192 shows an example of journal and journal receiver properties.

The following example shows how to create a local journal (CUST_DIMJ) in the PORTERL
library and create its associated journal receiver in the JRNLIB library:

1. Right-click the POTERL library. Select New->Journal to access the New Journal panel (fl
in Figure 7-16).

Chapter 7. Database administration 177

New Journal - As01 EE

I ame: ICUST_DIMJ Advanced... |

Library: IPDF!TEHL vl .
PORTERL.CUST_DIMJ Advanced Journal Attribut.__ [[E3
Diescription: IJournaI including entries for CUST_SIMJ Joumal message queus
Library
Library to hold receivers: IR MLIE] - L
Description IJournaI including entries for CUST

Ok I Cancel | Help |

Feceivers managed by:
. % System
New Jounallli cceEIRE 2] x| [T Delete receivers when no longer needed
Receiver name 5 " User
Library IJHNUB vl
Mew Receiver... |
Dezcription
[Recsver for joual CUST_DIM. in PORTERL I Minirize fixed partion of entries

¥ Remove intenal entries

Storage space threshold [MB) |5DD j
Ok I Cancel Help
Ok I Cancel | Help |

Figure 7-16 Creating the Journal and Journal Receiver

2. In the New Journal panel, enter the journal name, library, and description. Name the
library to hold the journal receiver. You can select a library from a list of the current
Operations Navigator session’s library list, except for the library named to contain the
journal. In our example, the PORTERL library would not appear in the list. Although you
can place a journal receiver in any library you want, including PORTERL in our example,
the OS/400 recommendation is to place the journal receiver in a library separate from the
library that contains the journal itself.

Another recommendation for OS/400 journaling support is to place the library used for the
journal receivers in its own user-defined ASP.

In our example, we specify library JRNLIB to emphasize a different library for the receiver.
JRNLIB must already exist.

3. Click the OK button in the New Journal panel (fl). The journal is created, along with an
attached journal receiver with a default name and default attributes.

If you click the Advanced button, you see the Advanced Journal Attributes panel (#in
Figure 7-16). You see the default attributes that were used in our example to create the
CUST_DIMJ journal. If you click the New Receiver button, you see the New Journal
Receiver pane (§ in Figure 7-16), which shows the default new journal receiver attributes.

Once the journal is created, right-click it and select Properties from the drop-down menu.
Then the Properties window appears as shown on the right-hand side in Figure 7-17. On
this window, you can start journaling for a table or a group of tables. To do this, click the
Tables button.

178 Advanced Functions and Administration on DB2 Universal Database for iSeries

£ AS /400 Operations Navigator

File Edit “iew Options Help

el ecal N B R b el e A

9 minutes old

| Environment: My Connections

|AsD1: PORTERL

EI} Management Central [A01]
-8B My Connections

Azl

Hg Basic Operations

‘work, Management
Configuration and Service

@ Users and Groups
= Database

5-[E5) Libraries

[atabaze Mavigator

@2 File Spstems

53] Select libraries to display
ﬁ Create new summary SGL perfarmance monitor
B Create new detailed S0L performance maonitar

Dizplays the properties of the selected items.

SOL Performance bonitors

| v

| Type | Diescription

| N

Journal

Joumal including entries for CUS...

EECUST_DIM Starts and ends table journaling
ERITEM_FACT Swap receivers
= [u]:Al Permissions for DSPOBJD
EEPART_DIM Delete
E=QPM0000180 for STROBMON
=== IS Rlinliny s for STRDBMON
E= QPMO00018: able Output k for STROEMON
E=0PMO000183 Table 1 2 x
E=0PMO000184 Table
E=0PMO000187 Table
bty ol Joumal message quele OSYSOPR o
B2 0PMO000130 Table Library 0SS -
E=0PMO000198 Table 2R
B 0PMO000T 39 Table Diescription IJ ournal including entrie
E=H 0260000007 Table ¥ Activate jounal
-y Receivers managed by: ~
H:: & System
b 2 Help " Delete receivers when na longer needed

 User

" Swap receivers
Sequence numbering:
& Cortinue

 Reset

" Minimize fixed portion of entries

¥ Remove intemal entries

Auiliary storage pool:

Journal type: Local

0K

Receivers... |

9

Remate Journals... |

Cancel Help |

Figure 7-17 Selecting the tables to journal (Part 1 of 2)

When you click the Tables button, the Start/End Journaling panel (Figure 7-18) appears.

On this display, select the CUST_DIM table and click the Add button to the left of the
Tables to journal pane to add it to the list of tables to be journaled in the CUST_DIMJ

journal. Click OK to start journaling the CUST_DIM table.

Chapter 7. Database administration

179

PORTERL.CUST_DIMJ Start/End Journaling - AsD1 K E3

Tables Tables already journaled
E@ Libraries Table I

[/ PFREXP

: Select all

=& PORTERL ﬂl
----- ER CUST_DIM
----- ER ITEM_FACT
..... & 0Bl ml
----- ER PART_DIM
----- ER GPMO000180
----- ER GPM0O0001E1
----- ER GPMO000182
..... B8 QPMO000183 Tables to journal
----- ER GPMO000134
----- ER GPMO000187

Add -

----- ER GPMO000188 —>I
----- ER GPMO000130
----- ER GPMO000193 Remove <-
----- ER GPMO000193 —I
----- ER 6260000007

----- BB 0260000014
----- BB 0260000022 —

| v

Jounal ..

PORTERL/CUST_Dik

L« | o

[#]- QGPL
=l

=S e

QK I Cancel | Help |

Figure 7-18 Selecting the tables to journal (Part 2 of 2)

The following summary describes the key journal and journal receiver attributes. For a full
discussion on these journaling attributes, refer to Backup and Recovery, SC41-5304.

Advanced journal attributes
Listed here are the advanced journal attributes. Refer to the Advanced Journal Attributes
window (B in Figure 7-16).

>

Journal message queue: OS/400 issues specific messages for specific changes to the
journaling environment. The typical reason for a journaling message is when a journal
receiver is reaching its threshold of maximum entries, a message is issued indicating that
the current receiver should be detached and a new, fresh journal receiver should be
attached.

The default message queue is “System Operator”, which is actually message queue
QSYSOPR.

In some environments, you may choose to manage your own journaling support, or you
may have an application that manages the journaling through software. In those cases,
you may want to use a message queue other than QSYSOPR.

Receiver managed by — System: By clicking System, you tell 0S/400 to automatically
detach the current journal receiver and attach a new one when the journal receiver
storage space threshold has been reached or when the attached journal receiver’s
sequence number has reached a value of 1 TB. Each time the system attaches a new
journal receiver to the journal, the journal receiver sequence number is incremented by
one. In addition, the system resets the receiver sequence number during IPL, provided the
receiver is not required for commitment control recovery. See Commit mode under 7.3.1,
“ODBC and JDBC connection” on page 202, for information on commitment control.

Under system managed receivers, you can also specify that OS/400 delete receivers when
they are no longer needed. If you do not choose this option, the detached receivers remain on
the system until you delete them.

>

Receiver managed by — User: By clicking User, you assume the responsibility for
changing journal receivers and determining when to delete receivers you no longer need.

Minimize fixed portion of entries: By clicking this option, you remove job, program, and
user profile information from each journal receiver entry. In a busy journaling environment,

Advanced Functions and Administration on DB2 Universal Database for iSeries

this can significantly reduce storage space required, but restricts selectivity by other
0OS/400 journal entry support.

» Remove internal entries: Depending on what is being journaled, OS/400 sometimes puts
its own entries into a journal receiver. By selecting this option, OS/400 deletes these
entries from the journal receiver when the system determines they are no longer needed.

One good example of these internal entries is those made to support System Managed
Access Path (table index) Protection (SMAPP) support. SMAPP journals changes to access
paths (that is, key columns or fields) independent of whether you use journaling of database
tables or files. SMAPP is intended to minimize access path recovery following an abnormal
system termination. Journaling access path changes helps SMAPP do this.

To enable SMAPP, you use the OS/400 Edit Recovery for Access Path (EDTRCYAP)
command as explained in Backup and Recovery, SC41-5304.

New journal receiver attributes
Listed here are the new journal receiver attributes. Refer to the New Journal Receiver window
(8 in Figure 7-16 on page 178).

» Journal name and description: Enter here the journal receiver name and journal
receiver descriptive text. As shown, the journal name and description are the default
values generated by Operations Navigator. These values are used if you never select the
New Receiver button in the Advanced Journal Attributes pane.

» Library: Enter the journal receiver library. The default value shown (JRNLIB) was
specified on the initial New Journal panel (il in Figure 7-16 on page 178).

» Storage space threshold: Enter the maximum storage in megabytes that the journal
receiver can take. You see the default value of 500 MB. The value 500 MB is specified as
500000 KB on the corresponding OS/400 Create Journal Receiver (CRTJRNRCV)
command Threshold parameter.

The number of journal receiver entries this space can contain depends on the amount of
data contained in each entry. When this threshold is reached, a message is sent to the
message queue specified in the window pane (@ in Figure 7-16 on page 178). See the
online help information for additional details.

In addition to the powerful Operations Navigator interface for creating and managing journals
and journal receivers discussed in this section and in 7.2.5, “Object-based functions” on
page 181, there are several OS/400 journal creation and management commands. To view
these commands and access the related online 5250 display-based help information, enter
the following command on a 5250 command line:

GO CMDJRN

7.2.5 Object-based functions

When you right-click a specific database-related object, a pull-down menu appears with
functions that are unique for that object type. At this specific object-level interface, you have
some additional create functions and a wide range of management functions. Object-based
functions for a database include:

Managing a table and view

Adding and managing constraints and triggers for a table

Assigning and changing authorities and permissions to these objects
Creating and managing an index for a table

Managing a journal

Adding and managing an associated journal receiver or a remote journal

vVvyyvyvyYYyy

Chapter 7. Database administration 181

Managing tables and views
Right-clicking a table brings up a menu similar to the example shown in Figure 7-19.

3 AS /7400 Dperations Mavigator
File Edit “iew Options Help

E%@%ﬂ|@|éﬁﬁ|><|@0 44 minutes old
| Environment: My Connections | Az01: PORTERL
M anagement Central [4:01) SE, | Tupe | Diescription I
E‘m My Connections B/CUST DI Journal Journal including entries for CUS...
-l A (CLIST DIk Table
785 Basic Operations %ITEM_FACT
ER work Managemert ==[al:N] Quick View Dutput fle for DSPOBJD
gﬁ Configuration and Service E=PART_DIM Description
L Network ER0PMon0NTE Locked Rows Dutput i for STROBMON
Ez::‘s"t:n 4 Groups EZ0PMO00TE . Create Alias Dutput e for STRDBMON
- Database E2 OPMO0001 8 Heorga.nlze Output file for STRDBMON
3 @ Libraries ER0PMo000S Jaumaling... Output file for STRDBMON
FFREXP E=0PMONONS | Generate STL. . Output file for STRDBMON
FORTER E=0PMO000TE Pemmissions Output file for STROBMOM
QGPL E2 OPMO0001 8 Cut Output file for STRDBMON
SOLLIB E2 OPMO00013 e Output file for STRDBMON
[iatabase Mavigator ER0PMO000S Delete.. Output file for STRDEMON
SOL Perfarmance Monitors — |ER QPMO00019 Rename Output file for STROBMOM
|:|--a‘:|‘;:-:'l File Systems EgoZG000000 ————— Output file for STRDBMON
I:I-- Backup E= 02000001 Froperties Output file for STRDEMON
-8 Application Development E20ZE0000022 Table Outputfile for STRDBMON
E"'?ﬂﬁfp Manager =l BHCUST_DIMVU Wiew Wiew on CUST_DIM
[3l -
Opens the selected item for update. i

Figure 7-19 Managing table actions

For the CUST_DIM table, these are the actions:

» Open: This displays, in the right pane, the first “n” rows of the table. The number of rows
displayed and the number of columns displayed for each row depend on the window size,
which can be adjusted to be shorter or longer (less or more rows) or narrower or wider
(less columns or more columns). With the right permissions, you can update columns,
delete rows, and insert new rows.

08S/400 issues an error message if you try to make invalid changes to a table. See “Open
table example” on page 183.

» Quick View: This displays the table data as Open does, but is a read-only view. No
changes can be made to the data.

» Table Description: Using this item, you can gather similar information as you would using
the DSPFD command on the iSeries server. However, in Operations Navigator, you are
also allowed to change some attributes such as Reuse of Deleted Records and Share
Open Data Path. See “Table Description example” on page 184 for details.

» Locked Rows: When the table is in use, this displays whether records are locked, their
relative number, which job (fully qualified job name) is actually locking them, and whether
the lock type is Read or Update. From this panel, it is also possible to access the locking
job’s job log, check what SQL statement is used, and copy it to a Run SQL Scripts
instance to work with it. The interface also allows you to end the locking job. “Working on
locked rows” on page 196 explains how to use it.

» Create Alias: An alias is an object that allows SQL applications to reference a table or
view by another name. In addition, aliases provide an easy way for SQL applications to
access data in multiple-member iSeries physical files.

» Reorganize: This enables you to reorganize the rows within the table according to a
specified table key or a named index, or by compressing storage currently occupied by
deleted rows.

182 Advanced Functions and Administration on DB2 Universal Database for iSeries

New starting in
V5R1

If your application frequently inserts new rows and then deletes them, such as in a work
file, you should consider using the compression of deleted rows function.

Note: Although both the OS/400 Create Physical File (CRTPF) command and SQL
CREATE TABLE create an OS/400 object of type *FILE, there are CRTPF command
parameters that have no corresponding SQL CREATE TABLE parameter. Therefore,
creating a table either via CREATE TABLE or by using the Operations Navigator
New->Table interface requires OS/400 to use default values for these physical file
parameters. One such parameter is the Reuse deleted record storage (REUSEDLT)
parameter. See “Physical file and SQL TABLE differences” on page 170 for notes on
creating a new table.

» Journaling: This option displays information about any journal that is currently or last
associated with a table. If the status shows “Never journaled”, you can start journaling the
table by specifying the name of an existing journal in an existing library, selecting the
Journal images before change option (to journal both before and after images), and
clicking Start.

» Generate SQL: Create SQL source statement for the table. See Chapter 10, “Visual
Explain” on page 301.

» Permissions: This enables you to view and change user profile and public authority or
permissions to the table and its columns. See the security chapter in Managing OS/400
with Operations Navigator V5R1 Volume 1: Basic Functions, SG24-6226, for a general
discussion on Operations Navigator Permissions support.

» Cut: This enables you to select a database object and drag and drop it to a different
library. When the drop is completed, the database object is deleted (cut) from the original
library.

» Copy: This enables you to select a database object and drag and drop it to a different
library or in the same library. When the drop is completed, the database object exists in
both the source and the target libraries.

» Delete: This enables you to select a database object and permanently delete it after you
confirm the delete of the object.

» Rename: This enables you to select a database object and rename it.

» Properties: This enables you to select a database object and display its properties.
Different property values are displayed depending on the object type. Also, depending on
the object type, you may be able to add, change, or remove property values. For example,
when you click Properties for an SQL-created view, you can see a read-only view of the
SQL used to create the view. If you click Properties for a view created by Create Logical
File (CRTLF) command, you see only a message panel that states there is no SQL
statement available.

Open table example

Figure 7-20 shows some example windows when performing an insert, delete, or update to a
table through Operations Navigator. This is the equivalent of using the Update Data
(UPDDTA) command to make changes to the records in a physical file.

Chapter 7. Database administration 183

PSTARDZ.CUSTDIM2 - As25
File Edit “iew 3
CUSTKE* Insert ER ADDRESS FHOMNE MKTSEGMENﬂ
1 i AMhzAARBRS gl545x 25-989-741-2988 BUILDING
2 Customer000000002 FAMOLIOzMNgpyl=2 23-768-687-3665 AUTOMOBILE
3 Customer000000003 FPSL7 45N Cw™N 2 OMBEBLogm|11-719-748-3364 AUTOMOBILE
4 Customer000000004 mknnl ShOMPRMz1kELw20B |14-128-190-5944 MACHINERY
5 Customer000000005 yOwewBznhPMNIB0IANPThEL|13-750-942-6364 HOUSEHOLD
4 Customer000000006 nS70ykLan 30-114-965-4951 AUTOMOBILE
P 7 ustomer#l00000007 28-190-982-9759 AUTOMOBILE =|
. oY
#= TPSTARD2.CUSTDIM2 - As25
File Edit “iew HRows Help
CLUSTOMER ADDRESS FHOMNE MKTSEGMEMNT Cﬂ
Customer000000001 AMhzAARBRS gl545x 25-989-741-2988 BUILDING b
Customer000000002 FAMOLIOzMNgpylx2 23-768-687-3665 AUTOMOBILE J E
./ |Customer000000003 myhere, USA 11-719-748-3364 AUTOMOBILE A
Customer000000004 mknnl ShOMPRMz1kELw20B |14-128-190-5944 MACHINERY E
Customer000000005 yOwewBznhPMNIS0IQNPChEL|13-750-942-6364 HOUSEHOLD C
Customer000000006 nS70vkLan kB1ik3R5wINzin |30-114-965-4951 AUTOMOBILE Sx
Kl L 1
3

The table you are attempting to change iz not being joumaled, or you do not have authority ta the journal.. |f you want to continue, you will nat be able to
cancel the changes you make. Do you want to continue making the change?

o

Figure 7-20 Open table example

In the Insert or Delete window (fll), you can insert a completely new row or delete an existing
row, such as row 7 (customer number 7) in this example. For insert, you must enter the data
according to each column’s valid data format or you receive a warning message. If you
attempt to delete a row or update a column in a row (update window ()), you see a warning
message window similar to the one that is shown (§). This message cautions about
recovering the original data if the table is not being journaled.

Table Description example

Right-click a table and select Table Description to see context information similar to what
you see with the OS/400 DSPFD command.

This interface provides information formatted on different notebook pages and is structured as
follows:

» General tab (Figure 7-21): Displays such information as the member name, its
description, size, number of current and deleted rows (therefore, making it easy to judge
whether reorganize can be useful), and maximum percentage of deleted rows allowed.
Plus it gives you the ability to change the Reuse Deleted Rows (REUSEDLT) parameter
and the table description.

184 Advanced Functions and Administration on DB2 Universal Database for iSeries

PFREXP.CSTFIL Description - As01 K E3

General |Allocati0n | #ccess Path | Usage | Activity | Details |

Member:

Description: I

Data size: 32TTHBE
“arying length data size: 1]

Current number of rows: 100

Deleted rows: o

Maximum % deleted rows m

[T Reuse delsted rows

Type: Physical file

Ok I Cancel Help |

Figure 7-21 Table Description panel: General

>

Allocation tab: Allows you to verify if there is a maximum number of rows set on the table,
what was the initial number of rows, its subsequent increase, if there is a value set for
forcing the writing of updates to auxiliary storage, and to change these settings.

Access Path: Shows the current size of the access path, the maximum size, the
maximum key length, whether the access path is valid or shared, whether it is journaled,
what the maintenance and recovery of the access path is set to, and other options for
further details.

Note: The Access Path tab is only visible for non-SQL described files. For SQL files,
use the properties option to see indexes and views or display their individual
descriptions.

Usage tab: Contains information on creation, modifications, backups and if this files data
can share open data paths across jobs (SHARE *YES/NO).

The Share open data path check box offers an easy way for you to change this setting for
the table.

Activity tab: Allows you to record the level of activity, documenting such information as
the number of insert, update and delete operations, the logical and physical reads, clear
operations, index builds/rebuilds, a full open and close, reorganize operations, and the
number of rows being rejected in open operations (by key, non-key, group by/having
selection methods).

This tab also contains important information regarding the number of valid and invalid
indexes built over the table.

Table Details tab (Figure 7-22): The last tab provides information on:

— Creation
— Number of allowed members

Chapter 7. Database administration 185

— Maximum time a program is to wait for the file and its rows to be available
— Maximum row length

— Sort sequence

— Language identifier

— Format level check and identifier

— Allowed activity level

— Unique identifier for this table in the system

— Disk pool itis using and if it is a distributed file

Some of the above mentioned values can be changed using this interface.

PFREXP.CSTFIL Description - As01 K E3

General I Allocation I Access Path I Usage I Activity ~Details |

Description:

System name: CSTFIL

Creation date: 05M5M995 022349 PM

Last used: 04/08/2001 02:08:30 PM

Mumber of members: S

Maximum members: 10 -

hdadimum weait time: lm seconds
hdaedimum rowy wwa time: I 30 vl seconds
Macdimum rove length: 269

Sort sequence: By hex valus

Language idertifier: I English (United States) j

¥ Format level check

Format level identifier: 400E07DE18333
Allowved activity: v Read v Updste
¥ Mite v Delete

Auxiliary storage pool: 1
Level identifier: 0930515142349

Distributed: [{a]

Ok I Cancel Help

Figure 7-22 Table Description: Table details

Changing properties: You must ensure that proper authorization or permission has been
given to the Operations Navigator user to access the Table Description and Properties
function for the object. You must also ensure the authorized user understands the
importance of any table modifications they make. For example, the properly authorized
user can delete fields or columns, and therefore, lose the associated data.

Programs created (compiled) against the table that has a field or column added or
removed may encounter an error during the next file or table open function. Through the
Create Physical File (CRTPF) or Change Physical File (CHGPF) command, you can
specify the Level Check (LVLCHK) parameter. A table with LVLCHK(*YES) specified
detects the added or removed column during file open. Re-creating the program usually
resolves the problem if the program does not need to use the column.

A program that may have already been performing column validity checking performs
unnecessary duplicate processing if a check constraint is added to the table.

186 Advanced Functions and Administration on DB2 Universal Database for iSeries

Table Properties example

Right-click a table, and select Properties to display all the table properties. We use the initial
properties panel (Column information) as shown in Figure 7-23 to discuss table properties:

Column properties
Key constraints
Indexes

Referential constraints
Triggers

Check constraints

vVvyvyvyYyy

PFREXP.CSTFIL Table Properties - As20 7| =
Column Marme | Type | Len... | Diescription
THUM NUMERIC 60 CUSTOMER NUMBER

| CHAME CHARACTER 20 IS Browse

ADFEST CHARACTER 40 ADDFESS FIELD 1 _Bronce.|
ADRES2 CHARACTER 40 ADDRESS FIELD 2 —
STATUS CHARACTER 1 STATUS FIELD
TIMSTE NUMERIC ~ 120 TIME STAMP FIELD Delcte
CETWKA CHARACTER 150 CST'WORK AREA
d | »

Colurnn | Key Eonstraintsl Indexesl Referential Eonstraintsl Triggersl Check Eonstraintsl

The properties below apply to the column definition currently selected above.

Shart column name: CHAME j
Heading: ChAME

V' Must contain a valug [not rull]

Default value:

CCSID: |3?

Ll

QK | Cancel Help

Figure 7-23 Table Properties example

Column properties

As shown in Figure 7-23, we moved the cursor to the CNAME field or column, as indicated by
the arrow to the left of the column and the highlighted column description. In the upper
column list, you see the column data type and length. In the lower pane, you see some
information about the column, including the Coded Character Set Identifier (CCSID).

The CCSID numeric value specifies how character data is stored on your system. For
user-created tables, the character data is defaulted to be stored in the format according to
your primary language ID. For example, on the systems used for this redbook, the OS/400
Language ID system value QLANGID is set to ENU — English for United States (uppercase
and lowercase). The default CCSID value for ENU is 37, as shown in our Properties example.
For more details on CCSID support, refer to AS/400 National Language Support, SC41-5101.

The Browse button leads to a dialogue in which you can view other tables that you may want
to use as a base definition to add (copy in) a new column to table CSTFIL.

The New button enables the Column window shown at the top of Figure 7-23 to accept a new
column definition. In the Column window, you enter the appropriate definition information.
Select a column in the Column window, and click the Delete button to remove the column
from the table.

Chapter 7. Database administration 187

188

You can make other changes or additions to the table and, when finished, click the OK button
to make the changes permanent. The changes or additions are run as if you entered the
ALTER TABLE SQL statement. If the table was created with the CRTPF command, the
original file is deleted and the new file is recreated. The field or column deleted also deletes
the associated data.

Key Constraints

Constraints place some controls on the action to an object or portion of an object. This Key
Constraints tab enables you to add, modify, view, or delete the primary key and unique keys
for a table. You may modify a constraint if it was defined during your current table editing
session. If you added the constraint and then clicked OK on either the New Table dialog or
Table Properties dialog, you may only view the constraint.

A unique constraint is the rule that the values of the key are valid only if they are unique.
Unique constraints can be created using the CREATE TABLE and ALTER TABLE statements.
Unique constraints are enforced during the execution of INSERT and UPDATE statements.

A PRIMARY KEY constraint is a form of the UNIQUE constraint. The difference is that a
PRIMARY KEY cannot contain any nullable columns.

Indexes

Indexes are your specific definition of key fields or columns and the order of those fields or
columns within the complete key. During performance analysis, the OS/400 query optimizer
may issue a job log message that recommends a new index be created to improve
performance. You can use SQL CREATE INDEX or this tab dialogue to create a new index.

The Indexes tab enables you to add modify, view, or delete an index for the table with which
you are currently working. You may modify an index only if it was defined during your current
table editing session. If you added the index and then clicked OK on either the New Table
button or Table Properties button, you can only view the index.

Referential Constraints

A referential constraint is where one or more columns of a table refer to values of columns in
the table you are currently working on or another table that is referred to as the parent table
for the current table.

The Referential Constraints tab enables you to add, modify, view, or delete referential
constraints for the table on which you are currently working. You may modify a constraint only
if it was defined during your current table editing session. If you added the constraint and then
clicked OK on either the New Table button or Table Properties button, you may only view the
constraint.

Triggers

DB2 Universal Database for iSeries has supported native high-level language (HLL) system
(external) triggers since V3R1. A trigger is program to initiate an action (trigger) when an
event occurs on a database file/table (insert, update, or delete). Triggers can be initiated
either before or after the event. Update triggers can differentiate whether a record/row was
actually changed.

You need to be cautious when using triggers. They offer powerful functions without knowledge
of the current program, but they are called synchronously. If they do too much work before
returning control to the original program, you may observe performance degradation.

SQL Triggers are new for V5R1. For SQL Triggers, SQL code is used to create the trigger
using SQL syntax. With native triggers, a program name is specified to execute (which could,
of course, contain SQL).

Advanced Functions and Administration on DB2 Universal Database for iSeries

New for V5R1 is the support for up to 300 triggers per table. You are now provided with the
option to add or replace triggers when you associate a trigger with a database table. Also new
in V5R1 is the support for READ event system (external) triggers only — a trigger program that
executes when a record is read from a database table.

Since DB2 Universal Database for iSeries now supports both system (external) and SQL
Triggers, the Operations Navigator Database component now interfaces to both kinds of

trigger.

Trigger definition and properties are part of the table Properties dialogue. See Figure 7-24.
The Properties page for triggers has been changed to display a list of triggers for the table,
which could include a mixture of both Native and SQL Triggers. Then the user can select a
trigger and go to a more detailed Properties dialogue for that specific trigger. The properties

dialogues are different for native and SQL Triggers.

e [Tope [0e ONLABZZ.ITEM_FACT Table Properties - As01 HE
@APAHT Index
&E”EM,EW Index Column Name | Type | Length | Description ﬂ
ESCUST_DIM Table ORDERKEY DECIMAL 160
EECUSTOMER_PA... Table PARTKEY INTEGER B
. - SUPPKEY INTEGER _Bome_|
Open LINENUMEER INTEGER N
EEPanT_ Quick View QUANTITY DECIMaL 15,2 =
EBOAPM b iion 4 EXTENDEDPRICE DECIMAL 15,2 Delete
EBasPM) Jo DISCOUNT DECIMAL 152 E
Locked Rows ¥ v
ggjg;s Create flias 50
ET\ME_[Blemigeiee Columnl Key Eonsllamls' \ndexas' Referential Constrairts Triggers | Check Conslra\nts'
=" Journaling
BHousTL -
%NEW\/\ Gena.rat.e S6L Event | ‘When | Trigger | Ena...J/Elp.. | Type
Permissions
EHPARTS
EASUPFL Cul Enable
Copy
Delete [izate
Rename
— [Elete:
Properties _I
Fropetties...
4 | |
Add SOL Trigger. | Add System Trigger. |
ok | cancel | Help

Figure 7-24 Defining an SQL Trigger

From the General tab screen (Figure 7-25), you can add an SQL Trigger to your table, specify
the event to fire the trigger, and indicate whether the trigger applies to the whole table or just

the selected columns.

189

Chapter 7. Database administration

Add S0L Trigger for Table ONLABZZ ITEM_FACT - As01 [=]

General |Timing| SQL Statements |

Trigger [Check_Guantity

Likrary: (ONLABZE vl

Description |Check quantity within limits

Event:
© Ingert
Delete

~
© Update

=

Update of selected columns
Fuailable columns: Selected columns:
ORDERKEY = QUANTITY
PARTKEY

SLIPPKEY

LINEMUMBER Add Al --== |

EXTEMDEDPRICE

DISCOUNT Remove =-- |

TAK

RETURNFLAG Ij Rermove All - |
ﬁ |»

ok | canal | mew 7]

Figure 7-25 Defining an SQL Trigger: General tab

The Timing page specifies the timing and frequency of the trigger and the resulting correlation
names (Figure 7-26).

Add SOL Trigger for Table ONLABZZ.ITEM_FACT - As01 <]
General Timing | s0L staternents |
When to run:

" Before event
& After event

Run trigger:
& For each row
Carrelation name for ald row: |Notspeciﬂed ;l
Carrelation name for new raw: |Notspeciﬂed =l
Mode:
' DRZROW
& DE2SAL
Temporary name for old table |N0tspeciﬂed ;l
Temporary narme for new table: |N0tspeciﬂed j
" Once far the staterment
Temporan mame tor olditakle: |Notspecmed ;l
TEMACran name for new takle: |N0tspeciﬂed j

]9 I Cancel | Help |‘?|
Figure 7-26 Defining an SQL Trigger: Timing tab

The SQL Statements page (Figure 7-27) contains the code for the SQL program that you are
defining as a trigger. You can use the SQL statement examples and fill in the necessary
information to make coding SQL easier. If you are adding a trigger to an existing table, you
can check for syntax errors by clicking Check Syntax once you have the statement defined. A
message is displayed for the first error detected, if any. To check for additional errors, click
Check Syntax after the first error is fixed. This button is disabled when you add a trigger to a
new table.

190 Advanced Functions and Administration on DB2 Universal Database for iSeries

After an SQL trigger has been created, the SQL statements cannot be changed. You will
have to delete and recreate the trigger to change the SQL.

Add SOL Trigger for Table ONLABZZ ITEM_FACT - AsO1

General| Timing SGL Statements |

SQL statement examples:

Statements:

HEN { search-condition)
BEGIN ATOMIC

triggered-S0L-staternent;
END

Check Syntax |

N

Cancel |

Heln |7

Figure 7-27 Defining an SQL Trigger: SQL Statements tab

On the Add System Trigger dialog, you can add a system (external) trigger to your table.
System (external) triggers use a program object that already exists on the system. The
program must exist before the trigger can be added. On pre-V5R1 systems, only the program
name and library fields are active. See Figure 7-28.

Add System Triggers for Table DNLABZZ ITEM_FACT - As80 [x]
Pragram name |
Add System Triggers for Table OMLABZZ.ITEM_FACT - As80
Library. [OMNLABZZ E = o E
General | Events
Description:
Trigger Name Trigger Library

[~ Allow repeated changes 1o a row [Insert before JSystern-generaled | ontaezz |
15 the trigger proaram thread-safe? [Ingert after |System-generated j |0NLABZZ j

& Unknown [Update hefore [evstern-generatat = [enceez |

~

< :fs) slwzys Uniate 11 0l Upsiate when changed

o

In & mult-threadecd job:
& Let system value GMLTTHDACN determing wt
" Do nat run the trigger program
© Run the trigger pragram and send 2 diagnost
€ Run the trigger program

[Update after

[Delete before
[Delgte after

[Read afer

[Bvstem-generatet | [owABzz =
& Alyvays Update i Ohlyndatewhen changed

[Bystem-generated | [eNLABZZ o
[Bvstem-generate | [omiABzz =
[Bvstem generate = [onsezz =

ok | cancel | e |9

Figure 7-28 Defining a system trigger

Chapter 7. Database administration 191

192

Check Constraint
A check constraint is specified at the field or column level. A check constraint examines the
validity of the data in one or more of the columns in the same table.

The Check Constraints tab enables you to add, modify, view, or delete check constraints for
the table on which you are currently working. You may modify a constraint only if it was
defined during your current table editing session. If you added the constraint and then clicked
OK on either the New Table dialog or Table Properties dialog, you may only view the
constraint.

Database table constraints tips

Constraints offer powerful system-provided DB2 UDB functions that need to be understood
before you use them. In addition to the Operations Navigator graphical interface to
constraints, OS/400 provides several commands to support constraints, such as the Add
Physical File Constraint (ADDPFCST) and Remove Physical File Constraint (RMVPFCST)
commands.

You can access the full range of OS/400 constraints support by using the OS/400 Work with
Physical File Constraints (WRKPFCST) command. For additional constraints information,
refer to:

» Operations Navigator online help information

» iSeries Information Center (http://www.iseries.ibm.com/infocenter). You can use the
search word constraints

» Chapter 15, “Controlling the integrity of your database with constraints”, in Database
Programming, SC41-5701

» Online help for the OS/400 commands on constraints, accessed through the Work with
Physical File Constraints (WRKPFCST) command

Managing journals and journal receivers

As discussed in “Create journal example” on page 177, a journal and its attached journal
receiver record the changes and actions made to a table. Once you create a journal and its
initial journal receiver, you can perform additional journal management by right-clicking either
the journal or a journal receiver within a library.

Figure 7-29 shows the actions that are possible on an existing journal.

Advanced Functions and Administration on DB2 Universal Database for iSeries

http://www.iseries.ibm.com/infocenter
http://www.iseries.ibm.com/infocenter

3 AS 7400 Dperations Mavigator
File Edit “iew Options Help
E|¥|@ﬂ%|ﬂ| EI éﬁllﬁl Xll @llol 1 minutes old
| Environment: My A5 /400 Connections | Az2h PFREXP
EI} Management Central [4525) || Mame | Type | Description |
: 1 s
Em My 45 /400 Cannections % CSTFILTST Alias Accesses CSTFIL member CST...
G- At bR ITMFILI Index
[JEURIRN Joumnal
EBUPJHA Starts and ends table journaling receiver a for bupjm
BUPRJRA1 Swap receivers receiver a for bupjm
By Basic Operati B EUPJRE Permizsions receiver B for bupjm
asie Lperations ﬂBUPJF!B‘I receiver B for bupim
@ Job Management Delete...
. N . ERCSTFIL = br masterfor cooks bup d...
B2 Configuration and Service
T3 Network ERCSTMSTF Properties MER MASTER FILE 7 c...
Security ERCUSTMSTRF Table COSTOMER MASTER FILE (K.
™ Users and Groups ERITHMFIL Table ITEM pf for BUP=== pgms [KFLD...
B Database EEQCBLLESRC Tahble ILE RPG source file
E-E5) Libraries EFQCLSRC Tahble cl src for appe bup
E=0CMDSRAC Table COMMaAND SOLURCE
PFRE=P EE0CSAC Table
PHDATADZ E=0DDSSAC Table
QGRL EJORNCYTLG Table
WPFRDATA __||E90RPGLESRC Table ILE RFG source file
TEAMD2 E=0RPGSAC Table
TPSTARDZ ER050LSESS Table Containg Brian Moordyke's S0Lo...
% CoppData Bources EIREFFIL Table FIELD REFERENCE FILE
e Fin Sitemes' omance Monitars | b po st Wiew CUSTOMER MASTER FILE & ..
o2)
-4 Mulimedia BACUSTMSTR Wigw CUSTOMER MASTER FILE
I:I-- Backup LI
[T W R TR R TS
[1- 23 of 23 ohiject(s) [i

Figure 7-29 Managing a journal

The actions are explained in the following list:

'S

Starts and ends journaling: This action starts or ends journaling for one or more specific
files or tables. Clicking this action brings up the Start/End Journaling panel shown in
Figure 7-30 on page 194.

The start and end functions correspond to the OS/400 Start Journaling Physical File
(STRJRNPF) and End Journal Physical File Change (ENDJRNPF) commands.

Journaling can be started and ended from the item you obtain by right-clicking a table
name.

Swap receivers: Clicking this action immediately detaches the currently attached journal
receiver and creates a new journal receiver by adding 1 to a sequential number suffix to

the journal receiver name. You can also manually swap receivers by using either an option
from the Properties action or by using the 0S/400 Change Journal (CHGJRN) command.

Permissions: This action lets you view and change the authorities to the journal

Delete: Clicking this action brings up a confirmation window for completing the journal
deletion request or canceling it. The journal can only be deleted if a// the objects being
journaled to the journal have had journaling ended for them.

Properties: This action brings up a panel that shows the original create journal attributes
including journal receiver attributes and remote journal attributes, if any. You can also
create a new journal receiver or remote journal by using the buttons that lead to additional
panels. Figure 7-31 on page 195 shows an example of Journal properties information.

We right-clicked the BUPJRN journal and selected Starts and ends table journaling.
Figure 7-30 shows the Start/End Journaling display for BUPJRN after we performed some
journal-related operations earlier.

Chapter 7. Database administration 193

PFREXP_BUPJRN Start/End Journaling - As25 EE ||

Tables Tables already journaled
-5 Libraries = Table |

- COOK PFREXP/CSTFIL
: Select al |
B PFREXP ceed

----- B C5TMSTR
----- & CUSTMSTRP _Remore < | B

..... B8 QCSRC Tables ta journal

Table Jounal ... | Omit op...

----- g SEEE\E;EE Add > | PFREXP/ATMFIL

----- ES 0SOLSESS . 1
..... ER REFFIL ml I
+- () PMDATADZ

H-{i5| QGPL

-5 APFRDATA -
{5 TEAMO2 =

M D ToCTADND

-

1 |

QK I Cancel | Help |

Figure 7-30 Start/End journaling display

To start journaling for a file or table, you can select the table and either click the Add button or
drag and drop the file name into the list box (fl in Figure 7-30). When all tables you want
journaled have been added to the list box, click the OK button. This starts journaling for these
files or tables.

Alternatively, you could have used the OS/400 Start Journaling Physical File (STRJRNPF)
command.

Notice the “Journal...” and the “Omit op...” column headings in the list box (il). The
“Journal...” heading corresponds to the STRJRNPF command IMAGES (Record images)
parameter. The “Omit op...” column heading corresponds to the STRJNPF command
OMTJRNE (Omit journal entries) parameter.

If you click under the “Journal” or “Omit op” heading to the right of a file or table name, an “X”
character appears. If you click again, the “X” disappears. An “X” under Journal means that
both before and after record images are written to the journal receiver. If no “X” appears, only
an after image is recorded in the journal receiver. An “X” under Omit op... means that file or
table open and close actions are not recorded in the receiver. If no “X” appears, all actions on
the journaled file or table are recorded in the receiver.

In the list box (B in Figure 7-30), you see the PFREXP/CSTFIL (system naming convention)
table is already being journaled at the time the Properties action was selected.

You can stop journaling for a file or table by selecting the file or table (listed in) and clicking
the Remove button and then clicking the OK button. This function corresponds to the OS/400
End Journaling Physical Files (ENDJRNPF) command.

Journal Properties example

When we right-clicked the BUPJRN journal and selected Properties, the Journal Properties
panel appeared as shown in Figure 7-31 on page 195. This shows the original parameters
used to create the journal and enables you to make some changes and additions.

The Tables button shows you the Start or End journaling panel we already described.

194 Advanced Functions and Administration on DB2 Universal Database for iSeries

The Receivers button shows you the currently attached receiver and previously detached
journal receivers still on the system. You can also add a new journal receiver.

The Remote Journals button shows you the current status of a remote journal, if any. You can
also add a new remote journal.

PFREXP.BUPJRHN Journal Properties - As25 EHE |

Joumnal meszage queue

Library
Drescription
IV Activate journal Tables... |
Feceivers managed by:
" System
™| Delete reneivers wherno longer needed
& User
I~ Swap receivers -
. Receivers... |
Sequence numbering:
& Cortinue
" Flesst

™ Minimize fixed portion of entries
™ Remove intemal entries
Auiliary storage pool: 1

Journal type: Local

Remate Journals... |

QK I Cancel | Help |

Figure 7-31 Journal Properties example

You can select the Swap receivers box and optionally specify either Continue or Reset to
specify the sequence numbering to be used with the new receiver. Then click the OK button
to have an immediate detach of the current journal receiver and creation of a new receiver
that is immediately attached to the journal. Review online help information (click the Windows
? button and place it on the Swap receivers text; this is the equivalent of context sensitive
help on 5250 command screen when you move the cursor to a particular keyword parameter
and press F1 for help) to determine if Swap receivers applies to your journaling environment.

In this example, we clicked the Receivers button to show you the panel in Figure 7-32. In our
example, we have three online, but detached, receivers. The currently attached receiver is
BUPJRAO0002.

Chapter 7. Database administration 195

Receivers for Journal PFREXP.BUPJRN - As25 EHE

Receivers:

Status
Orline

PFRE*P BUFIRBE

Online Mew...
FFRExP.BEURPJRADOO Online
FFREXP.BUPJRADOOZ Altached
Delete... |
L | 2

General Entries | Storagel
Mumber of entries: 58

First sequence number: 1

Last sequence number: ot}
M aximumn entry specific length: 384
M arimurn null value indicatars: 1]

QK I Cancel | Help |

Figure 7-32 Journal receivers list and properties example

By selecting the BUPJRA journal receiver, the lower portion of the panel automatically
displays the General properties of this receiver. We already selected the Entries tab
information.

Select an online detached journal receiver. Click the Delete button to remove the journal
receiver and its entries from the system when you no longer need this journaled information.

When you click the New button, you see an Add Journal Receiver panel. Clicking the OK
button makes any new or delete function permanent.

You may also find the journal receiver General, Entries, and Storage information in a separate
Properties panel for a specific receiver by performing either of the following actions from the
library panel:

» Double-clicking the journal receiver object
» Right-clicking the journal receiver object and selecting Properties

Working on locked rows

To gain access to this function, right-click a table. The Locked Rows dialog (Figure 7-33)
displays the row number, job, user, job number, current user, status, and lock type for rows
that have a row lock placed on them. A row lock is placed on a row when you read a table that
is opened for update. While the row lock is in effect, no other job can read the same row for
update, which keeps another job from unintentionally deleting the first job's update.

196 Advanced Functions and Administration on DB2 Universal Database for iSeries

TPSTARD2.CUST_DIM Locked Rows - As27 HE

Fiow Numberl Job | Uszer | Numberl Current ser | Statuz | Lock Ty|:|

OPADEYOOD4 TEAMOE 022250 TEAMOE HELD UPDATE Job Log |
[PADEYOO07 ITSCID4T 022243 ITSCIDH HELD LUPDATE

[PADEYOO07 ITSCID4T 022243 ITSCIDH HELD LUPDATE Erd.Job |
OPADEYOOD4 TEAMOE 022250 TEAMOE HELD LUPDATE

OPADEYOOD4 TEAMOE 022250 TEAMOE HELD LPDATE

(PADEVOOD? ITSCIDA 022243 ITSCID41 HELD UPDATE SOL Statement |E
[PADEYOO07 ITSCID4T 022243 ITSCIDH HELD LUPDATE

SoenmLAnn L TEatian fononnTeann S Ilrnf Refresh |

UPDATE CUST_DIM SET SALESPERSOM =: HWHERE CUSTKEY IN [117 558 . 611 1744 ;I
2101, 2471)

Edit SOL |
4

[
Cloze I Help

Figure 7-33 Locked Rows example

The Locked Rows panel allows you to perform various tasks:

Check which jobs are locking which rows

View the job log for a job

View an SQL statement that is running or has run in the job

Use the above mentioned SQL Statement with the Run SQL Scripts center
End a job that is listed (provided you have the right authority)

vVvyyvyVvyy

Since most of these tasks are rather intuitive, we only document how to link to the SQL Script
center to investigate on what is happening in the database.

After you start the Locked Rows function, select the job (il in Figure 7-33) you want to
examine. Click the SQL Statement button on the right-hand side of the picture (@) to bring it
into the bottom part of the panel (§)).

At this point, when you click the Edit SQL button (l), the Run SQL Scripts center starts, and
the SQL statement is brought into it for you to use. Refer to “Running a single SQL statement”
on page 211 for a discussion on how to use this tool. You should also refer to “Linking to the
Visual Explain component” on page 212 to see how to use it to conduct database
performance analysis.

7.3 Run SQL Scripts

The Run SQL Scripts center is a powerful interface to your iSeries database. With it, you can
use any SQL statements to issue any kind of operations you are authorized to on the iSeries
database objects. Licensed product program 5722-ST1, DB2 Query Manager and SQL
Development Kit for iSeries, is not a prerequisite for using Run SQL Scripts. This component
of Operations Navigator uses JDBC to access the server.

To use SQL from Operations Navigator, right-click the Database component under the iSeries
server that contains the data. Figure 7-34 shows the Database context menu with the Run
SQL Scripts action highlighted.

Chapter 7. Database administration 197

198

3 AS /7400 Dperations Mavigator
File Edit “iew Options Help

E%@%ﬂ|%|éﬁﬁ|><|@0 1 minutes old
| Environment: My Connections | Az01: Database

EI} Management Central [A01] | | Mame | Description |
=8 My Connections (B Libraries wiork with DE2 UDE for 45/400 objects.

= ! As & [atabaze Mavigator ‘whork, with Database Navigator maps.

-5 Basic Operations Bl 50L Performance Maritors Collect and view SGL performance information,
ER work Management
B2 Configuration and Service

Explore

Open

Create Shartcut

Change Query Attributes
Current SGL for aJab...
Fiun SOL Scripts...

Froperties

53] Select libraries to display Map pour database
ﬁ Create new summary SOL performance monitor g Flun an SOL script
ﬁ Create new detailed SGL performance monitor L4 ? Help for related tasks

Enter and run SOL statements

Kl

Figure 7-34 Run SQL Script

Important: This component has been entirely re-written in V5R1 using Java. It has an
enhanced layout and supports these new features as well:

» Result data is displayed in the same or a separate window via the Options menu
» Run SQL Statement icons

» Run SQL statement by double-clicking instead of single-clicking via the Options menu

Right-click Database to bring up the pull-down menu. Do not click Libraries, because

Operations Navigator enables you to potentially access the entire system, rather than limiting

you to just the data within a library.

Figure 7-35 shows an example of the initial Run SQL Scripts panel.

Advanced Functions and Administration on DB2 Universal Database for iSeries

% Untitled - Run 5QL Scripts - As01

File Edit ¥iew Run VisualExplain Options Connection Help

HBE L RRR PPIO O Wiy @

Examples | ;I Insert | E

Enter one ar mare SQL statements separated by semicalons *f

Messages I

Figure 7-35 Run SQL Scripts: Initial input panel

The Run SQL Scripts window lets you create, edit, run, and troubleshoot scripts of SQL
statements. You can also save the SQL scripts with which you work into a PC file on your PC
workstation. There are several run options for the SQL statements that are entered into the
SQL statement input area (§). We discuss them later in this section.

As shown at j} in Figure 7-35, you can select to review a list of already provided SQL
statements. OS/400 provides a large set of base syntax for almost every possible SQL
statement that can be used. You can display the list of existing SQL statements by clicking the
down arrow in this area of the panel. You can then select an SQL statement from the list
shown and have it inserted into the statement input area () by clicking the Insert button (#).

You can modify the selected SQL statement or enter your own SQL statement. You can run
one or more of your entered your SQL statements in different ways and stop between
statements.

Before we discuss the run actions, refer to Figure 7-36 to see the different panels within the
Run SQL Scripts function.

Chapter 7. Database administration 199

200

% Untitled - Run 5QL Scripts - As01 =

File Edit ¥iew Run VisualExplain Options Connection Help

IS | L EBR PPDIO O Weg| @

o
Examples E ;I Insert I

select™ from objwhere ODOBTP = *PGMW'

I* Data Manipulation Statements *f

DELETE FROM table! YWHERE column1 = 0;
INSERT INTO table1 WALUES(D, AAA 1),

INSERT INTO table1 {colurmni) YALUES(O);
INSERT IMNTO tablet {columnt) SELECT calumnt FROE
SELECT * FROM Q5YS2.5YSTABLES; -

= select * fram ohj where ODOBTP = *PGM'
Syntax checkis successful E
= select * from obj where ODOBTP = *PGM*

Statement ran successfully

Messages I

Figure 7-36 Run SQL Scripts window pane example

The beginning of the list of provided SQL statements is shown atl. This list was produced by
clicking the down arrow (B). In this example, we do not select an SQL statement to be placed
into the statement input area (). However, if we selected one or more SQL statements in the
window at fl, the statement or statements would appear in the “SQL statement example” area
(@), and you could click the Insert button to place the statements into SQL input area ().

In the SQL statement input area (§)), we already entered two simple SQL statements that are
partially hidden. We separately ran the following SQL statements:

select * from item_fact;
select * from cust_dim;

Then we viewed the results on a panel (not shown), prior to selecting the list of SQL
statements (fl).

The Run History panel (§) shows you the success and any messages of the SQL statements
run. When you select the Edit option from the menu bar, you have the option to clear run
history information.

Figure 7-37 includes the previous SQL SELECT statements. But, we added SQL statements
to illustrate more of the power of DB2 Universal Database for iSeries accessible through
Operations Navigator.

Figure 7-37 also illustrates some of the run options for the SQL statements we showed under
Run SQL Scripts support.

Advanced Functions and Administration on DB2 Universal Database for iSeries

%1 Hisg2465034 Chapter 8.sql - Run S0L Scripts - As2 - |EI|1|
File Edit ¥iew Run ‘isualExplain Options Connection Help

EEE | L DREB FFTO O wfw @

| 2|

* Enter one or more SQL statements separated by semicolons *F

cl: chgcurlib curlibitpstar);

=select* fram cust_dim;
=select * fram iterm_fact;
=elect * fram pfrexpfcsrﬂl

connectto as20; E
select* from starlibfcust_dim;

update starlibfeust_dim set ADDRESS = 1234 Main Street MW where CUSTKEY =1,
SELECT CUSTKEY, CUSTOMER, ADDRESS, PHOME FROM starlibfcust_dim WHERE CUSTKEY IN(1 ,5);ﬂ

= select * fram starlibfcust_dim ;I
Statement ran successfully

= update starlibfeust_dim set ADDRESS = 1234 Main Street MW where CUSTKEY =1

1 rows were affected by the statement

Statement ran successfully

= SELECT CUSTKEY, CUSTOMER, ADDRESS, PHOME FROM starlibfcust_dim WHERE CUSTKEY IN(1,5)

Statement ran successfully

e select * fram cust_dim | select * fram iterm_fact select * fram pfrexplostil
select * fram starlibfcust_dim
SELECT CUSTKEY, CUSTOMER, ADDRESS, PHOME FROM starlibicust_dirm WHERE CUSTKEY IN(1,5)
A3

Figure 7-37 Run SQL Scripts: Additional sources

Figure 7-37 at f} shows that we did a select from a table that is in a different 0S/400 library
(pfrexp) than the libraries included in our job description’s initial library list. We did this by
qualifying the table with pfrexp/.

The slash separator character (/) is valid because we changed from the default SQL naming
convention to the system naming convention.

By default, we are running SQL statements on the system to which we are connected. The
CONNECT SAQL statement used to connect to a remote system as20 (“As20” in our
Operations Navigator screen example figures), using OS/400 Distributed Relational Database
Architecture (DRDA) over TCP/IP is shown at . Assuming this CONNECT statement is
successful, all SQL statements thereafter are directed to remote system as20 until an SQL
“release all” statement is issued, when the connection returns to access only the local As25
system.

0S/400 supports connections to multiple remote systems during the same session. For
example, following the statement shown at [, you can issue a “connect to as05” statement.
Assuming this is successful, all the following SQL statements are directed to system As05.
You can then issue a “set connection to as20” statement that resets the current dialogue back
to system As20. You need to keep track of which system (remote database) you are
connected to and on which system you are performing operations.

The next statement () selects the cust_dim table in the library tostar01 on the remote system
asZ20.

Chapter 7. Database administration 201

Note: DRDA is the IBM-defined architecture for accessing remote databases. It is
implemented on all IBM operating systems, and some non-IBM operating system
databases support it. At a base set of functions level, it is similar to the ODBC and Java
Database Connectivity (JDBC) set of capabilities. On IBM systems, Distributed Data
Management (DDM) is a higher level interface to DRDA capabilities.

While we cannot go into the details of DDM/DRDA in this book, we discuss basic setup
requirements for the DDM/DRDA example shown here to work over TCP/IP. Refer to 7.4,
“Change Query Attributes” on page 217, for more information.

A select statement that uses only some of the fields or columns in the cust_dim table and
displays only the records or rows where the key field or the CUSTKEY column has a value of
1 or a value of 5 is shown at [in Figure 7-37.

Note: With our examples, each table index (set of key fields or columns) structure is
relatively simple, and the number of rows is small relative to a million or more rows that
would be present in a data warehouse environment. We also do not have complex join
statements (columns joined together from two or more tables).

In a more complex data structure and performance critical environments, you would want to
use a combination of the following options:

» The Run SQL Scripts option to include query optimizer debug messages in the job log
(see 7.3.4, “Run SQL Scripts Run options” on page 210)

» SQL Performance Monitor support (see 7.6, “SQL Performance Monitors” on page 220)
» Visual Explain (see Chapter 10, “Visual Explain” on page 301)

By reviewing the job log, using Visual Explain or going through monitored data, you can
determine if the most efficient method is used by OS/400 query support to perform the SQL
function.

7.3.1 ODBC and JDBC connection

Open Database Connectivity (ODBC) is a standard interface for database connectivity
defined by the Microsoft Corporation. ODBC establishes the standard interface to any
database as SQL. In general, the ODBC architecture accounts for an application using the
ODBC interface, an ODBC Driver Manager, one or more ODBC Drivers, and an ODBC Data
Source (place where the data is stored). Java Database Connectivity (JDBC) is an equivalent
standard interface for database connectivity from Java applications.

Client Access Express provides the iSeries ODBC and JDBC drivers that runs on the PC
workstation and the ODBC and JDBC Data Source support that runs on the iSeries server.
Production mode job name starts with QZDASOINIT (or QZDASSINIT if SSL is being used).
In version 4, with ODBC Data Sources, you can set up a Client Access Express ODBC data
source by providing a data source name (a name meaningful to you) and an iSeries server
name. Starting in version 5, the setup and administration of Client Access-provided ODBC
driver is done by using the standard ODBC data source administrator, provided with the
Windows operating system.

An ODBC data source consists of the data that the user wants to access and its associated
operating system, Database Management System (DBMS), and network platform (if any)
used to access the DBMS.

202 Advanced Functions and Administration on DB2 Universal Database for iSeries

Setup information is associated with a data source and may include, for example, data
formatting and performance options. Data formatting options include qualified name
separators, date and time formats, and data translation. Performance options include when to
use record blocking, data compression, or an SQL Package. An SQL package stores
previously parsed SQL statements to improve performance when used later.

You can also specify if Secure Socket Layer (SSL) is to be used with the ODBC connection.

Some client applications (including Operations Navigator) may provide their own unique data
source definition.

A good source for more information on ODBC support is Client Access Express for Windows,
SC41-5509.

You can create your own data source to limit the libraries that can be used and, as previously
described, your own set of name separators, date and time formats, performance options,
and so on.

0S/400 provides two data sources that you should understand even if you are not creating
your own data source:

» A data source used by Operations Navigator itself to perform its functions: This data
source is identified by the system name to which you are first connected. For example, if
the first system you connect to is called As25, the data source used by Operations
Navigator is named QSDN_As25.

Important: Unless you are an ODBC expert, do not change any of the default settings
for this data source. If you change them, Operations Navigator may fail to operate
correctly.

» A data source is used if you use Database-> Run SQL Scripts: The first time you select the
action to Run SQL Scripts to a specific iSeries server, 0S/400 creates a JDBC data
source for the system (ODBC in V4R5 or previous releases), which can be changed by
selecting Connections -> JDBC Setup (Figure 7-38). One JDBC data source is created
for each system on which SQL scripts are run. You do not have to create your own JDBC
Data Source and understand the data source parameters to run SQL statements against
libraries and files or tables to which you are authorized.

In 7.3, “Run SQL Scripts” on page 197, we use the default IBM-created data source in our
JDBC Data Source Translation parameters.

Chapter 7. Database administration 203

% Untitled - Run SOL Scripts - As25

File Edit ¥iew Run VisualExplain Options e

b e
Examples l_ o Insert

I Enter one or more SAL staterments separated by semicolons *f

JDBC Setup | x|
SENEVI Package' F‘erfurmaﬂcel Language' Other| Translatiun' meat'
Default libraries:
FuBL
Cammit mode
ICnmmltlmmemate ("MOMNE) ;l

Messages I

oK I Cancal Help |?|

Figure 7-38 JDBC data source panel

Server tab

Default libraries enables you to change the set of libraries available to the user of this JDBC
data sources. The default ("USRLIBL) means to use the initial library list (INLLIBL) parameter
specified on the job description for the OS/400 user profile using this JDBC data source.

Commit mode controls the level of DB2 Universal Database for iSeries commitment control,
including when database changes are considered permanent and whether other users of the
same database rows can see column updates that are not yet permanent.

A complete description of commitment control is beyond the scope of this redbook. However,
you should understand that in the industry, users of SQL typically expect commitment control
to be active. That is, an application design determines what a competed transaction (also
called a unit of work) is. Any database row changes (column updates, rows deleted, rows
inserted) are not considered permanent until a successful transaction has been completed
(transaction boundary). At that time, the application performs a commit and all changes are
now made permanent. If the application determines that an in-progress transaction should be
terminated, it performs a rollback. All changes are as if they had never occurred. If the
application abnormally terminates before issuing a commit or rollback, the underlying SQL
support performs the rollback.

To support commitment control on OS/400, you must also have the tables journaled and the
job using these tables must issue a system operation that starts commitment control for the
job. This system operation can be invoked by using the OS/400 Start Commitment Control
(STRCMTCTL) command or be implicitly invoked by this parameter for values other than
*NONE.

A commit group refers to the rows that are in the process of being updated, deleted, or
inserted. As the help text shows, objects referred to on the COMMENT ON, CREATE, and so
forth are also part of this commit group. The commit or rollback applies to all of these rows
and objects.

204 Advanced Functions and Administration on DB2 Universal Database for iSeries

We include the help text here because the OS/400 default is *"NONE, which is not generally
supported in the industry. This provides a very flexible operating environment, such as letting
other applications or users access the latest database changes. However, “NONE exposes
the table rows, even while being processed by the properly authorized Operations Navigator
user, to be modified without a required database Commit or Rollback operation sequence to
make any database changes permanent.

For example, using *NONE means any valid SQL statement that changes column data has
made a permanent change to the data. If the properly authorized Operations Navigator user
mistakenly updates a column using a wrong value for a key, there is no rollback function
available to undo the change to the wrong row. You need either a backup copy of the data or
an OS/400 journal to recover the original data.

The other commit values specify row locking rules (other applications prevented from
updating the same row) and visibility of in-progress changes among applications accessing
the same rows.

Package tab

This tab specifies whether extended dynamic support is enabled. Extended dynamic support
provides a mechanism for caching certain dynamic SQL statements on the server.

The first time a particular SQL statement is run, it is stored in an SQL package on the server.
On subsequent runs of the same SQL statement, the server can skip a significant part of the
processing by using information stored in the SQL package. By default, it is not enabled.

Performance tab
This tab allows you to set performance options.

Language tab
This tab allows you to specify language options.

Other tab

The Other tab allows you to set the access type and remarks source options for your
connection.

Translation tab

In most cases, you never need to view or change the JDBC (or ODBC) data source
translation parameters. This is because your application tables or files are typically stored as
using the Coded Character Set Identifier (CCSID) numeric value that stores the data
according to your national language encoding. In these cases, any OS/400 data accessed by
the client workstation is translated into the appropriate ASCII format as required for viewing or
processing on the client.

However, certain OS/400 system files or tables are defined to use the special CCSID 65535.
By default, JDBC data source processing does not translate data from a file or table with
CCSID 65535.

For example, if you want to use Run SQL Scripts against the performance collection files
(prefix QAPM...) or a table generated from a virtual private network (VPN) journal (copied to a
database file or table), you need to have the character columns translated in most cases.
Select the JDBC data source Translate tab and select the Translate CCSID 65535 check
box.

Chapter 7. Database administration 205

For more information on CCSID support, refer to AS/400 National Language Support,
SC41-5101.

Format tab

There is an important operational difference between using the SOL naming convention and
the System naming convention when running SQL statements under Operations Navigator
Run SQL Scripts. If you are using the system naming convention and use a non-qualified
name, such as a table name with no library qualifier, the system searches for the table within
all libraries currently in the session’s (job’s) current library list. If you are using the SQL
naming convention, the ANSI standard specification causes the system to look only in the
current library within the session’s current library list.

For example, assume the user portion of the session’s library list is in the order of TEAMO02,
followed by library TPSTARO2. Also, assume the unqualified table name is CUST_DIM and is
stored in library TPSTARO2. Using the SQL naming convention, the system looks for
CUST_DIM only in library TEAMO2 and does not find it, which results in an error condition.
Using the system naming convention, the system first searches library TEAMO02 and then
library TPSTARO2. The CUST_DIM table will be found and the SQL statement will run
successfully.

Format parameters are important if you have a special operating environment, such as your
system requiring country specific or multiple country support.

You must review the online help text to get the details for all of these parameters. The settings
are determined by your requirements.

If you want to modify either data source, refer to the online help or consult Client Access
Express for Windows, SC41-5509.

7.3.2 Running a CL command under SQL script

206

In addition to running SQL statements under Run SQL Script, Operations Navigator allows
the properly authorized user to run any OS/400 Control Language (CL) statement that can be
validly run in a batch (no 5250 workstation required) environment. You must precede the
0S/400 command syntax with the prefix CL: (uppercase or lowercase) as shown in

Figure 7-39.

Advanced Functions and Administration on DB2 Universal Database for iSeries

%5 C:ACL.2ql - Bun SAL Scripts - As01 =

File Edit view Run VisualEwplain Options Connection Help

S L RRB PPFOO Wig @

Examples |

j Insert |

Select ™ fram CUST_Dim;

CL: SBMJOB CMD(DEPOBID OBJALL) OBJTYPE(ALL) OUTPUT(OUTFILE)
OUTFILEADAMPIDEPOUTE)) JOB{DBJOUTF)

= SBelect * from CUST_DiIw
Staternent ran successiully

= CL: SBMJOB CMD(DSPOBID OBJ(ALL) OBJTYPEALL) QUTPUTOUTFILE)
OUTFILEADAMPIDEPOUTEY) JOB{OBJOUTE)

Statement ran successfully

Messages I

Figure 7-39 Run SQL Scripts: Running a CL command

The selected CL command is an OS/400 command that submits the job to job queue
QBATCH, which is one of the IBM-supplied job queues associated with the IBM-provided

subsystem QBATCH. The submit job command parameter (CMD) value can be any OS/400
command or user-defined command. In our example, we used the DSPOBJD command with

its own set of parameters.

You may also use much simpler OS/400 commands, such as:

» Adding a new library to the current library list of the Operations Navigator session using

the CL command:
CL: ADDLIBLE LIB(PFREXP);

Sending a message to the system operator using the CL command:

CL: SNDMSG MSG(’This message is from an Operations Navigator session from user TEAMO02.’)

TOUSR(*SYSOPR) 3

Chapter 7. Database administration

207

Tips for running CL in Run SQL Scripts

Running SQL Scripts is a powerful way to test new SQL statements, especially in the
sequence you may want to run them in a program. In an actual application environment,
you may also want to integrate running system functions through CL commands with your
SQL statements. Here are some tips:

» Starting with Client Access Express Service Pack 5 (SP5) for V4R4, the following
restriction has been removed:

For the CL command to be recognized successfully, you must remove (delete) any
comment statement, such as:

"/* Enter one or more SQL statements separated by semicolons */."

» The IBM-supplied SQL statement examples include some CL command examples at
the end of the SQL statements.

» The key to making the OS/400 command work from an Operations Navigator Run SQL
Scripts session is to ensure the objects referenced in the command can be found in the
Operations Navigator session’s (job’s) library list or the system library list (system value
QSYSLIBL).

Adding a library name under the Database->Libraries branch does not carry over to the
Run SQL Scripts function. 0S/400 commands can always be found through the system
value QSYSLIBL. However, objects, such as user-defined commands, may require the
appropriate library to be in the Operations Navigator Run SQL Scripts session’s library list.
Use Connection -> JDBC Setup to amend the user part of the library list.

7.3.3 Run SQL Scripts example using a VPN journal

208

This section shows an example of using Run SQL Script to identify the IP packets, if any, that
were denied routing based on OS/400 VPN filtering rules. The standard OS/400 VPN support
records permit, deny, and filter rule change occurrences in a system journal named
QIPFILTER, stored in library QSYS. The OS/400 Display Journal (DSPJRN) command
provides a journal entry time stamp and other compare values to selectively display, print, or
copy journal entries to a database file or table.

If you choose the database option, you can process the copied journal entries several
different ways through SQL. Run SQL Scripts is a good way to experiment with viewing
different journal entry field or column data. Once you see a view of the data you want to use
repetitively, you can save the SQL statements for later reuse or copy the SQL statements into
a program that does further processing or graphical display.

This section uses the journal data discussed in the “AS/400 VPN problem determination,”
chapter in AS/400 Internet Security: Implementing AS/400 Virtual Private Networks,
SG24-5404.

We performed the following steps to query the VPN logging data originally placed into the
QIPFILTER journal. The query results show the journal entries for packets that have been
denied routing, since a large number of deny entries may require further investigation by your
security personnel.

1. Create a copy of the IBM-supplied file QSYS/QATOFIPF into a library of your choice, using
the OS/400 Create Duplicate Object (CRTDUPOBJ) command, for example:

CRTDUPOBJ OBJ(QATOFIPF) FROMLIB(QSYS) OBJTYPE(*FILE) + TOLIB(mylib) NEWOBJ(myfile)

Advanced Functions and Administration on DB2 Universal Database for iSeries

The system file or table QATOFIPF provides the column definitions used by the
IBM-supplied queries. In our example, we duplicate this table as ON_IPFTRT.

2. Use the DSPJRN command to copy the journal entries from the QUSRSYS/QIPFILTER
journal to the output database file created in the preceding step:

DSPJRN JRN(QIPFILTER) JRNCODE(M) ENTTYP(TF) OUTPUT(*OUTFILE) + OUTFILFMT(*TYPE4)
OUTFILE(mylib/myfile) ENTDTALEN(*CALC)

The DSPJRN command has both starting and ending time-stamp values and starting and
ending journal entry sequence numbers so you do not need to copy the entire set of
journal entries to the file or table.

3. You need to review the field or column names and descriptions for file or table
ON_IPFTRT to determine which columns to select and use for row selection. You may use
the OS/400 Display File Field Description (DSPFFD) command or use Operations
Navigator to display the table Properties by right-clicking the table name.

AS/400 Internet Security: Implementing AS/400 Virtual Private Networks, SG24-5404,
provides good background information to help select the appropriate fields or columns.

4. Using Run SQL Scripts, build the SQL statement and view the results.

Figure 7-40 shows our example SQL statement and sample output.

%3 H: 50246503 Chapter 8.sql - Run SOL Scripts - As23 * - |EI|1|
File Edit ¥iew Run VisualExplain Options Connection H

HES L EREB FEFITOO W @

| 2|

SELECT ADAN.OMN_IPFTRT.TFRNUM, ADAN.ON_IPFTRT.TFFACT, ADAN.ON_IPFTRT.TFPDIR, =
ADAN.OM_IPFTRT.TFSRCA, ADAN.OMN_IPFTRT.TFERCP, ADAN.ON_IPFTRT.TFDSTA,
ADAN.OM_IPFTRT.TFTIME

FROMM ADAN.OM_IPFTRT

HERE ADAN.OM_IPFTRT.TFFACT = 'DENY" 1

WD ADAN.OM_IPFTRT.TFSEQN == GSDD;E

Ll

ADAN.ON_IPFTRT.TFSRCA, ADAN.OMN_IPFTRT.TFSRCP, ADAN.ON_IPFTRT.TFDSTA,
WOAN ON_IPFTRT.TFTIME FROM ADAN.ON_IPFTRT WHERE ADAMN.OMN_IPFTRT.TFFACT = 'DENY" AND

= SELECT ADAN.OMN_IPFTRT.TFRMNUM, ADAN ON_IPFTRT.TFFACT, ADAN.ON_IPFTRT.TFRDIR, j
ADAN.ON_IPFTRT.TFSEQN == 6300

Statement ran successfully

t= select ADAN.ON_IPFTRT.TFRNUM, ADAN.ON_IPFTRT.TFFACT, ADAM.ON_IPFTRT.TFPDIR, ADAM.ON_IPFTRT.TFSR... =] E3

TFRMUM TFFACT TFPDIR TFESRCA o TFSRCF TFDETA TFOSTF TFTIME -
1 a DENY |0 1019685 137 10.196.8.255 E 137 1999-07-24 13:32:52.878560
2 a DENY |0 204146155 137 204146.18.255 | 137 1999-07-24 13:32:62.972128
3 a DENY |0 1019685 137 10.196.8.255 137 1999-07-24 13:32:53.052445
4 a DENY |0 2041461585 137 204146.18.255 | 137 1999-07-24 13:32:53.169424
B a DENY |0 1019685 137 10.196.8.255 137 1999-07-24 13:32:53.582032
6 a DENY |0 2041461585 137 204146.18.255 | 137 1999-07-24 13:32:53 653728
7 a DENY |0 1019685 137 10.196.8.255 137 1999-07-24 13:32:54.0859584
] a DENY |0 2041461585 137 204146.18.255 | 137 1999-07-24 13:32:54.175344
9 a DENY |0 1019685 137 10.196.8.255 137 1999-07-24 13:32:54.409520
10 a DENY |0 2041461585 137 204146.18.255 | 137 1999-07-24 13:32:54.459792
11 a DENY |0 1019685 137 10.196.8.255 137 1999-07-24 13:32:54.935600

12 a DEMY |0 204146185 137 204146.18.255 | 137 1999-07-24 13:32:54.959056 v

K o

Figure 7-40 Run SQL Scripts: Viewing ‘denied’ VPN packets

The TFACT (filter action) column (il in Figure 7-40), records values such as PERMIT, DENY,
or additional values for adding and changing filter rules and starting and stopping filtering.
You also see our SQL compare value for ‘DENY’. You can see that we did not want to look at
all (13,000) journal entries, so we started around the middle of the entries with journal entry
sequence number 6300 (A in Figure 7-40).

Chapter 7. Database administration 209

The TFPDIR (packet direction) column specifies “O” for output packet and “I” for input packet.

Using the source IP address and port number (§)) and the destination IP address and port
number (fl), a TCP/IP expert can determine the actual workstation and TCP/IP function. A
TCP/IP expert may also choose different columns to include in the SQL SELECT statement.

7.3.4 Run SQL Scripts Run options

This section explains the Run options available for these SQL statements. We use
Figure 7-41 as a basis for explaining the run options.

%3 H: 50246503 Chapter 8.sql - Run SOL Scripts - As23 * (=]]

File Edit View)lRun VisualExplain Options _Connection Help

= = " = = = = Connection Help
FER=- S

=S FYDOO wwg @ v Stap on Error
. | | _I ¥ Smart Statement Selection
vamples -
i Display Results in Separate Window

I* Enter one or more SQN staternakts separMed by sem Include Debug Messages in Job Log
;¥ Run Statement On Double-Click
Change Query Aftributes..

cl: chgcurlib curlibitpstar);

=select* fram cust_dim;
=select * fram iterm_fact;
=select * fram pfrexplostil;

connectto as20;
=select * fram starlibfcust_dim;

update starlibfeust_dim set ADDRESS = 1234 Main Street MW X
SELECT CUSTKEY, CUSTOMER, ADDRESS, PHOME FROM starliycust_dim WHERE CUSTREY IN(1,5);

T %53 H 50246503 Chapter 8.s¢’ - Run SOL Scripts - As23 *
’Select*fromstarlibfcust_di% = (;trI+R m File Edit ¥iew Run YisualExplain Options Connection Help
s e Ba o
Statemnent ran successfully ~ Efom Selected - Cirl+T Bl HE & & 8 FPTOO wwg @
Selected Ctrl+y g\(E] E
= update starlibfeust_dim set “where CUSTKEY =1

1 rows were affected by the =

Syntax Check Crl+k E
Statement ran successfully |

= SELECT CUSTKEY, CUSTOMER, ADDRESS, PHONE FROM starlibicust_dirm v JEVEESET]

Ex=plain... Chil+E)
Statement ran successfully B e Bl Chilsll
Fecent SGL Performance Monitors 3 E
e select * fram cust_dim | select * fram iterm_fact select * fram pfrexplostil

select * fram starlibfcust_dim
SELECT CUSTKEY, CUSTOMER, ADDRESS, PHOME FROM starlibicust_dirm WHERE CUSTKEY IN(1,5)
1.

Figure 7-41 Run SQL Script: Run options

There are two “selection lists” types from which you can choose to run one or more SQL
statements at a single time. You can select the Run option (fl) from the Run SQL Scripts menu
bar or select one of the green arrow or hour glass Run action icons () from the toolbar.
These have corresponding functions. You can also select the Run option with a key sequence
as shown under the Run pull-down menu.

You can pre-specify (defaults are provided) some controls over the Run function through the
Options action in the menu bar ({). We discuss these controls in “Controlling SQL run
options” on page 213 after we explain the three levels of run options:

» Running a single SQL statement
» Running a set of SQL statements
» Running all SQL statements currently specified

210 Advanced Functions and Administration on DB2 Universal Database for iSeries

Running a single SQL statement
Place the active screen cursor within the SQL statement text you want to run, for example:

select * from pfrexp/cstfil;

This is referenced as [in Figure 7-41. You can run only this statement by using one of the
following actions:

» Click the Selected action ([§).

» Click the “select one line” or “select one line hour glass” icon associated with [§ in our
example in Figure 7-41.

» Press Ctrl+Y from the workstation keyboard.

Only the single statement will run. If it is a SELECT statement, the results are presented as a
window on your Operations Navigator workstation. The column names are presented as
column headings. If you want to select only a subset of columns later, you can use these
headings and displayed column data to help you select the appropriate columns. Figure 7-42
shows some of the column headings and associated data for the pfrexp/cstfil table.

select = from pfrexp/cstfil - As25

CMNUK [CHANME ADREST ADRESZ STATUS |TIMSTC Cis
10 CUST NAME 000001 |ADDRS 1 000001 |ADDRS 2 ooooor ¢ 141138123099 |0C
2 |2 CUST NAME 000002 |ADDRS 1 000002 |ADDRS 2 oooopoz - ¢ 141138123099 |0C
3 |3 CUST NAME 000003 |ADDRS 1 000003 |ADDRS 2 ooooos ¢ 141138123099 |0C
4 |4 CUST NAME 000004 |ADDRS 1 000004 |ADDRS 2 ooooo4 141138123099 |0C
5 |5 CUST NAME 000005 |ADDRS 1 000005 |ADDRS 2 ooooos ¢ 141138123099 |0C
B |6 CUST NAME 000006 |ADDRS 1 000006 |ADDRS 2 noooos ¢ 141138123099 |0C
7|7 CUST NAME 000007 |ADDRS 1 000007 |ADDRS 2 noooo? ¢ 141138123099 |0C
g |8 CUST NAME 000008 |ADDRS 1 0ooo0s |ADDRS 2 ooooos ¢ 141138123099 |0C
a 9 CUST NAME 000003 |ADDRS 1 000009 |ADDRS 2 ooooos ¢ 141138123099 |0C
10 {10 CUST NAME 000010 |ADDRS 1 000010 |ADDRS 2 ooooto ¢ 141138123099 |0C
11 CUST NAME 000011 DORS 1 000011 JADDRS 2 oooott 141138123099 |0C
12 12 CUST NAME 000012 |ADDRS 1 nooo12 |ADDRS 2 ooootz 141138123099 |0C
13 13 CUST NAME 000013 |ADDRS 1 000013 |ADDRS 2 oooo1s 141138123099 |0C
14 14 CUST NAME 000014 |ADDRS 1 0ooo14 |ADDRS 2 oooot14 141138123099 |0C
15 |15 CUST NAME 000015 |ADDRS 1 000015 |ADDRS 2 oooo1s 141138123099 |0C
16 |16 CUST NAME 000016 |ADDRS 1 000016 |ADDRS 2 oooote ¢ 141138123099 |0C
17 17 CUST NAME 000017 |ADDRS 1 000017 |ADDRS 2 oooo? 141138123099 |0C
18 [18 CUST NAME 000018 |ADDRS 1 0ooo1s |ADDRS 2 oooo1s ¢ 141138123099 |0C
19 19 CUST NAME 000019 |ADDRS 1 000019 |ADDRS 2 nooorg 1411368123089 |0C
20 |20 CUST NAME 000020 |ADDRS 1 nooozo |ADDRS 2 oooozo ¢ 141138123099 |0C
21 |2 CUST NAME 000021 |ADDRS1 nooo21 |ADDRS 2 ooooz21 ¢ 141138123099 |0C
22 |22 CUST NAME 000022 |ADDRS 1 nooo22 |ADDRS 2 ooooz2z ¢ 141138123099 |0C
23 |23 CUST NAME 000023 |ADDRS 1 0ooo23 |ADDRS 2 nooo23 ¢ 141138123099 |0C
il_lu TR ——————— e —=Y=y-y=y= ==y ==y} TR MEr

Figure 7-42 Run SQL Script: Sample SQL SELECT output

Running a set of SQL statements

You can run a set of SQL statements that are currently active in your Operations Navigator
session to the iSeries server. Using our example in Figure 7-41, you would run:

select * from pfrexp/cstfil; [} through SELECT CUSTKEY ... IN(1,5); B
You do this by placing the active screen cursor within the SQL statement text (fl) and
performing one of the following actions:

» Click the From Selected action ().

» Click the From Selected icon (the middle down arrow or the middle hour glass)
associated with @ in our example in Figure 7-41.

» Press Ctrl+T from the workstation keyboard.

This runs each statement sequentially, beginning with:

select * from pfrexp/cstfil;

Chapter 7. Database administration 211

212

We have three SELECT statements in our example. For each SELECT statement, a window
of data is presented; all three windows are produced. However, if the SELECTSs are fast
enough, you may notice only the last SELECT output.

The three windows are active on the screen and can be viewed by selecting the appropriate
task from the windows task bar, typically at the bottom of a window.

If an error occurs and a Stop on error option is selected (as specified under the Options
pull-down menu (§ in Figure 7-41), the program stops and the statement where the error
occurred remains selected. The statement is ready to be run after it is corrected.

Running all SQL statements currently active

You can run sequentially all the SQL statements that are currently active in your session to
the iSeries server. Using our example, this would start with

select * from cust_dim; E] through SELECT CUSTKEY ... IN(1,5); B

You run all the SQL statements by doing one of the following tasks:

» Click the All action ().

» Click the All icon (leftmost down arrow or leftmost hour glass) associated with gl in our
example in Figure 7-41.

» Press Ctrl+R from the workstation keyboard.

If an error occurs and a Stop on error option is selected (as specified under the Options
pull-down menu (§ in Figure 7-41), the program stops, and the statement where the error
occurred remains selected.

SQL statement syntax check

Using this option (g in Figure 7-41), it is possible to validate a selected SQL statements or
statements. This function performs a formal syntax check of the statement, while validating
that the objects referenced (libraries, tables, columns) actually exist in the linked database.
Resulting messages appear in the result panel. This option can also be invoked by pressing
Ctrl+K after selecting an SQL statement.

Linking to the Visual Explain component

In V4R5, two more icons (i and [in Figure 7-41) were added to the Run SQL Script tool bar.
These icons provide access to the Visual Explain function, as do the two new menu items ([
and [3) under Visual Explain. For more information, refer to Chapter 10, “Visual Explain” on
page 301.

The Explain option (i}), or using Ctrl+E, allows you to review the Optimizer access plan that
will be used when executing an SQL statement; the statement is not actually run but
optimized with the query attribute Time Limit set to 0. For details on query attributes, see 7.4,
“Change Query Attributes” on page 217. It produces a visual explanation of the statement but
does not access the actual data from the database, therefore avoiding the unnecessary 1/O
load.

The Run and Explain option (3), or using Ctrl+U, runs the SQL statement and gathers
execution time statistics from the statement. It uses the actual access plan from the statement
and the statistics and presents these in a graphical format. With this option, the statements
are executed before the analysis graph is reported.

Advanced Functions and Administration on DB2 Universal Database for iSeries

Linking to the SQL Performance Monitor component

Using the Recent SQL Performance Monitors option ([j) under Visual Explain in Figure 7-41
on page 210, you can obtain a list of the most recent SQL Performance Monitor collections
and can then link into the tool to analyze collected data. See 7.6, “SQL Performance
Monitors” on page 220, for a discussion on the characteristics and usage of this tool.

Controlling SQL run options

By selecting Options from the Run SQL Scripts menu bar ([in Figure 7-41 on page 210), you
can control what to do if an SQL error occurs and what levels of additional information should
be included in your session to the iSeries server:

» Stop on Error: This turns stopping on or off when there is more than one SQL statement
to run and an error occurs. If it is turned on (default), the SQL statements are stopped at
the SQL statement in error, which remains selected. If it is turned off, all SQL statements
continue to run until the end of the script has completed.

» Smart Statement Selection: This turns on or off treating the selected SQL statement as a
complete statement or attempting to run only the selected text. If it is turned on (default),
the complete statement, up to the ending semi-colon (;) character, is attempted. If it is
turned off, only the selected text is attempted. If you attempt to run only a portion of the
original statement, the statement may complete successfully. However, you are subject to
at least two error conditions:

— Omitting some text may make the SQL statement fail, because the statement is
incomplete.

— Omitting some text may still result in successful completion. However, if the JDBC data
source used for your session is set to “NONE for commitment control, omitting a
phrase an UPDATE statement, such as WHERE CUSTKEY = 1, may update all the
rows in the table, which is not what was intended.

See 7.3.1, “ODBC and JDBC connection” on page 202, for additional information about
commitment control. The most complete OS/400 documentation on commitment
control is in Backup and Recovery, SC41-5304.

» Include Error Message Help in Run History: This turns on or off (default) the inclusion of
additional error message information in the Run History pane when an error occurs.
Figure 7-43 shows an example where we specified an invalid column name
(WRONGCOL) for the table.

Note: This option is no longer available in Operations Navigator Run SQL Scripts in
V5R1. Detailed error messages are always displayed in the messages tab on bottom
frame.

Chapter 7. Database administration 213

214

%5 Hr\ 50246503 Chapter 8.5ql - Run SOL Scripts - 4523 =]

File Edit ¥iew Run ‘isualExplain Options Connection Help

EEE | L DREB FFTO O wfw @

| 2|

SELECT WRONGCOLUMN, CUSTKEY, CUSTOMER
FROMM TPETAR.CUST_DIM
HERE ADDRESS = WORLD TRADE CENTERY,

= SELECT WROMNGCOLUMN, CUSTKEY, CUSTOMER FROM TPSTAR.CUST_DIMYWHERE ADDRESS =
WORLD TRADE CENTER'

[SQLOZ0E] Column WRONGCOLUMN not in specified tahles. Cause WRONGCOLUMN is nota
calumn of table CUST_DIM in library TPSTAR. Ifthe tahle is *N, WRONGCOLUMM is not a column of any table
or view that can be referenced. Recavery Do one ofthe following and try the request again: -- Ensure that
the column and table names are specified carrectly in the statement. -- Ifthis is a SELECT statement, ensure
that all the required tables were named in the FROM clause. -- Ifthe calumn was intended to be a correlated
reference, gualify the calumn with the carrect table designator.

Messages I

Figure 7-43 Run SQL Scripts: Include Error Message Help in Run History

>

Include Debug Messages in Job Log: This option tells the OS/400 query optimizer
support to record its decisions on how to process the SQL request, including any
recommendation for creating an index that may improve performance. The option is
typically used only when debugging new and complex SQL statements or while analyzing

a suspected performance problem.

Analyzing the job log messages may be sufficient to determine if a performance problem
exists and what action should be taken to resolve the problem. You may also consider
using the Operations Navigator interface to the SQL Performance Monitor, which is
described in 7.6, “SQL Performance Monitors” on page 220, and Visual Explain, described

in Chapter 10, “Visual Explain” on page 301.

Figure 7-44 shows an example of an SQL JOIN statement and the associated job log

messages that should be reviewed.

Advanced Functions and Administration on DB2 Universal Database for iSeries

pter 8.sql - Run S0L Scripts - As23 * - - |EI|1|
Run VisualExplain Options Connection Help
FEDO O | ool @
Bl |D|sp|ays the joh Iolg ofthe server job servicing Run SQL Scripts ’—;,
SELECT CHUM, CHAME, [TWID, INUNM, IDESC, OMHAND
FROM FFREXP.CSTFIL
INMER JOIM | PFREXPITMFIL
O CHUM = MU
HERE OMHAMD == 5000,
CHUM | CHNAME ITHID IMUR | IDESC ar
1)CUST MAME 000001 il 1/ITEM MO 000001 :l
2)CUST NAME 000002 il 2|ITEM NO 000002 |
CUST NAME ey = e
4/CUST NAME =10l %]
5/CUST MNAME
BCUST MNAME = B |
= H
TICUST MNAME —I %
8/CUST NAME |Job: D03135/0USER/QZDASOINIT [1 minutes old
9|CUST MAME MEssage [} I Meszage I Date zent | Time sent I;I
T0[CUSTNAME '&507968 DESCRIBE of prepared statement 5TMTO003 completd 09/25/01 150301
‘l SOL79E2 Cursor CRSR0009 opened. 09/25/01 1503
SELECT CHUM, CRAME, ITMIC SOL7IE Blocking used for query. 09/25/01 150301
SOLFNZ ODP created. 09/25/01 150320
CPI4326 File CSTFIL processed in join position 2. 09/25/01 1503

& CPI432F A vath suggestion for file [TMFIL. 03

/01 15:03:01

5/

CPI4327 File ITMFIL processed in join position 1. 09/25/01 1503
CRI432C All access paths were considered for file ITMFIL. 09/25/01 1503
CPI4342, === Starting optimizer debug message for query . 09/25/01 1503
CPI4338 Unable to retrieve query options file. 09/25/01 1503
SOL79ES DESCRIBE of prepared statement STRTO009 completed. 09/25/01 1503
SOL79E7 FREPARE of statement STHTO009 completed. 09/25/01 1503
SOL79ES DESCRIBE of prepared statement STMTO009 completed. 09/25/01 1503
CPI4338 Unable to retrieve query options file. 09/25/01 1503
SOLO206 Colurmn #WRONGCOLUMM nat in specified tables. 09/25/01 145413 _I
SOLO204 ITEMFACT in TPSTAR type *FILE not found. 09/25/01 14:11.07
SOLO204 ITEMFACT in STARLIE type “FILE not found. 09/25/01 14:10:35
& cni nond ITERA EACT in STARI IR hina Fll F nat ferind nNa/oRm 14-10-78 LI

[[ltems 52 - 69 of 75

Figure 7-44 Run SQL Scripts: Include Debug Messages in Job Log

We use the selected SQL SELECT with JOIN statement (fl) to show the associated job log
debug messages issued by the query optimizer. To see the current Operations Navigator
session’s job log, complete these tasks:

a. Click View in the Run SQL Scripts panel.
b. Click Job Log ().

In our example job log, we discuss two messages: the optimizer’'s suggestion for an
access path (index) to file ITMFIL with message ID CP1432F () and error message
CPI1433A ().

By double-clicking message CPI432F, the message details or “second-level text” is
displayed. The message text describes why the create index function is recommended
and the recommended column names to include in the new index.

Message CPI433A may appear multiple times in the job log of a job that has run several
SQL statements. Each time an SQL statement is run, the system looks for a file or table by
the name of QAQQINI in the QUSRSYS library. This table can be set up by you to specify
query attributes that the OS/400 query optimizer will use while processing each SQL
statement.

If you are not attempting to modify the default OS/400 query processing algorithm through
this table, the table will not be in the QUSRSYS library, and this message is considered for
information only.

Chapter 7. Database administration 215

>

Run Statement On Double-Click: This option has been added in V5R1. When it is turned
on, it allows the running of a SQL statement by double-clicking the SQL statement.

Change Query Attributes: This allows you to easily modify the query options file
QAQAQINI for your job, provided you remember the job number previously checked in the
job log, or for any other job in the system.

This is done using the same interface as documented in 7.4, “Change Query Attributes”
on page 217.

7.3.5 DDM/DRDA Run SQL Script configuration summary

Using Figure 7-37 on page 201, at @}, we showed and discussed an SQL CONNECT
statement (“connect to as20;”) to access data on a remote system. For ease of reference, this
statement also appears in Figure 7-44. This section provides overview information on
configuration parameters required to successfully access remote data.

For DRDA to work between a source system (function requester) and target system (request
server) where the actual data is and the SQL function is performed, you need a certain DRDA
configuration to be set up correctly. The following steps summarize the configuration required
(using As25 as the source or requester system and As20 as the target or server system).

On the As25 (source system), complete the following steps:

1.
2.

Start TCP/IP.
Enter the OS/400 Add Relational Database Directory Entry (ADDRDBDIRE) command:
ADDRDBDIRE RDB(AS20) RMTLOCNAME(AS20 *IP) TEXT('Remote DB system via TCP/IP’)

This relational database entry identifies a database name (RDB parameter), the remote
system name, and that the connection is over TCP/IP. TCP/IP must be active on both the
source and target systems. A Domain Name Services (DNS) server must be active in the
network to resolve to the actual IP address.

Note that DRDA runs over SNA connections as well as TCP/IP.

Enter the Add Server Authentication Entry (ADDSVRAUTE) command:
ADDSVRAUTE USRPRF(TEAM02) SERVER(AS20) PASSWORD(TO2EAM)

The SQL CONNECT TO target system (remote server)-database statement can explicitly
specify USER (user ID) and USING (password) information. If it does not, the user ID and
password information specified in the ADDSVRAUTE command are passed to the remote
server. Depending on the target system’s (remote server) security requirements for clients
to connect to it, a user ID and, optionally, a user password are required that must be
successfully validated on the remote server.

We strongly recommend that you enter the user profile, server name, and password
values in uppercase.

To specify a password value for the ADDSVRAUTE command’s PASSWORD parameter,
the source system Retain server security data (QRETSVRSEC) system value must be set
to 1.

Note: To use ADDSVRAUTE support, your user profile must specify *SECADM special
authority. You must also have *OBJMGT and *USE authorities to the user profile
specified on this command.

On the As20 target (remote server) system, follow these steps:

1.
2.

Start TCP/IP.
Start the TCP/IP DDM server.

216 Advanced Functions and Administration on DB2 Universal Database for iSeries

The DDM server jobs run in subsystem QSYSWRK. The jobs are named QRWTLSTN
(daemon) and QRWTSRVR (server, one per connection).

The network attributes’ DDM/DRDA Request (DDMACC) parameter for processing
received DDM/DRDA requests is set to *OBJAUT. This means normal OS/400 processing
user profile authority to the requested file or table is performed.

This target or server system can be configured to not require a password from the source
system. You do this by using the OS/400 Configure TCP (CFGTCP) command interface.
Then select Configure TCP/IP applications->Change DDM TCP/IP Attributes.

3. A target system user ID and password must correspond to the user ID and password, if
used, received from the requesting source system.

7.4 Change Query Attributes

Using the Change Query Attributes item that becomes available when you right-click
Database gives you an easy way to change your query options for accessing the database.
However, you must be aware that some of the options that are available here can be
manipulated using the Change Query Attribute (CHGQRYA) CL command on the iSeries
server. There is not an exact one-to-one correspondence. For a detailed discussion on the
implications of changing query attributes, refer to the manual DB2 UDB for iSeries Database
Performance and Query Optimization in the iSeries Information Center.

You can access the Change Query Attributes panel in two ways:

» From Operations Navigator, right-click Database and select Change Query Attributes.
» From the Run SQL Scripts center, select Options and Change Query Attributes.

You then see the Change Query Attributes dialog as shown in Figure 7-45.

Change Query Attributes - As27 EHE
Available jobs:
Mame | Uszer | Mumber | Subspstem | Current ser ;I
QZDAINIT GQUSER 023215 Q5ERVER GQUSER
QZDAS0NIT GQUSER 023446 QSERVER TEAMDE
QZDAS0NIT GQUSER 023447 QSERVER WETEAM 3T E
QZ0AS0INIT GQUSER 023366 QSERVER WETEAM 3T
T QUSER 023308 GSERVER VETEAMAEK
UZDASOINIT GQUSER 023383 QSERVER VETEAMTTR
QZDAS0NIT GQUSER 023445 QSERVER GQUSER
QZDAS0NIT GQUSER 02340 QSERVER VETEAMT1X =
4 I I 3
Selected jobs:
Mame | Uszer | Mumber | Subspstem | Current ser
QZDAS0NIT GQUSER 023440 Q5ERVER WETEAMITR
Hemove |
K i
Library containing query attributes file to use for selected jobs:
IteamD‘I ﬂ j Open Attributes |
QK | Cancel | Help

Figure 7-45 Change Query Attributes panel

Now proceed with the following steps:

1. In the upper part of the window (fl), you see a list of all jobs currently active in the system.
Scroll through the list to locate the job you are interested in, click on its name, and use the

Chapter 7. Database administration 217

Select button (@) to move the selection in the bottom part of the panel (). You can select
more than one job and set common query attributes for all of them at the same time.

2. At this point, you can specify a library () in which you want the original QAQQINI file to be
copied. Click the Open Attribute button (§), which allows you to edit the copy of QAQQINI
you just made in the library ([fl), as shown in Figure 7-46.

&= TEAMD1 QAQQINI - As27

File Edit “iew Hows Help
COPARM CIOYAL OOTEXT
APPLY_REMOTE “DEFAULT
CUERY_TIME_LIMIT “DEFAULT
FARALLEL_DEGREE “DEFAULT
ASYNC_JOB_USAGE *DEFAULT

F/ |MESSAGES_DEBUG =
FPARAMETER_MARKER_COMNYEF*DEFAULT
LUDF_TIME_OUT “DEFAULT
OPTIMIZE_STATISTIC_LIMITATIC*DEFAULT
FORCE_JOIN_ORDER: “DEFAULT

<] |]

Figure 7-46 Editing QAQQINI

3. Click the cell you want to change and type the new value. As shown in Figure 7-46, we
change the setting for MESSAGES_DEBUG from the original value *DEFAULT to *YES,
therefore, stating that we want debug messages to be recorded for the selected job. When
you press Enter to activate your changes, you receive a warning message (Figure 7-47).

4. Click Yes.

The table you are attempting to change iz not being jounaled, or you do not have authority ta the journal.. |f you want
ta continue, you will not be able to cancel the changes you make. Do you want to continue making the change?

Figure 7-47 Warning message on modification of the QAQQINI file

5. You are brought back to the Change Query Attributes panel. Click OK to make the change
effective.

The options that are currently managed in the QAQQINI file and their values are documented
in DB2 UDB for iSeries Database Performance and Query Optimization.

7.5 Current SQL for a job

You can use this function to select any job running on the system and display the current SQL
statement being run, if any. Besides displaying the last SQL statement being run, you can edit
and rerun it through the automatically linked Run SQL Scripts option and display the actual
job log for the selected job or, even end the job. This can also be used for database usage
and performance analysis, with the Visual Explain tool documented in Chapter 10, “Visual
Explain” on page 301.

To start it, right-click the Database item in Operations Navigator and select Current SQL for
a Job. You are presented with the dialog shown in Figure 7-48.

218 Advanced Functions and Administration on DB2 Universal Database for iSeries

Current SAL - As27 EHE

Available jobs:
Mame | Uszer | Mumber | Subspstem | Current ser ;I
LZDASDINIT QUSER 23446 QSERVER TEAMIE SOL Statement |
OZDASOINIT QUSER 023447 QSERVER VETEAMAT
OZDASOINIT QUSER 023453 QSERVER AR JobLog ﬂ |
OZDASOINIT QUSER 023459 QSERVER QUSER
0ZDASOINIT QUSER 023460 QSERVER QUSER
ZDASCIN QUSER 023308 QSERVER VETEAMI% — End.Job |
023309 QSERVER QUSER =
ﬂﬂﬂﬂﬂ 7 Dok SMann _,I_I Refresh |
£ Last statement ta finish as of 03:06:35 Pk =/ ;I

SELECT ayear ,amonth | aretunflag | a.quantity | arevenus_wo_tax FROM item_fact a
'WHERE a.pear = ? AMD a.month = ? AND aretunflag = ? GROUP BY apear . amonth |
afetunflag | a.guantity |, arevenue_wo_tax OPTIMIZE FOR aLL ROWS

Edit SOL |

[
Cloze I Help

Figure 7-48 Current SQL for a Job

The Current SQL window displays the name, user, job number, job subsystem, and current
user for the available jobs on your system. You can select a job and display its job log, the
SQL statement currently being run, if any, decide to reuse this statement in the Run SQL
Scripts center, or even end the job, provided you have sufficient authority.

In our example, we selected an ODBC job (fl) and displayed the last SQL statement it ran in
the bottom part of the panel () using the SQL Statement button (). To go to its job log, we
would use the Job Log button ().

After the SQL statement is brought in the bottom part of the panel, it is possible to use the
Edit SQL button (§) to work on this same statement with the Run SQL Scripts center that was
previously documented in this redbook. See Figure 7-49.

'3 Untitled - Run SOL Scripts - As23 10l =|
File Edit ¥iew Run ‘isualExplain Options Connection Help

B BB FPFIO O | wfny @

Examples hd Insert |

Last statement to finish as of 03:19:57 PM*f

SELECT CHUM, CNAME, ITMID, IMNUM, IDESC, ONHAMND FROM PFREXP.CSTFIL
INMER JOIM PFRESPITMFIL OM CNUM = INUMWHERE OMHAND == 7%

Figure 7-49 Working with current SQL for a job

From here, it is also possible to link into Visual Explain, using the appropriate menu item or
the icons (fl) to help you with database performance analyses. For a discussion on this tool,
refer to Chapter 10, “Visual Explain” on page 301.

As you may have already noticed, all Operations Navigator database tools are tightly
integrated into each other to make it easier for the user to fully exploit their capabilities.

Chapter 7. Database administration 219

7.6 SQL Performance Monitors

You can analyze the performance of iSeries SQL statements by putting the appropriate
0S/400 job into debug mode, running the SQL statements, and viewing the query optimizer
messages in the job log. You can see an example of using job log messages in “Controlling
SQL run options” on page 213.

This section describes a more powerful SQL performance analysis tool that initially appeared
in V4R4 Operations Navigator and was further enhanced in V4R5. This support provides a
graphical interface to IBM-provided SQL queries against data collected by the Memory
Resident Database Monitor that was introduced in V4R3. In addition to output equivalent to
the debug mode optimizer messages, this monitor can monitor multiple jobs and show the
actual SQL statement. This interface is referred to as the SQL Performance Monitors.

The SQL Performance Monitor, which was originally available in V4R4, only allowed gathering
summary performance information from the Memory Resident Database Monitor. In V4R5, it
is possible to enhance the usability of this interface by collecting detailed performance
information. For a detailed discussion on the Memory Resident Database Monitor, refer to
DB2 UDB for iSeries Database Performance and Query Optimization.

Before you start an SQL Performance Monitor, you need to determine which job or jobs you
want to monitor. There are several techniques you can use to determine the job. We list some
of them here:

» If you are using SQL statements running Operations Navigator Database-> Run SQL
Scripts, you can click the View option from the menu bar. On the drop-down menu that
appears, click Job Log to see your current job’s job log. Included in the gray header
portion of the job log messages is the name of the job, for example,
139224/QUSER/QZDASOINIT. You can scan down to the earliest job log messages to
confirm this job is actually running under the user profile you think it should be.

» If you are not running the job that needs to be monitored, you can get the job name from
the user of the job, if possible.

» If you know the user profile running the SQL jobs, but do not know which job is the one you
want to monitor, you can use the OS/400 Work with Object Locks (WRKOBJLCK)
command to find the jobs running with that user profile. You may receive more jobs than
you anticipated. Then, you may need to look in the job logs of each job for some SQL-like
messages to determine which job or jobs to monitor, for example:

WRKOBJLCK OBJ(QSYS/TEAM02) OBJTYPE(*USRPRF) MBR(*NONE)

This command resulted in five jobs running with user profile TEAMO2: one job name
starting with QPADEVOOOL (5250 emulation), two jobs running Client Access Express
database serving with job name starting with QZDASOINIT (not using SSL), and two jobs
with the job name starting with QZRCSRVS (central server functions). We looked in the
job logs for the two QZDASOINIT jobs and in one of them found the message:

148 rows fetched from cursor CRSR0002.

This QZDASOINIT job was set by Operations Navigator Run SQL Scripts to Include debug
messages in a job log.

» You can use the Operations Navigator server jobs interface to find the job by selecting
from Operations Navigator Network->Servers-> Client Access. Then right-click
Database and select Server Jobs to view the Client Access Express servers (circled in
Figure 7-50).

220 Advanced Functions and Administration on DB2 Universal Database for iSeries

3 AS 7400 Dperations Mavigator
File Edit “iew Options Help

ﬁl .l@l@l C:%ll ol 4 minutes old

| Environment: My A5 /400 Connections | Az2h Client Access

& Configuration and Ser\u;l Server Mame Status [Description
Elﬁ Nebwork @] Central Started Central
gy IP Security [Started D atabase
& Point-ta-Foint @ Dataque 2t Started Dataqueus
¢ Protocols @ Fie Stop Started Fils

[0 Servers (2] Net Print,

/& TCPAP

[@ Client Access
Draming
Interrnet

ig 1BM Metwork Stati
f-58) Security

H-§if® Users and Groups
- Database

[-a2 File Systems

4% Mulimedia

[Backup

[]---@ Application Developre
3252

Gz ke Started Metprint

@ Femote C - Started Femote command
Sign On Properties Started Sign on

@ Server Mapper Started Server mapper

@ Multimedia Stopped Multimedia

Lpar2

Fchasd3d

Fchasdmd

R chasm0E. rchland.ibr. cor
Fchasm07

Fchasm23

q | |4 | i
[~ [1-90f 3 objectfs) [7

frm W B W W B B e W P
[l [[] [[]

Figure 7-50 Finding the database server job (Part 1 of 2)

When you click Server Jobs, a window appears similar to the one shown in Figure 7-51. This
display shows the database server jobs, QZDASOINIT (not using SSL), that are currently
started and shows a current user ID for jobs currently doing active database functions.

Server Jobs - AS25

File “iew Options Help

NN

| |8 mirutes old

| Job name I Current uger I Server I Job type I Job status Time entered system I [ate entered system | Thread count ﬂ
¥ Qzdassinit 05/400 TCP Data Batch Frinter output 004239 01/25/00 1]

¥ Qzdasrvad 05/400 TCP Data Batch Frinter output 004239 01/25/00 1]

& Qzdasoinit 05/400 TCP Data Batch Frinter output 14:45:38 01/28/00 1]

& Qzdasoinit 05/400 TCP Data Batch Frinter output 14:45:38 01/28/00 1]

& Qzdasoinit 05/400 TCP Data Batch Frinter output 14:45:38 01/28/00 1]

& Qzdasoinit 05/400 TCP Data Batch Frinter output 151351 0142700 1]

& Dzdasoinit GQUSER 05/400 TCP Data Batch Active 0F:30:38 01431400 1

% Dzdasoinit 00 TCP Data Batch — Active 0 8 o1 uli] 1

¥ Qzdassinit 05/400 TCP Data Batch Frinter output 071208 01403400 1]

& Dazdassinit GQUSER 05/400 TCP Data Batch Active 15:05:59 01/28/00 1

& Qzdasrvad GQUSER 05/400 TCP Data Batch Active 15:05:59 01/28/00 1 -
N _'l_I
[ltems 1-12 of 15

Figure 7-51 Finding the database server job (Part 2 of 2)

This display illustrates an advantage of using the Operations Navigator “servers” support to
find a job, compared to using OS/400 5250-display based commands such as the Work with
Subsystem Jobs (WRKSBSJOB), Work with Active Jobs (WRKACTJOB), or Work with Object
Locks (WRKOBJLCK) commands.

Chapter 7. Database administration 221

The Operations Navigator interface lists the jobs based on their function. With the OS/400
commands, you need to understand what OS/400 subsystem the server jobs run in and the
job name that identifies the server function. In our example, you need to know that the
QZDASOINIT jobs do the database serving (in this case ODBC-based) work. You also need
to look into the job logs of each active job to find the actual user ID (profile) using the job.

The OS/400 commands we discussed show equivalent jobs with the user ID as QUSER.
QUSER is the user profile assigned by the system for pre-started Client Access database
server jobs. The user profile name actually using the job is indicated in a job log message.
The Operations Navigator interface examines the job log messages and shows the active
user profile (TEAMO2, in our example) if the pre-started job is currently in session with a
signed on client.

7.6.1 Starting the SQL Performance Monitor

To run an SQL Performance Monitor, you need to:

1. Define a new monitor.
2. Determine whether it's going to be a Detailed collection or a Summary collection.
3. Specify the jobs to be monitored and the data to be collected for a Summary collection.

The Detailed collection is discussed later in “Detailed SQL Performance Monitor example” on
page 226.

Summary SQL Performance Monitor example
To start the SQL monitoring process, follow these steps:

1. Right-click SQL Performance Monitors, and select New as shown in Figure 7-52.

3 AS /7400 Dperations Mavigator

File Edit “iew Options Help

E%@%ﬂ|%|éﬁﬁ|><|@0 E minutes old
| Environment: My Connections | Az01: Database
EI} Management Central [4s01) A1 | Name [Description [
=8 My Connections (B Libraries wiork with DE2 UDE for 45/400 objects.
B ! Az _ _ & [atabaze Mavigator work, with D atabaze Mavigator maps.
-85 Basic Operations Bl 50L Performance Maritors Collect and view SGL performance information,

@ whork Management

<
Libraries

FFREXP

[atabaze Mavigator

S0L Performance Moni
(-3, File Systems Explore
(& Backup Open
-8 Application Development Create Shartcut
-8, AFP Manager Werify
- ! Az01b Impot...

Summary

Detailed

—_— ku Map your database
T Fun an SOL script

I55) Select libraries to dizplay
B Create new summary SOL performal
ﬁ Create new detailed SGL performance monitor L4 ? Help for related tasks

Eroperties

Kl

Creates a new summary SOL performance monitar

Figure 7-52 SQL Performance Monitor (Part 1 of 5)

2. Select Summary. This brings up the New SQL Performance Monitor dialogue panel with
three tabs: General, Monitored Jobs, and Data to Collect.

222 Advanced Functions and Administration on DB2 Universal Database for iSeries

The General tab is shown in Figure 7-53.

Mew Summary S50L Performance Monitor - As01 K E3

General | Maniored Jobs | Data to Calect |

Mame: [SOL PERF MON 1
Library for saved data: IPDHTEHL j
Storage [MEB]: IND b awirmum j

Ok I Cancel | Help

Figure 7-53 Starting a Summary SQL Performance Monitor (Part 2 of 5)

We entered the monitor name, the library name that is used to contain the collected data,

and the amount of main storage allocated to the monitoring process.

Do not click the OK button yet. Monitoring all jobs will start if you have not selected specific
jobs under the Monitored Jobs tab. Monitoring all jobs is not recommended on a system
with hundreds of active jobs because the monitoring process can degrade performance.

3. To specify which OS/400 jobs to manage, click the Monitor Jobs tab, which brings up the

panel shown in Figure 7-54.

Mew Summary S50L Performance Monitor - As01 K E3

General Monitored Johs |Data to Collect I

Al
& Select from list below:
Available jobs:

Mame | Uszer | Mumber | Subspstem | Current ser ;I
AvPSJSVR AvPSJSVR 023333 GSTYSwWRE AvPSJSVR

QvPSPFRCOL Qsvs 023355 QS5vSWwRE GSYS
Q5vs 023332 Q5vSwRE Q5vs Celect
OUSER 023202 OSYSWRK OUSER e [!
QUSER 023212 QSERVER QUSER —
QUSER 023261 QSERVER QUSER -
Lcco n2272c7 nococonco nucco _I—I
»
Selected jobs:
Mame | Uszer | Mumber | Subspstem | Current ser
QZDAS0NIT QUSER 023247 QUSRWRE PORTERL
Remove |
KN — i

Ok I Cancel | Help

Figure 7-54 Starting a Summary SQL Performance Monitor (Part 3 of 5)

Chapter 7. Database administration

223

224

Mew Summary S50L Performance Monitor - As01 K E3

General I Monitored Jobs Datato Collect |

4. You can select to monitor all jobs or to select jobs from the Available jobs list pane ({] in

Figure 7-54). After you select a job and click the Select button, the job information is
entered into the Selected jobs list pane (@ in Figure 7-54). You remove selected jobs by
selecting a job in the Selected jobs pane and clicking the Remove button.

In this example, we scrolled down the active job names to display the ones shown in fl. We
select to monitor only job QZDASOINIT/QUSER/023247 with PORTERL as the current
user. We recommend that you monitor as few jobs as possible, because monitoring a
large number of active jobs could impact normal productivity.

. When you are finished selecting jobs, click the Data to Collect tab. This brings up the

panel shown in Figure 7-55.

Data:

¥ Summary data ™ Index creation
v Statement text [Indeses used
v Host variable use ™ Optimizer time out/access paths considered

™ Subselect processing

[" Table scan ™ Tempaorary file use

Select Al |

Ok I Cancel | Help |

Figure 7-55 Starting a Summary SQL Performance Monitor (Part 4 of 5)

6. This panel shows three sets of SQL monitor data collected during every monitor collection

period. You can specifically include other sets of data or simply click the Select All button.
You should select all, unless you understand the application implementation in detail so
that you need to collect only specific information.

When you are satisfied with your monitor collection specification, click the OK button to
return to the original SQL Performance Monitor window, which shows the monitor status
on the right pane in Figure 7-56.

Advanced Functions and Administration on DB2 Universal Database for iSeries

3 AS /7400 Dperations Mavigator

File Edit “iew Options Help

E%@%ﬂ|@|éﬁﬁ|><|@0 1 minutes old
| Environment: My Connections | Asz01: S0L Performance Monitors
EI} Management Central [4:01) || Mame | Tupe /[Status \l Created by | Jobs
=) My Connections B 0ld Perf Mon Detailed Ended PORTERL QSQ5RYR/QUSER /023343
= As1 BRINew Perf Mol Summany _ Started PORTERL OZDASOINITAQUSER/023247
By Basic Operations

EB work Management
Configuration and Service
T Metwork

B8, Security

@ Users and Groups

D atabase

-] Libraries

% [atabaze Mavigator |

@2 File Spstems
Backup
@ Application Development
-8, AFP Manager

B 4s0lb | | i

B
53] Select libraries to display Map pour database
ﬁ Create new summary SOL performance monitor g Flun an SOL script
Rl Create new detailed SO perfarmance monitar b 2 Help for related tasks LI
[1-2 of 2 objects [i

Figure 7-56 Starting a Summary SQL Performance Monitor (Part 5 of 5)

In our example, we used Run SQL Scripts to run the SQL statement. This statement has a
relatively complex WHERE clause as shown in Figure 7-57. Run SQL Scripts is discussed in
more detail in 7.3, “Run SQL Scripts” on page 197.

% Untitled - Run 5QL Scripts - As01 =

File Edit Wiew Run YisualExplain Options Connection Help

S FERB(FFIO O | g @

Examples | ;I Insert |

SELECT AYEAR, AMONTH, ARETURNFLAG, B.PART, B.MFGR, A QUANTITY, REVEMUE_WO _TAX
FROM ITEM_FACT A, PART_DIM B

HERE A.FARTKEY = B.PARTKEY

jD A YEAR = 1988 AND AMONTH = 4 AND A RETURNFLAG = 'R

= SELECT AYEAR, AMONTH, ARETURNFLAG, B.PART, B.MFGR, A QUANTITY, A REVEMUE WO _TAX |
FROM ITEM_FACT A, PART_DIM B WHERE A PARTKEY = B.PARTKEY AND AYEAR = 18938 AND
W IMONTH = 4 AND ARETURNFLAG = 'R

Syntax checkis successful
= SELECT AYEAR, AMONTH, ARETURNFLAG, B.PART, B.MFGR, A QUANTITY, A REVENMUE WO _TAX

FROM ITEM_FACT A, PART_DIM B WHERE A PARTKEY = B.PARTKEY AND AYEAR = 18938 AND
W IMONTH = 4 AND ARETURNFLAG = 'R

Statement ran successfully S

I
Messages I

Figure 7-57 SQL Performance Monitor: SQL Statement which was monitored

Operations Navigator Run SQL Scripts support uses JDBC support. In our example figure,
the SQL statement was already run based on the evidence of its appearance within the Run
History pane. The message Opening results viewer... indicates the results of the SQL
select statement has already been displayed to the Operations Navigator user.

Chapter 7. Database administration ~ 225

The SQL Performance Monitor can monitor all SQL work performed on OS/400. In addition to
Operations Navigator Run SQL Scripts jobs, other users of 0S/400 SQL support would
include a client workstation Visual Basic program accessing the OS/400 via ODBC, a client
workstation Java applet accessing the OS/400 via Java Database Connectivity (JDBC), a
local iSeries program using embedded SQL in the RPG, COBOL, or C program, a local
iSeries program using the SQL CLI (Call Level Interface) in RPG, COBOL, C, or Java.

0S/400 also has a 5250 workstation-based SQL interface running under the Start SQL
(STRSQL) command.

Detailed SQL Performance Monitor example
To start the SQL monitoring process, right-click SQL Performance Monitors, and select
New. Select Detailed as shown in Figure 7-58.

3 AS/400 Dperations Navigator (=]]
File Edit Yiew Options Help
’§|%E|><|@0 0 minutes old
| Environment: My Connections | My Connections
! As25h ;I Mame | Signed On User Description |
E---g AsE0 B as01 WER1 Primary Partition
25 Basic Operations B as0ic YSR1 Secondary Partition C
E8) wiork Management B ases W4RS Primary Partition

B Canfiguration and Service B aszsh Y¥SR1 Secondary Partition
Metwork & asa0 ¥SR.1 Management Central
bl Security

#® Users and Groups
Database

{E5) Libraries

% Database Mavigator

':'D File Systems Explore
@ Application Developr Open
[, AFP Manager Create Shortout:

% Backup, Recovery & verify
4 | | Irnpork. ..

[~ E nwvira
! Add a connection Install plug-ins
! Change all of your server pas Open Operations Mavigator service tools window

@ Install additional components 4 ? Help for related tasks LI
4

Summary

Properties

Creates a new detailed SQL performance monitor

Figure 7-58 Starting a Detailed SQL Performance Monitor

Name the monitor. Select a library for the collected data and proceed to select the jobs you
want to monitor as previously documented in “Summary SQL Performance Monitor example”
on page 222.

7.6.2 Reviewing the SQL Performance Monitor results

The SQL Performance Monitor statistics are kept in main storage for fast recording, but need
to be written to database files to use the Operations Navigator interface to review the results.
You can have the statistics written to database files by either pausing or ending the monitor.

Right-click the active SQL Performance Monitor. A pop-up window appears that lists the
Pause, End, and other monitor actions as shown in Figure 7-59.

226 Advanced Functions and Administration on DB2 Universal Database for iSeries

3 AS/400 Dperations Navigator - |EI|1|
File Edit Yiew Options Help

E%@%ﬂ|@|éﬁﬁ|><|@0 10 minutes old
| Az80; 50L Performance Maonitars
;I ame | Type | Skatus | Created b | Jobs
t Complex Detailed Imported VETEAMOZ
"'! Asz5h B mmcem Detailed Ended ICOOK QZDASO
=B Aseo = Started ITSCIDIS QZDASO
-5 Basic Operations hause Ended JAREK QPADEY
£ work Management Cantine
B2 Configuration and Service End
1§ Metwork Analyze Results
B Security List Explainable Statements
#® Users and Groups
& Database etz
= Libraries Properties
% Database Mavigator
-5 S0L Performance Monit__|
+-=2 File Systems
@ Application Development
T - >

elect libraries to display Map pour database

ﬁ Create new summary SOL performance monitor g Flun an SOL script
ﬁ Create new detailed SGL performance monitor 4 ? Help for related tasks LI
Pauses data collection for the selected monitor v

Figure 7-59 Managing the SQL Performance Monitor

The possible managing functions are:

'S

Pause: This stops the current collection of statistics and writes the current statistics into
several database files or tables that can be queried by selecting the Analyze Results
action. The monitor remains ready to collect more statistics, but requires the Continue
action to restart collection.

Continue: This restarts the collection of statistics for a monitor that is currently paused.

End: This stops and ends the monitor and writes the current collection of statistics to the
database files or tables.

Analyze Results: This brings up a window with three tabs for selecting ways to look at
(query) the collected statistics in the database files or tables:

— Summary Results
— Detailed Results
— Composite View

List Explainable Statements: This opens a dialog listing the SQL statements for which
the detailed SQL Performance Monitor has collected data and for which a Visual Explain
diagram can be produced. See “Listing Explainable Statements” on page 231 for an
example.

Properties: This brings up a window with three tabs that represent the original monitor
definition:

— General
— Monitored Jobs
— Saved Data

An example of the Saved Data tab with the details for our monitor is shown in
Figure 7-60.

Chapter 7. Database administration 227

Detailed SQL Performance Monitor Properties - Perfmon 2=l

General | Monitored Johs Saved Data |

Collection period: IFrom: 09/90/2000 035535 P Taoo 0941042001 04:07:56 Pk j
Library: FFREXF
Monitor data selected: File:

Detailed data G2G0000112

Ok I Cancel | Help |

Figure 7-60 SQL Performance Monitor: Properties

The SQL Performance Monitor file name numeric suffix is updated when each monitor is
started.

Analyzing a summary of SQL Performance Monitor results

0S/400 provides many pre-defined queries to view the recorded statistics. You can select
these queries by checking the various query types on the Analyze Results panels. To begin
viewing the results, right-click the paused or ended monitor. Select Analyze Results from the
pop-up window. Here we analyze results for a Summary Monitor.

Figure 7-61 shows the first results panel that groups queries according to three tabs:

» Summary Results
» Detailed Results
» Composite View

228 Advanced Functions and Administration on DB2 Universal Database for iSeries

Perfmon Results - As80 2=l

Summary Results | Detailed Resutts I Extended Detailed Results

Collection period: IFrom: 0940/2000 035535 PM Too 09410/2001 04:07.56 F'Ij

Select summary queries:

V' General summary [V Statement use summary

v Job summary V' Open summary

[V Operation summary V' Data access summary

v Program summary IV Statement type summary
¥ SOL attributes summary [V Parallel processing summary
IV Izolation level summary [V Optimizer summary

Select Al I Dezelect Al Modify Selected Queries Wiew Results

Ok | Cancel | Help |

Figure 7-61 SQL Performance Monitor: Analyze Results - Summary results

You can select individual queries or use the Select All button. After you select the queries you
want to run, click the View Results button. You can even choose to modify the pre-defined
queries and run the new queries by clicking the Modify Selected Queries button.

An in-depth discussion of using the SQL Performance Monitor results to improve performance
is beyond the scope of this redbook. However, we do show sample query results output.

To obtain the query results shown in Figure 7-63, you must first select the Detailed Results
tab on the Performance Monitor Results window shown in Figure 7-61. This brings up the
Detailed Results panel shown in Figure 7-62.

Chapter 7. Database administration ~ 229

Mew Perf Monl Results - As01 K E3

Summary Results Detailed Resufts | Composite Yiew I
Collection period: From: 04/05/2000 02:01:58 M To 04/05/2001 02:03:03 Pk

Select detailed queries:

™ Basic statement information ¥ Table scan information

™ Access plan rebuild information ™ Sort infarmation

™ Optimizer information ™ Temparary file infarmation
[Indes create information ™ Diata conversion information
™ Index used infarmation ™ SubQuery information

" Open information

Select Al Dezelect Al Modify Selected Queries | Wiew Results I

Ok | Cancel | Help |

Figure 7-62 SQL Performance Monitor: Detailed Results

You can select individual detail query reports, select all queries, and even modify the
provided queries. When you are finished selecting the queries you want, click the View
Results button.

The OS/400 query optimizer support includes an Index Advisor function. This support
includes, when appropriate, a recommendation that a new index should yield improved
performance. Columns that should be used in the index are listed. To view this detailed
information, you must first select to view Arrival Sequence Information (il in Figure 7-63). Click
the View Results button to access a panel similar to the one shown in Figure 7-64.

Mew Perf Monl Database Performance Monitor Table Scan Information - As01

Time Estimated Processing Time |Reason Code |Total Rows Estimated Rows Select Advised In Advised Index Keys
1 2001-04-05 14:02:20.146662|.014 T1 600572 601 E “es DE YEAR MOMNTH, RETURMFLAG
2 2001-04-05 14:02:01.435231 |.001 T1 2 2 Mo -
3 2001-04-05 14:02:01.435231.001 T1 2 2 Mo -
4 2001-04-05 14:02:01.435231 |.001 T1 2 2 Mo -
5 2001-04-05 14:02:01.435231.001 T1 2 2 Mo -
Kl |

Figure 7-63 SQL Performance Monitor: Table Scan Information

To view the information in Figure 7-63, we had to scroll to the right to find the columns
Advised Index and Advised Index Keys (fl). You can see that we compressed several columns
in the results to make the index path information fit within the window (#).

A lab exercise can be downloaded to your iSeries server on a PC workstation as listed in
7.1.1, “New in V5R1” on page 159. The “Self study lab” can be used to familiarize yourself
with the power of the SQL Performance Monitor, as well as most of the Operations Navigator
Database support. It also includes tips on tuning SQL performance.

Analyzing a detailed SQL Performance Monitor

Most of the discussion in “Analyzing a summary of SQL Performance Monitor results” on
page 228 also applies to a detailed monitor.

230 Advanced Functions and Administration on DB2 Universal Database for iSeries

Figure 7-64 shows the first results panel that groups queries according to three tabs:

» Summary Results
» Detailed Results
» Extended Detailed Results

Old Perf Mon Results - As01 K E3

Summary Results | Detailed Results I Extended Detailed Results I

Callection period: IFrom: 04/05/2001 10:54:26 AW Too 04/05/2000 10:54:41 Alj

Select summary queries:

V' General summary [V Statement use summary

¥ Job summary V' Open summary

V' Operation summary V' Data access summary

i Program summary V' Statement type summary
¥ SOL attributes summary V' Parallel processing summary
¥ Izolation level summary IV Optimizer summary

Selest A I Dezelect Al Modify Selected Queries Wiew Results

Ok | Cancel | Help |

Figure 7-64 Detailed SQL Performance Monitor: Analyze Results - Detailed Monitor

For each of these options, you can run any of the pre-prepared queries or modify them for
your own analysis.

Although the items listed under the Detailed and Extended Detailed Results tabs have the
same names and descriptions, the underlying queries are different. The Extended ones allow
you a more complete understanding of the Optimizer choices. You can easily verify this by
selecting the same item in both lists and clicking the Modify Selected Query button to have
the SQL statement opened with the Run SQL Script center.

Listing Explainable Statements

The Explainable Statements for SQL Performance Monitor dialog lists the SQL statements for
which an SQL Performance Monitor has collected detailed data and for which a Visual
Explain graph can be produced.

To access this function, click Operations Navigator->Database->SQL Performance
Monitors. Then you see a list of the SQL Performance monitors that are currently on the
system. Right-click a detailed SQL Performance Monitors collection and select List
Explainable Statements, as shown in Figure 7-65.

Chapter 7. Database administration 231

3 AS /7400 Dperations Mavigator
File Edit “iew Options Help

E%@%ﬂ|@|éﬁﬁ|><|@0 5 minutes old

| Environment: My Connections | Asz01: S0L Performance Monitors
EI} Management Central [4:01) || Mame | Tupe | Status | Created by | Jobs
B

B My Cannections ﬁ Mew Perf Manl Surmmary Ended FORTERL OZDASOINIT/QUSER
Detailed Ended PORTERL QZDASOINIT/QUSER

i i01d Perf Mon
+ % Basic Operations Fauze

‘work, Management Cantinue
B2 Configuration and Service Erd

Analyze Results

List Explainable Statements

= Database Delete...

({5 Libraries Properties
[atabaze Mavigator |

E% S0L Performance Maonitors

@2 File Spstems

Backup

@ Application Development

A, AFP Manager

i | KN |
B

53] Select libraries to display Map pour database
ﬁ Create new summary SOL performance monitor g Flun an SOL script
Rl Create new detailed SO perfarmance monitar 2 Help for related tasks LI

Dizplays an explainable list of statements monitored by the SOL performance monitor i

e

Figure 7-65 List Explainable Statements

When you select this item, you see the panel in Figure 7-66. The upper half of the panel
displays the SQL statements monitored during the data collection session. Click to select the
statement (fl) you are interested in analyzing. The selected statement appears in the lower
half of the dialog.

Once the statement is in focus, it is possible to have it analyzed and explained. Click the Run
Visual Explain button (). Refer to Chapter 10, “Visual Explain” on page 301, for a detailed
discussion on this tool.

Ezxplainable Statements For 50QL Performance Monitor Old Perf Mon K E3

SOL statements manitared:

Date | Time | Job | Job Mumber | User | Processing TimeI SOL Text

04,/05/2001 033111 P GZDASOINIT - 023461 GQUSER B7 ms UPDATE QUSRASYS / 04
03313PM GZDASOINIT - 023461 GQUSER 201 ms [SELECT SUMMARY., 7

033136 PM OZDASOINIT - 023469 GQUSER I3 ms SELECT AYEAR, A MON

033200PM GZDASOINIT - 023461 GQUSER 53 ms SELECT QGJFLD. QQRD

04,/05/2001 033217 P GZDASOINIT - 023461 GQUSER 55 ms SELECT "Jobs Monitored'
| | i
SOL statement selected: el |
SELECT AYEAR. A MONTH. A RETURMFLAG, B.PART, B.MFGR, A QUANTITY, A REVENUE WO _TaAx FROM ;I

ITEM_FACT A, PART_DIM B WHERE A PARTKEY =B.PARTKEY AND AYEAR =7 AND AMONTH =7 AND
& RETURMFLAG = ?

-]

Fiun Yizual Explain |

E Cloze I Help |

Figure 7-66 Using List Explainable Statements

As you may have already noticed, the set of database analysis options and tools provided by
Operations Navigator are well interconnected and meant to be used together in an iterative
fashion.

232 Advanced Functions and Administration on DB2 Universal Database for iSeries

7.6.3 Importing data collected with Database Monitor

It is possible to import Database performance data collected with the more traditional
green-screen interface tool, known as Database Monitor. You can start Database Monitor by
using either the STRDBMON or STRPFRMON STRDBMON(*YES) CL commands on the
iSeries server. While it is beyond the purpose of this redbook to discuss the traditional
collection methods, you will certainly be pleased to discover that this data can be analyzed
with the simpler and more intuitive instruments made available with Operations Navigator,
rather than with the traditional approach.

To import data collected with Database Monitor, select Database->SQL Performance
Monitor->Import as shown in Figure 7-67.

3 AS /7400 Dperations Mavigator
File Edit “iew Options Help

E%@%ﬂ|@|éﬁﬁ|><|@0 8 minutes old
| Environment: My Connections | Asz01: S0L Performance Monitors
EI} Management Central [4:01) || Mame | Tupe | Status | Created by | Jobs
B My Connections ﬁ Mew Perf Manl Surmmary Ended FORTERL OZDASOINIT/QUSER
. B2 0ld Perf Man Detailed Ended PORTERL QZDAS0INIT/OUSER
+- g Basic Operations
‘work, Management
B2 Configuration and Service
[@ Metwork
Security
Uszers and Groups
B Database
5] Litvaries
% [atabaze Mavigator |
Rirmf 5L Performance Monitorg
@2 File Spstems Explore
Backup Open
+ @ Application Development Create Shartcut
B8, AFP Manager Werify
o [E— »
bas 3 Mew g !
I55) Select libraries to display e B Map your database
B Create new summary SOL performanceCIOPEITES g Fun an SOL script
Rl Create new detailed SO perfarmance monitar b 2 Help for related tasks LI
Imports data files from an existing SAL performance manitar i

Figure 7-67 Importing data in SQL Performance Monitor (Part 1 of 2)

A panel appears like the example in Figure 7-68. On this display, you give a name to new
monitor and specify the library and file containing the collected data.

Import SOL Performance Monitor Files - As01 K E

Manitar name: IDBMDN Imported Data

File: [3400DBMON

Library: GQFFR -

Type of monitar:

' Summary

0K I Cancel | Help |

Figure 7-68 Importing data in SQL Performance Monitor (Part 2 of 2)

Chapter 7. Database administration 233

234

Due to some new fields being added to the Database Monitor file in V5R1, SQL Performance
Monitor only fully supports importing and analyzing database performance data collected in
V5R1. Data collected from earlier releases will not have all of the information needed by
Visual Explain. The system imports data from earlier releases and converts the data to a
V5R1 format. However, it can only use default values for information that was not recorded at
the earlier release, and full results cannot be guaranteed when using Visual Explain.

Please refer to 7.6.2, “Reviewing the SQL Performance Monitor results” on page 226, for a
discussion on how to analyze the collected data.

Exit the Visual Explain window and the Explainable Statements window after you complete
your analysis. Depending on your future needs for further investigation, you may either retain
the performance data or delete it from the system at this time. To delete an SQL Performance
Monitor collection, right-click the data collection you are interested in, and select Delete.

Importing performance data for Query/400

Query/400 is not included in the list of queries that can be monitored by the SQL Performance
Monitor, even though debug messages can be used with Query/400 queries.

Because Query/400 queries are often blamed for poor performance, and sometimes even
banned from execution during daylight hours, it was thought appropriate to provide guidance
to bring Query/400 queries into the scope of Visual Explain.

There is no direct Query/400 to SQL command. However, the STRQMQRY CL command will
run a query definition (object type *QRYDFN) as an SQL statement, as long as the parameter
ALWQRYDFN is set to either *YES or *ONLY.

To use this SQL statement with Visual Explain, either start an SQL Performance Monitor for
this job before you issue the STRQMQRY command or use the native STRDBMON CL
command to collect detailed data for the job. See 7.6.1, “Starting the SQL Performance
Monitor” on page 222, for further information.

Alternatively, you can access the SQL statement by using the Current SQL for a Job option
(obtained by right-clicking the database icon in Operations Navigator).

Here we document the actions you need to follow to import the database performance data
collected for Query/400 using the STRQMQRY command as a workaround. For
documentation on the differences between STRQRY and STRQMQRY, see:
http://publib.boulder.ibm.com/pubs/html1/as400/v5r1/ic2924/info/index.htm

Use STRQMQRY as a search word.

In our example, we collect database performance data on a pre-existing Query/400 definition,
named TESTQRY in library ITSCID41 using Database Monitor on the iSeries server. We are
going to create an SQL Performance Monitor named QRYIMPORT. We perform the following
steps:

1. Start the traditional green-screen tool to collect database performance data, Database
Monitor, into a file named QAQQDBMN in library ITSCD41, using the STRDBMON CL
command:

STRDBMON OUTFILE(ITSCID41/QAQQDBMN) TYPE(*DETAIL) COMMENT('Collecting Data for Query/400
- to be Imported in SQL Monitor')

See Figure 7-69 for a sample of this command. All traditional 5250 commands and
activities documented here have been performed in the same working session. Had it been
otherwise, the STRDBMON command should point to the correct job (STRDBMON
JOB(nnnnnn/USER/JOBNAME)).

Advanced Functions and Administration on DB2 Universal Database for iSeries

http://publib.boulder.ibm.com/pubs/html/as400/v5r1/ic2924/info/index.htm
http://publib.boulder.ibm.com/pubs/html/as400/v5r1/ic2924/info/index.htm

Start Database Monitor (STRDBMON)

Type choices, press Enter.

File to receive output
Library
Qutput member options:
Member to receive output . . .
Replace or add records
Job name
User
Number
Type of records
Force record write
Comment

F3=Exit F4=Prompt
F24=More keys

F5=Refresh

>

>

QAQQDBMN Name
ITSCID41 Name, *LIBL, *CURLIB

*FIRST Name, *FIRST
*REPLACE *REPLACE, *ADD
* Name, *, *ALL

Name

000000-999999
*DETAIL *SUMMARY, *DETAIL
*CALC 0-32767, *CALC
Collecting Data for Query?400 -

to be Imported in SQL Monitor

F12=Cancel

Bottom

F13=How to use this display

Figure 7-69 Start Database Monitor

2. Now that we are recording all the database activities for our current job, we can run the
previously prepared Query/400 definition using Query Management Query, as shown in

Figure 7-70.

Start Query Management Query (STRQMQRY)

Type choices, press Enter.
Query management query
Library
Output
Query management report form . .
Library

>
>

TESTQRY Name

ITSCID41 Name, *LIBL, *CURLIB
* *, *PRINT, *OUTFILE
*SYSDFT Name, *SYSDFT, *QMQRY

Name, *LIBL, *CURLIB

Additional Parameters

Relational database
Connection Method

User
Password
Naming convention
Allow information from QRYDFN

F3=Exit F4=Prompt
F24=More keys

F5=Refresh

. >

More...

*NONE
*DUW *DUW, *RUW
*CURRENT Name, *CURRENT

Character value, *NONE
*SYS *SYS, *SAA
*YES *NO, *YES, *ONLY
F12=Cancel F13=How to use this display

Figure 7-70 Start Query Management Query

Chapter 7. Database administration

235

236

Use the STRQMQRY CL command with the ALLQRYDFN parameter set to *YES to enable it
to exploit the pre-existing query definition:

STRQMQRY QMQRY (ITSCID41/TESTQRY) ALWQRYDFN(*YES)

3. After the query has finished executing, you notice message QWM2704 posted into your
job log, as shown in Figure 7-71.

This is an informational message documenting that no query management object was
found. However, a query definition having the same name existed and it was used, as
allowed by the ALLQRYDFN(*YES) parameter.

Additional Message Information

Message ID : QWM2704 Severity 00
Message type : Diagnostic

Date sent : 10/18/00 Time sent : 16:14:21
Message : STRQMQRY command completed using derived information.
Cause : Information was derived from a Query/400 query definition

and used instead of at Teast one query management object that could not be
found. The Query/400 query definition was found using the names specified
for Tocating the query management object.

Recovery . . . : Refer to the job log for the name and object type specific
message for each instance in which information had to be derived.

Bottom
Press Enter to continue.

F3=Exit F6=Print F9=Display message details
F10=Display messages in job Tog F12=Cancel F21=Select assistance level

Figure 7-71 Message QWMZ2704

4. At this point, if you are finished collecting data, you can end the Database Monitor by
using the CL command:

ENDDBMON

5. Now you can use the SQL Performance Monitor tool in Operations Navigator to import and
analyze the data collected. To do so, select Database->SQL Performance Monitor.
Right-click SQL Performance Monitor and select Import. You see the dialog shown in
Figure 7-72.

Advanced Functions and Administration on DB2 Universal Database for iSeries

Import SOL Performance Monitor Files - As27 EHE

Maritor name: IQHYlMF’DHT

File: 3400DBMN

Library: IITSEID4‘I vl

Type of monitar:
' Summary
& Detailed

QK I Cancel | Help |

Figure 7-72 Importing data in SQL Performance Monitor

Here specify a name for the new Monitor you are creating and the file and library
containing the previously collected data.

6. The new monitor name is added to the list shown at the SQL Performance Monitor item.
Right-click it and select List Explainable Statements, as shown in Figure 7-73.

3 AS 7400 Dperations Mavigator

File Edit “iew Options Help

E|¥|@ﬂ%|ﬂ| EI éﬁllﬁl Xll @llal 0 minutes old

| Environment: My A5 /400 Connections | Az2¥: S0OL Performance Monitors
Em My 45400 Connections ;I Mame | Type | Status [crs]
-l As25 BRINL Join reported as CP Detaled Ended Tt
B ! £s27 ﬁ Perf - Index vz Index anly Detailed Ended Wi

%5 Basic Operations B PARALEL EVI Detailed Ended TE
@ Job Management

Manac _ OFYIMPORT Detaied Imported 1T
Configuration and Service B Sort without jo Pauee nded Wi
8 Hetwork BRISCAN Problen Loriiniie nded Wi

L Security Erd
&8 Leers and Groups BRISTR0VE ca, E nded T

B Team02 5OL Analyze Resuls aused IT
st a & Statements nded T

D atabase
@ Libraries BB Ta Parallel or

@ ODEC Data Sources BRI TESTORY400 poted T
Bl SOL Performance Maritors BRILDF Teat Properties nded TE
-2 File Systems BRIVE TEAMI5X errrrermemrorrrr— nded :
-4 Multimedia Bz Summary Ended IT
-- Backup ﬁ 2_weteam25 Detailed Started Wi
@ Application Development =l | | »
Dizplays an explainable list of statements monitored by the SOL performance monitor i

Figure 7-73 SQL Performance Monitor - List Explainable Statement
After you select this option, you are presented with the List Explainable Statements dialog

(Figure 7-74). On this display, you can see the actual SQL statement generated by Query
Manager to resolve the original Query/400 request.

Chapter 7. Database administration 237

Ezxplainable Statements For 5QL Performance Monitor QRYIMPORT EHE

SOL statements manitared:

Date Time | Job | Job Mumber | User | Processing Time | SOL Text
04:14:15.. OPADEVOOD4 024238 ITSCID4 7 ms SELECT ALL "YEAR", "MON1

| | 3
SOL statement selected: Refresh |

SELECT ALL "vEAR", "MONTH", RETURNFLAG, PARTEEY, QUANTITY, PROFIO000T FROM VETEAMOTATEM_FACT ;I
TO1WHERE "YEAR" = ? AND "MONTH" = ? AND RETURMFLAG = ?

-]

Fiun Yizual Explain |

Cloze I Help |

Figure 7-74 List Explainable Statements dialog
From here, you can link into Visual Explain to analyze the database behavior during the

execution of this query. For more information on this subject, refer to Chapter 10, “Visual
Explain” on page 301.

238 Advanced Functions and Administration on DB2 Universal Database for iSeries

Database Navigator

This chapter introduces you to the DB2 Universal Database for iSeries Database Navigator
feature and its capabilities. It covers the following topics:

Finding Database Navigator

Finding database relationships prior to V5R1MO
Database Navigator maps

Database Navigator map interface

Objects to Display window

Database Navigator map display

Available options on each active icon on a map
Creating a Database Navigator map

Adding new objects to a map

Changing the objects to include in a map
Changing object placement and arranging object in a map
Creating a user-defined relationship

VYYYYYVYVYVYVYYVYY

© Copyright IBM Corp. 1994, 1997, 2000, 2001 239

8.1 Introduction

The launch of DB2 Universal Database for iSeries Database Navigator, which is part of
Operations Navigator in V5R1MO Client Access Express, allows database administrators to
map the complex relationships between database objects.

The database component of Operations Navigator at V5R1MO provides additional graphical
interfaces for new functions that include:

» The ability to create and manage tables, views, indexes, constraints, journals, journal
receivers, and system (external) and SQL Triggers

» The ability to graphically view the relationships between the various parts of an existing
DB2 UDB database and save and update these visual maps with the push of a button

» The ability to reverse engineer an existing database so that the database administrator
can port the database to other iSeries servers as well as other platforms

The relationships that you see on the Database Navigator map are the relationships between:

Tables (for example, referential integrity constraints)

Any indexes over the tables

Any constraints, such as primary, foreign, unique, and check
Any views over the tables

Any aliases for the tables, etc.

vVvyyvyyvyy

Note: Database Navigator is not intended to be a data modeling tool like some existing
products in the industry.

8.1.1 System requirements and planning

Be sure you have an iSeries server with 0S/400 V5R1MO, or higher, with:

» 5722-SS1: Option 12 - Host Servers
» 5722-TC1: TCP/IP Connectivity Utilities
» 5722-XE1: Client Access Express V5R1MO

8.2 Finding Database Navigator

240

Database Navigator resides under the Database icon of Operations Navigator. Open the
Operations Navigator window and click the desired iSeries server. Click the (+) sign next to
the Database icon. Now, click the Database Navigator icon. The Database Navigator maps
that are available appear.

Database Navigator is part of the Database icon within Operations Navigator. There are three
functions beneath the Database icon (Figure 8-1):

» Libraries
» Database Navigator
» SQL Performance Monitors

Advanced Functions and Administration on DB2 Universal Database for iSeries

E%@%ﬂ|%|éﬁﬁ|><|@0 110 minutes old

| Environment: My Connections | AzB0: Database
-l As27 =] [Name | Desaription
=B As80 (B Libraries ‘work with DB2 UDB for A5/400 ohiects.
% Basic Operations & [atabaze Mavigator work, with D atabaze Mavigator maps.

B8 work Management Bl 50L Performance Maritors Callect and view SOL performance information.
B2 Configuration and Service

% [atabaze Mavigator

-Bg] SOL Performance Monitors
@2 File Spstems

Backup

@ Application Development
-, AFP Manager

53| K | i
I55) Select libraries to display Eﬁn Map pour database
ﬁ Create new summary SOL performance monitor @ Fiun an SGL script
ﬁ Create new detailed SGL performance monitor 4 ? Help for related tasks

H
[1- 3 of 3 objects [A

Figure 8-1 Database options within Operations Navigator

The new Database Navigator feature allows you to perform many tasks, including:

Create a table

Create a view

Create an alias

Create a journal

Create an index

Create a map of your database

Create new SQL objects to be displayed in the map
View the properties of a map

View the properties of an object within a map
Generate SQL for an object within a map
Generate SQL for all objects within a map
Generate SQL for selected objects within a map
Generate SQL for visible objects in a map
Expand a table in a map

Collapse a table in a map

Add a referential constraint

Add a check constraint

Add user defined relationships to a map

Add a key constraint

VYYYYYYYYYYVYVYVYVYVYVYYY

An option also exists for removing and adding objects to this relationship, such as journals
and receivers. These are not selected as a default for the map because they may cause the
map to be very complicated. To add these extra objects, click the Options menu as shown in

Figure 8-2.

Chapter 8. Database Navigator

241

| A PRV EES

Wiew or change preferences

Search for Objects

MName: F\II names vl
Type: IAIItypes vl
Library: |List of libraries vl

Search |

Library Trea | Library Table | Objects In Map|
Libraries

-5 TEZCMDS

Figure 8-2 Viewing or changing the user preferences for the Database Navigator map

After you select the user preferences option, you can see the default user preferences for
creating a Database Navigator map.

Figure 8-3 shows you the various objects that may be included on the map. From the
Database Navigator map, you can directly affect the relationships on the database by adding

or removing indexes, files, views, etc.

When adding an ohject to the map find these related objects:

= Jourial recelvets

v Check constraints v Primary key constraints

v Indexes [+ Unigue key constraints
[Journals v Views

¥ Show flyover help on objects in map

[Show properties dialog for generate SAL

QK I Cancel Help |‘?|

Figure 8-3 Database Navigator user preferences

8.3 Finding database relationships prior to V5SR1MO

242

To see the benefits of Database Navigator, you must find the relationship between database
objects on an iSeries server that is not at Client Access Express V5R1MO. You must use
several commands to achieve the same results that you get with Database Navigator.

Some of the commands that are needed are:

» DSPDBR FILE(SAMPLEDB16/ACT) OUTPUT(*PRINT)
This command (Figure 8-4) shows the indexes, views, and constraints related to the
selected table.

» DSPFD FILE(SAMPLEDB16/ACT) TYPE(*CST) OUTPUT(*PRINT)
This command (Figure 8-5) shows the details of the constraints built over the selected
table.

Advanced Functions and Administration on DB2 Universal Database for iSeries

» DSPFD FILE(SAMPLEDB16/ACT) TYPE(*ACCPTH) OUTPUT(*PRINT)

This command (Figure 8-6) shows you the access path that is built over the selected table.

You also need to use the WRKJRNA command to determine which files are journaled to other
journals. Although the DSPFD command also shows this, you cannot obtain an overview

without using these commands.

It is possible to build a relationship map. However, it takes time and a great deal of effort. It is
also very difficult for a new database administrator to envision the layout of an existing or new
database and the effect of removing an index or constraint on other files.

This can result in unnecessary resources allocated to files, indexes, and constraints that may
not be needed. This is because the referential integrity map is only as good as the last time
the database administrator actually checked the authenticity of the map that was previously

created.

The AFP viewer screens show the commands mentioned in the previous list (Figure 8-4

through Figure 8-6).

537163351 V5RIMO 010525

DSPDER Conmand Input
File . .
lerary .
Menber . .
Record format .
Output

Specifications
T?EE of file

Library .

Menber . ..

Record format .

Number of dependent files ..
Files Dependent On 3Specified File

FILE

{ MER
: RCDFMT
OUTPUT

Display Data Base Relations

ACT
SAMPLEDElG
* NONE

* NONE
*FRINT

Physical
ACT
SAMPLEDE1E
* NONE
* NONE

&

Dependent File Librar Dependency JEEF Constraint
ZAcCTl SAMPLEDElG Data
HACTZ SAMPLEDE LG Data
VACT SAMPFLEDE 16 Data
VITAFAC]L SAMPLEDE1lG Data
VI TAFACE SAMPLEDE LG Data
PROJACT SAMPLEDE1LG Constraint EFAA
Figure 8-4 Display Database Relations display
5716531 VSRIMO 010525 Display File Description
File & ACT
Library @ ZAMPLEDE1EG
Type of information t *CST
File attributes : *ALL
Swaten . . . v e s .. P FLCL
Frocessor : IEM A3/400 Display File Description Processor
File . : ACT Library . : SAMPLEDELG Type of file . : Physical *DATA
Constraint Description
Primary EKey Constraint
Constraint . i CET QTS ACT 00001
Type : TYPE *PRIMART
Eey . KEY ACTHNO
Nunber of fields in key 1
Key length . 2

Figure 8-5 Display File Description display showing constraints on a particular file

Chapter 8. Database Navigator 243

5716331 V5RIMO 010525

File

Display File Description

: ACT

LJ_brary . . : SAMPLEDE1G
e of information . : *ACCPTH
e attributes ¢ *ALL
System i *LCL
Processor IBM AS/400 Display File Description FProcessor
File . : ACT Library i SAMPLEDE1G Type of file : Physical *DATA

Access Path Description

Access path maintenance ¢ MAINT * IMMED
Tnigue key wvalues required i UNIQUE Yes
Accesz path journale H No
Acoess path . . Keyed
Constraint Type PRIMARY
Nurkber of key fields 1
Record format . . . ACT
Key field . ACTNO
Jequence Aszscending
Sign spec:.fled . SIGNED
Zone/digit spec:.fled P Coe e .. * NONE
Alternative collating sequence e e .t No

Figure 8-6 Display File Description display showing access paths

The entire process for creating a physical or mental picture of which table is related to which
index is very difficult to administer. The practical difficulties of keeping this picture up-to-date
requires time and effort on the part of the database administrator.

It is also difficult to explain the entire picture when doing training for new staff, and it requires
valuable time and effort on the part of the database administrator.

The process is simplified with the new Database Navigator feature of Client Access Express
V5R1MO.

8.4 Database Navigator maps

244

Database Navigator enables you to visually depict the relationships of database objects on
your iSeries server. The visual depiction you create for your database is called a Database
Navigator map. In essence, the Database Navigator map is a snapshot of your database and
the relationships that exist between all of the objects in the map.

Click the Database Navigator icon to bring up the list of Database Navigator maps that are
available in the system. The maps appear in the right-hand side of the Operations Navigator
window as shown in Figure 8-7.

Advanced Functions and Administration on DB2 Universal Database for iSeries

3 A5 7400 Dperations Mavigator

File Edit “iew Options Help

R

5 minutes old

| Environment: My Connections

| Az27. Database Mavigator

Management Central [4:27]
My Connections

E..

Hg Basic Operations

ER work Management

B2 Configuration and Service

[@ Metwork

Security

@ Users and Groups

B Database

0-[E5) Libraries

% [atabaze Mavigator
SOL Performance Monitars

@2 File Spstems

Backup

@ Application Development

-, AFP Manager

[l 480

(- B Pidi

I55) Select libraries to dizplay
B Create new summary SOL performance
B Create new detailed S0L performance maonitar

s

monitor T

»?

Map pour database
Fiun an SGL script
Help for related tasks

| Library | Description
QWS DB map for QwS/ACUSTCDT table
SAMPLEDEST MaP CREATED BY DBNAWS1
SAMPLEDZ Map created by DEMAWVAS
@ SAMPLEDEMAPDS SAMPLEDEOS MaP FROM SaMPLEDEDS LIBRARY
@ SaMPLEDEMAPDE SAMPLEDEOE MaP FROM SaMPLEDEBOE LIBRARY
@ SAMPLEDEMAPOT SAMPLEDBO? Map created by DEMAVOT
i P] SAMPLEDBOS MAP created by DENAYOS
@ SaMPLEDEMAPED SAMPLEDES0 MaP CREATED BY DEMAWSD
@ SAMPLEDETIMAP SAMPLEDET1 Database Map for SAMPLEDET1
@ SaMPLE42 SaMPLE42 map created dbnav42
@SQUIHDTEST SAMPLEDE1E

[1-11 0 11 ohiects

Kl

Figure 8-7 Database Navigator maps

Double-click the database map you want to view. The Database Navigator map window with
the selected map appears as shown in Figure 8-8.

iim SAMPLEDBMAPS0 - Database Mavigator - As27
File View Options Map Help

TS HP BARAS I ¢mun ARdBEc-vyETE

Search for Objects

MName:
Type:

Library:

F\II names vl
IAIItypes 'l
|List of libraries vl

Search |

EMPPROJACT

|

REPAPA,

Library Tree | Likrary Tahle | Ohjects In

Map |

@ Libraries

{5 TEZCMDS

4;

4

PROJACT
¢
= =

EMP_PHOTO

QEYE_EMPNO...

EMP_RESUM

QEYS_EMPN

5

|1 9 of 64 ohjects in map are visible.

JMap SAMPLEDBMAFSD in SAMPLEDBS |

Figure 8-8 Database Navigator map

Be aware that the map shown is the Database Navigator map at the time that it was saved.

This means that things may have changed on the system since the map was created and

saved. To view an up-to-date picture of the database, refresh the map by clicking the View
menu and selecting the Refresh option as shown in Figure 8-9.

Chapter 8. Database Navigator

245

(File RN options Map Help

g Zoom 'iéw%|&@@w/€h%@
Object2nnei h 2l
i]Refresh all data from the host| e < ===
Marr Show Srermew oo =1 == E=——
Show Objects of Type » __I ACT PROJECT
THEG Arrange =
Library; JList of libraries = / ¥ N
Search | E E E
_RESPE... QSYS_DEPTHM... RFPP
Library Trea | Library Table | Objects In Map|
7] Libraries
-5 QePL
+-{iE SAMPLEDB16
QTEMP
£ TEZCMDS =z
Kl | _>l_I

J24 of 72 objects in map are visible. | |

Figure 8-9 Refreshing a map

The Database Navigator maps are stored on the iSeries server. Only one person at a time
can work on the map to ensure integrity. The maps are locked when they are being used.
Because they are stored on the iSeries server, you must have a connection to the system to

be able to open a map.

You can save multiple maps of the same database reflecting the database design at certain
points in time. For this, you use different names. Whenever you want to compare how the
database design has changed, you open and print the appropriate maps. Using the printouts,
you can compare how the database design has changed over time.

Note: For a complete explanation of the icons, refer to 8.8, “The Database Navigator map
icons” on page 269.

8.5 The Database Navigator map interface

246

As stated previously, the Database Navigator map provides a graphical interface that allows
the database administrator to see the layout of the various objects in the database. One of the
new functions added for VSR1MO is the task pad. This is located in the lower part of the

Operations Navigator window.

If you click on the various higher level options, such as Security, Users and Groups,
Database, etc., the task pad changes accordingly to present you with the options that are
available when the database functions is selected as shown in Figure 8-10.

The options available on the Database task pad are:

Select libraries to display

Create new summary SQL performance monitor
Create new detailed SQL performance monitor
Map your database

Run an SQL script

vVvyyvyyvyy

Advanced Functions and Administration on DB2 Universal Database for iSeries

EEE B 5 R X

|3 o

110 minutes old

| Environment: My Connections

| A380; Databaze

EN- |
= As80

-5 Basic Dperations

ER work Management

B2 Configuration and Service

[@ Metwork

B8, Security

@ Users and Groups

B Database

0-[E5) Libraries

% [atabaze Mavigator

- SOL Performance Maonitars
@2 File Spstems

Backup

@ Application Development

-, AFP Manager

Ll

I55) Select libraries to dizplay
ﬁ Create new summary SGL perfarmance monitor
B Create new detailed S0L performance maonitar

[Description

Mame
@ Libraries
& D atabase Mavigator

BB 50L Performance Manitors

work, with DBZ UDE for AS /400 objects.
work, with D atabaze Mavigator maps.
Collect and view SGL performance information,

B Map your database
B Rur an SOL script
b ‘2 Help for related tasks

H
Z

[1- 3 of 3 objects [

Figure 8-10 Database task pad options

Click the option in the task pad to create a map of your database. The window shown in

Figure 8-11 appears.

File View Options Map Help

e P BRI T dmen | APd@-vETS

Search for Objects

MName: F\II names vl
Type: IAIItypes vl
Library: |List of libraries vl

Search |

Library Trea | Library Table | Objects In Map|

7] Libraries

1 QGPL
QTEMP
(-5 TEZCMDS

4]

5

Figure 8-11 Default map display

The primary workspace for Database Navigator is a window that is divided into several main
areas as shown in Figure 8-12. These areas allow you to find the objects to include in a map,
show and hide items in a map, view the map, and check the status of changes pending for a
map. The following list describes the main areas of the Database Navigator window:

» Locator pane

The locator pane, on the left side of the Database Navigator window, is used to find the
objects that you want to include in your new map, or to locate objects that are part of an

open map. The upper Locator Pane is a search facility that can be used to specify the

Name, Type, and Library of the objects that you want to include in the map. The results of

the search are displayed in the lower Locator Pane under the Library Tree and Library

Chapter 8. Database Navigator

247

Table tabs. When the results are displayed under these tabs, you can add objects to the
map by right-clicking an object and selecting Add to Map or double-clicking the object
name. Then, when the map is created, you can see a list of the objects in the map by
clicking the Objects In Map tab.

The Locator Pane is divided in two parts:
— The upper locator window

This window allows you to search for database objects on the iSeries server. When an
object is found, it is placed in the object window:

¢ On the search criteria, you can specify single objects or search for generic names
using the * (for example, EMPLE™).

* You can specify all object types or indexes, tables, and views.

* You can specify one library from your library list or all libraries to search on.
— The lower locator

This window has three parts:

* The library tree: This can either show individual libraries, libraries in your list, or all
libraries on the system.

* The library table: This shows the tables, indexes, or views of the libraries in the
library tree.

e Objects in map: This shows all of the objects in the map, whether they are hidden or
not. Within this display, you can select or deselect objects to be placed in the map.

Note: Any changes that are made using the search criteria require that you click the
Search button to change the library tree or the library table displays.

gim SQUIRDTEST= - Database Navigator - As27

File View Options Map Help

HEHY BRI smun[a@dlcvyirse

Search for Objects ;I
harme: firames =] | Mpin Map Window
Type: Im
Library: IW[\ -

W - | -
ocator Search

LibraryTreel Library Table Ohjects In Mapl PROJECT

| MName | Library | Type | ‘H \

0 AcT SAMPLE... Tahle = = =
[a] &

& HACT1 SAMPLE... Index Q@3 RESPE.. RPP SVS_DERTH..

@= QSYS_ACT_.. SAMPLE.. Prim..

B RPAs SAMPLE... Fore..
PROJACT SAMPLE.. Tahle
HPROJAC SAMPLE... Index
= QSYE_PROJ.. SAMPLE.. Prim..

B RPAP SAMPLE... Fore.;l_,l
= T R 3

|43 of 73 objects in map are visible. | o

)

Lower
Locator

Figure 8-12 Three main windows in the Navigator map display

248 Advanced Functions and Administration on DB2 Universal Database for iSeries

Map pane

The map pane, on the right side of the Database Navigator window, graphically displays
the database objects and their relationships. In the Map pane, you can:

Add tables and views that exist on the system, but were not originally included in the
current instance of the map

Remove objects from the map

Change object placement

Zoom in or out on an object

Make changes to objects in the map
Generate the SQL for all objects in the map

These windows are the main interface that allow you to change what you see in the main
map window, search for other objects to add to the map, and move the objects around
within the map to make it easy to read.

Object status bar: This part of the window consists of three parts (Figure 8-13):

Object Status Bar: This displays the number of objects that are visible in the Database
Navigator map and how many are eligible to be added to the map.

Action Status Bar: This provides a clear description of the actions taken that affect the
map and any modifications that are pending.

Modification Status Bar: This indicates whether a modification has been made or is
pending.

| o]

|

|56 of 71 ohjects in map are visible |MapEAMPLE42 in SAMPLE42 successfully open [vod
Object StatusJ Action Status L Modification

Status

Figure 8-13 The status bar

The Database Navigator map display also supports the following menu options:

>

File menu: You can select a number of options, including:

New: Allows you to create a new map

Open: Allows you to open a previously saved map

Close: This closes the currently open map

Save: Allows you to save the current map with which you are working

Save as: Allows you to save the current map you are working with and change the
name and location if the map has previously been saved

Print: This option allows you to print to a previously defined printer
Exit: This option closes the map of your database screen

Note: If changes are made to the map, or if this is a new map, you are prompted as to
whether you want to save the map.

Chapter 8. Database Navigator 249

» View menu: The following options are available:

- Zoom

* In: Allows you to zoom in on the map

e QOut: Allows you to zoom out on the map

* Fit to Window: Allows you to fit the map to the current window size

e To Selected Objects: Positions the window to the object that has been selected

— Refresh: This updates the database map with any changes that are made.

— Object Spacing: This allows you to increase or decrease the vertical and horizontal
spacings of the objects in the map.

— Show Overview Window: This brings up a window (Figure 8-14) that allows you to see
an overview of the map currently open. This overview allows you to position the main
screen to any part of the map. This is particularly useful on very large or complicated

maps.

— Show objects of type: This allows you to add objects to the map, such as aliases,

journals, etc.

— Arrange: This allows you to change the map back to the original settings.

L Uil Dlabse Noviglor 27 RGIE]
File View Options Map Help Sile View Options Map Help
CEHU|BARD Téme ABHR-/ETH IEHG BAAD [Idme PRV IS
Search for Ohjects PROAC ﬂ Search for Objects
Marme: F\H names hd ﬁ Q Marme: FH names hd ORG EMP_RESUME
Type: All types hd |E |ff Type: A1l types hd v
RPAA .~ RF—
Librany: List of libraries - / Libray: List of libraries - |E
[Overview of map Unlitled - As27 IR [} Overview of map Untitled - 4527 MEIEY QSYS_EMPNO..
= T = = ,? s .f & = i T s - .T =
s i N = bl 2
* o ECT 5
’i“\
q N rh
—
E E A
YS_DEPTN... RPP i
¥
L AY
- o e I — -
e _ ;H | _>IJ
|250f75 abjects in map are visible | |M0d 15 0f 75 objects in map are visible. | |M0d

Figure 8-14 Overview windows showing how moving the overview box changes the main map display window

» Options menu: The following option are available:
— User Preferences: This allows you to change the objects that appear on the map as it

is created (Figure 8-15).

250

Advanced Functions and Administration on DB2 Universal Database for iSeries

User Preferences E

When adding an ohject to the map find these related ohjects:

= Jaurnal receivers

¥ Check constraints [+ Primary key canstraints

v Indexes [+ Unigue key constraints
[Journals v Views

[+ Show flyaver help on objects in map

[Show properties dialog for generate SAL

QK I Cancel Help |‘?|

Figure 8-15 User Preferences display

— Change List of Libraries: This allows you to change the libraries that are displayed
(Figure 8-16).

" Enter libraries: Libraries to display:

QGPL
QTEMP
it = | TEZCMDS

#CGULIB f’

#DFULIB = — |
#DSULIE

#LIBRARY

#SDALIB

#SEULID

"sguird”

ABC

ABCZ

BRMSMERGE =l

QK I Cancel | Help |‘?|

Figure 8-16 Change list of libraries display

If a new library is typed on the Enter Libraries box, instead of selecting from a list, the

system ensures that the library exists before allowing the object to be added to your
list.

» Map menu: The Generate SQL option appears with the following sub-options:

— For all objects
— Selected objects
— Visible objects

For each of these options, the system creates the SQL script used to generate the objects,
and it prompts the Run SQL Scripts window to appear as shown in Figure 8-17.

Chapter 8. Database Navigator 251

% Untitled - Run SQL Scripts - As27

File Edit ¥iew Run VisualExplain Options Connection Help

HES L EREB FFIOO W @

Examples | ;I Insert |

- Generate 3QL

- Wersion: WARTMO 010525

- Generated on: 0207701 08:39:37
-~ Relational Database: RCHASMZY

- Standards Option: DBz UDB AS400

DROP TABLE SAMPLEDB16.ACT ;

CREATE TABLE SAMPLEDB16ACT (
ACTNO SMALLINT NOT MULL
ACTKWD CHAR(E) CC3ID 37 MOT NULL ,
ACTDESC VARCHAR(20) CCSID 37 NOT MULL
CONSTRAINT SAMPLEDB16.Q5YS_ACT_00001 PRIMARY KEY{ACTMO),

Messages I

Figure 8-17 Generate SQL window

The Run SQL Scripts window allows you to see the SQL statement that was used to
create the object and it allows you to take individual tables, whole databases, or entire
maps of objects to other iSeries servers or SQL platforms.

The Create option includes the following sub-options:
» Journal: This allows you to create a new journal.
» Table: This allows you to create a new table.

» View: This allows you to create a new view.

» User Defined Relationship: This allows you to create a user-defined relationship. This
helps by allowing the database administrator to add relationships of important tables, of
the database, and so on. This function is likely used to illustrate a referential integrity
constraint that is implemented on the application logic and is not defined in the database.
This can also be used to illustrate relationships that are not physical in the map for debug
or education purposes.

A tool bar exists that has a lot of the functionality previously mentioned. It includes the
following features:

Show or hide Indexes

Show or hide views

Show or hide journals

Show or hide journal receivers

Show or hide primary key constraints
Show or hide check constraints
Show or hide unique key constraints
Show or hide table aliases

Show or hide view aliases

VVYyVYyVYVYVYVYYVYY

Note: If the objects are not available to hide or view, the button is grayed out.

252 Advanced Functions and Administration on DB2 Universal Database for iSeries

8.5.1 Objects to Display window

Within the Objects to Display window, only one option is available — the Find in Map option.
This option allows you to find a specific object in the map. When this option is selected, the
chosen object appears in the selected map window.

8.5.2 Database Navigator map display

The Database Navigator map main display is another interface for managing and changing
your database using Operations Navigator. Each object on the Database Navigator map is
active, and various options are available.

From the main display, you can add objects to a map, create new objects, etc., as previously
described. This section explains the various functions available to you from this display.
Right-click the main window to view the following menus (Figure 8-18):

» Create: You can create journal, tables, views, and user-defined relationships by choosing
this option.

» Zoom: You can zoom in or out and make the map fit the window by selecting this option.

» Generate SQL: You can generate the SQL for all objects or only the visible options by
selecting this option.

» Remove all line bends: This removes all bends in the database map joining arrows.

» Arrange: Returns the objects within the map to there position at creation even if the map
was saved previously.

» Properties: This shows you a properties display of the map itself.

Create 4 Create Journal Create 4 |
Zoom ‘ Zoom > Table _ In
Generate SQL 4 Generate SQL 4 Wiew Generate SQL 4 -Out
Remaove all line hends Remove all line bends User Defined Relationship Rermove all line bends To Eit Window
Arrange Arrange Arrange -
Properties Froperties | Eropenies
Help Help ﬁelp

Create L

Zoom 4 \

Generate SQL 4 All Ohjects...

Remove all line bends Wisible Objects...

Arrange

Froperties

Help

Figure 8-18 Options that are available when you right-click the map

Note: A map is saved on the iSeries server as an object type of *FILE.

As previously stated, each object type is active. By right-clicking the objects, you can access
several different options.

Chapter 8. Database Navigator 253

Flyover

Because each object is active, there is a new function that allows you to view a brief
description of an object within the map simply by placing the cursor over the object. This is
called a flyover. Depending on the type of object, different information types appear. The
basic display for each object shows the object name, the system name on which the object
resides, the library, and the type of object as shown in Figure 8-19.

gm SQUIRDTEST= - Database Mavigator - As27
File View Options Map Help

HEHY BRI ¢mun ARdBEccvirs®

Search for Objects =

Mame: F\II names 'l

Type: IAIItypes vl EMP_FPHOTO EMP_RESUME EMPPROJACT
Library: |List of libraries vl ;é % %7 |
o | B B =
QSYS_EMPNO... QSYS_EMPNO... REPARPA
Library Trea | Library Table | Objects In Map|
[E) Libraries QSYS_EMPNO_00001
Systern Mame: QEYS_EMPMNO_D0O001
Likirary: SAMPLEDB1E P
Type: Fareign key constraint 3
Constrained Table: EMP_PHOTO PCT
Farent Tahle: EMPLOYEE
| v \Q —
4 | _’I_I
|18 of BE objects in map are visible. | JMad

Figure 8-19 Example flyover display

After you refresh the display, a window, like the example in Figure 8-20, appears while the
refresh runs.

Related Objects:

|13—Tables |11— Fareign key constraints
IS—AIiases Im.mumal receivers
|1— Check constraints I?— Frimary key constraints
|12— Indexes ID— Unigue key constraints
Im.mumals IED—Views

Figure 8-20 Refresh on database in progress

After the map is built or refreshed, you can manipulate the objects however you want. From
within the map display, you can actually move the icons around to suit your requirements.

254 Advanced Functions and Administration on DB2 Universal Database for iSeries

8.6 Available options on each active icon on a map

This section discusses the options that are available to you from within the map display.
These options are available by right-clicking each of the different objects in the map.

8.6.1 Table options

Figure 8-21 shows the various options available to you when you are using the active icon for
a table within a Database Navigator map. All objects on a map are active, and they enable

you to manipulate the object without leaving the map.

File View Options Map Help

TS HP BARAS I ¢mun ARdBEc-vyETE

Search for Objects \ M L

MName: F\II names vl

Type: IAIItypes 'l
Library: |List of libraries vl E
EMPLOYEE
Search | 4
Systern Mame: EMPLOYEE
Library: SAMPLEDE1E
Library Trea | Library Table | Objects In Map| Type: Table

7] Libraries

4
J— o

JMad

(-5 TEZCMDS

|25 of 70 objects in map are visible. |

Figure 8-21 Flyover display of a table within a Database Navigator map

Right-click a table within the map. A window appears as shown in Figure 8-22.

File View Options Map Help
o000

TS HP BARAD|T | A @ e e
Search for Ohjects Description ;I
Journaling...
MName: F\II names vl MO RS
Type: IAIItypes vl Create Alias
Reorganize
Library: |List of libraries vl PremiEsins
Expand
Search | Generate SAL .
Remaoye from Map ﬂ/
Library Trea | Library Table | Objects In Map| Delete... B
1] Libraries Renarme §|
Properties =
i DEPARTMENT
B | — s

|25 of 70 objects in map are visible. | JMad

Figure 8-22 Right-clicking a table within a Database Navigator map

The options that appear include:
» Open: This allows you to open the file for update.
» Quick view: This shows you the file and its contents (read only).

Chapter 8. Database Navigator 255

» Description: From within this option, there are six tabs:

— General: This shows the size of the object, the current number of rows, the number of
deleted rows, and whether the table reuses deleted records.

— Allocation: This shows the settings for the maximum number of rows, the initial
number of rows, the increment of the number of rows, the maximum number of
increments, and other options.

— Access Path: This shows the current size of the access path, the maximum size, the
maximum key length, whether the access path is valid or shared, whether it is
journaled, what the maintenance and recovery of the access path is set to, and other
options (Figure 8-23).

Generall Allocation Usagel Activityl Detailsl

Current size: 139264

I awirnum size: lm
b aximumn key length: 2

W alid: es

Implicit sharing: es

Held: Mo

Joumaled: Mo

Maintenance: lm
Fecovery: lm

™ Force index changes

Last build: 01/30/01 09.57.52
Estimated rebuild time: 2

Logical page size: ER536

Index logical reads: 1]

Delayed maintenance keyps:
1]
1]

QK I Cancel Help

Unigque partial key values:

o o o

Figure 8-23 Access Path display
— Usage: This shows you the creation date of the table, the last used date, the last
changed date, and other details of the table.
— Activity: This shows the latest activity on the table since the last machine restart.
— Details: This shows the creation date of the table, the maximum row length, and more.
» Journaling: This specifies whether journaling is on.
» Locked Rows: This shows any rows that are locked on the table.
» Create Alias: This allows you to create an alias for the table.

» Reorganize: This allows you to reorganize the file by compressing deleted records (by
table key or by a selected index).

» Permissions: This allows you to set security for a table.

» Expand (new function): This shows additional details of the table, such as the columns
and indexes built over the table.

» Collapse (new function): This returns the display to the default setting for the table.

» Generate SQL (new function): This creates an SQL script window (Figure 8-24) that
allows you to recreate the table or multiple objects depending on the option selected from
the Generate SQL screen. The Generate SQL function is new for V5R1MO and is available

256 Advanced Functions and Administration on DB2 Universal Database for iSeries

for individual objects or entire databases. This option is available through the Database
Navigator map and through the library display within the database option in Operations

Navigator. This option is discussed later in more detalil.

% Untitled - Run SQL Scripts - As27

File Edit ¥iew Run VisualExplain Options Connection Help

HES L EREB FFIOO W @

Examples | ;I Insert |

-~ Generate SQL

-

- Wersion: WARTMO 010525

- Generated on: 02/08/01 11:36:04
-~ Relational Database: RCHASMZY

- Standards Option: DBz UDB AS400

DROP TABLE SAMFPLEDB16 EMP_PHOTO ;

CREATE TABLE SAMPLEDB16.EMP_PHOTO (

EMPNO CHAR(E) CCSID 37 MNOT MULL ,

PHOTO_FORMAT FOR COLUMN PHOTOO0001 YARCHAR{10) CCSID 37 MOT
MULL

PICTURE BLOB(102400) DEFAULT MULL ,

EMP_ROWID CHAR(40) CCSID 37 NOT NULL DEFAULT ",

DL_PICTURE DATALIMK(1000) ALLOCATE(S0) CCSID 37 DEFAULT MULL
LINKTYPE URL MO LINK CONTROL
CONSTRAINT SAMPLEDB16.QSYS_EMP_PHOTO_00001 PRIMARY KEY(
EMPNO , PHOTO_FORMAT 33 ;

WLTER TABLE SAMPLEDB16.EMP_PHOTO

ADD CONSTRAINT SAMPLEDB16.Q5YS_EMPNO_00001
FOREIGM KEY{EMPNO)

REFEREMCES SAMPLEDB16.EMPLOYEE (EMPNO)
ON DELETE RESTRICT

ON UPDATE MO ACTION ; ;I

Messages I

Figure 8-24 Generate SQL Script window

» Remove From Map (new function): This removes a particular view from the map. If the

object is not included in the map, you see the Add to map function highlighted.
» Delete: This allows you to delete a particular table.
» Rename: This allows you to rename the table.

» Properties: This shows you a display of the properties of a table.

8.6.2 Index options

Right-click an index to access the options shown in Figure 8-25.

Chapter 8. Database Navigator

257

File View Options Map Help

TSP BARD I ¢mw|i[@ @/ R &

Search for Ohjects =
o
Mame: F\II names vl gl‘)k Description gg& o
*DE Permissions A HEMP1 Q.__
Type: IAIItypes 'l T
Library: |List of libraries vl Generate SAL .
Hide
Search | Remove from hMap
Properties
Library Trea | Library Table | Objects In Map|
=[O Tables =
o e —
- Indexes
@ Wiews
[¢l _SCHED T
o e R T e ;I 4| _;l_l
|64 of B4 objects in map are visible. | o

Figure 8-25 Right-clicking an index

The primary options are:
» Description: In this option, there are three views:
— Access path: See Figure 8-23 for more details on this screen

— Usage: This shows you the creation date of the index, the last used date, the last
changed date, and other details of the index.

— Details: This shows the creation date of the index, the maximum row length, and more.
» Permissions: This allows you to set security for the object.

8.6.3 Constraint options

If you right-click any of the constraints on the map, the following options appear:
» Generate SQL (new function): This creates an SQL script window (Figure 8-24).

» Remove from map (new function): This removes a particular constraint from the map. If
the object is not included in the map, the Add to map function appears highlighted.

» Properties: This shows you the properties of the table over which the constraint is defined
as shown in Figure 8-26.

258 Advanced Functions and Administration on DB2 Universal Database for iSeries

Column Marme | Type | Length | Diescription

EMPNO CHARACTER &

PROJNO CHARACTER & B

ACTND SMALLINT _Browse.._|

EMPTIME DECIMAL 5.2 Wiz

EMSTDATE DATE

EMENDATE DATE |
Delete

1] | |

Calurnn | Key Eonstraintsl Indexesl Referential Eonstraintsl Triggersl Check Eonstraintsl

The properties below apply to the column definition currently selected above.

Short column name: EMPHO j
Heading: ERPMO

¥ Must contain a valug [not rull]

Default value: INo default j
CCSID: |3?
QK | Cancel | Help |

Figure 8-26 File properties window showing constraints

8.6.4 View options

Right-click any view on the map to see the following options:

v

Quick View: This shows you the view contents (read only).
» Description:

— Usage: This shows you the creation date of the view, the last used date, the last
changed date, and other view details.

— Details: This shows the creation date of the view, the maximum row length, and
additional details.

» Create Alias: This allows you to create an alias for the view.
» Permissions: This allows you to set security for the view.

» Generate SQL (new function): This creates an SQL script window that allows you to
recreate the table or multiple objects depending on the option selected from the generate
SQL screen. The Generate SQL function is new for V5R1MO0 and is available for individual
objects or entire databases. This option is available through the Database Navigator map
and also through the library display within the database option in Operations Navigator.

» Remove (new function): This removes a particular view from the map. If the object is not
included in the map, the Add to map function appears highlighted.

» Properties: This shows you the properties of the view. If it is an SQL view, it shows the
SQL statement used to create the view. If it is a logical file, a message appears stating that
it was not created in SQL and, therefore, it cannot be shown.

» Hide (new function): This allows you to remove the view from the map only.

Chapter 8. Database Navigator 259

8.6.5 Journal options

If you right-click a journal, the options shown in Figure 8-27 appear.

gim SQUIRDTEST= - Database Navigator - As27

File View Options Map Help

T2 BAxo I s @@ 8

Search for Objects ;I
MName: F\II names vl
Type: IAIItypes 'l

Library: |List of libraries vl

Search |

LibraryTreel Library Table Ohjects In | Starts and Ends Table Jourmaling...

_| Mame | Library |Typ

Swap receivers...

BB ACT SAMPLE... viey_ Cermissions
@O VSTAFACT SAMPLE.. Viev Delste .
#IVPROJACT SAMPLE.. Viev nige

DEFT SAMPLE.. Tab
% EMP SAMPLE. Tap REmove from Map
B EMP_ACT SAMFLE.. Tah__ Properties @
B EMPACT SAMPLE.. Tabl..
& TEST SAMPLE.. View.;lj QSGURN =
l : K| | _’I_
|25 of B2 objects in map are visible. | JMad

Figure 8-27 Right-clicking a journal

The various options include:

>

Start or End Table Journaling: This allows you to end or start journaling on any table on
the system to the selected journal.

Swap receivers: This allows you to perform the equivalent of a CHGJRN *GEN from a
normal green-screen command.

Permissions: This allows you to set security for the journal.
Delete: This allows you to delete a particular journal.

Remove from map (new function): This allows you to remove a particular journal from the
map. If the object is not included in the map, the Add to map function appears highlighted.

Hide (new function): This allows you to remove the journal from the map only.
Properties: This shows you the properties of the journal.

8.6.6 Journal receiver options

The various Journal receiver options include:

'S

>

>

Permissions: This allows you to set security for the journal receiver.
Delete: This allows you to delete a particular journal receiver.

Remove from map (new function): This allows you to remove a particular journal receiver
from the map. If the object is not included in the map, the Add to map function appears
highlighted.

Hide (new function): This allows you to remove the journal receiver from the map only.

Properties: This shows you the properties of the journal receiver.

260 Advanced Functions and Administration on DB2 Universal Database for iSeries

8.7 Creating a Database Navigator map

The visual depiction that you create of your database is called a Database Navigator map. To

create a Database Navigator map, you need to follow these steps:
1. In the Operations Navigator window, expand your server Database.

2. Right-click Database Navigator and select New from the pull-down menu to create your
Map as shown in Figure 8-28.

3 AS/400 Operations Navigator =10]x|
File Edit W“iew Options Help
E%@%ﬂ|@|éﬁﬁ|><|@0 81 minutes old
| Environment: My Connections | As23 DDSLIBR
=15 Libraries ;I Mame | Type | Description | o
ERAUDITFIL Table Audit file For invalid orderhdr in...
EJCTLFILE Tatle
E= CUSTOMER Tatle
EEH Table Source Pf for header files of Q...
EHORDERDTL Tatle
ZANPLEDEO4 B ORDERHDR Tatle
EFPRODPIC Tatle
iy [Er— ERqoLIsRe Tahle SOURCE PF FOR ALL CLI PGMS. .,
% SaL Pt Explore [E==[elakelslal Table
B2 Flle Syster Open ERoCMDshC Tahle
[].. Backup Create Shortcut [E==elaclu Table Source PF for © pgms of the ar,.. Jlitzs
- Applicatior g —— EHqoDssRC Table SRC pf for DDS of all pfs,Ifs,ds...
[AFD Mana M ER oS0l sRe Tahle S0 Proredures Sourre Files LI

Properties
I55) Select libraries to display

B Map your database

ﬁ Create new summary SGL perfarmance monitor
B Create new detailed S0L performance maonitar

Creates a new Database MNavigator Map,

g Fun an SOL script
b ‘2 Help for related tasks

[
4

Figure 8-28 Database Navigator option

3. The Operations Navigator library list appears in the left side of the Database navigator

window. Double-click the SAMPLEDBO4 library to expand the objects.
Double-click Tables in the Locator Pane to expand all the tables in a database.

Double-click the EMPLOYEE table on the lower Locator Pane to start building a map. This

table is added to the map and all related objects, as shown in Figure 8-29.

Chapter 8. Database Navigator

261

gim Untitled - Database Navigator - As23
File View Options Map Help

TP BaA [T édrmn| i 0d@e-vETH

Search for Objects

MName: F\II names vl
Type: IAIItypes 'l

Library: |List of libraries vl
Search |

Library Tree | Library Table | Objects n Map |
@ Libraries =)
DDSLIBNK
LIBO1
QGPL
SAMPLEDBOA
= SAMPLEDBO4
=-EH Tables
=0 AcT

Figure 8-29 Selecting a database to build a map

6. The map is built from the cross reference files (XREF) on the iSeries server. The
relationship and statistics are based from the table that you selected to generate a map as
show in Figure 8-30.

Finding Relations |

Related Ohjects:

IS—TabIes 11 Foreign key constraints
IS—AIiases Im.mumal receivers
|1— Check constraints I?— Frimary key canstraints
|12— Indexes ID— Unigue key constraints
Im.mumals IED—Views

Figure 8-30 Building a Database Navigator map

7. Click the minus (-) sign next to the SAMPLEDBO04 database object to collapse the tree
view.

262 Advanced Functions and Administration on DB2 Universal Database for iSeries

8. Use the vertical and horizontal scroll bars to navigate the map on the Database Navigator
window as shown in Figure 8-31.

Zjiu Untitled* - Database Navigator - As23 ol x|
File View Options hap Help

HEEH® Baan|Isme afsBle-/vE8
Search far Ohjects

o T

Type: Al types |

Library: [Cstotiibraries =] .

Search | /

Library Table | Otjects In Map|
E QSYS_DEPTN R

m%
m

a
=]
=
m
(o]
3
by
[w]
=

Bl =—

o
o

QSYS_RESPE
DDSLIENH

& 5AMPLEDBO
=& SAMPLEDB04
=00 Tables

=00 ACT
0 ¢L_SCHED
[DEPARTMENT
t! A
&
RED

=R PLOYES]
£ Indexes
B Views
0 EMPPROJACT
EQ EMP_PHOTO
0 EMP_RESUME
O GEMNSQLD4D
B-E0 IN_TRAY
-6 ORG
#-E0 PROJACT
#-E0 PROJECT
#-EH SALES = —

=100 SAMPLEDBMARD4
=100 STAFF

Bk Indexss E DEPARTMENT

|1 9 of 64 ohjects n map are visible |SAMF‘LEDBU4.EMFLOYEE added to map Mod

Figure 8-31 Database Navigator map

Note: You can also click the Map your database task on the task pad at the bottom of
the Operations Navigator window to create a map.

9. You can save this map by selecting File-> Exit from. Then, if changes are pending, select
Yes on the Save Changes To dialog. This map can be reopened at a later time.

Once you create the map of your database, you can:

» Add new objects to a map
» Change the objects to include in a map
» Create a user-defined relationship

8.7.1 Adding new objects to a map

With Database Navigator, you can create new SQL objects to add to your map. Among the
objects that can be created are:

» Tables
» Journals
» Views

Chapter 8. Database Navigator 263

To create new SQL objects to be displayed in a map, follow these steps:
1. Open a Database Navigator map.
2. Click the View menu. From the pull-down menu, select Show Objects of Type -> Views

to include all Views in the map. The Object Status Bar that was updated with the new
objects included in the map appears.

;Ii.. SAMPLEDBMAPD4 - Database Navigator - As23

I [l 9
‘g Zom Mg AREBR-VEES
Bl Refresh St B e e R e 08 S S
Chject Spacing » H
Shaw Overview Window -I

Aliases of Tahles
Check Constraints
Indexes

Se

T
@

7 =]

QEYS_DEPTN... RPF

Britnary Key Constraints LSYS_RESPE...
L\brar\fTreeI Likrary Table | Objec PN LR
@ Lihraries

= DDELIE

Al Tahow all views in the rmap

SAMPLEDBOT
QTEMP

=i TEZCMDS

DEPARTMWENT

" ~ Al |)_I_'I

[20 0r 5 objects in map are visible. | |

Figure 8-32 Adding Views objects in the map

3. Use the vertical and horizontal scroll bars to navigate to the top of the map.

Important: You can change the zoom level of the Database Navigator map to manage how
much of the map you can see in the map pane on the Database Navigator Window.

8.7.2 Changing the objects to include in a map

By default, Database Navigator searches for and includes all objects in your map. To limit the
number of objects that are searched for, you can change the user preferences.

To change which objects to include in the map, follow these steps:

1. Open a Database Navigator map.

2. From the Options menu, select User Preferences.

3. On the User Preferences dialog, in the When adding an object to the map find these

related objects group box, select the objects you want to include, or deselect the objects
you do not want to include.

Click OK.

o

If you want to refresh the map with the new preferences, click Yes in the Information box.

264 Advanced Functions and Administration on DB2 Universal Database for iSeries

8.7.3 Changing object placement and arranging object in a map

When you have a map, it is possible to arrange and move objects in the map. You also learn
how to remove the bends that appear on the relationship lines after the objects is moved to
the new location.

1. Double-click the EMPLOYEE table from the list of tables to find this table in the map.
2. Drag-and-drop the EMPLOYEE table to the left as shown in Figure 8-33.
3. Right-click every relationship line and select Remove Bends to remove all bends.

fim SAMPLEDBMAPD4* - Database Navigator - As23 i =l
File Wiew Options Map Help

EHR BaaAs | It AFEB-vESS
Search far Objects ﬂ

Name: FII names vl Qsvs
Type: Al types vl
Lilrary: List oflibraries 'I

Search |

Library Tree | Library Table | Objects In Map |
@ Libraries =
- DDSLIBRA

LiBot

: QGPL

[SAMPLEDBO1
= SAMPLEDERO4
=00 Tables

=-E ACT

1#-[CL_SCHED

e ———

- EMP_PHOTO
=[] EMP_RESUME
[GEMSaL043
- IN_TRAY
=00 0RG

=00 PROJACT

[PROJECT
- GALES

-5 SAMPLEDBMAPD4
-0 5TAFF

- Indexes

ol 9B s = K|

|40 of 65 ohjects in map are visible JNo user defined relationship created {[TEE]

Figure 8-33 Changing object placement

Important: When you use the arrange option, it removes any customized object
position or relationship line that you have created. The Arrange option puts the map
back in a Default state.

4. Right-click in a free space in the map pane in the Database Navigator window. The
Arrange function appears.

Chapter 8. Database Navigator 265

sim SAMPLEDEMAPD4* - Database Navigator - As23 = |0] =
L 15}
File “iew Options Map Help

HEEHP BRI s4mm A Re-vEDSS

Search for Objects ;I
Marme: FH hames vI asvs
Type: IAH types 'I
Libran: IL\sl of libraries vl
Search |
q___k____hh_““*—_.
I S—
L\brar\fTr99| Library Table | Objects In Map |
@ Libraries =
=@ DDBLIEN
LiB01
QGPL
+|-{ SAMPLEDBO1
= SAMPLEDBN4
- Tables
-0 ACT Create 3
=0 CL_SCHED o b
[DEPARTMENT o
o[ENEEE Generate SAL
o B Indexes
- =B views

7 [0 EMPPROJACT
+-[0 EMP_PHOTO
+-E0 EMP_RESUME
+-[0 GENSGLO43
+-00 IN_TRAY
[0 ORG WV
@ PROJACT

5[SAMPLEDEMAPD4 E
it EMPLOYEE R@ |
- Indexes >
[RV j 4 | ;l
Ja0 or &5 objects in map are visikle. | {[TEE]

Figure 8-34 Arrange objects in the map

5. Select Arrange to minimize the line crossing the map.

8.7.4 Creating a user-defined relationship

As explained previously, when you have relationships that are defined by your programs, you
can create a user-defined relationship in Database Navigator so that your relationship is
displayed in the map. An example of this may be creating a user-defined relationship to
remind programmers of an important join between two tables.

To add a user-defined relationship to your map, complete these steps:

1. Open a Database Navigator map.

2. Right-click in a free space on the map pane in the Database Navigator window. Select the
Create function as shown in Figure 8-35.

3. Select Create, and then select User-Defined Relationship to create the new object
(UDR).

266 Advanced Functions and Administration on DB2 Universal Database for iSeries

;Ii.. SAMPLEDBMAPD4* - Database Navigator - As23
File “iew Options Map Help

HEEHP BRI s4mm A Re-vEDSS

Marme:
Type:

Libran:

Search for Objects

FH names 'I
[types |
IL\Sl of libraries 'I

Search |

L\brar\fTr99| Library Table | Objects In Map |

@ Libraries
=@ DDBLIEN

SAMPLEDBO1
SAMPLEDBN4
SAMPLEDBOT
: QTEMP
=@ TEZCMDS

= =3
"3_RESPE.. RPF QSYS_DEPTHN...
Hﬁkﬁ:

DERPARTMENT
] &
" ROE ROD
Journal
Tahble
Wiegw

User Defined Relgtionship

Create
Zoom 3
Genherate SQL 3
Rermove all line bends

Creates a new map specific user defined relationship
™

Help

|4D of 65 ohjects in map are visible.

(TR

Figure 8-35 Selecting the function to create a user-defined relationship

4. Specify a name and a description for the user-defined relationship. Unlike some
Operations Navigator functions where the description is optional, it is important to provide
a meaningful description for your user-defined relationship because it is the only way for

you to indicate what the user-defined relationship represents as shown in Figure 8-36.

5. Select the objects that you want to include in the relationship by selecting from the list of
objects (Figure 8-36)

6. Choose the shape and color you want for the object (Figure 8-36).

Chapter 8. Database Navigator

267

New User Defined Relationship - As23 |

Marme: |SAMPLEXXUDR

Decstiption: |

Select objects in relationship:

| Mame Library Type Description
vl 00 PROJECT SAMPLEDB... Tahle ;I
[£ EMP_RESUME SAMPLEDB... Tahle
[£ EMFP_PHOTO SAMPLEDB... Tahle
[£ EMPLOYEE SAMPLEDB... Tahle =
[00 EMPPROJACT SAMPLEDB... Tahle
[0 ACT SAMPLEDB... Tahle
[v| 00 DEPARTMENT SAMPLEDB.. Tahle b

| | »

Shape: Colar:

 Circle " Black

" Rectangle i

' Square " Green

" Triangle " Red

7 allow

QK | Cancel I Help |‘?|

Figure 8-36 Creating a user-defined relationship

7. Click OK to create the user-defined relationship. The map should show a user-defined
relationship (UDR) as shown in Figure 8-37.

SQUIRDTEST= - Database Mavigator - As27

File View Options Map Help

FEEHY BRSO I ¢me ARHB-VTS
Search for Objects E d

MName: F\II names vl CL_SCHED
Type: IAIItypes 'l

Library: |List of libraries vl
Search | PROJACT

LibraryTreel Library Table Objects In Mapl "Main production Files" i,
| MName | Library | Type | —
sa ADEPTI SAMPLE... Index ;| Type: User Defined Relationship = REA
& KDEPT2 SAMPLE... Index
Hu XDEPT3 SAMPLE . Index act
& HEMP1 SAMPLE... Index
o HEMP2 SAMPLE... Index

Fu KEMP_PHO.. SAMPLE... Index

& YEMP_RES.. SAMPLE... Index

Fa HPROJACT SAMPLE... Index DEPARTMENT
c. | | - - . =
Kl | 3
|22 of B4 objects in map are visible. | JMad

Figure 8-37 Flyover view of a user-defined relationship

268 Advanced Functions and Administration on DB2 Universal Database for iSeries

8.8 The Database Navigator map icons

The icons that you may encounter on the Database Navigator map are shown in Table 8-1.

Table 8-1 Database Navigator map icons

The Library icon is used in the Database Navigator map display to show a library.

The Table icon is used in the Database Navigator map to show a table.

The Table Alias icon is used in the Database Navigator map to show table aliases. It also
is used as a toolbar icon for adding or removing a table alias from the Database Navigator
map.

The Index icon is used in the Database Navigator map to show an index.

The Journal icon is used in the Database Navigator map to show a journal. It is also used
as a toolbar icon for adding or removing a journal from the Database Navigator map.

The Journal Receiver icon is used in the Database Navigator map to show a journal
receiver. Itis also used as a toolbar icon for adding or removing a journal receiver from the
Database Navigator map.

The Primary Key Constraint icon is used in the Database Navigator map to show a primary
key constraint. It is also used as a toolbar icon for adding or removing a primary key
constraint from the Database Navigator map.

The Check Key Constraint icon is used in the Database Navigator map to show a check
key constraint. It is also used as a toolbar icon for adding or removing a check key
constraint from the Database Navigator map.

The Unique Constraint icon is used in the Database Navigator map to show a unique
constraint. Itis also used as a toolbar icon for adding or removing a unique constraint from
the Database Navigator map.

The Foreign Key Constraint icon is used in the Database Navigator map to show a foreign
key constraint.

The View icon is used in the Database Navigator map to show a view. It is also used as a
toolbar icon for adding or removing a view from the Database Navigator map.

Chapter 8. Database Navigator 269

The Show/Hide Index icon is used on the toolbar to add or remove an index from the
Database Navigator map.

The Show/Hide Alias icon is used on the toolbar to add or remove an alias from the
Database Navigator map.

Left-click this icon to set the zoom on the map so that it fits the current window size.

Left-click this icon to increase the level of zoom on the map at the position of the cursor.

Left-click this icon to decrease the level of zoom on the map at the position of the cursor.

£o|s |l | B |

Left-click this icon to invoke the Overview window function. This allows you to position your
E‘ Database Navigator map panel to any part of a map.

Left-click this icon to decrease the horizontal level of spacing between objects on the map.

Left-click this icon to increase the horizontal level of spacing between objects on the map.

Left-click this icon to decrease the vertical level of spacing between objects on the map.

Left-click this icon to increase the vertical level of spacing between objects on the map.

ot [l | | =

270 Advanced Functions and Administration on DB2 Universal Database for iSeries

Reverse engineering and
Generate SQL

Reverse engineering is one of the major changes that have been included in V5R1MO. This
function allows you to create SQL for a given schema, table, index, view, etc., and all related
objects to them if that option is selected. This enables database administrators to recreate,
create duplicates, and port to other iSeries servers entire databases or particular parts of a

database.

This chapter includes:

» What Generate SQL is
» Reverse engineering an existing database
» Generating SQL DDL statements from a DDS created database

© Copyright IBM Corp. 1994, 1997, 2000, 2001 271

9.1 Introduction

The new Generate SQL function is often referred to as “reverse engineering for Operations
Navigator” because it provides a GUI interface that allows you to reverse engineer several
types of database objects. The results are SQL create statements (often referred as DDL
statements).

The Generate SQL function of Operations Navigator allows you to reconstruct SQL
statements used to create existing database objects. With this function, you can reverse
engineer database objects and then have the option to display the resulting SQL in the Run
SQL Scripts window or saving the output to a file. Using the existing Run SQL Scripts
functions, you can then edit, run, and save the SQL statement to a file on the PC.

The new Generate SQL Database Objects support the following objects:

Aliases

Distinct types

Functions

Indexes

Procedures

Schemas (collections) and libraries
Tables and physical files

Views and logical files

vVVyVYyVYVYVYYVYYy

9.1.1 System requirements and planning

Before you Generate SQL, be sure the following prerequisites are available:

» 5722-SS1: Option 12 - Host Servers
» 5722-TC1: TCP/IP Connectivity Utilities
» 5722-XE1: Client Access Express, V5R1MO, with the latest Service Pack applied

9.1.2 Generate SQL

272

Reverse engineering (Generate SQL) allows you, through the Database Navigator map and
the Libraries display of Operations Navigator, to re-engineer an SQL database or an iSeries
database that were not created using SQL.

One of the uses of Generate SQL is to generate the SQL statements of tables, views,
indexes, and constraints that were created using the Operations Navigator interface. For
example, when you create a table using Operations Navigator, there is no method for saving
the SQL statement that is behind the interface. In this case, Generate SQL provides a way to
reverse engineer this object and obtain the SQL statement.

The Generate SQL function of Database Navigator also creates the SQL statements of
databases created by DDS (physical and logical files). You must be aware that keyed-logical
files are converted to SQL views.

When the Generate SQL process creates the Run SQL script for the selected object, it either
marks any problem objects with SQL messages or it does not create the SQL for the object if
it is not supported. You can create a Run SQL Script from object context or from schema
context.

Advanced Functions and Administration on DB2 Universal Database for iSeries

The object context can be invoked from either the Database Navigator map or the Operations
Navigator Library display. To do this, right-click the object and select the Generate SQL
option. There is a difference between what appears when using the two methods. If the
Generate the SQL option is selected from the Library display, the information shown in
Figure 9-1 appears.

Generate SOL E
Objects for which to generate SQL:
Mame | Library | Type |
HDEPT2 SAMPLEDY Index

Add

Bermoye |

Output | Options | Format|
& Cpenin Run SGL Scripts

 Write to file

Eiletypae: |Database source file ;I

Likirary: JDETEAMD4 =l

il e |

MErkEr: |

¥ Aapend

Generate I Cancel | Help |‘?|

Figure 9-1 Operations Navigator Generate SQL display

The display shown in Figure 9-1 allows you to add or remove objects that will be
re-engineered. This method allows you to change the objects that are selected and the
standard by which they are generated, the format of the Run SQL script (Figure 9-2), and the
options used to create the SQL script (Figure 9-3).

Chapter 9. Reverse engineering and Generate SQL 273

Generate SOL E
Objects for which to generate SQL:
Mame | Library | Type |
SAMPLED Library ﬁ’
ACT SAMPLED Tahle Add ..
CL_SCHED SAMPLEDT Table
DEPARTMENT SAMPLED Tahle T |
EMPLOYEE SAMPLEDT Table
EMPPROJACT SAMPLEDT Table ;I
Qutput| Option
Walues used to format the SQL statements:
Maming convention: |SQL naming canvention {FSGL) ;I
Decimal separatar: | (period) ;I
—Time
Farmat: |hh.mm.ss F150% ;I
Separator: | (period) ;I
— Date
Farmat: |ww—mm-dd F150% ;I
Separator: | {dash) ;I
Generate I Cancel | Help |‘?|

Figure 9-2 Generate SQL format options

Generate SOL E
Objects for which to generate SQL:
MName | Library | Type |

SAMPLED Library ﬁ’

ACT SAMPLED Tahle Add ..
CL_SCHED SAMPLEDT Table

DEPARTMENT SAMPLED Tahle F— |
EMPLOYEE SAMPLEDT Table

EMPPROJACT SAMPLEDT Table LI

Format

Qutput

Standards aption
 ANSINS0

& DB2 UDEB family
v Extensions

v Generate labels
[+ Farmat statements far readability
[+ Include infarmational messages

[Include drop statements

Generate I Cancel Help |‘?|

Figure 9-3 Generate SQL options

The options that you can define include:

» Standards options: This allows you to select which standards option you want for the
generated SQL. The option that you choose affects the syntax of the generated SQL and

ultimately how the Generate SQL runs. You may edit this value using the following
sub-options:

— ANSVISO: Select this option to allow the generation of SQL that can be executed on
other ANSI/ISO SQL standard compliant databases.

274 Advanced Functions and Administration on DB2 Universal Database for iSeries

— DB2 UDB family: Select this option to allow the generation of SQL for use on other
DB2 family platforms.

— DB2 UDB with iSeries extensions: Select this option to allow the generation of SQL for
use on other iSeries servers.

Note: As a general guideline, if you want to generate SQL that is run on other DB2
platforms, select DB2 UDB. In addition, if the platform is another iSeries server, choose
to include iSeries extensions. The choice that you make for the standard can affect
subsequent formatting choices.

» Generate labels: Select this option to include SQL labels and comments to be inserted
into the generated SQL.

Format statements for readability: Select this option to format the generated SQL
statements with end-of-line characters, tab characters, and spaces.

Include informational message: Select this option to include informational messages in
your generated SQL. You should always include informational messages whenever you
generate SQL for an object created using Data Description Specification (DDS). DDS is
used to describe data attributes in file descriptions that are external to the application
program that processes the data. You can then determine if you need to make changes to
the generated SQL for it to run correctly. Once you make all the necessary changes, you
may want to generate the SQL without the informational messages.

Note: If the object for which you are generating SQL was originally created using SQL,
there should not be any informational messages.

Include drop statements: Select this option to include drop statements for the objects for
which you are generating SQL. The drop statements are inserted before the first Create
SQL statement. This allows you to drop the object and then recreate it.

Click the Generate button to prompt the system to generate the SQL and bring up the Run
SQL script window (Figure 9-4).

% Untitled - Run SQL Scripts - As27

File Edit ¥iew Run VisualExplain Options Connection Help

EFF LYY - 3 L IR

Examples | ;I Insert |

[~ Generate SOL i’
- Wersion: WARTMO 010525

- Generated on: 0223701 16:28:26

-~ Relational Database: RCHASMZY

- Standards Option: DBz UDB AS400

CREATE SCHEMA SAMPLEDT

CREATE TABLE SAMPLEQT ACT (

ACTNO SMALLINT NOT MULL

ACTKWD CHAR(E) CC3ID 37 MOT NULL ,

ACTDESC VARCHAR(20) CCSID 37 NOT MULL

CONSTRAINT SAMPLEDT . QSYS_ACT_00001 PRIMARY KEY{ ACTNO)) ;

CREATE TABLE SAMPLEDM .CL_SCHED (

CLASE_CODE CHAR(Y) CCSID 37 DEFAULT MULL

"DAY" SMALLINT DEFAULT MULL

STARTIMNG TIME DEFAULT MULL , ;I

Messages I

Figure 9-4 Generate SQL Run SQL Scripts window

Chapter 9. Reverse engineering and Generate SQL 275

One of the major advantages of the Generate SQL function is that the SQL can be ported to
other iSeries servers and even to other platforms supporting SQL. This applies particularly to
CASE tools that can use the Run SQL Script as input to recreate the database on other
platforms.

9.2 Generating SQL from the library in Operations Navigator

With Generate SQL, there is an option from your library in the Operations Navigator window
to generate the SQL DDL statement for some objects. To generate this statement, follow
these steps:

1. Start Operations Navigator. Click the iSeries server that you want to access (Figure 9-5).
Once you have entered your user ID and password, expand the Database option.

43 AS /400 Dperations Navigator : (=]

File Edit Wiew Options Help

5!|¥7E|><|@° 1 mirutes old

| Environment; by Connections | My Connections

@ Management Central (As23) Mame | Signed Cn Liser Description |
Em v Cormections ! As23 Manage this server,

! AsZ3 ! AsE0 IManage this server.

F-@ Asa0 %

[~ E rviranment tasks
ﬂ Add a connection @ Instal plug-ing

B Change all af your server passwards (@ Open Operations Mavigatar service tacks windaw
(@ Install additional components b ? Help for related tasks

[
4

|1 - 2 of 2 objects I

Figure 9-5 Operations Navigator

2. Under Database, click Libraries. Then select the library name, which in our case is
SAMPLEDBO04, for your iSeries server connection (Figure 9-6).

276 Advanced Functions and Administration on DB2 Universal Database for iSeries

3 AS/400 Operations Navigator
File Edit Yiew Options Help

=10l x|

A5 20| xE | SES

1 minutes old

| Environment: My Connections

| My Connections

E Configuration and Service

Security
#® Users and Groups

- Database
E-{E5) Libraries

B Miakshacs Mavinskor

Add a connection
! Change all of your server passwords
@ Install additional components

;I Marme | Signed On User Descripkion |
! As23 Manage this server,
! AsE0 Manage this server,

sl

@ Instal plug-inz
[} Open Operations Mavigator service tools window
B Help for related tasks

|1 - 2 of 2 obijects

E
4

Figure 9-6 Find library

3. Click the SAMPLEDBO4 library to display the current content in the right window panel.
On the right panel, press the Ctrl key, and locate and select the following tables as shown

in Figure 9-7:

- ACT

— CL_SCHED

— DEPARTMENT
- EMP_PHOTO
- EMP_RESUME
- EMPLOYEE

Chapter 9. Reverse engineering and Generate SQL

277

3 AS/400 Operations Navigator

File Edit Yiew Options Help

=10l x|

el e B B el e e

| As23 SAMPLEDBD4

0 minutes old

| Environment: My Connections

: E Configuration and Service ;I Mame | Type | Description | ;I
[@ Network HPROJL Index
Security BEPROIz Index
Users and Groups BExPROIACT Index
B Database B csqirn Journal COLLECTION - created by 5QL J
Libraties B qsqarno001 Receiver COLLECTION - created by 5QL
E’;ELIIBD“ E'05QRN0002 Receiver COLLECTION - created by SQL
Py Table
QTEMP Table
SAMPLEDEDL Table
Table
Table
Table
B Piakahaca Mavinskar LI ERFMPPROIACT Tahle LI

Map pour database
Fiun an SGL script
B Y Help for related tasks

I55) Select libraries to dizplay
ﬁ Create new summary SGL perfarmance monitor
B Create new detailed S0L performance maonitar

IR

|15 - 26 of 72 obijects |

Figure 9-7 Selecting objects from the library to generate SQL

Important: When the Generate SQL function is invoked, the new Generate SQL
window appears as shown in Figure 9-8. This window provides a list of the objects
initially selected and three tabs that specify Output, Format, and Options that are used
in the Generate SQL.

278

x|
Objects for which to generate SQL:
Mame Library Type |
ACT SAMPLEDBO4 Table
CL_SCHED SAMPLEDBO4 Tahle Add ..
DEPARTMEMT SAMPLEDBO4 Table
EMP_PHOTO SAMPLEDBO4 Tahle Frnive |
EmMP_RESUME SAMPLEDBO4 Table
EMPLOYEE SAMPLEDBO4 Table
Output | options | Format|
' Cpenin Run SGL Scripts
£ Write to file
Eilefype: |Database source file ;I
Libsrany: | EEETNIERE] =
FilEharie: |
MErRkEr: |
¥ Append
Generate I Cancel Help |‘?|

Figure 9-8 Generate SQL window

4. Click Generate to accept the default values as shown in Figure 9-9.

Advanced Functions and Administration on DB2 Universal Database for iSeries

Important: The initial list of objects in the Generate SQL window could be modified

using the Add and Remove buttons to add new objects or remove objects from the initial

list.

Objects for which to generate SQL:

Optionsl Formatl

Mame Library Type |
ACT SAMPLEDBO4 Table
CL_SCHED SAMPLEDBO4 Table
DEPARTMENT SAMPLEDBO4 Table
EMP_PHOTO SAMPLEDBO4 Table
EMP_RESUME SAMPLEDBO4 Table
EMPLOYEE SAMPLEDBO4 Table

Rernoyve

\— Ix

o i i :
GpeninREunEELSeHpts e e Bl
et e
Eiletypae: |Database source fife ;I
Lilstary: |pDELIE04 =
FEile riare: |
=l |
o
[sppend)
GEfefate I Carcel Help |‘?|

Figure 9-9 Generate SQL display

5. Switch to the new Run SQL Scripts window to see the generated SQL statement.

Chapter 9. Reverse engineering and Generate SQL

279

5+ Untitled - Run SQL Scripts - As23

=10l x|

File Edit ¥iew Run VisualExplain Options Connection Help

SRR FPPDO O | W@

Examples | ;I Insert |

- Generate 3QL

~- Wersion: WARTMO 010525

- Generated on: 09717701 10:47:14
-~ Relational Database: RCHASM23

- Standards Option: DBz UDB AS400

CREATE TABLE SAMPLEDBO4ACT (

ACTNO SMALLINT NOT MULL

ACTKWD CHAR(E) CC3ID 37 MOT NULL ,

ACTDESC VARCHAR(20) CCSID 37 NOT MULL

CONSTRAINT SAMPLEDBO4.QSYS_ACT_00001 PRIMARY KEY{ACTMO),

CREATE TABLE SAMPLEDBO4.CL_SCHED (

CLASE_CODE CHAR(Y) CCSID 37 DEFAULT MULL
"DAY" SMALLINT DEFAULT MULL

STARTIMNG TIME DEFAULT MULL ,

EMDING TIME DEFAULT MULL),

Messages I

Figure 9-10 SQL generated in the Run SQL Scripts window

6. Click File and select Save As... from the pull-down menu to save the SQL script as shown
in Figure 9-11.

280 Advanced Functions and Administration on DB2 Universal Database for iSeries

1% Untitled - Run SOL Scripts - As23
Edit Wiew Bun VisualExplain Options Connection Help

Tew Clrl+M
Open... Ctrl+0
Save Cirl+5
Pri trl+P

Saves the active document with & new name I"_

CACTMEGENS TG ST
Cicinti\GENSQLO44 50

Chcintialgensgl0d2

CicintislGENSQLO41 gl

Chcintiatdial 0.2l

ChcintiatMew Foldenselft-referencing trigger.sgl

=10l x|

o | @

Exit

ULL,

0001 PRIMARY KEY{ACTNO)) ;

CREATE TABLE SAMPLEDBO4.CL_SCHED (

"DAY" SMALLINT DEFAULT MULL
STARTIMNG TIME DEFAULT MULL ,
EMDING TIME DEFAULT MULL),

CLASE_CODE CHAR(Y) CCSID 37 DEFAULT MULL

Messages I

Figure 9-11 Saving the SQL Script

Important: You can use the SQL file to replicate your database files on another system
(for example, a development system).

7. Click Save to save the SQL script file.

9.2.1 Generating SQL to PC and data source files on the iSeries server

You can generate the SQL statements to a PC file and to a source member on the iSeries
server. Let’s start by showing you how to generate the SQL statements of a group of objects

to a PC file:
1. Start Operations Navigator.

2. Right-click the SAMPLEDBO4 library (example in our case). Then select Generate SQL

as shown in Figure 9-12.

Chapter 9. Reverse engineering and Generate SQL

281

3 AS/400 Operations Navigator

File Edit Yiew Options Help

=10l x|

2R il B R X 9E e

32 minutes old

| Environment: My Connections

| As23 SAMPLEDBD4

+ E Configuration and Service ;I Mame | Type | Description | ;I
[@ Network HPROJL Index
Security BRxproI2 Tndez
Users and Graups BExPROIACT Index
&R Database B asqirn Journal COLLECTION - created by SQL J
{23 Libraries EosqIrnO001 Recsiver COLLECTION - created by SQL
ﬂQSQJRNDDDZ Receiver COLLECTION - created by SQL
ERacT Table
E=CL_SCHED Table
ESIDEPARTMENT Table
ERFMP_PHOTO Table
MP_RESUME Table
MPLOYEE Table
i S S S MPPROITACT Tahle

Map pour database
Fiun an SGL script
B Y Help for related tasks

53] Select libraries to display
B Create new summary SOL
B Create new detailed SOL
Paste

Faste Definiton
Delete. ..

Properties

[
4

Generate the SCL For this library and all objects within this library

Figure 9-12 Generate SQL library in Operations Navigator

3. In the Generate SQL window, select the Write to file option on the Output tab as shown
in Figure 9-13. The generated SQL is saved to a PC file.

Generate SOL : zl

Objects for which to generate SQL:

Mame | Library | Type |
SAMPLEDBO4 Library ﬂ
ACT SAMPLEDBO4 Tahle Add ..
CL_SCHED SAMPLEDBO4 Table
DEPARTMENT SAMPLEDB04 Tahle Ep— |
EMPLOYEE SAMPLEDBO4 Table
EMPPROJACT SAMPLEDBO4 Table LI
Output | Options | Format|
= Open in Run SAL Scripts
% Wyrite to file
File type: [Pcile %;I
Location : | Browse .. |

Generate I

Figure 9-13 Selecting Generate SQL to PC

Cancel | Help |‘?|

4. Click File Type and select the PC file option.

5. In the Location file, click Browse. Then select your directory (¢:\DB2NAVSQL) from the
pull-down menu to save your file.

282 Advanced Functions and Administration on DB2 Universal Database for iSeries

6. In the File name input field, type GENSQL042.SqQL. In the Files of type input field, leave the
default SQL files (.sql) as shown in Figure 9-14.

Lookin:) DBNAVSGL =] §| :

File name: |GENSQLD42 Select |
Files aftype: [SQL files (sql) =] cancel |

Figure 9-14 Saving the SQL script to a PC file

7. Click the Select button to return to the Generate SQL tab.

Lookin:) DBNAVSGL =] §| :

File name: [GENSQLO4Z| Selt

Save selected file

Files of type: |SQLﬂIes {.aql)

Figure 9-15 Select button

8. Click the Generate button to start generating the SQL DDL statements for all the objects
in the library. A status window appears showing the progress of the generate SQL process
as a percentage (Figure 9-16).

Chapter 9. Reverse engineering and Generate SQL 283

Objects for which to generate SQL:

Mame Library Type |
SAMPLEDBD4 Library ﬁ’
ACT SAMPLEDBD4 Table Add..
CL_SCHED SAMPLEDBD4 Table
DEPARTMENT SAMPLEDBD4 Table e —— |
EMPLOYEE SAMPLEDBD4 Table
EMPPROJACT SAMPLEDBD4 Table -

Optionsl Formatl

) Open in Bun S@L Scripts

Generating S0L
% irite to/file .L

File type: [pcfile =l

Location : |C:1DEINAVSQLIGENSQLD42 Browse ... |

i3l

Generate I cancel Help |‘?|

Figure 9-16 Generating SQL window

9. In the Operations Navigator window, click the Run SQL Script icon in the database task
pad as shown in Figure 9-17.

3 AS/400 Operations Navigator : i |EI|1|
File Edit Yiew Options Help

E%@%ﬂ|@|éﬁﬁ|><|@0 3 mirwtes old
| Environment: My Connections | As23 SAMPLEDBO4

E Configuration and Service ;I Mame | Type | Description | |
L Network WPROIL Index

B8 security bEPROIZ Index
@ Users and Groups b PROTIACL Index
=B Datahase B osqorn Journal COLLECTION - created by SQL J
(@) Libraries B osqIrnooot Receiver COLLECTION - created by SGL
ﬂQSQJRNDDDZ Receiver COLLECTION - created by SQL
==l Table
E=CL_SCHED Table
ESIDEPARTMENT Table
E=EMP_PHOTOD Table
E=EMP_RESUME Table
E=EMPLOYEE Table
e Miakahaca Mavinakar LI EEFMPPRONACT Tahle: LI
I55) Select libraries to display Map pour database
ﬁ Create new summary SGL perfarmance monitor g Fun a L script
ﬁ Create new detailed SGL performance monitor 4 ? Help formilated tasks

|Enter and run SQL statements

LK

|15 - 26 of 72 ohjects |SQL for 70 objects written ta file C:DEMAVSQLIGENSOLO4Z

Figure 9-17 Selecting the Run SQL Script from the task pad option

Important: One of the new functions added in V5R1 is the task pad (located in the
lower part of the Operations Navigator window). If you click the various higher level
options, such as Security, Users and Groups, Database, etc., this task pad changes
accordingly. One of the database tasks of the task pad is Run SQL Script.

284 Advanced Functions and Administration on DB2 Universal Database for iSeries

10.In the Run SQL Scripts window, click File and select Open from the pull-down menu to
open your SQL Script file (GENSQL042).

11.Click Look in and select your directory (C:\DBNAVSQL) from the pull-down menu to save
your file.

12.Select your GENSQLO042 file and click Open as shown in Figure 9-18.

Lookin: |) DBNAVSGL =l

] GEMNSQLO42

File name: |GENSQLD42 Op

Files oftype: [ail Files) Gen[celectadiie

Figure 9-18 Restoring an SQL script file from a PC

13.View the SQL statements generated on the Run SQL Script window as shown in
Figure 9-19. Take some time to analyze the order of the statements.

55 € DBNAYSQLYGENSQLO42 - Run SOL Scripts - As23 10l =l
File Edit ¥iew Run VisualExplain Options Ceonection Help

EEE L RRR PTDO O | Wil @

Examples | ;I Insert |

L~ Generate SOL i’
~- Wersion: WARTMO 010525

- Generated on: 09117701 11:44:51

-~ Relational Database: RCHASM23

- Standards Option: DBz UDB AS400

CREATE SCHEMA SAMFPLEDBO4 ;

CREATE TABLE SAMPLEDBO4ACT (

ACTNO SMALLINT NOT MULL

ACTKWD CHAR(E) CC3ID 37 MOT NULL ,

ACTDESC VARCHAR(20) CCSID 37 NOT MULL

CONSTRAINT SAMPLEDBO4.QSYS_ACT_00001 PRIMARY KEY{ACTMO),

CREATE TABLE SAMPLEDBO4.CL_SCHED (

CLASE_CODE CHAR(Y) CCSID 37 DEFAULT MULL

"DAY" SMALLINT DEFAULT MULL

STARTIMNG TIME DEFAULT MULL , ;I

Messages I

Figure 9-19 SQL Script statement generated

Important: Once the statements are generated, you can edit them to create a new copy in
another library and optionally saved, or you can run them using the SQL Script facility. If
multiple objects were selected to be SQL Generated, you have the option to run one,
some, or all of the statements after any required editing.

Chapter 9. Reverse engineering and Generate SQL 285

Let’s see now how to generate the SQL statements of a group of objects to a source physical
file on the iSeries server:

1. Click the SAMPLEDBO4 library to display the content in the right window panel.

2. Click File and select Generate SQL... from the pull-down menu to view the Generate SQL
window as shown in Figure 9-20. This is another way to generate SQL for a group of

objects.

3 AS/400 Operations Navigator =31 x|
File Edit Wew Options Help
ZxDIore § | ¥) | b4 | @ S 41 minutes old
pen
Greate Shiothclt s | 4323 SAMPLEDED4
on and Service ;I Marme | Type | Description ;I
Permissions HPROIL Tndesx
bEPROIZ Index
Mew L
froups b PROTIACL Index
Delete... B osqorn Journal COLLECTION - created by SOL
L)
i ema — ﬂQSQJRNDDDI Receiver COLLECTION - created by SQL
2 ﬂQSQJRNDDDZ Receiver COLLECTION - created by SQL
Selective Setup 01
: ERacT Table
Install Plug-ins PL
: ERCL_SCHED Tahle
Environments. .. EMP
: PLEDEDL ERDEPARTMENT Table
Print E=EMP_PHOTD Table
Print Preview PLEDEOT EHEMP_RESUME Table
Properties bCMDS E=EMPLOYEE Table
o Mavinakar =l =rmeeranact Tahle: =l
Close R R B B BB ES::H::::
IE5) Select lbraries to display Map pour database
Bl Create new summary SOL performance moritor g Flun an SOL script
ﬁ Create new detailed SGL performance monitor 4 ? Help for related tasks
E
Generate the SCL For this library and all objects within this library i

Figure 9-20 Selecting Generate SQL from the File menu

3. In the Generate SQL window, click the Write to file option in the Output tab as shown in
Figure 9-21.

286 Advanced Functions and Administration on DB2 Universal Database for iSeries

x|
Objects for which to generate SQL:
Mame Library Type |
SAMPLEDBO4 Library il
ACT SAMPLEDBO4 Tahle Add ..
CL_SCHED SAMPLEDBO4 Table
DEPARTMENT SAMPLEDBO4 Tahle P |
EMPLOYEE SAMPLEDBO4 Table
EMPPROJACT SAMPLEDBO4 Table LI
Output | options | Format|
" Openin Run SGL Scripts
|Save the generated SQL to either a server ar PC file m
Librany: JLiBot |
File name: |
Member: |
[+ Append
Generate I Cancel | Help |‘?|

Figure 9-21 Generate SQL: Selecting Write to file

N o o A

Click File Type and select the database source file.

Click Library and select the SAMPLEDBO4 library in our case.
In the File Name input field, type GENSQL043. In the Member input field, type GENSQLO043.
Click the Generate button to start the Generate SQL process on the iSeries server.

x|
Objects for which to generate SQL:
Mame Library Type |
SAMPLEDBO4 Library ﬁl
ACT SAMPLEDBO4 Tahle Add .
CL_SCHED SAMPLEDBO4 Table
DEPARTMENT SAMPLEDBO4 Tahle . |
EMPLOYEE SAMPLEDBO4 Table
EMPPROJACT SAMPLEDBO4 Table LI
Output | options | Format|
" Cpenin Run SGL Scripts
& Wit to file
File type: |Database source file ;I
Library: [samPLEDBO4 =l
File name: JGENSQLO43
Member: |GENSGLO43]
[+ Append
Generate I Cancel | Help |‘?|

Figure 9-22 Starting the Generate SQL process on the iSeries server

Chapter 9. Reverse engineering and Generate SQL

287

Note: For existing files, the option to append to the file is provided. If an existing file is
selected, and the append option is not chosen, you are asked if you want to overwrite
the existing file.

8. Double-click GENSQLO043 to see the script on the Operations Navigator window as shown

in Figure 9-23.
3 AS/400 Operations Navigator =31 x|
File Edit Yiew Options Help
E%@@ﬂ|@|éﬁﬁ|><|@0 1 minutes old
| Environment: My Connections | As23 SAMPLEDBO4
: ;I Mame | Tvpe | Description | ;I
QSQIRN Journal COLLECTION - created by SQL
ﬂQSQJRNDDDI Receiver COLLECTION - created by SQL
ﬂQSQJRNDDDZ Receiver COLLECTION - created by SQL
Edact Table J
E=CL_SCHED Table
ESIDEPARTMENT Table
E=EMP_PHOTOD Table
E=EMP_RESUME Table
EFEMPLOYEE Table
EFEMPPROIACT Table
EEGENSQLES Table
EN_TRA Table
e Miakahaca Mavinakar LI =[]0 Tahle: LI
53] Select libraries to display Map pour database
ﬁ Create new summary SOL performance monitor g Flun an SOL script
ﬁ Create new detailed SGL performance monitor 4 ? Help for related tasks
El
|18 - 29 of 72 ohjects |SQL for 70 objects written ko member GEMNSQLO43 of file SAMPLEDBO4/GENSOLO4S b

Figure 9-23 Selecting the source physical file to show the Generate SQL Script

9. Expand the window, and use the scroll bar to explore the script file as shown in
Figure 9-24.

288 Advanced Functions and Administration on DB2 Universal Database for iSeries

SRCSEQ SRECDAT SRCDTA

1.00 10917 — Generate SOL

2.00 104817 — “ersion: WERTKOD 010525

3.00 10917 — Generated on: 09/17/01 09:43:08

4.00 10917 — Relational Database: RCHASMEZ3

5.00 104817 — Standards Option: DE2 UDB AS/400

.00 104817 N

7.00 104817 CP\EALEE SCHEMA SAMPLEDBOS

5.00 104817

9.00 104817

10.00 104817 CREATE TABLE SAMFPLEDBO4.ACT {

11.00 104817 ACTMHO SMALLINT MOT MULL,

12.00 104817 ACTEWD CHAR(E) CCSID 37 NOT MULL,

13.00 104817 ACTDESCWARCHAR20) CCSID 37 WOT MULL

14.00 104817 CONSTRAINT SAMPLEDBO4.QSYS_ACT_00001 PRIMARY ...

15.00 104817

16.00 104817

17.00 104817 CREATE TABLE SAMPLEDEO4.CL_SCHED (

18.00 104817 CLASS_CODE CHAR(Y) CCSID 37 DEFAULT MULL,

19.00 104817 "DAY" SMALLINT DEFAULT MULL ,

20.00 104817 STARTING TIME DEFAIULT MULL,

21.00 104817 EMDING TIME DEFAULT NULL)

22.00 104817

23.00 104817

24.00 104817 CREATE TABLE SAMPLEDBEO4.DEPARTMENT [

25.00 104817 DEPTNO CHAR(3) CCSID 37 NOT MULL,

26.00 104817 DEPTMNAME WARCHAR(3E) CCSID 37 NOT MULL,

27.00 104817 MGRMNO CHAR(E) CCSID 37 DEFAULT MULL

28.00 104817 ADMRDEFT CHAR(3) CCSID 37 NOT MULL,

29.00 104817 LOCATION CHAR(18) CCEID 37 DEFAIJLT MULL,

30.00 104817 CONSTRAINT SAMPLEDBO4.Q5YS_DEFARTMENT_00001 ...
p |31.00 104817

32.00 104817 ALTER TABLE SAMPLEDBO4.DEFARTMENT

Figure 9-24 Exploring the SQL Script file from Operations Navigator

9.2.2 Generating SQL from the Database Navigator map

It is also possible to generate the SQL DDL statement from some or all objects in a map
generated by the Database Navigator feature (Chapter 8, “Database Navigator” on
page 239).

1. Click the Database Navigator icon to display the maps on the right that exist on the iSeries
server as shown in Figure 9-25.

Chapter 9. Reverse engineering and Generate SQL

289

~=1o] x|

L 5,400 Operations Mavigator
File Edit %iew Options Help

‘x: ﬁ| }(|C§%‘0 0 minutes old
| E nvironment; My Connections | Az23: Databasze Mavigator

LIEO1 ;I Mame | Librar Descripkion

[oerL B SAMPLEDEMAPOS SAMPLECEO4 MAP created by Cintia
[QTEMP
SAMPLEDEOL
SAMPLEDEO4
SAMPLEDBOT

152 File Systems

]-- Backup

]@ Application Developrment
-8 AFP Manager

= asan
B s ~||4] | i

-

[E3) Select ibraries ta dizplay Map pour databaze

Bl Create new summary SOL performance monitor Fiun an 50L script

B Create new detailed SEL performance monitor b ? Help far related tasks

E

[[t-10of t objects [
Figure 9-25 Opening the Database Navigator map

2. Double-click to open the database map that you created.

3. Click the View menu and select Zoom-> To Fit Window from the pull-down menu to fit all
objects on the map in this window as shown in Figure 9-26.

290 Advanced Functions and Administration on DB2 Universal Database for iSeries

Search |

&

meWTm8|unmwTame|omemsmMaM
@ Libraries

7z DDSLIBN4

i LB

SAMPLEDED1
SAMPLEDE D4
SAMPLEDEOT
QTEMFP
- TEZCMDS

QsYS_RESPE..

DEPARTMENT

-~ bl

/

/A

&

QsYS_DEPTN..

sim SAMPLEDBMAPO4 - Database Navigator - As23 o] x
n Re-vEmS
—— Refresh out
Ohject Spacing » o Fi E
Narr Show Overdew Window Eeleoial 3 E—
|F|ts all objects on the map in this WIndDW‘
Show Objects of Type # T PROIECT
Tyne Arrange j
Librany: |L\sl of libraries =

2

RFP

5

|20 of B4 objects in map are visible.

Figure 9-26 Fitting all objects in a map

4. Use the vertical and horizontal scroll bars to navigate to the top of the map as shown in

Figure 9-27.

Chapter 9. Reverse engineering and Generate SQL

291

a“iuu SAMPLEDBMAPD4 - Database Mavigator - As23

~-lofx|
File View Options Map Help

FEH@BRas | Itrme AR/ EEBE

=
Search for Objects B = E‘ ﬂ
QFE_EMPHO.. QFE_EMPHO..
Mame: EH names I R \ PROJACT
Type: All types i Ji

]
RRAR

Library List of libraries >
- -
AT

PROJECT
L\brarvTr99| Library Table | Objects In Map | /p/ kq?
[_@ Libraries

(-8 DDSLIBN oo, 7wt o
& LiBo1

& aGPL

&5 SAMPLEDBOY
SAMPLEDBO4
& SAMPLEDBOT
+-{E GTEMP =]
TEZCMDS

]
SAMPLELDRD.

EMPLOYVEE

DERARTMENT

o

RDE ROD

-
4 3
[20°0r 65 objects in map are visible. [5earch for abjacts complated |

Figure 9-27 Viewing all objects includes in the map

5. Use the criteria selection in the locator pane and select only your SAMPLEDBO04 library.
Click the Library parameter to select your library as shown in Figure 9-28.

292

Advanced Functions and Administration on DB2 Universal Database for iSeries

;Ii.. SAMPLEDBMAPD4 - Database Navigator - As23

(=l
File wiew Options Map Help
HEE? BAaaa|Isme ageliec/vEd
Search for Objects = = El
usvsié?njpnu... 2EVE_EMPND.. El
Marne: FH names vl \ FROJACT
Type: |Al\types 'I Ji
])
Libran: ISAMF’LEDEIM 'I LI RPAR
- -

BCT
L\brar\fTr99| Library Table | Objects In Map |
@ Libraries

=-[@ 5AMPLEDB04

i}]
0SS RESPE QSYS DEPFTH

=

EMPLOYEE

b

]
RED

=i

DEPRRTMENT

o

PROJECT

e

i}
RAF

[]
SANPLEUDRD..

o

|20 of 65 ohjects in map are visible.

|Search for objects completed

Figure 9-28 Selecting only your sample library to appear in the Database Navigator map

6.
tables, indexes, and views.

7. Click the (+) sign next to the Tables database object to expand it.

Click the plus (+) sign next your SAMPLEDBO04 database to see the found objects, such as

8. Double-click the EMPLOYEE table in the list of tables to find this table in the map.

9. Right-click the EMPLOYEE table and select Generate SQL... as shown in Figure 9-29.

Chapter 9. Reverse engineering and Generate SQL

293

294

AMPLEDBMAPD4 - Database Navigator - As23 ;|g|5
File View Options Map Help
EEH2 Baad|Ismae ARele/TBE
Search for Objects E E = [
MName: m usvs,gﬁpno... osvs,éﬁwo . PREL
. Tr— 7
Ly T i) izl

= =
aCT PFROJECT
Library Tree | Library Table | abjects In Map| /V/ %?
@ Libraries
=& SAMPLEDB04 = B
= Tables 0SS _RESPE... > 0SYS_DERTH...
-0 ACT

i}
RRP

Generate and show creation SQL for this abject

[¢L_SCHED
[DEPARTMENT
L Emp
M EMPPROJACT L
[EMP_PHOTO Quick View
[EMP_RESUME Description
[GENSQL043 P Joumnaling...
I IN_TRAY Locked Rows
0 orG Create Allag
[PROJACT =
[FROJEGT Heaiianies
[saLEs Fermissions
[SAMPLEDBMAP04 Expand
[STAFF B .
H- Indexes [r=m— -
WP views
Delate...
Renarme
Propetties

4]

[]
SAIPLEUDRD..

o

[20 0r 5 objects in map are visible. |

Figure 9-29 Generating SQL for a specific object from the map

10.In the Run SQL Script window, explore the Generated SQL statement, using the scroll bar

to navigate as shown in Figure 9-30.

Advanced Functions and Administration on DB2 Universal Database for iSeries

Untitled - Run SQL Scripts - As23 it i |EI|1|
File Edit VWiews Run ‘isualExplain Options Connection Help

S| 2R FPPDO O W@

Examples | ;I Insert |

- Generate SQL =
~- Wersion: WARTMO 010525

- Generated on: 09717701 12:39:54

-~ Relational Database: RCHASM23

- Standards Option: DBz UDB AS400

DROP TABLE SAMFPLEDBO4 EMPLOYEE |

CREATE TABLE SAMPLEDBO4.EMPLOYEE (
EMPNO CHAR(E) CCSID 37 MNOT MULL ,
FIRSTHME VARCHAR(12) CCSID 37 MOT MULL ,
MIDINIT CHAR(1) CCSID 37 MOT MULL ,
LASTNAME VARCHAR(15) CCSID 37 NOT MULL ,
WORKDEPT CHAR(3) CCSID 37 DEFAULT MULL
PHOMENO CHAR(4) CCSID 37 DEFAULT MULL ,
HIREDATE DATE DEFAULT MULL ,
JOB CHAR(E) CCEID 37 DEFAULT NULL ,
EDLEVEL SMALLINT NOT MULL
SEX CHAR(1) CCSID 37 DEFAULT NULL ,
BIRTHDATE DATE DEFAULT NULL ,
SALARY DECIMALS, 23 DEFAULT MULL
BOMNUS DECIMALG, 2) DEFAULT NMULL ,
COMM DECIMAL(G, 2) DEFAULT NULL ,
CONSTRAINT SAMPLEDBO4.QSYS_EMPLOYEE_00001 PRIMARY KEY({ EMPMNO 3, |

WLTER TABLE SAMPLEDBO4 EMPLOYEE

ADD CONSTRAINT SAMPLEDBO4.RED

FOREIGN KEY{WORKDERT)

REFEREMCES SAMPLEDBO4 DEPARTMENT { DEPTMO)

ON DELETE SET MULL ;I

| Messages |
Figure 9-30 Generating SQL from the employee table

11.Click File and select Save As... from the pull-down menu to save the SQL script as shown

in Figure 9-31.

Chapter 9. Reverse engineering and Generate SQL

295

Iz Untitled - Run SOL Scripts - As23 i |EI|1|
Edit Wiew Bun VisualExplain Options Connection Help

Mew Ctri+h {0 |)

Open... Ctrl+0

Save Ctrl+5 ;I Insert |
_'—"Saves the active document with a new name Ctrl+P —

CTIDBENAYSOOGENSRL04Z
Chcintia\GEMSQL05 sql
Cicintis\GENSQLO44 501

Chcintialgensgl0d2

Cicintis\GENSQLO41 5g

Chcintiatdial 0.=qgl

ChcintiatMew Faoldenselft-referencing trigger.sgl
Exit

IULL,

LASTNAME VARCHARITS) COSID 37 NOTMULL
WORKDEPT CHAR(3) CCSID 37 DEFAULT MULL
PHOMENO CHAR(4) CCSID 37 DEFAULT MULL ,
HIREDATE DATE DEFAULT MULL ,

JOB CHAR(E) CCEID 37 DEFAULT NULL ,
EDLEVEL SMALLINT NOT MULL

SEX CHAR(1) CCSID 37 DEFAULT NULL ,
BIRTHDATE DATE DEFAULT NULL ,

SALARY DECIMALS, 23 DEFAULT MULL

BOMNUS DECIMALG, 2) DEFAULT NMULL ,

COMM DECIMAL(G, 2) DEFAULT NULL ,
CONSTRAINT SAMPLEDBO4.QSYS_EMPLOYEE_00001 PRIMARY KEY({ EMPMNO 3, i

WLTER TABLE SAMPLEDBO4 EMPLOYEE
ADD CONSTRAINT SAMPLEDBO4.RED
FOREIGN KEY{WORKDERT)
REFEREMCES SAMPLEDBO4 DEPARTMENT { DEPTMO)
ON DELETE SET MULL ;I

| Messages |
Figure 9-31 Saving the Script SQL

12.0n the Save window, click your directory (C:\DBNAVSQL) from the pull-down menu to
save your file.

13.In the Name input field, type GENSQL044. In the Type input field, leave the default SQL files
(.SQL) as shown in Figure 9-32.

14.Click Save to save the SQL script file.

Lookin: |1 DENAVSOL | §| ;

File name: [GENSQLO44|

Save selected file
Files of type: |SQLﬂIes {.aql)

Figure 9-32 Saving the SQL Script file

Now let’s see how to generate the SQL DDL statements for all the objects in a library.
1. Switch to the Database Navigator window.

2. Click the Map option and select Generate SQL from the pull-down menu. Click All
Objects... to generate the SQL statement for all objects in your library as shown in
Figure 9-33.

296 Advanced Functions and Administration on DB2 Universal Database for iSeries

Eﬁn SAMPLEDEMAPD4 - Database Navigator - As23

File View Options l@m Help

el e B Generate 50 F] &= B = @
T Create L3 = = =
Search for ¢ Delete Map... JIGErJerate and show lcreang S0L for all objects in mal;::E[I E| /
Mame: IA‘” hames ;I QEVS_EMPNO... QEVS_EMPNO... PROJACT
Type: IAIItypes 'l \ Ji
Library: ISAMPLEDEID4 vl RP&S RPAR
- -

PROJECT

ACT
Library Tree | Library Table | Objects In Map] // kﬁ
@ Libraries - _

=& SAMPLEDB04 w = w
=3 Tables 0SS _RESPE... 7 Q=S DERTH... RRP
=00 ACT

- CL_SCHED

=

EMPLOYEE

! b
=0 oRG \

-0 PROJACT
-0 PROJECT
-0 SALES

DEPARTMENT

|I|:| SAMPLEDEMAPO4 / IN;

[STAFF — =
% Indexes ot b
-4 Views

|20 of B5 ohjects in map are visible. |

Figure 9-33 Generate SQL for all objects in a library

3. A status window appears showing the progress of the Generate SQL as a percentage.
4. Click File and select Save As.... from the pull-down menu to save the map.

5. In the Save window, click to select your directory (C:\\DBNAVSQL) from the pull-down
menu to save your file.

6. In the File name input field, type GENSQL045. In the File of type input field, leave the default
as SQL files (.SQL).

7. Click Save to save the SQL script file.

8. Click File and select Exit from the pull-down menu to close the Run SQL Script window.

9.2.3 Generating SQL from DDS

The Generate SQL function works with objects created using SQL and also with objects that
were created using DDS. These objects can also be reverse engineered into an SQL create
statement. This is a way to start migrating or changing existing DDS created databases to
SQL.

Let’'s see how to reverse engineer an existing DDS created database:

1. Click the plus (+) sign next to the Libraries object to expand the list of libraries.

2. Change the list of libraries in Operations Navigator to include the library that has DDS
created objects. For this example, let’s say it is DDSLIBXX. Click DDSLIBXX.

Chapter 9. Reverse engineering and Generate SQL 297

3. Right-click the DDSLIBXX library and select Generate SQL as shown in Figure 9-34.

3 AS/400 Operations Navigator i ;IQILI
File Edit W“iew Options Help
E%@%ﬂ|@|éﬁﬁ|><|@0 1 mirwtes old
| Environment: My Connections | As23 DDSLIBR
;I Mame | Type | Descripkion | o
E5aUDITFIL Table Audit file for invalid orderhdr i,
EJCTLFILE Tatle
E= CUSTOMER Tatle
EE DataI.Jase. =[] Table Source P For header files of Or...
@ Liraries E=ORDERDTL Table
T Explore B ORDERHDR Tatle
i ocPl Open EFPRODPIC Tatle
QTEr Create Shartcut [E==[elaic e Table SOURCE PR FOR ALL CLI PGMS...
Geletil] Gene | = 20LskRe Table
- SAML Permissic EocmpsrC Table
SaMcTT [E==elaclu Table Source PF for © pgms of the ar,.. Jlizs:
TEZe MEw * |EEqoDssRe Table SRC pf For DDS of all pfs,Ifs,ds...
i Pacte E=nsnl sRe Tahle S0 Praredires Sooree Files LI

Faste Definition

I55) Select libraries to disp Delete. Map pour database
ﬁ Create new summary ———— g Fun an SOL script
B Create new detailed S Properties B Y Help for related tasks

E
4

Generate the SCL For this library and all objects within this library

Figure 9-34 Selecting physical files to generate an SQL statement

4. Leave the default options. Click the Generate button in the Generate SQL window.

5. The SQL Script Center appears with the generated SQL DDL statements posted in the
working area as shown in Figure 9-35.

298 Advanced Functions and Administration on DB2 Universal Database for iSeries

Iz Untitled - Run SOL Scripts - As23 _|EI|1|
File Edit ¥iew Run VisualExplain Options Connection Help

HES FREH FPEFIOS W @

Examples | ;I Insert |

-~ Generate 3GL -
~- Wersion: WARTMO 010525

- Generated on: 09/17¢01 151810

-~ Relational Database: RCHASM23

- Standards Option: DBz UDB AS400

CREATE SCHEMA DDSLIBMH ;
F- SQL180C 10 CRTAUT for schema DDSLIEXH ignored.

CREATE TABLE DDSLIBMSAUDITFIL |

-- 8QL14809 10 Farmat name AUDITFILR for AUDITFIL in DDSLIBX ighored.
SRNBR CHAR{10) CCSID 37 MOT NULL DEFAULT ",
CUSNBR CHAR(S) CCSID 37 MOT NULL DEFALULT ") ;

LABEL OM TABLE DDSLIBMAUDITFIL
15 ‘Audit file for invalid arderhdr insertsiupdates’;

LABEL OM COLUMMN DDSLIBHS ALUDITFIL ;I

Messages I

Figure 9-35 Exploring SQL script generated from physical files

Important: There are some DDS-specific keywords that cannot be converted to SQL. This
appears in the code as messages SQL150C and SQL509 (see Figure 9-35).

Chapter 9. Reverse engineering and Generate SQL 299

300 Advanced Functions and Administration on DB2 Universal Database for iSeries

10

Visual Explain

The launch of DB2 UDB for iSeries Visual Explain with Operations Navigator V4AR5MO0 was of
great interest to database administrators working in an iSeries server environment. The
product has been described as a quantum leap forward in database tuning for query
optimization. Visual Explain provides an easy to understand graphical interface that
represents the optimizer implementation of the query.

For the first time, you can see, in graphic detail, how the optimizer has implemented the
query. You can even see all of the facts and figures that the optimizer used to make its
decisions. Best of all, the information is presented in one place, in color, with easy to follow
displays. There is no more jumping between multiple windows, trying to figure out what is
happening. Even better, if you currently have Operations Navigator, you already have Visual
Explain.

With all of this in mind, is such a richly featured product complicated to use? As long as you
are familiar with database tuning, you will enjoy using Visual Explain and want to learn more.

This chapter answers these questions:

» Where do | find Visual Explain?

How do | use it?

What can it be used for?

Will it tune my SQL queries?

What about green-screen queries and those slow running batch jobs?

vVvyyy

Note: The Visual Explain tool is most effectively used when you have a firm understanding
of the DB2 Universal Database for iSeries query optimizer and database engine. The
recommended way to obtain this skill and build this understanding is to attend the
classroom-based S6140 - DB2 UDB for iSeries SQL & Query Performance Tuning and
Monitoring Workshop from IBM Learning Services at:
http://www-1.ibm.com/servers/eserver/iseries/education/

© Copyright IBM Corp. 1994, 1997, 2000, 2001 301

http://www-1.ibm.com/servers/eserver/iseries/education/

10.1 A brief history of the database and SQL

If you look back in history, you will find that the database was actually “invented”. It rapidly
gained widespread acceptance. So much so, that today, virtually all commercial applications
are based on the concepts of a database.

Ever since this invention, programmers have been developing applications to use and
maintain these databases in an organization. At the same time, the art of performance tuning
databases has evolved.

In high-level languages, programmers optimized access to their database files with keyed
access paths. Keyed access was then coded in the program to provide record-level access.
Users were not involved at this time.

As standards evolved, databases became larger and were used for diverse purposes,
including both transaction-based and data warehousing applications. Structured Query
Language (SQL or query) has, at the same time, become the standard for database access.

The scope and power of SQL delivers a standard interface to any database that supports
SQL standards. DB2 UDB for iSeries continues to adopt and support the SQL standards.

SQL can be used in pre-written applications on the iSeries server, as well as applications
generated by users. Many interrogation tools running on PCs depend on the SQL interface to
access data on the iSeries server.

The (anticipated) spread of e-commerce will lead to even more situations where SQL
statements are executed on the iSeries server. The need to optimize data access has never
been greater. The database is in the public domain now and not reserved only for
programmers.

10.2 Database tuning so far

General performance tuning will always influence query performance. Therefore, general
system usage, competition with other jobs, other queries, amount of memory, processor
capacity, processor usage, and so on will always influence the performance of queries.

Assuming that the work environment can be controlled on any given system, the challenge is
to apply similar levels of control to the database to optimize the queries. Queries running on
the iSeries server are processed through a query optimizer, which creates an access plan
based on the information it has available. This access plan includes information about the
tables to be accessed and how the query will attempt to access those tables.

By reviewing this access plan, actions can be taken to influence the outcome, and therefore,
the performance of the query. These actions can include the creation of indexes to support
the query, or can involve changing the way that the query statements are structured to create
a more efficient access plan.

10.2.1 Query optimizer debug messages

The earliest approach, and probably one of the most widely used, is the analysis of query
optimizer debug messages. Running the query under the influence of debug causes the
query optimizer to write additional informational messages to the job log.

302 Advanced Functions and Administration on DB2 Universal Database for iSeries

By looking at the messages in the job log and reviewing the second-level text behind the
messages, you can identify changes (for example, creating a new index) that could improve
the performance of the query.

Analysis of optimizer debug messages was made easier with the addition of a predictive
query governor. By specifying a time limit of zero in the predictive query governor, query
optimizer debug messages can be generated in the job log without actually running the query.
This means that a query that may take 16 hours to run can be analyzed in a few seconds.
Some changes can be made to the query or the database and the effect can be modelled on
the query in just a few minutes. The query would then be run when the optimum
implementation has been achieved.

10.2.2 Database Monitor

More recently, query optimizer debug messages have been joined by the Database Monitor.
The Database Monitor gathers query execution statistics from the iSeries server and records
them in a database file. This database file is then analyzed to provide performance
information to help tune the query or the database.

The Database Monitor is accessed directly from the database component of Operations
Navigator. It can also be accessed from a 5250 device using the Start Database Monitor
(STRDBMON) command or during the collection of performance data with the STRPFRCOL
command.

The analysis of the statistics gathered can be done through the SQL Performance Monitors in
Operations Navigator. Operations Navigator provides many pre-defined reports to assist with
the analysis of the performance data collected in this manner.

10.2.3 The PRTSQLINF command

For SQL embedded in program and package objects, the Print SQL Information
(PRTSQLINF) CL command extracts the optimizer access method information out of the
objects and places that information in a spooled file. The spooled file contents can then be
analyzed to determine if any changes are needed to improve performance.

10.2.4 Iterative approach

The analysis of queries and tuning for query optimization is an ongoing iterative process.
There is no easy solution for query performance and no precise table to which you can refer
for the answers. Much depends on a “try it and see” approach.

With this approach, queries are analyzed, and changes are made to the environment. The
query is run again, and the environment is adjusted. The process repeats until optimum
performance is achieved.

The task of database tuning is complete only when the following statements are all true:

Users and programmers are not generating any new queries.
All existing queries have been completely tuned.

Query selection, sort, and summarization do not change.
The iSeries server workload is stable.

The volume of data in the tables is stable.

The content of the tables is not changing.

vVvyvyvyYYyy

Chapter 10. Visual Explain 303

10.3 Introducing Visual Explain

In Client Access Express, the database component of Operations Navigator is a graphical
way to manage the database. Visual Explain has been added to the database component in
V4R5MO. Visual Explain provides a graphical way to identify and analyze database
performance.

10.3.1 What is Visual Explain

Visual Explain provides a graphical representation of the optimizer implementation of a query
request. The query request is broken down into individual components with icons
representing each unique component. Visual Explain also includes information on the
database objects considered and chosen by the query optimizer. Visual Explain’s detailed
representation of the query implementation makes it easier to understand where the greatest
cost is being incurred.

Visual Explain shows the job run environment details and the levels of database parallelism
that were used to process the query. It also shows the access plan in diagram form, which
allows you to zoom to any part of the diagram for further details.

If query performance is an issue, Visual Explain provides information that can help you to
determine whether you need to:

» Rewrite or alter the SQL statement
» Change the query attributes or environment settings
» Create new indexes

Best of all, you do not have to run the query to find this information. Visual Explain has a
modeling option that allows you to explain the query without running it. That means you could
try any of the changes suggested and see how they are likely to work, before you decide
whether to implement them.

Visual Explain is an advanced tool to assist you with the task of enhancing query
performance, although it does not actually do this task for you. You still need to understand
the process of query optimization and the different access plans that can be implemented.

10.3.2 Finding Visual Explain

304

Visual Explain is a component of Operations Navigator and is found in the Database section
of Operations Navigator. To locate the database section of Operations Navigator, you need to
establish a session on your selected iSeries server using the Operations Navigator icon.

SR Many fgngtions within Operations Nayigator are obtained by
=i E:En"'e .right-cllckllng. For example, you can right-click th.e Database
; 5::% Create Shortcut icon to gain access to several of the query functions

--cn‘:'m File Hun SOL Scripts... (Figure 10-1).

J:'E) Wy Change Query Attributes .) .)

) fm] B Curent SOL for aJob... Selecting Run SQL Scripts invokes the SQL Script Center.
-8 Ay Propsties From the SQL Script Center, Visual Explain can be accessed

B 00— directly, either from the menu or from the toolbar. This is

Figure 10-1 Database options explained in 10.4.1, “The SQL Script Center” on page 306.
under the Database icon

Another way to access Visual Explain is through the SOL
Performance Monitor. The SQL Performance Monitor is used to create Database
Performance Monitor data and to analyze the monitor data with pre-defined reports.

Advanced Functions and Administration on DB2 Universal Database for iSeries

Visual Explain works with the monitor data that is collected by the SQL Performance Monitor
on that system or by the Database Performance Monitor (STRDBMON), which is discussed in
10.6, “Using Visual Explain with Database Monitor data” on page 318. Visual Explain can also
analyze Database Performance Monitor data collected on other systems once that data has
been restored on the iSeries server.

10.3.3 Data access methods and operations supported

Visual Explain was shipped for the first time in V4R5MO0. Table 10-1 shows the methods and
operations that are supported by Visual Explain.

Table 10-1 Query access functions supported

Optimizer access plan Debug Visual Explain
Non-keyed access methods

Table Scan v v
Parallel Table Scan v v
Parallel Pre-fetch v v
Parallel Table Pre-load v v
Skip Sequential with dynamic bitmap v v
Parallel Skip Sequential v v
Keyed Data Access Methods

Key Positioning and Parallel Key Positioning v v
Dynamic Bitmaps/Index ANDing ORing v v
Key Selection and Parallel Key Selection v v
Index-From-Index v v
Index-Only Access v v
Parallel Index Pre-load v v
Joining, Grouping, Ordering

Nested Loop Join v v
Hash Join v v x
Index Grouping v v
Hash Grouping v v
Index Ordering v v
Sort v v
Query Statements

Select v

Update v

Insert v v*
Delete v v

Chapter 10. Visual Explain 305

Optimizer access plan Debug Visual Explain

Sub Query v Ve
Union v v x
View materialization v v x

Operational Characteristics

Index Usage

Index Advice

Open Data Path Usage

SN NI RN RN
NI IENH RN RN

Work Management details

Notes:

v Supported for analysis with this method.

v* PTF # XXX is required for V4R5.

You need to load the latest Database Group PTF to obtain the best functionality of Visual Explain.

Each of the methods shown in this table (debug and Visual Explain) provide assistance with
the task of debugging queries and the analysis of queries to optimize their performance. None
of these will automatically perform the changes for you. The sole purpose is to provide you
with the necessary information so you can make an informed choice.

The ease of use that Visual Explain offers can quickly disguise the fact that it is an advanced
tool working for you in a highly technical area. Use Visual Explain to assist you with the task
of enhancing query performance. Although Visual Explain cannot sort out problems for you, it
can help you to identify and solve problems in a more effective way.

You still need to understand the process of query optimization, the different database access
plans that can be implemented, and the effects of those plans on the system. You also need
to understand the database that you are tuning, its use, and the impact of creating and
changing indexes.

10.4 Using Visual Explain with the SQL Script Center

The Run SQL Script window (SQL Script Center) provides a direct route to Visual Explain.
The window is used to enter, validate, and execute SQL commands and scripts and to provide
an interface with OS/400 through the use of CL commands.

10.4.1 The SQL Script Center

306

To access the SQL Script Center, I’ight-C”Ck the File Edit view Run VisualExplain Options Connection Help
Database option in Operations Navigator to EEFd tRER FFDIOO | @
see the Database menu. Select Run SQL

E | I
Scripts. The Run SQL Script window appears e
with the toolbar as shown in Figure 10-2.

Figure 10-2 Toolbar from the SQL Script
Center

Reading from left to right, there are icons to
create, open, and save SQL scripts, followed by icons to cut, copy, paste, and insert
generated SQL (V5R1) statements within scripts.

Advanced Functions and Administration on DB2 Universal Database for iSeries

The hour glass icons (green downward arrows in V4R5) indicate to e . :
A . . i mmvlsualExplam Options ©
run the statements in the Run SQL Scripts window. These options Al S o

|)
are also available under the Run menu (Figure 10-3). From left to From Selected CtrisT
right, they run all of the statements in the window (All), run all of the EBIENES Ciri+y
statements from the cursor to the end (From Selected), or run the m by ¢
single statement identified by the cursor position (Selected). 4 SyntaxCheck Cirl+K
To the right of the hour glasses in Figure 10-2 is a Stop button, Figure 10-3 SQL Script

which is colored red when a run is in progress. The final icon in the Center Run options
toolbar is the Print icon.

This is followed by two Visual Explain icons, colored

L0 St El Options Connection Help blue and green. The left Visual Explain icon (blue) is to
N Explain.. | explain the SQL statement. The right Visual Explain
— Bunand Explain... Ll 1 jcon (green) is to run and explain the SQL statement.
E Recent SOL Parformance Maonitars » L The actions that you will choose are explained ina

1ore ST st separacr oy semcel o oment. Both of these options are also available on the
Figure 10-4 SQL Script Center Visual drop-down menu (Figure 10-4). You may choose either

Explain options option to start Visual Explain.

Another option exists on the Visual Explain pull-down menu to show recent SQL Performance
Monitors. SQL Performance Monitors can be used to record SQL statements that are
explainable by Visual Explain. We recommend access via the SQL Performance Monitors
icon, because this provides the full list of monitors.

An SQL script is defined as one or more statements from the Run SQL Script working area
below the toolbar. An initial comment is provided. Each complete statement needs a delimiter
to mark the end of statement. The SQL Script Center uses a semi-colon (;) for this purpose.

10.4.2 Visual Explain Only

10.4.3 Run

The Visual Explain Only option (Ctrl+E or the blue toolbar icon) submits T
the query request to the optimizer and provides a visual explanation of

the SQL statement and the access plan that will be used when m}ﬂ
executing the statement. In addition, it provides a detailed analysis of Figure 10-5 Visual
the results through a series of attributes and values associated with Explain access
each of the icons. See Figure 10-5.

To optimize an SQL statement, the optimizer validates the statement and then gathers
statistics about the SQL statement and creates an access plan.

When you choose the Visual Explain Only option, the optimizer processes the query
statement internally with the query time limit set to zero. Therefore, it proceeds through the
full validation, optimization, and creation of an access plan and then reports the results in a
graphical display.

Note: When choosing Visual Explain Only, Visual Explain may not be able to explain some
complex queries such as hash join, temp join results, etc. In this cases, users have to choose
Run and Explain for the SQL statements to see the graphical representation.

and Explain

The Run and Explain option (Ctrl+U or the green toolbar icon) also submits the query request
to the optimizer, and provides a visual explanation of the SQL statement and the access plan
that will be used when executing the statement. It provides a detailed analysis of the results
through a series of attributes and values associated with each of the icons.

Chapter 10. Visual Explain 307

However, it does not set the query time limit to zero and, therefore, continues with the
execution of the query. This leads to the display of a results window in addition to the Visual
Explain graphics.

Notes:

» Visual Explain may show a representation that is different from the job or environment
where the actual statement was run since it may be explained in an environment that
has different work management settings.

» If the query is implemented with multiple steps (that is, joined into a temporary file, with
grouping performed over it), the Visual Explain Only option cannot provide a valid
explanation of the SQL statement. In this case, you must use the Run and Explain
option.

10.5 Navigating Visual Explain

308

The Visual Explain graphics window (Figure 10-6) is presented in two parts. The left-hand
side of the display is called the Query Implementation Graph. This is the graphical
representation of the implementation of the SQL statement and the methods used to access
the database. The arrows indicate the order of the steps. Each node of the graph has an icon
that represents an operation or values returned from an operation.

The right-hand side of the display has the Query Attributes and Values. The display
corresponds to the object that has been selected on the graph. Initially, the query attributes
and values correspond to the final results icon. The vertical bar that separates the two sides is
adjustable. Each side has its own window and is scrollable.

Evisual Explain for SELECT

Continent, Country, Count{*} as COUNT FR!
File View Actions Options Help

He Baao||gesd T

=10l x|

Attribute Walue

|»

Time information {start tim...

Timestamp for Creation of...
Statement Start Timestamp
Statement End Timestamp

2001-09-22-15.34.
2001-09-22-15.34.
2001-09-22-15.34.

Optimization Time, in Millis... 1
QDP Open Time, in Millisec... BB
Total Time, in Microseconds 0392
Statement Open Time, in k... 703592
Statement Fetch Time, inb... 0

Index Secan - key Selection Statement Close Time, inM... 0

Information about SQL stat...
Statement Mumber 24
Statement Function Select

—1 || Staterment Operation Open
Statement Type Dynamic
Statement Mame STMTOO019

Statement Cutcome Successiul

hd S?L Return Code 0 hd
» 4 | »

il |
Message ID Message text
CPI433A Unable to retrieve query aptions file.
CPI434A =+ Starting optimizer dehug message for query .
CPI4321 Access path built for file CUST_DIM.
4 |

_Statenent text |} Optimizer messages.

Figure 10-6 Visual Explain Query Implementation Graph and Query Attributes and Values

Advanced Functions and Administration on DB2 Universal Database for iSeries

The default settings cause the display to be presented with the final result icon (a checkered
flag) on the left of the display. Each of the icons on the display has a description and the
estimated number of rows to be used as input for each stage of the implementation.

Clicking any of the icons causes the Query Attributes and Values display to change and
present the details that are known to the query for that part of the implementation. You may
find it helpful to adjust the display to see more of the attributes and values. Query attributes
and values are discussed further in 10.5.5, “Visual Explain query attributes and values” on
page 315.

When you right-click any of the icons on the display, an action menu is displayed. The action
menu has options to assist with query information and can provide a short cut to table
information to be shown in a separate window. More details are shown in 10.5.2, “Action
menu items” on page 310.

The following action menu items may be found selectively on different icons:

» Table Description: Displays table information returned by Display File Description
(DSPFD).

» Index Description: Displays index information returned by DSPFD.
» Create Index: Creates a permanent index on the iSeries server.

» Table Properties: Displays object properties.

» Index Properties: Displays object properties.

» Display Query Environment: Displays environment settings used during the processing
of this query.

» Additional fly-over panels: These exist for many of the icons. By moving the mouse
pointer over the icon, a window appears with summary information on the specific
operation. See Figure 10-7.

OISO TITTTE, T TS E T
- QDP Open Time, in Milliseconds
Eg Total Time, in Microseconds

Statement Open Time, in Micra...

Tabld Statement Fetch Time, in Micra...
- Table Scan Statement Close Time, in Micro...
i Mame of Tahle Being Gueried ASE |Information about SOL stat
Library of Tahle Being Queried SAMPLEDBO2 |Staterment Mumber
E Estimated Processing Time 1 |statement Function
Estimated Rows Selected 31611 Statemnent Oparation
Finall Jgin Position 1 |statement Type
Tahle Scan Reason Code Mo indexes exist Staternent Narme

Statement Cutcome
S0L Return Code

Figure 10-7 Table scan fly-over panel

The Visual Explain toolbar (Figure 10-8) helps
you navigate the displays. The first four icons
(from left to right) help you control the sizing of
the display. The left-most icon scales the He Baas|dwi[F
graphics to fit the main window. For many
query implementations, this leaves the
graphical display too small to be of value. The
next two icons allow you to zoom in and out of the graphic image.

ﬁ:]ifisual Explain for select * from sampledbhD2.ass
File Miew Actions Options Help

Figure 10-8 Visual Explain toolbar

The fourth icon (Overview) creates an additional window Figure 10-9 that shows the Visual
Explain graphic on a reduced scale. This window has a highlighted area, which represents
the part of the image that is currently displayed in the main window.

Chapter 10. Visual Explain 309

B Overview io[x]| 'nthe Overview window (Figure 10-9), you
can move the cursor into this highlighted
. - . area that is shown in the main window.
E :EE x\g\? ;(:E E The mouse pointer changes so you can

o drag the highlighted area to change the

<] 4 { q section of the overall diagram that is

| | shown in the main window.
...

The default schematic shows the query
with the result on the left, working across
the display from right to left, to allow you to
start at the result and work back. The
remaining four icons on the Visual Explain toolbar allow you to rotate the query
implementation image. The icons are:

Figure 10-9 Visual Explain Overview window

Starting from the right, leading to the result on the left (default view)
Starting from the left, leading to the result on the right

Starting at the bottom, leading to the result at the top

Starting from the top, leading to the result at the bottom

vVvyyy

Try these icons to see which style of presentation you prefer. Starting in V5R1, a frame at the
bottom of the main Visual Explain window was added. In this frame, you can see two tabs.
The Statement Text tab shows the analyzed SQL statement. Also in V5R1, when Visual
Explain is used, it activates the Include Debug Messages in Job Log option and conveniently
presents those messages under the Optimizer Messages tab.

10.5.1 Menu options

The menu options above the toolbar icons are File, View, Actions, and Help. The File option
allows you to close the window. Starting on V5R1, the ability to either print or save the Visual
Explain output as an SQL Performance Monitor file was added. The View options generally
replicate the toolbar icons. The additional options are:

» Icon spacing (horizontal or vertical) changes the size of the arrows between the icons.

» Arrow labels allow you to show/hide the estimated number of rows that the query is
processing at each stage of the implementation.

» Icon labels allow you to show/hide the description of the icons.
» Highlight expensive icons (new in V5R1) by number of returned rows.

» Highlight advised indexes (new in V5R1).

The Actions menu item replicates the features that are available on the display.

10.5.2 Action menu items

When you right-click a query implementation icon, a menu appears that offers further options.
These options may include one of more of the following items.

Table Description

The Table Description menu item (Figure 10-10) takes you into the graphical equivalent of the
Display File Description (DSPFD) command. From here, you can find out more information
about the file. The description has several tabs to select to find further information. A limited
number of changes can be made from the different tab windows.

310 Advanced Functions and Administration on DB2 Universal Database for iSeries

SAMPLEDEO2.ASS Description - As23 2=l
General | Allocstion | Access Path | Usage | Activity | Details |
Description: I |
Data size: 7.8909 MB
“arying length data size: 1]
Current number of rows: 61
Deleted rows: o
Maximum % deleted rows I Maone vl
¥ Reuse delsted rowes
Type: Tahle
Ok I Cancel Help

Figure 10-10 Table Description

Table Properties

The Table Properties display (Figure 10-11) shows a list of the columns and their attributes
from the table icons. A limited number of changes are allowed from the window.

SAMPLEDBDZ2.ASS Table Properties - AS23

Mew |
_I—I Delete |

Column Mame | Type | Length | Diescription -
A55_1D INTEGER |

EFF_DT DATE

LST_MOD_TP_ID CHARACTER 1

IP_ID INTEGER

PRM_ASS_ID INTEGER

CST_IP_ID INTEGER

PRY_IP_ID INTEGER hd
1| »

Browse ...

Calurnn | Key Eonstraintsl Indexesl Referential Eonstraintsl Triggersl Check Eonstraintsl

The properties below apply to the column definition currently selected above.

2|

Shart column name: 455D j
Heading: ASS_ID
V' Must contain a valug [not rull]
Default value: INo default j
QK Cancel Help

Figure 10-11 Table Properties

Chapter 10. Visual Explain

311

Index Description

The Index Description attributes can be accessed to obtain further information about the
index. Several changes are allowed to an index from these windows, including access path
maintenance settings. The Index Description display is shown in Figure 10-12.

TEAMODG.ITEM_IDX2 Description - As27 [2]
Access Path l Usage] Index Details]
Current size: 10756096
I awirnum size: -
b aximumn key length: E
W alid: es
Implicit sharing: Mo
Held: Mo
Joumaled: Mo
Maintenance: ’W‘
Fecovery: ’m
™ Force index changes
Last build: 10/18/00 05:18:30
Estimated rebuild time: 15
Logical page size: ER536
Index logical reads: 19968
Delayed maintenance keyps: 1]
Unigque partial key values: 20000 218959
1] 1]

QK | Cancel Help

Figure 10-12 Index Description

Index Properties

The Index Properties window (Figure 10-13) shows the columns that exist in the table. A
sequential number is placed next to the columns that form the index, with an indication of
whether the index is ascending or descending. The display also shows the type of index.

TEAMOG.ITEM_IDX2 Index Properties - AS27 HE

Table: Library:

| 0. | Calumn Mame Type | Len.. | Description i‘
ORDERKEY DECIMaL 16.0
1 A PARTKEY INTEGER
SUPPKEY INTEGER
LINEMUMBER INTEGER
QUANTITY DECIMAL 15.2
EXTENDEDPRICE DECIMAL 15.2 -
B proviy ;H
Index type:
-
~
~
~
Mumber of distinct values: | J

QK | Cancel Help |

Figure 10-13 Index Properties

312 Advanced Functions and Administration on DB2 Universal Database for iSeries

Create Index

From the temporary index icon, the Create Index menu item takes you to a dialogue box
where the attributes of the temporary index have been completed (Figure 10-14). Simply click
OK to create a permanent index that mirrors the temporary index created by the query.

Mew Index on Table EHE
Index : I Library: I - l

Click to select which columns of the table make up the key. The key position will appear in
the left column. To deselect, click it again.

| 0. | Column Marme | Type | Len... | Diescription ;I
ORDERKEY DECIMaL 16.0 |
PARTKEY INTEGER
SUPPKEY INTEGER
LINEMUMBER INTEGER
1 AL QUANTITY DECIMAL 15.2

EXTENDEDPRICE DECIMAL 15.2 -
. 1 of
Index type:

& Mot unique

' Encoded vector [hot unigus)

" Unique

" Unigue where nat null

Mumber of distinct values: INot specified j

QK I Cancel | Help |

Figure 10-14 New Index on Table display

You need to enter an index name. The type of index is assumed to be binary radix with
non-unique keys.

Note: The Create Index menu item is available from any icon where an index is advised (for

example, table scan, key positioning, key selection) in addition to the temp index icon. This is
one of the user-friendly features of Visual Explain, which gives you the ability to easily create
an index that the optimizer has suggested.

10.5.3 Controlling diagram level of detail

Starting on V5R1, users can select how much detail they want to see on the Visual Explain
graphs. The VISUAL_EXPLAIN_DIAGRAM row on the QAQQINI file lets you change the level
of detail in Visual Explain. When it is set to “BASIC or *DEFAULT, it shows only the icons
directly related to the query. When it is set to *DETAIL, it also shows the icons that are
indirectly related to the query, such as table scans performed to build temporary indexes.
Figure 10-15 shows these two versions of explanation for the same sample query. Most users
will be satisfied with the *BASIC diagram while others, with more performance tuning
experience, may prefer the *DETAIL diagram.

Chapter 10. Visual Explain 313

Basic Visual Explain Example Detailed Visual Explain Example

Fe

Table Scan, Parallel
Temporany Index

20%00
Temporany Index

Table Scan Index Scan - Key Positioning

loo yy 20%,00

Index Scan - Key Positioning

20000

Al
[

Mested Loop Join
20000
20%00

B 1 £ 14

|
Table Scan TABLE FROBE

Final Select
100 ?

Mested Loop Join

Final Select

Al
[

Figure 10-15 Basic and detailed Visual Explain comparison

In Figure 10-15, the table scan on the upper right of the detailed graph is part of the creation
of the temporary index. Some other differences between *BASIC and *DETAIL are:

» If the single table query uses key positioning, key selection, and table scan, *DETAIL
would show an icon for key positioning, key selection, and table scan. *BASIC would show
only one icon — key positioning.

» If the single table query uses key positioning, *DETAIL shows two icons — key positioning
and table probe. *BASIC would show only the key positioning icon.

10.5.4 Displaying the query environment

The query environment is available as a fast path from the Final Results icon and shows the
work management environment (Figure 10-16) where the query was executed. This
information can also be obtained from the Query Attributes and Values displays.

314 Advanced Functions and Administration on DB2 Universal Database for iSeries

Attribute Yalue
Mermary Pool Size 18625142
Mermary Pool ID 2
Date Format 150
Diate Separatar -
Time Farmat 150
Time Separatar :
Decimal Point .
Sort Sequence Tahle *HEX
Sort Sequence Library
Language ID EMU
Query Options Takle
Query Options Librany ™
Gery Time Limit]
Parallel Degree Setting HONE
Maximum Mumhber of Tasks a
Parameter Marker Canversion M

Figure 10-16 Environment

10.5.5 Visual Explain query attributes and values

The query attributes and values show further information about the optimizer implementation
of the query. If you select an icon from the Query Implementation graph, you obtain
information about that icon, as well as that part of the query implementation.

We selected a few of the query implementation icons to show you the query attributes and
values. This way, you can see exactly how much information Visual Explain collects. Prior to
Visual Explain, the information was often available, but never in one place.

Table name, base table name, index name

This section shows the name and library of the table being selected (Figure 10-17). If the
table name is a long name (MASTERCUSTOMER), the name of the table being queried and
the member of the table will be the short name (MASTEOQ0001). The long name is in a
separate line titled “Long Name of the Table being queried”.

Attribute | value

Tabhle name, base table name, i...

Mame of Table Being Queried ACT

Library of Table Being Gueried SAMPLEDBOZ
Member of Tahle Being Queried ACT

Mame of Base Tahle ACT

Library of Base Table SAMPLEDBOZ
Member of Base Tahle ACT

Mame of Index Used HIF12ACT
Library of Index Used SAMPLEDBOZ
Member of Index Used HIF12ACT

Figure 10-17 Table name

Estimated processing time and table info

The estimated processing time (Figure 10-18) shows the time the optimizer expects to take
from this part of the query.

Estimated processing time and ...

Estimated Pracessing Time 1
Estimated Cumulative Time 1

Total Rows in Table 49552
Table Size 22036480

Figure 10-18 Estimated processing time

Chapter 10. Visual Explain 315

Estimated rows selected and query join info

The estimated rows selected (Figure 10-19) shows the number of rows the optimizer expects
to output from this part of the query. If the query is only explained, it shows an estimate of the
number of rows. If it is run and explained, it actually shows the number of rows selected. It
also shows whether the query is CPU or I/O bound, which is information that was not
accessible prior to Visual Explain.

Estimated rows selected and g...
Estimated Rows Selected

Join Position

Table Data Space Mumber
Mumber of Tables Joined

10 or CPU Bound CPLU Bound

Figure 10-19 Estimated rows selected

Queries can be very CPU-intensive or I/O-intensive. When a query’s constraint resource is
the CPU, it is called CPU bound. When a query’s constraint resource is the I/O, it is called /0
bound. A query that is either CPU or I/O bound gives you the opportunity to review the query
attributes being used when the query was processing. If SMP is installed on a multi-processor
system, you should review the DEGREE parameter to ensure that you are using the systems
resources effectively.

Information about the index scan performed

This display shown in Figure 10-20 provides the essentials about the index that was used for
the query, including the reason for using the index, how the index is being used, and static
index attributes. It also specifies the access method or methods used such as Index Scan -
Key positioning, Index Scan - Key Selection, and Index Only Access. To find the description of
the different reason codes, refer to the manual DB2 UDB for iSeries Database Performance
and Query Optimization.

Information about the index scan performed

Index Scan - Key Paositioning es

Mumber of Columns Using kKey Positioning 1

Estimated Entries Using Key Positioning 1

Index Scan - Key Selection Mo

Index Only Access Mo

Index Fits in Memaory es

Memary Poal Size 20143182
Memary Poal ID 2

Type of Index Binary Radix
Index Usage Primary Index
Mumber of Index Entries 49552

Size of Index, in Bytes 1318812
Fage Size of Index, in Bytes 4096
Reason Code Row selection
Index is a Constraint Mo

Figure 10-20 Index scan

SMP parallel information

The SMP information (Figure 10-21) shows the degree of parallelism that occurred on this
particular step. It may appear for more than one icon, because multiple steps can be
processed with differing degrees of parallelism. The display also shows whether either
parallel pre-fetch or parallel pre-load was used as part of the parallel processing.

This information is only relevant when the DB2 SMP licensed feature is installed. The parallel
degree requested is the number of parallel tasks that the optimizer used. This is a user setting
defined with CHGQRYA, but the optimizer adjusts it based on the system resources.

316 Advanced Functions and Administration on DB2 Universal Database for iSeries

SMP parallel information

Farallel Pre-Fetch Mo
Farallel Pre-Load Mo
Farallel Degree Reguestad 2

Figure 10-21 SMP parallel information

Index advised information

The Index advised section (Figure 10-22) tells you whether the query optimizer is advising the
creation of a permanent index. If an index is being advised, the number and names of the
columns to create the index are suggested. This is the same information that is returned by
the CP1432F optimizer message. If the Highlight Index Advised option is set, advised index
information, like base table name, library, and involved columns, will be easily identifiable, as
shown in the Figure 10-22.

Index advised information

Creation of an Index is Advised fes
Murmber of Primary Key Columns 2

List of Key Columns for Advised... YEAR, MONTH

Type of Index Created Binary Radix
Mumber of Unigue Index Values Mot Available
ACS Table Name *HEX

ACS Tahle Library M

Figure 10-22 Index advised

Note that it is possible for the query optimizer to not use the suggested index, if created. This
suggestion is generated if the optimizer determines that a new index might improve the
performance of the selected data by 1 microsecond.

Information about temporary index created

This display provides information about the creation of a temporary index as part of the query
optimizer implementation (Figure 10-23). The index created is reusable and specifies if a
temporary index creation is allowing the associated ODP to be used. If the key column field
names of the index are missing, this implies that derived fields were used.

Information about temporary index created

Entries in Index Created 100029

Fage Size of Index Created BA536

Row Size of Index Created g

Alternate Callating Sequence Table Mo

ACS Table Name *HEX

ACS Tahle Library

Index Created is Reusable fes

Index Created is Sparse Index Mo

Type of Index Created Binary Radix
Mumber of Unigue Index Values Mot Available

Index Created is Permanent Object Mo

Index Created From Existing Index Mo

Farallel Degree Requested, Mew Index 1]

Reason Cade for Index Created Ordering ar Grouping
Key Columns of Index Created QUANTITY ASCEND

Figure 10-23 Temporary index

Additional information about SQL statement

The display in Figure 10-24 shows information about the SQL environment that was used
when the statement was captured. The SQL environment parameters can impact query
performance. Many of these settings are taken from the ODBC/JDBC driver settings.

The Statement is Explainable specifies if the SQL statement can be explained by the Visual
Explain tool. In V4R5, not all statements are explainable. In this section, you will find the SQL
statement if you selected the Final Select icon.

Chapter 10. Visual Explain 317

CLOSQLCSR Value
ALAMCPYDTA Value

Fseuda Open

FPseudo Close

Hard Close Reason Code
QDP Implementation

Dynamic Replan Reason Code
Dynamic Replan Subtype Code
Timestamp of Last Replan
Farse Required

Data Conversion Reason Code
Level of Commitment Control
Blacking Enabled

Delay Prep

Statement is Explainable
Maming Caonvention

Type of Dynamic Pracessing
Optimize LOB Data Types

User Profile far Dynamic
Default Collection
Frocedure Mame on CALL
Frocedure Library on CALL
S0QL Path

Additional information about S...

User Profile far Compiled Prog...

Optimize, optimizer may chose ..
Mo

Mo

Mot Available

Reusable

Access planwas not rebuilt

0001-01-01-00.00.00.000000
Mo

Mot applicable

NG

L

Mo

fes

SaL

Systermn Wide Cache

fes

Determined by Naming Convent...
USRPRF(USER)
ORDAPPLIB

*LIBL

Figure 10-24 Additional information

Implementation summary for SQL statement

The Implementation summary for SQL statement (Figure 10-25) provides information about
the type of SQL statement being processed. It also identifies functions that have a particular
influence on the optimizer. It specifies the values of the variables used on the SQL statement
(Host Variable Values). If the SQL Statement has an Order By, Group By, or a Join, it specifies
which implementation was used. In the example in Figure 10-25, the SQL statement did not
have an Order By, Group By, or join operation.

Implementation vy for SOL stat it
HostVariahle Values 2000, 10

HostVariahle Implementation
CQrdering Implementation

18V, Interface supplied values
Mot Available

Grouping Implementation Mot Available
Loin Implementation Mot Available
Union Mo
Subguery Mo
Distinct Query Mo
Distributed Query Mo

Implementation Summary

Figure 10-25 Implementation summary

10.6 Using Visual Explain with Database Monitor data

Database Monitor data is query information that has been recorded by one of the DB2 UDB
for iSeries performance monitors into a database table that can be analyzed later. Multiple
Database Performance Monitors may run on the iSeries at the same time. They can either
record information for individual jobs or for the entire system. Each one is individually named
and controlled. Any given job can be monitored by a maximum of one system monitor and
one job monitor.

The Database Performance Monitor can be started from Operations Navigator or with a CL
command. With Operations Navigator, the SQL Performance Monitors component is used to
collect Database Monitor data. If you want to use Visual Explain with the data collected with
an SQL Performance Monitor, then you must choose the detailed monitor collection when
setting up the Database Performance Monitor in Operations Navigator.

318 Advanced Functions and Administration on DB2 Universal Database for iSeries

The Start Database Monitor (STRDBMON) or Start Performance Monitor (STRPFRMON)
(with STRDBMON(*YES)) CL commands can also be used to collect Database Performance
Monitor data. If you intend to use Visual Explain on the Database Monitor data collected with
these CL commands, the data must be imported into Operations Navigator as detailed data.
See 7.6, “SQL Performance Monitors” on page 220, for a detailed explanation on how to use
SQL Performance Monitor and how to import DBMON data into Operations Navigator.

Using Visual Explain
Click Operations Navigator-> Database-> SQL Performance Monitors to obtain a list of
the SQL Performance Monitors that are currently on the system.

Right-click the Performance Monitor, and select List Explainable Statements. An
“explainable” statement (Figure 10-26) is an SQL statement that can be explained by Visual
Explain. Because Visual Explain does not process all SQL statements, it is possible that
some statements will not be selected.

Explainable Statements For 5QL Performance Monitor TeamD6 Monday EHE

SOL statements manitared:

Date | Time | Processing Time | SOL Text
1040200 11:35:21 4. 15ms SELECT year, month, returnflag, partkey, quantity, revenue_wo_tax FROM
10/02/00 0 11:35:23 A, 1d4ms SELECT year, month, returnflag, partkey, quantity, revenue_wo_tax FROM
1040200 113606 A, 22ms SELECT year, month, returnflag, partkey, quantity, revenue_wo_tax FROM
IGERE 11:36:23 4. 24ms SELECT year, month, returnflag, partkey, quantity, revenue_wo_tax FROM
| | i
SOL statement selected: el |
SELECT year. month, retumflag, partkey. quantity, revenue_wo_tax ;I
FROM itemn_fact
WHERE year = 7 and month = 7 and returnflag = 7
OPTIMIZE far all rows

Fiun Yizual Explain |

Cloze I Help |

Figure 10-26 SQL explainable statements

The explainable SQL statements that have been optimized by the job are now listed. If you
have been monitoring an SQL Script window, these will be the SQL statements that were
entered.

Note: Query optimizer information is only generated for an SQL statement or query
request when an ODP is created. When an SQL or query request is implemented with a
Reusable ODP, then the query optimizer is not invoked. Therefore, there will be no
feedback from the query optimizer in terms of monitor data or even debug messages and
the statement will not be explainable in Visual Explain. The only technique for analyzing
the implementation of a statement in Reusable ODP mode is to look for an earlier
execution of that statement when an ODP was created for that statement.

To use Visual Explain on any of the statements, select the statement from the display. The full
SQL statement appears in the lower part of the display for verification. Click Run Visual
Explain (Figure 10-26) to analyze the statement, and prepare a graphical representation of
the query.

Chapter 10. Visual Explain 319

Exit the Visual Explain window and the Explainable Statements window when you have
completed your analysis. You may either retain the performance data or remove it from the
system at this time, depending on your requirements.

10.7 Non-SQL interface considerations

Obviously, the Database Performance Monitor can capture implementation information for
any SQL-based interface. Therefore, any SQL-based request can be analyzed with Visual
Explain. SQL-based interfaces range from Embedded SQL to Query Manager reports to
ODBC and JDBC.

Some query interfaces on the AS/400 and iSeries servers are not SQL-based and, therefore,
are not supported by Visual Explain. The interfaces not supported by Visual Explain include:

v

Native database access from a high level language, such as Cobol, RPG, etc.
Query

OPNQRYF command

0S/400 Create Query APl (QQQQRY)

vYyy

The query optimizer creates an access plan for all queries that run on the iSeries server. Most
queries use the SQL interface, and generate an SQL statement, either directly (SQL Script
Window, STRSQL command, SQL in high-level language (HLL) programs) or indirectly
(Query Monitor/400).

Other queries do not generate identifiable SQL statements (Query, OPNQRYF command)
and cannot be used with Visual Explain via the SQL Performance Monitor. In this instance,
the name SQL, as part of the SQL Performance Monitor, is significant.

The statements that generate SQL and can be used with the Visual Explain via the SQL
Performance Monitor include:

SQL statements from the SQL Script Center

SQL statements from the Start SQL (STRSQL) command

SQL statements processed by the Run SQL Statement (RUNSQLSTM) command

SQL statements embedded into a high level language program, such as Cobol, Java, or
RPG

» SQL statements processed through an ODBC or JDBC interface

vVvyyy

The statements that do not generate SQL and, therefore, cannot be used with Visual Explain
via the SQL Performance Monitor include:

Native database access from a high level language, for example, Cobol, RPG, etc.
Query

Open Query File (OPNQRYF) command

0S/400 Create Query APl (QQQQRY)

vVvyyy

10.7.1 Query/400 and Visual Explain

Query/400, now renamed Query, is not supported by Visual Explain even though optimizer
debug messages can be used with Query/400 queries since it does not generate SQL.
Query/400 queries are often blamed for poor performance and sometimes even banned from
execution during daylight hours. It is for this reason that some guidance has been provided to
bring Query/400 queries into the scope of Visual Explain.

320 Advanced Functions and Administration on DB2 Universal Database for iSeries

There is no direct Query/400 to SQL command. However, the Start Query Monitor Query
(STRQMQRY) CL command will run a query definition (object type *QRYDFN) as an SQL
statement, as long as the ALWQRYDFN parameter is set to either “YES or *ONLY.

If you are accessing a multi-member file, performance data is not collected for the second and
subsequent members. Instead, you need to use an SQL supported interface, such as an alias
for the members.

To use this SQL statement with Visual Explain, either start an SQL Performance Monitor for
this job in advance of issuing the STRQMQRY command, or use the native STRDBMON CL
command to collect data for the job. See 7.6.1, “Starting the SQL Performance Monitor” on
page 222.

10.7.2 The Visual Explain icons

The icons that you may encounter on the Visual Explain query implementation chart are
shown here.

The Final Result icon displays the original SQL statement and summary information of how
the query was implemented. It is the last icon on the chart.

!

Fir—"

Wy
‘.

il

The Table Scan icon indicates that all rows in the table were paged in, and selection criteria
was applied against each row. Only those rows meeting the selection criteria were
retrieved. To obtain the result in a particular sequence, you must specify the ORDER BY
clause.

jumr
i

The Parallel Table Scan icon indicates that a table scan access method was used and
multiple tasks were used to fill the rows in parallel. The table was partitioned, and each
task was given a portion of the table to use.

o
LT,
i

The Skip Sequential Table Scan icon indicates that a bitmap was used to determine which
rows would be selected. No CPU processing was done on non-selected rows, and I/O was
minimized by bringing in only those pages that contained rows to be selected. This icon
usually is related to the Dynamic Bitmap or Bitmap Merge icons.

P
it

The Skip Sequential Parallel Table Scan icon indicates that a skip sequential table scan
E access method was used and multiple tasks were used to fill the rows in parallel. The table
was partitioned, and each task was given a portion of the table to use.

Ny

The Derived Column Selection icon indicates that a column in the row selected had to be
mapped or derived before selection criteria could be applied against the row. Derived
column selection is the slowest selection method.

=
=+

|
=

The Parallel Derived Column Selection icon indicates that derived field selection was
E+ 3 performed, and the processing was accomplished using multiple tasks. The table was
+ partitioned, and each task was given a portion of the table to use.

The Index Key Positioning icon indicates that only entries of the index that match a specified
range of key values were “paged in”. The range of key values was determined by the

E E selection criteria whose predicates matched the key columns of the index. Only selected
key entries were used to select rows from the corresponding table data.

Chapter 10. Visual Explain 321

The Parallel Index Key Positioning icon indicates that multiple tasks were used to perform
the key positioning in parallel. The range of key values was determined by the selection
criteria, whose predicates matched the key columns of the index. Only selected key
entries were used to select rows from the corresponding table data.

The Index Key Selection icon indicates that all entries of the index were paged in. Any
selection criteria, whose predicates match the key columns of the index, was applied
against the index entries. Only selected key entries were used to select rows from the
table data.

The Parallel Index Key Selection icon indicates that multiple tasks were used to perform key
selection in parallel. The table was partitioned, and each task was given a portion of the
table to use.

B =9 | Ef

The Encoded Vector Index icon indicates that access was provided to a database file by
E assigning codes to distinct key values, and then representing these values in an array
] (vector). Because of their compact size and relative simplicity, Encoded Vector Indexes
i provide for faster scans.

oo

The Parallel Encoded Vector Index icon indicates that multiple tasks were used to perform
the encoded vector index selection in parallel. This allows for faster scans that can be
more easily processed in parallel.

oo
o
it

The Sort Sequence icon indicates that selected rows were sorted using a sort algorithm.

dn

The Grouping icon indicates that selected rows were grouped or summarized. Therefore,
duplicate rows within a group were eliminated.

Lom
(|
;%W

The Nested Loop Join icon indicates that queried tables were joined together using a nested
loop join implementation. Values from the primary file were joined to the secondary file by
using an index whose key columns matched the specified join columns. This icon is
usually after the method icons used on the underlying tables (that is, Index scan-Key
selection and Index scan-Key positioning).

I

The Hash Join icon indicates that a temporary hash table was created. The tables queried
were joined together using a hash join implementation where a hash table was created for
each secondary table. Therefore, matching values were hashed to the same hash table
entry.

The Temporary Index icon indicates that a temporary index was created, because the query
either requires an index and one does not exist, or the creation of an index will improve
performance of the query.

The Temporary Hash Table icon indicates that a temporary hash table was created to
perform hash processing.

The Temporary Table icon indicates that a temporary table was required to either contain
the intermediate results of the query, or the queried table could not be queried as it
currently exists and a temporary table was created to replace it.

322 Advanced Functions and Administration on DB2 Universal Database for iSeries

The Dynamic Bitmap icon indicates that a bitmap was dynamically generated from an
“ existing index. It was then used to determine which rows were to be retrieved from the
table. To improve performance, dynamic bitmaps can be used in conjunction with a table
I scan access method for skip sequential or with either the index key position or key
selection.

ﬁ B The Bitmap Merge icon indicates that multiple bitmaps were merged or combined to form
E H a final bitmap. The merging of the bitmaps simulates boolean logic (AND/OR selection).

The DISTINCT icon indicates that duplicate rows in the result were prevented. You can
5 specify that you do not want any duplicates by using the DISTINCT keyword, followed by
4 the selected column names.

The UNION Merge icon indicates that the results of multiple subselects were merged or
combined into a single result.

The Subquery Merge icon indicates that the nested SELECT was processed for each row
=== l‘ (WHERE clause) or group of rows (HAVING clause) selected in the outer level SELECT.
This is also referred to as a “correlated subquery”.

The Incomplete Information icon indicates that a query could not be displayed due to
incomplete information.

>

10.8 SQL performance analysis using Visual Explain

This section presents a brief example on SQL performance analysis using Visual Explain. A
complete explanation on performance analysis is beyond the scope of this redbook, but you
can find extensive information on Redpapers and workshops at:
http://www-1.ibm.com/servers/eserver/iseries/Tibrary/

10.8.1 Database performance analysis methodology

There are many different methods to identify problems and tune troublesome database
queries. One of the most common methods is to identify the most dominating,
time-consuming queries and work on each of them individually. Another method is to leverage
global information and to use this information to look for indexes that are “begging” to be
created.

Operations Navigator SQL Performance Monitor provides you with tools for gathering and
analyze SQL performance information. Once you have SQL performance data collected, you
can use the predefined queries for looking for specific queries that have large table scans or
that are evidencing some lack of indexes.

Those predefined queries can be reached by right-clicking the specific SQL Performance
Monitor collected and selecting Analyze Results as shown in Figure 10-27.

Chapter 10. Visual Explain 323

http://www-1.ibm.com/servers/eserver/iseries/library/
http://www-1.ibm.com/servers/eserver/iseries/library/

3 AS/400 Operations Navigator - |EI|1|
File Edit Yiew Options Help

E%@%ﬂ|@|éﬁﬁ|><|@0 5 mirwtes old
| Environment: My Connections | Az23 S0OL Performance Monitors
EI} Management Central {As23) ame Type | Skatus | Created b | Job:

=8 My Connections Ftarted DLEMA QPa

=@ As23 Pause
v Basic Operations Continue
@ ‘Wwork Management End

An

gﬁ Configuration and Service yze Resulks
Metwork, List Explainable Statements

@™ Users and Groups DElete, .

[Database Properties
0-[E5) Libraies
% Database Mavigator
SGL Performance Monitors
@2 File Systems
@ Application Development

@ AFP Manager
% Backup, Recovery and Media Servi
- @l Ass0

I55) Select libraries to display B Map your database
ﬁ Create new summary SOL performance monitor Fiun an SGL script
ﬁ Create new detailed SGL performance monitor 4 ? Help for related tasks

a

Analyzes performance monitor resulks

Figure 10-27 Analyzing SQL performance results

The Basic Statement Information predefined query gives you a very general idea of the

queries being monitored, as well as the kind of access methods used by these queries. This
reports provides you information related to execution time per each execution, total execution
time, advised indexes, whether table scan or temporary index creation was used, and more.

Once you detect a query or set of queries that needs further analysis, you can use a detailed
query analysis tool like Visual Explain to explore them in detail. Query analysis is iterative in
nature. Try something running the job or the individual query to see if it worked. Try it again if
it did not work. You can explain with Visual Explain the SQL statements contained in the SQL
Performance Monitor Collected data by right-clicking the specific collection and selecting List
Explainable Statements from the pop-up menu. A list of explainable statements appears and
you can choose those in which you are interested.

As an example, Figure 10-28 shows a Visual Explain diagram that permits you to detect that
for this query. It is performing a table scan and is not using parallelism. You can see that the
SQL statement does not specify an OPTIMIZE FOR n ROWS portion, and the query degree
is set to “NONE.

324 Advanced Functions and Administration on DB2 Universal Database for iSeries

Yisual Explain for SELECT YEAR, MONTH, RETURNFLAG, PART!

File View Actions

Options Help

=10l x|

Table Scan
1%0

)

|

Final Select

4] |

He Baas ofed[F

s

Attribute Walue
Emvironment information for S... ;'
Memary Poal Size 20143182
Memary Poal ID 2
Date Format 150
Date Separator -

Time Format 150
Time Separatar

Decimal Point

Sort Sequence Table

Sort Sequence Library

Language 1D EMU
Country 1D

Guery Options Table CAQGQINI
Guery Options Likrary M

Guery Time Limit 1]
Farallel Degree Setting MONE
Maximum Number of Tasks 1]
Apply CHGQRYA Remaotely es
Asynchronous Job Usage LOCAL
Jaoin Crder Forced Mo
Display Debug Messages Mo

Farameter Marker Conversion

il

Mo

PR

| o

Parallel degree (or query

"~ degree) is set to NONE

SELECT YEAR, MONTH, RETURNFLAG, PARTKEY, QUANTITY, REVENUE_WO_TAR FROM ‘/
ETEAMOTITEM_FACT WHERE YEAR = 2000 AND MONTH = 6 AND RETURNFLAG = 'R

Statement text I

| No OPTIMIZE FOR n
ROWS used.

Figure 10-28 Analyzing a simple query: First iteration

Based on the information provided by Visual Explain, you change the statement including
now an OPTIMIZE FOR ALL ROWS, and we change the parallel degree to *OPTIMIZE. See

Figure 10-29.

ﬂ\fisual Explain for SELECT YEAR, MONTH, RETURNFLAG, PARTI

File View Actions

Options Help

;ﬂﬂ

[wisual Explain For SELECT YEAR, MOMTH, RETURNFLAG, PARTKEY, QUANTT

4z

Table Scan, Parallel

Final Select

4] |

He Baaso «ofeilF

Attribute

Walue

s

Tahle Scan Reason Code

Index advised information
Creation of an Index is Advised
Mumber of Primary Key Calumns
List of Key Calumns for Advised...
Type of Index Created

Murmber of Unigue Index Values
ACS Table Name

ACS Tahble Library

Columns for table selection, Ke...
Columns for Data Space Selection

SMP parallel information
Farallel Pre-Fetch

Farallel Pre-Load

Farallel Degree Reqguested

Columns used to join monitor r...
Systern Mame

Joh Mame

4

Mo indexes exist

fes

3

YEAR, MONTH, RETUF
Binary Radix

Mot Available

*HEX

*N

YEAR, MONTH, RETUE

RCHASMZ3

QZDAS OIINIT

o

An index is advised,
using fields YEAR,
MONTH and
RETURNFLAG

Using parallelism.
Optimizer is asking for 10
parallel threads

Now the statement

includes an OPTIMIZE

| FOR ALL ROWS
affecting the optimizer’s

ROWS

SELECT YEAR, MONTH, RETURNFLAG, PARTKEY, QUANTITY, REVENUE_WO_TAX FROM
ETEAMOT ITEM_FACT WHERE YEAR = 2000 AND MOMNTH = 6 AND RETURMFLAG = 'R OPTIMIZE FOR ALL

Statement text I

access plan.

Figure 10-29 Analyzing a simple query: Second iteration

Chapter 10. Visual Explain

325

326

You can see the affect that the changes had over the analyzed query. You can go further and
create the suggested index by right-clicking the Table Scan icon and selecting the Create
Index option. A New Index on Table window appears (Figure 10-30), where the suggested
fields are selected for you. You have to provide a name and library for the new index. You can
also change the order of the fields and add new fields to the index if you consider that
necessary.

New Index on Table

Index : ISAMPLEINDEX Library:

Click to select which columns of the table make up the key. The key position will appear in
the left column. To deselect, click it again.

| 0. | Column Mame | Type | Len... | Diescription ;I
DavsS_SHIP_TO_R.. INTEGER
DavS_COMMIT_TO... INTEGER
1 AL YEAR SHALLINT
2 AL MONTH SHALLINT
GUARTER SHALLINT |
DUMMYKEY CHARACTER 1 -
! [_>l_I
Index type:
' Mot unique
" Encoded vector [hot unigus)
" Unique

" Unigue where not nul

Mumber of distinct vwalues: INot specified j

QK I Cancel | Help |

Figure 10-30 New Index on Table window

Now DB2 UDB for iSeries uses the suggested index, as shown in Figure 10-31. Note that it is
possible that DB2 UDB for iSeries may not use the suggested index.

ﬂ\fisual Explain for SELECT YEAR, MONTH, RETURNFLAG, PAR = |EI|1|
File View Actions Options Help

He Baas ofed[F

15 Attribute Value
Information about the index sc... ;I
Index Scan - Key Paositioning es

Mumber of Columns Using Key ... 3
Estimated Entries Using kKey P... a5

Index Scan - Key Selection Mo
Index Only Access Mo

ﬁ Index Fits in Memaory es

Index Scan - Key Positioning Memary Pool Size 20143182
: Memary Fool 1D 2
Q€ Type of Index Binary Radix

Index Usage Primary Index
Mumber of Index Entries 100029

- Size of Index, in Bytes 1843200

L‘E;E Fage Size of Index, in Bytes 4096

Final Select Reason Code Row selection

Index is a Constraint Mo

Information about the table sca...
Data Space Selection Mo
Derived Selection Performed Mo

| | Optimizer timed out information hd
4 | 3 4 | v

SELECT YEAR, MONTH, RETURNFLAG, PARTKEY, QUANTITY, REVENUE_WO_TAR FROM
ETEAMOT ITEM_FACT WHERE YEAR = 2000 AND MONTH = 6 AND RETURNFLAG = 'R' OFTIMIZE FOR ALL
ROWS

Statement text I

Figure 10-31 Analyzing a simple query: Third iteration

Advanced Functions and Administration on DB2 Universal Database for iSeries

Is it really that simple? Tuning SQL statements and database performance can be a very
demanding task, but with the new tools introduced in V4R5 and improved in V5R1, such as
Visual Explain and SQL Performance Monitor predefined reports, it is becoming more
accessible.

Performance tuning, particularly when dealing with database operations, is an iterative
process but the availability and knowledge of powerful tools allow the performance analyst to
find a solution quickly.

Knowledge and judicious usage of the OS/400 Database Monitor tool, its predefined queries,

and particularly Visual Explain reduces significantly the time and effort required by
performance analysts.

Chapter 10. Visual Explain 327

328 Advanced Functions and Administration on DB2 Universal Database for iSeries

Order Entry application: Detailed
flow

This appendix provides detailed flow charts of each of the modules included in the Order
Entry application scenario.

© Copyright IBM Corp. 1994, 1997, 2000, 2001 329

Program flow for the Insert Order Header program
Figure A-1 shows a functional description of the various components of this application
scenario. The DB2 UDB for iSeries functional highlights in this program include:

» Referential integrity constraints for the Order Header table
» Insert trigger on the Order Header file

TAKE INPUT
| - | [
SCREEN

ORDER <_____:§——>
HEADER

INSERT

—
v CHECK
RELATIONSHIP
SEND WRITE AUDIT
MESSAGE i e
CUSTOMER # : DIFFERENT
NOT VALID ' ACTIVATION GROUP
SEND
MESSAGE

SALES PERSON / CUSTOMER
RELATIONSHIP NOT VALID

Figure A-1 Insert Order Header program flow

Program description for the Insert Order Header program

The idea of this program is to show how to use the following new database functions in a real
application:

» Referential integrity: When a record is inserted in the Order Header file, the system
checks for an existing customer in the Customer table.

» Database trigger: Before the insert operation is completed, the database manager
activates a program that can verify if the sales representative is assigned to the customer
and log any violation attempt.

» Program description: The sales person periodically calls the customer over the phone
and places an order. The sales person enters the customer number, the order and delivery
date, and other general information. The application does not automatically generate an
order number. For the sake of simplicity, this is entered by the sales representative.

330 Advanced Functions and Administration on DB2 Universal Database for iSeries

A more detailed flow of this program is described as follows:

1.
2.

The program inserts a row into the Order Header table.

If the database referential constraint enforcement detects a customer number not defined
in the Customer table, a program message is sent explaining that the customer number is
invalid. A correct customer number must be entered.

3. The customer name is displayed at the terminal.

4. Arow is inserted into the Order Header table.

5. Since an insert trigger is defined on this table, a program is automatically triggered by the

database manager.

The trigger program checks if the current user profile is associated to the customer in the
Sales/Customer table. If there is no match, the program writes an audit trail entry to an
audit table.

If the insert is successful, the program returns a positive return code to the main program,
which calls the Insert Order Detail program.

Program flow for the Insert Order Detail program

DB2 Universal Database for iSeries functional highlights in this program include:

vVvyyy

Referential integrity constraints for the Order Detail table

Referential integrity constraints for the Stock table (on remote system)
Two-phase Commit and DRDA Level 2

Remote stored procedure

The program flow for Insert Order Detail is shown in Figure A-2.

Appendix A. Order Entry application: Detailed flow 331

AN
; TAKE PRODUCT N
Y NUMBERFROM | LE N
"""""""""""""""""""" ™1 SCREEN o

2-PHASE
R —
N N\C

v

REMOTE SET
CONNECT_CONNECTION

- FROM ORDER HEADER PROGRAM Y CANCEL
. - D i
V '"’ === CUSTOMER #, ORDER # ORDER

CALL S%ORED
PROCEDURE

STORED
PROCEDURE

SET
@ CONNECTION
CHECK INSERT ORDER
ORDER # DETAIL

/
Y H H
@ | ROLLBACK

N

—- @

N

v

Figure A-2 Insert Order Detail program flow

Program description for Insert Order Detail program

The idea of this program is to show how to use the following new database functions in a real
application:

» Referential integrity: When a record is inserted into the Order Detail table for a new order
item, the system checks for a matching order number in the Order Header table.

» Two-phase commit with DRDA, Level 2: This procedure inserts a record in a local file
and updates the remote inventory file (STOCK file). At the end of this process, you want to
release the locks on the inventory record and the transaction is committed. The two-phase
commit support guarantees the integrity of this transaction.

» Stored procedure: To update the remote inventory file, this program calls a remote stored
procedure. The stored procedure checks the availability of the product. If the product has
low inventory levels, the stored procedure looks for an alternative and sends the new
product code and description back to the calling application. The selected product
information is displayed at the terminal and the user has the choice of accepting or
rejecting the substitute item.

332 Advanced Functions and Administration on DB2 Universal Database for iSeries

» Program description: This program can:

a. Get the customer number and the order number from the Insert Order Header
program.

b. Get the product number and quantity for every single item from the display.

c. Issue a SET CONNECTION statement to the remote system. All the necessary
CONNECT statements are performed by the main program.

d. Call a stored procedure at the remote system to:
* Look for the product number in the remote inventory.

* Update the Stock table, reducing the quantity on hand if the quantity available is
sufficient.

* Look for an alternative product if the requested one is out of stock, and update the
corresponding quantity.

* Pass the product information back to the calling program.
e. The stored procedure then passes control back to the calling program.

f. Atthis point, the program sets a connection to the local system and if the user accepts
the record, the new item is inserted in the Order Detail file, and the whole transaction is
committed. If the user rejects the item, a rollback brings the stock quantity on hand
back to its original value.

g. Arollback is also performed if referential integrity checking on the Order Detail table
fails. This happens if you insert the record with the wrong order number.

h. The user also has the option of cancelling the whole order. In this case, a Cancel Order
program is called.

i. The program keeps a work field with the final totals of the whole order. When the entire
order is completed, this value is passed to the next program — Finalize Order.

Program flow for the Finalize Order program

The DB2 Universal Database for iSeries functional highlights in this program include the
trigger on the Update Order Header row. See Figure A-3 for the program flow.

Appendix A. Order Entry application: Detailed flow 333

Y
FROM ORDER DETAIL PROGRAM
TAKEINPUT | STOMER#, ORDER #, ORDER
! TOTAL
Y
READ
CUSTOMER
CHECK CREDIT
LIMIT
CREDIT LIMIT
>= ORDER TOTAL = | DELETE ~ ess
o ORDER MESSAGE
: CASCADE
i DELETE y
UPDATE ORDER
TRIGGER | N CUSTOMERS DETAIL
ON
UPDATE UPDATE SALES/
CUSTOMERS
UPDATE ORDER
HEADER
SEND --N.. '
< ROLLBACK
MESSAGE Z INVOICE
WRITING
COMMIT
MORE
(CEnp)=
?

Figure A-3 Finalize Order program flow

Program description for the Finalize Order program

The idea of this program is to show how to use the following new database functions in a real

application:

» Database triggers: In this scenario, a program is triggered after the order header row is
updated with the total amount of the order. This program prints the invoice at the branch
office as soon as the order has been completed.

The program also updates the credit limit on the customer file. If the current balance
exceeds 90% of the credit limit, a “warning” fax is automatically sent to the customer by a
trigger program to allow the customer to take the appropriate actions (for example,
applying for a credit limit increase, based on the credit history of the customer).

» Program description: This program can:

a. Get the customer number and the order number from the previous process along with
the order grand total.

334 Advanced Functions and Administration on DB2 Universal Database for iSeries

. Check the customer record. If the credit limit is exceeded, the order is cancelled. To
delete the order, the detail is scanned, and the inventory quantity that is on hand for
each item is updated by adding the amount reserved for this order. When this process
is complete, the order header is deleted, and all the order detail disappears as a result
of the "CASCADE constraint on the order header file. The entire transaction is finally
committed. Again, the two-phase commit support ensures that the local database and
the remote stock file are kept synchronized.

If the credit limit is OK, this program updates the following fields:
e The total amount in the customer file to keep track of the customer balance

* The total amount in the Sales Representative/Customer table to reflect the sales
person's turnover with the customer

¢ The total amount in the Order Header table items at invoice time

. Because an update trigger is specified on the Order Header table, an invoice program
is started immediately. The invoice for the completed order is printed in the branch
office. For more information about triggers, see Stored Procedures and Triggers on
DB2 Universal Database for iSeries, SG24-6503.

. After the preceding updates have been done, COMMIT is executed.
If there are more orders, the Insert Order Header program is started again.
. If there are no more orders, this Order Entry application has ended.

Appendix A. Order Entry application: Detailed flow 335

336 Advanced Functions and Administration on DB2 Universal Database for iSeries

Referential integrity: Error
handling example

This appendix provides an example of a COBOL program that illustrates a coding example of
the error handling when you use referential integrity.

In the following example, you can see a COBOL SQL implementation of this a procedure. The
operation that activates the trigger and the referential integrity check is highlighted in bold.
Immediately after the SQL insert, the application checks the SQLCODE for errors and reports

the correct message to the user.

© Copyright IBM Corp. 1994, 1997, 2000, 2001 337

Program code: Order Header entry program — T4249CINS

PROCESS OPTIONS.
IDENTIFICATION DIVISION.
PROGRAM-ID. T4249CINS.
AUTHOR. PROGRAMMER NAME.
INSTALLATION.
DATE-WRITTEN. APRIL 2001.
DATE-COMPILED.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-AS400.
OBJECT-COMPUTER. IBM-AS400.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

ITSC LABORATORY.

SELECT T42490HRD ASSIGN TO WORKSTATION-T42490HRD
ORGANIZATION IS TRANSACTION
FILE STATUS IS STATUS-ERR.

R R

DATA DIVISION.
FILE SECTION.
FD T42490HRD

LABEL RECORD ARE STANDARD.

01 DSPO1.

COPY DDS-ALL-FORMATS OF T42490HRD.

R R

WORKING-STORAGE SECTION.

01 DSPFIL-INDICS.
COPY DDS-ALL-FORMATS-INDIC

77 IND-ON PIC 1
77 IND-OFF PIC 1
01 JOBA-AREA.

03 BYTES-RTN PIC

03 BYTES-AVAIL PIC
03 JOBNAME PIC
03 USERNAME PIC
03 JOBNUMBER PIC

OF T42490HRD.

VALUE B"1".
VALUE B"0".

9(8) BINARY VALUE 0.
9(8) BINARY VALUE 0.
X(10).
X(10).
X(6).

01 RTV-JOBA.
03 RTV-JOB-VAR PIC X(50).
03 RTV-JOB-LEN PIC 9(8) BINARY VALUE 50.
03 RTV-JOB-FMT PIC X(8) VALUE "JOBIO400".
03 RTV-JOB-NAME PIC X(26) VALUE "*".
03 RTV-JOB-ID PIC X(16) VALUE " ".

01 STATUS-ERR PIC XX.

01 ORDNUM PIC X(5).

01 CUSTOMER PIC X(5).

01 ODATE PIC X(10).

01 ODLY PIC X(10).

338

Advanced Functions and Administration on DB2 Universal Database for iSeries

01 OTOTAL PIC S9(9)V9(2) COMP-3.
01 INSERTOK PIC 9.

EXEC SQL
INCLUDE SQLCA
END-EXEC.
LINKAGE SECTION.

01 CUSTNBR PIC X(5).

01 ORDNBR PIC X(5).

01 RTCODE PIC X.

¥ =—=—=—=—=================—===============—==================== *

This program has three output parameters: Customer numb.
*Order number and Return code. The return code can be: *
*Rtcode = 0 - OK Rtcode = 2 - F3 *

PROCEDURE DIVISION USING CUSTNBR, ORDNBR, RTCODE.

DECLARATIVES.
TRANSACTION-ERROR SECTION.
USE AFTER STANDARD ERROR PROCEDURE T42490HRD.

WORK-STATION-ERROR-HANDLER.
GOBACK.
END DECLARATIVES.

MAIN-LINE SECTION.
OPEN I-0 T42490HRD.
PERFORM INITIAZ-HEADER.

A ===%
* Call API to get job atributes and move the

* output parameter into the work area *
Ae————==—=—=—=—=—=—=—==—========== *

CALL "QUSRJOBI" USING RTV-JOB-VAR,
RTV-JOB-LEN,
RTV-JOB-FMT,
RTV-JOB-NAME,
RTV-JOB-ID.

MOVE RTV-JOB-VAR TO JOBA-AREA.

MOVE "0" TO RTCODE.

MOVE 0 TO INSERTOK.

MOVE IND-OFF TO IN15 IN ORDER-I-INDIC.

WRITE DSPO1 FORMAT IS "EXITLINE".

PERFORM ORDER-ENTRY UNTIL
IN15 IN ORDER-I-INDIC EQUAL IND-ON OR
INSERTOK EQUAL 1.

IF IN15 IN ORDER-I-INDIC = IND-ON THEN
MOVE "2" TO RTCODE
ELSE
IF INSERTOK = 1 THEN
MOVE "0" TO RTCODE.

* CLOSE T42490HRD.
GOBACK.

Appendix B. Referential integrity: Error handling example

339

ORDER-ENTRY.
PERFORM WRITE-READ-ORDER.
MOVE ORHNBR OF ORDER-I TO ORDNUM.
MOVE CUSNBR OF ORDER-I TO CUSTOMER.
MOVE ORHDTE OF ORDER-I TO ODATE.
MOVE ORHDLY OF ORDER-I TO ODLY.
MOVE ZEROS TO OTOTAL.
MOVE CUSTOMER TO CUSTNBR.
MOVE ORDNUM TO ORDNBR.
IF IN15 IN ORDER-I-INDIC NOT EQUAL IND-ON THEN

* The programs inserts an order in ORDERHDR file.

EXEC SQL
INSERT INTO ORDENTL/ORDERHDR VALUES(:ORDNUM, :CUSTOMER,
:ODATE, :0DLY, :0TOTAL, :USERNAME) :rk.4:erk.
END-EXEC
IF SQLCODE EQUAL O THEN
MOVE 1 TO INSERTOK
ELSE
* After the insert operation, you should monitor the *
* following SQLCODEs: *
* SQL0530(-530) - Referential Integrity violation *
SQL0803(-803) - Order Header already exists *
SQL0443(-443) - Trigger program signalled an exception *
IF SQLCODE EQUAL -530 THEN
MOVE IND-ON TO IN98 OF ORDER-0-INDIC
MOVE SPACES TO ORHNBR OF ORDER-0
MOVE CUSTOMER TO CUSNBR OF ORDER-0
ELSE
IF SQLCODE EQUAL -803 THEN
MOVE IND-ON TO IN99 OF ORDER-0-INDIC
ELSE
MOVE IND-ON TO IN97 OF ORDER-0-INDIC.
kkkhkkhkhkkhhhkhhkkhhkkhkhkkhkhhkhhhkhhkkhhkhkhhkhhhhhhkhhkhkhkhkhkhhkhhhkhkkhkhkhkhkkhkkx
INITIAZ-HEADER.
MOVE SPACES TO ORHNBR OF ORDER-O0.
MOVE SPACES TO CUSNBR OF ORDER-0.
MOVE "0001-01-01" TO ORHDTE OF ORDER-0.
MOVE "0001-01-01" TO ORHDLY OF ORDER-O.

*
*

WRITE-READ-ORDER.
WRITE DSPO1 FORMAT IS "ORDER" INDICATORS ARE ORDER-O-INDIC.
MOVE IND-OFF TO ORDER-I-INDIC ORDER-O-INDIC.
READ T42490HRD RECORD INDICATORS ARE ORDER-I-INDIC.

340 Advanced Functions and Administration on DB2 Universal Database for iSeries

Additional material

This redbook also contains additional material that is available on the Web. See the
following sections for instructions on using or downloading the Web material.

Locating the Web material

The Web material associated with this redbook is available in softcopy on the Internet from
the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG244249

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with the redbook
form number, SG244249.

Using the Web material

The additional Web material that accompanies this redbook includes the following files:

File name Description
dbadvfun.exe iSeries and client source code image
readme.txt Readme documentation

System requirements for downloading the Web material

The following list contains the most important requirements:
» iSeries requirements

— 0S/400 Version 5 Release 1
— 5722-ST1 - DB2 Query Manager and SQL Development kit
— 5722-SS1 - Host Servers

© Copyright IBM Corp. 1994, 1997, 2000, 2001 341

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

» PC software

— Windows 95/98, Windows NT, or Windows 2000
— Client Access Express for Windows
— PC5250 Emulation

How to use the Web material

Create a subdirectory (folder) on your workstation, and unzip the contents of the Web
material zip file into this folder.

The readme.txt contains the instructions for restoring the iSeries libraries and directories, as
well as installing the PC clients and run-time notes.

342 Advanced Functions and Administration on DB2 Universal Database for iSeries

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks

For information on ordering these publications, see “How to get IBM Redbooks” on page 344.

>

>

>

>

>

>

DB2/400: Mastering Data Warehousing Functions, SG24-5184

AS/400 Internet Security: Implementing AS/400 Virtual Private Networks, SG24-5404
DB2 UDB for AS/400 Object Relational Support, SG24-5409

Cross-Platform DB2 Stored Procedures: Building and Debugging, SG24-5485
Managing AS/400 V4R4 with Operations Navigator, SG24-5646

Stored Procedures and Triggers on DB2 Universal Database for iSeries, SG24-6503

The following IBM Redbooks will be available in first quarter 2002:

>

>

Managing OS/400 with Operations Navigator V5R1 Volume 1: Basic Functions,
SG24-6226

Managing OS/400 with Operations Navigator V5R1 Volume 2: Advanced Functions,
SG24-6227

Other resources

These publications are also relevant as further information sources:

>
>
>

>

© Copyright IBM Corp

DB2 Connect Personal Edition Quick Beginning, GC09-2967
COBOL/400 User’s Guide, SC09-1812

COBOL/400 Reference, SC09-1813

ILE RPG Programmer’s Guide, SC09-2074

ILE RPG Reference, SC09-2077

DB2 UDB Application Development Guide V6, SC09-2845
AS/400 National Language Support, SC41-5101

Backup and Recovery, SC41-5304

Work Management, SC41-5306

Distributed Data Management, SC41-5307

Client Access Express for Windows, SC41-5509

ILE Concepts, SC41-5606

SQL Programming Guide, SC41-5611

SQL Reference, SC41-5612

Database Programming, SC41-5701

Distributed Database Programming, SC41-5702

. 1994, 1997, 2000, 2001 343

» DDS Reference, SC41-5712

» Control Language Programming, SC41-5721
» CL Reference, SC41-5722

» System API Programming, SC41-5800

» SQL Call Level Interface, SC41-5806

» DB2 UDB for iSeries Database Performance and Query Optimization:
http://submit.boulder.ibm.com/pubs/htm1/as400/b1d/v5rl1/ic2924/index.htm

Referenced Web sites

These Web sites are also relevant as further information sources:
» iSeries Information Center: http://www.iseries.ibm.com/infocenter

» DB2 Universal Database for iSeries main page:
http://www.iseries.ibm.com/db2/db2main.htm

» PartnerWorld for Developer - iSeries site: http://www.iseries.ibm.com/developer

» Support Line Knowledge Base:
http://as400service.ibm.com/supporthome.nsf/document/10000051

» Data Movement Utilities Guide and Reference:
http://www-4.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/
document.d2w/report?fn=db2v7dmdb2dm07 . htm#HDREXPOVW

» iSeries Library: http://www-1.ibm.com/servers/eserver/iseries/Tibrary

v

IBM Learning Services: http://www-1.ibm.com/servers/eserver/iseries/education/

How to get IBM Redbooks

Search for additional Redbooks or Redpieces, view, download, or order hardcopy from the
Redbooks Web site:

ibm.com/redbooks

Also download additional materials (code samples or diskette/CD-ROM images) from this
Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become Redpieces and sometimes
just a few chapters will be published this way. The intent is to get the information out much
quicker than the formal publishing process allows.

IBM Redbooks collections

344

Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the Redbooks Web
site for information about all the CD-ROMs offered, as well as updates and formats.

Advanced Functions and Administration on DB2 Universal Database for iSeries

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.iseries.ibm.com/infocenter
http://www.iseries.ibm.com/db2/db2main.htm
http://www.iseries.ibm.com/developer
http://as400service.ibm.com/supporthome.nsf/document/10000051
http://submit.boulder.ibm.com/pubs/html/as400/bld/v5r1/ic2924/index.htm
http://www-4.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/document.d2w/report?fn=db2v7dmdb2dm07.htm#HDREXPOVW
http://www-1.ibm.com/servers/eserver/iseries/library
http://www-1.ibm.com/servers/eserver/iseries/education/

Special notices

References in this publication to IBM products, programs or services do not imply that IBM
intends to make these available in all countries in which IBM operates. Any reference to an
IBM product, program, or service is not intended to state or imply that only IBM's product,
program, or service may be used. Any functionally equivalent program that does not infringe
any of IBM's intellectual property rights may be used instead of the IBM product, program or
service.

Information in this book was developed in conjunction with use of the equipment specified,
and is limited in application to those specific hardware and software products and levels.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation,
North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose of enabling:
(i) the exchange of information between independently created programs and other programs
(including this one) and (ii) the mutual use of the information which has been exchanged,
should contact IBM Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions, including in
some cases, payment of a fee.

The information contained in this document has not been submitted to any formal IBM test
and is distributed AS IS. The use of this information or the implementation of any of these
techniques is a customer responsibility and depends on the customer's ability to evaluate and
integrate them into the customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these techniques to
their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for convenience only and
do not in any manner serve as an endorsement of these Web sites.

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything. Anywhere., TME,
NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet Tivoli, and Tivoli Enterprise are
trademarks or registered trademarks of Tivoli Systems Inc., an IBM company, in the United
States, other countries, or both. In Denmark, Tivoli is a trademark licensed from Kjgbenhavns
Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States and/or other countries.

© Copyright IBM Corp. 1994, 1997, 2000, 2001 345

PC Direct is a trademark of Ziff Communications Company in the United States and/or other
countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed exclusively
through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET
Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.

346 Advanced Functions and Administration on DB2 Universal Database for iSeries

Index

Symbols
*DUW option 93
*FILE object 160
*RUW option 93
*SHRUPD 35

Numerics
01222 status 51

A

access path 5, 25, 181
activation group 92, 93
activation group ID 96
active jobs 118
add column 186
Add Relational Database Directory Entry (ADDRDBDIRE)
command 110
Add Server Authentication Entry (ADDSVRAUTE) com-
mand 111
adding
multiple constraints 32
referential constraint 28
relational database directory entry 110
server authentication entry 111
ADDPFCST (Add Physical File Constraint) command 28
ADDRDBDIRE (Add Relational Database Directory Entry)
command 110
ADDSVRAUTE (Add Server Authentication Entry) com-
mand 111
administrative interface 124
advanced functions 6, 11
advanced journal attributes 180
Advised Index 230
alias 168, 182
ALTER TABLE SQL statement 28, 188
ALTER TABLE statement DROP clause 56
Analyze Results panel 228
analyzing SQL Performance Monitor results 228
application design 101
application example 12
application flow using DRDA-2 94
application integrity 22
application message 78
application requester (AR) 84, 110
application server (AS) 84, 93
apply journal changes 49, 53
AR (application requester) 84
AS (application server) 84
ASP (auxiliary storage pool) 167
authentication information 111
automatic recovery 96
auxiliary storage pool (ASP) 167

© Copyright IBM Corp. 1994, 1997, 2000, 2001

breadth cascade 43
business rules
referential integrity 22
translated to physical file constraints 32

C

C ILE program referential integrity messages 52
CASCADE delete rule 35
CASCADE example 39
cascade network 28
CASCADE rule 23,25
catalog inquiry 63
CCSID (Coded Character Set Identifier) 187, 205
Change DDM TCP/IP Attributes (CHGDDMTCPA) com-
mand 109
Change Physical File Constraint (CHGPFCST) command
53
Change Query Attributes 164, 217
Change Query Attributes (CHGQRYA) command 137
Change Server Authentication Entry (CHGSVRAUTE)
command 112
check constraint 7, 24, 67, 192

application message 78

DB2 UDB for iSeries 69

defining 70

I/O message 77

integration into applications 77

management 79

state 80

tips and techniques 82
check pending 53

condition 71

defined 24

protection from 49
CHGDDMTCPA (Change DDM TCP/IP Attributes) com-
mand 109
CHGPFCST (Change Physical File Constraint) command
53
CHGQRYA (Change Query Attributes) command 137
CHGSVRAUTE (Change Server Authentication Entry)
command 112
Client Access/400 6
COBOL

deleting an order 103

DRDA-2 program example 102

ILE program, referential integrity messages 52
Coded Character Set Identifier (CCSID) 187, 205
coexistence for DRDA-1 and DRDA-2 95
collection 166
column 5
command 181

CHGDDMTCPA 109

STRTCPSVR SERVER(*DDM) 110

347

command, CL 206
Add Physical File Constraint (ADDPFCST) 28
Add Relational Database Directory Entry (ADDRDB-
DIRE) 110
Add Server Authentication Entry (ADDSVRAUTE)
111
ADDRDBDIRE (Add Relational Database Directory
Entry) 110
ADDSVRAUTE (Add Server Authentication Entry)
111
Change Server Authentication Entry (CHGSVRAUTE)
112
Copy From Import File (CPYFRMIMPF) 126
Copy To Import File (CPYTOIMPF) 126
CRTSQLpgm 93
CRTSQLxxx 101
Print SQL Information (PRTSQLINF) 303
Remove Server Authentication Entry (RMVS-
VRAUTE) 112
Start Debug (STRDBG) 118
Work with Active Jobs (WRKACTJOB) 118
commit 204
commit group 204
commit mode 204
COMMIT(*NONE) 95
commitment control 43, 204
requirements 25
commitment definition 97
condition clause 70
condition clause of check constraint 75
CONNECT 88
SQL statement 84, 92
CONNECT (Type 1) 92
CONNECT (Type 2) 93
connection
current 88
dormant 88
held 88
multiple handling in DRDA-2 101
preserved 7
released 88
states 88
connection DRDA 101
connection management 86
methods 88
on DB2 UDB for iSeries 87
consistency of data in multiple locations 90
constraint 181, 188, 192
commands 53
displaying information 61
domain 68
enforcement 35
management 52
prerequisites 24
referential integrity network example 32
removing 56
self-referencing 34
states 52
table 68
tips 192

types 22

unique or primary key 29
Control Center 149
copy 183
Copy From Import File (CPYFRMIMPF) command 126
Copy To Import File (CPYTOIMPF) command 126, 138
CPF502D notify message 51
CPF502E notify message 51
CPF503A notify message 51
CPF523B escape message 51
CPF523C escape message 51
CPU bound 316
CPYFRMIMPF (Copy From Import File) command 126
CPYTOIMPF (Copy To Import File) command 126, 138
create journal 177
Create Physical File (CRTPF) command 170
create SQL package 114
CREATE TABLE SQL statement 28, 160
CREATE VIEW 160, 162
creating a referential constraint 28
CRTPF (Create Physical File) command 170
CRTSQLpgm 93
CRTSQLpgm command 93
CRTSQLxxx command 101
current SQL statement 218
current state 89
cut 183
cyclic constraint 24

D

data access
distributed 84
distributed environment 84
methods 305
data consistency 90
Data Description Specifications (DDS) 5
data field 5
data format 127, 139
data inconsistencies 49
data load
Data Definition Language example 133
file definition file example 130
data loss 49
data source translation 203, 205
data, invalid check pending 53
database administration 157
Database functions 163
database library functions 165
Database Monitor 303
Visual Explain 318
Database Navigator 8, 239
locator pane 247
map pane 249
menu options 249
system requirements and planning 240
Database Navigator map 244
creating 261
display 253
generating SQL 289
icons 269

348 Advanced Functions and Administration on DB2 Universal Database for iSeries

interface 246
table options 255
database performance analysis methodology 323
database relationship 242
database synchronization on multiple systems 96
Database task pad 246
database tuning 302
DB2 Connect 120
AS/400 port number 123
CCSID for user profile 121
over TCP/IP 120
DB2 family 4
DB2 UDB 7.2 data migration to DB2 UDB for iSeries 149
DB2 UDB for iSeries 3
advanced functions 6
check constraint 69
distributed environment 5
DRDA-2 86
Import utility 126
journaling 124
moving data to DB2 UDB 7.2 152
Operations Navigator 161
overview 4
programming languages 272
sample schema 8
SQL support for connection management 92
DDM (Distributed Data Management) 5
DDM server job 109, 122
DDS (Data Description Specifications) 5
debug messages 302
debug mode 220
default libraries 204
define check constraint 72
DEFINED constraint state 52
DEL (delimited ASCII file) 149
delete 183,193
delete column 186
delete constraint 56
delete parent record example 36, 38
delete rows 183
delete rule
CASCADE, SET NULL, and SET DEFAULT 35
defined 23
deleted record 170
deleting an order 103
DRDA-2 and two-phase commitment control 103
COBOL example 103
delimited ASCII file (DEL) 149
delimited import file 128
dependent file
defined 23
same file as parent file 34
dependent table 68
depth cascade 43
detail rows 105
DISABLED constraint state 52
DISCONNECT 90
DISCONNECT statement 93
Display Check Pending Status (DSPCPCST) command
54

Display Database Relations (DSPDBR) command 61
Display Journal Entry Details display 45
Display Physical File Description (DSPFD) command 61
distributed data access 84
Distributed Data Management (DDM) 5
distributed database example 14
distributed database network 87
distributed environment 5
data accessin 84
Distributed Relational Database Architecture (DRDA) 6,
84, 201
distributed relational database example 13
Distributed Request (DR) 86
Distributed Unit of Work (DUW) 7, 85
DLTPCT parameter 170
domain constraint 68
dormant state 89
DR (Distributed Request) 86
DRDA 6, 83, 84
application server 108
COMMIT(*NONE) 95
Distributed Unit of Work 7
initial connections 101
level 0 85
level 1 85
level 2 85
level 3 86
DRDA (Distributed Relational Database Architecture) 6,
84,201, 202
DRDA over TCP/IP 108
troubleshooting 117
DRDA-1 86
coexistence with DRDA-2 95
moving to DRDA-2 101
DRDA-2 86
application flow example 94
Coexistence 95
coexistence with DRDA-1 95
CONNECT 92
connection management 87
connection management method 88
Connection Management on DB2 UDB for iSeries 87
DISCONNECT, DB2 UDB for iSeries 90, 93
performance 101
program example 102
protected conversation 90
RDB Connection Management Method 88
RELEASE, DB2 UDB for AS/400 93
SET CONNECTION 94
Synchronization Point Manager (SPM) 90
two-phase commit 90
unprotected conversation 90
DRDA-2 and two-phase commitment control 105
drop active connections 93
DROP clause of ALTER TABLE statement 56
DSPCPCST (Display Check Pending Status) command
54
DSPDBR (Display Database Relations) command 61
DSPFD (Display Physical File Description) command 61
DUW (Distributed Unit of Work) 7, 85

Index 349

E
Edit Check Pending Constraints (EDTCPCST) command
58
edit recovery for access path 181
Edit SQL 176
EDTCPCST (Edit Check Pending Constraints) command
58
ENABLED constraint state 52
error handling example 337
escape message 51
ESTABLISHED constraint state 52
example 103
application flow using DRDA-2 94
CASCADE 39
delete parent record 36
no RESTRICT or NOACTION rule 38
Display Journal Entry Details display 45
distributed relational database 13
DRDA-2 program, COBOL 102
inserting the detail rows 105
logical consistency 13
multiple constraints 32
Order Entry application overview 12
referential integrity network 32
SQL CREATE TABLE 29
unmatched foreign key values 28
Explainable Statement 231
Export APl 151
Export command 151
Export utility 125, 138, 149, 152

F
failure recovery 96
field definition file 127
field level authority 162
file availability 28
Finalize Order program 333
flyover 254
foreign key 35
constraint prerequisites 24
defined 23
in same physical file as primary key 34
foreign key value verification 28
function, user defined 168

G
Generate SQL 271, 272
from Database Navigator map 289
from DDS 297
Operations Navigator 276
to PC and data source files 281

H
held state 89
hierarchical structure 34

I

I/O bound 316

/O messages 50, 77

ILE C example 114

ILE C programs 52

ILE COBOL programs 52

ILE program 102

ILE RPG programs 51

implicit primary key constraint 31
import file 138

Import utility 125, 126, 149, 153
Include Debug Messages in Job Log 214
Include Error Message Help in Run History 213
index 168, 181, 188

indexes for referential integrity 25
Informix 86

initial DRDA connection 101
Insert Order Detail program 331
Insert Order Header program 330
insert rows 183

inserting detail rows 105
integrated exchange file (IXF) 149
integrated relational database 4
Interactive SQL 113

invalid data check pending 53

IXF (integrated exchange file) 149

J
Java Database Connectivity (JDBC) 202
Java stored procedures

See also stored procedures Java
JDBC (Java Database Connectivity) 202
joblog 97
JOIN statement 214
journal 167,177,181, 192
journal changes 49
journal entries with referential integrity 45
journal entry 177
journal example 177
journal receiver 177,178, 181, 192
journaling 43, 124
journaling requirements 25
journals 168

K

key constraints 188
key types defined 22
keyed access path 26
keyed logical file 5

L

lab exercise 230

Level Check (LVLCHK) parameter 186
library 166, 167

library name 208

library-based functions 168

like operating environments 84

loader utility 126

350 Advanced Functions and Administration on DB2 Universal Database for iSeries

locator pane 247

lock file 28

locked rows 196

locking files 35

log not written 95

logical consistency example 13
logical file 5

logical transaction 85

Logical Unit of Work ID 96
loss of data 49

M

manual recovery 97
map pane 249
mapping referential integrity messages 52
maximum members 170
member size 170
messages
CPF502D 51
CPF502E 51
CPF503A 51
CPF523B 51
CPF523C 51
referential integrity 50
Modify Selected Queries 229
multiple connections 7
multiple constraints 32
multiple databases 7
multiple locations, data consistency in 90

N
network
coexistence of DRDA-1/DRDA-2 95
referential integrity or cascade 28
new journal receiver 193
attributes 181
no RESTRICT or NOACTION rule 38
NOACTION rule 35
defined 24
delete example without 38
enforcement 35
non-SQL interface considerations 320
notify messages 51
NULLID collection 121

o)

object-based function 181
Objects to Display window 253
ODBC (Open Database Connectivity) 6, 202
Open 182
Open Database Connectivity (ODBC) 6, 202
openness 86
Operations Navigator
Generate SQL 276
new V5R1 features 159
Visual Explain 301
OPM programs 101
Oracle 86

Order Entry application 11,12

advanced database functions 17
database 14
detailed flow 329

Order Entry example 12

Order Header entry program 338
orphan foreign key values example 28
0OS/400 collection 166

0S/400 library 166

ownership of access path 25

P

parallel data load

data format 127, 139

delimited import file 128

field definition file 127

source file (FROMFILE) 127, 138
target file (TOFILE) 127, 139

parallel data loader 137
parent file

defined 23
same file as dependent file 34

parent key

constraint prerequisites 24
defined 23
identifying 29

parent record

delete example 36
no RESTRICT or NOACTION rule 38

parent table 68
PC user integrity 22
performance 93
benefits of system provided referential integrity 22

DRDA-2 considerations 101

improved 25

referential integrity application impacts 50
when adding referential constraint 28

performance collection files 205
Permissions 193

permissions 168, 181

physical data 5

physical file 5,32, 170

add multiple constraints 32
constraints
referential integrity network example 32

port number for DRDA connection 123
predictive query governor 303
primary key 23, 29

constraint 23, 29, 31
defined in SQL 29
in same physical file as foreign key 34

properties 168, 193
protected conversation 90, 93
protocols 84

PRTSQLINF (Print SQL Information) command 303

Q

QBATCH 207
QRWTLSTN job 110, 117

Index

351

QRWTSRVR job 117
query attributes and values 315
query environment

Visual Explain

query environment 314

query optimizer 220

debug messages 302
Query/400 234, 320
quick view 182

R

RDB Connection Management Method 93
RDB parameter 101
RDBCNNMTH parameter 93
RDBCNNMTH(*DUW) 88
RDBCNNMTH(*RUW) 88
read lock 35
record 5
record field 5
record selection 5
recovery 96
automatic 96
from failure 96
manual 97
Work with Commitment Definitions (WRKCMTDFN)
command 98
Redbooks Web site 344
Contact us xii
Ref Constraint parameter 45
referential constraint 28, 188
creating 29
defined 23
dependent file 31
enforcement 35
example 30
rules 23
referential cycle 24
referential integrity 17, 21, 25, 49
application considerations 50
check pending 53
concepts 22
constraint 18, 24, 68
concept 18
prerequisites 24
constraint management 52
constraint tips and techniques 82
defined 7, 23
error handling 337
example 13
/0 messages 50
introduction 22
journal entries 45
journaling and commitment control 43
message handling in applications 51
messages in RPG ILS programs 51
network 28
relationship 24
restoring data 49
rules ordering 36
SQLCODE values 52

verification queries 28
referential integrity messages
in ILE C programs 52
in ILE COBOL programs 52
in ILE RPG programs 51
relational database
directory 110
directory entry 110
integration overview 4
RELEASE statement 93
released state 89
remote journal 177,181, 193
remote locations 84
remote request 85
Remote Request (RR) 85
remote stored procedure 114
using DRDA over TCP/IP 113, 114
Remote Unit of Work (RUW) 85, 93
remove constraint 56
remove internal entries 181
remove journal changes 49, 53
Remove Physical File Constraint (RMVPFCST) command
56
Remove Server Authentication Entry (RMVSVRAUTE)
command 112
reorganize 182
reorganize file/table 170
restoring data 49
RESTRICT rule 25, 35
defined 24
delete example without 38
enforcement 35
retain server security data 111
reused connections 93
REUSEDLT parameter 170
reverse engineering 271, 272
RMVPFCST (Remove Physical File Constraint) command
56
RMVSVRAUTE (Remove Server Authentication Entry)
command 112
RNQ1222 inquiry message 51
RNX1222 escape message 51
rollback 87, 204
root value 34
row 5
RPG ILE program, referential integrity messages 51
RR (Remote Request) 85
rules 84
enforcement 35
ordering for referential integrity 36
referential integrity 22
Run and Explain option 307
Run History pane 200
Run SQL Script
DDM/DRDA configuration summary 216
example using VPN journal 208
Run SQL Scripts 164, 166, 182, 183, 197
Run option 210
running CL in SQL Scripts 208

352 Advanced Functions and Administration on DB2 Universal Database for iSeries

S

save and restore 53, 59, 81
Screen Edit Utility (SEU) 131
self study lab 160
self-referencing constraint 34
semantics 84
SET CONNECTION 89
SET CONNECTION statement 94
SET DEFAULT delete rule 35
SET DEFAULT rule 24
SET NULL delete rule 35
SET NULL rule 23
SEU (Screen Edit Utility) 131
shared access path for referential integrity 25
shared lock 35
side-effect journal entry 45
SMAPP 181
Smart Statement Selection 213
SMP (Symmetric MultiProcessing) 137
source file (FROMFILE) 127, 138
span multiple databases 7
SPM (Synchronization Point Manager) 86, 90
SQL 84, 225
collection 167
connect statements 92
index 25
SQL (Structured Query Language) 5
SQL CREATE TABLE statement example 29
SQL index 5

SQL naming convention (operational difference) 206

SQL performance analysis 323
SQL Performance Monitor 213, 220, 228
analyzing summary results 228
detailed monitor analysis 230
reviewing results 226
SQL procedure 168
SQL script
running a CL command 206
tips for running CL 208
SQL Script Center 306
SQL statements
CONNECT 84
CREATE TABLE/ALTER TABLE 28
SQL TABLE 170
SQL table 5
SQL Trigger 188
SQL view 5
SQL VIEW example 172
SQL-92 standard 68
SQLCODE values 52
Start Debug (STRDBG) command 118
starting and ending journaling 193
starting the SQL Performance Monitor 222
status 01222 51
Stop on Error 213
stored procedures 7
STRDBG (Start Debug) command 118
STRTCPSVR SERVER(*DDM) command 110
Structured Query Language (SQL) 5
swap receivers 193

Sybase 86

Symmetric MultiProcessing (SMP) 137
Synchronization Point Manager (SPM) 86, 90
system failure check pending 53

system naming convention, operational difference 206

T
table 162, 167, 168, 181, 182
table constraint 68
table options 255
target file (TOFILE) 127, 139
task pad 246
TCP/IP 108
application requester 110
configuring on the application server 109
DB2 Connect access to iSeries 120
transaction atomicity 43
transaction isolation 95
tree relationship among records in database 34
triggers 7, 181, 188
troubleshooting DRDA over TCP/IP 117
two-phase commitment control 7, 83, 86, 90
needs assessment 18

U

unique constraint 23, 29
defined in SQL 29

unique key 23

unit of recovery (UR) 85

unit of work (UoW) 85, 87

unlike operating environments 84

unprotected connections 93

unprotected conversation 90

UoW (unit of work) 85

update lock 35

update row 183

update rule 24

UR (unit of recovery) 85

user defined function 168

user defined type 168

user-defined relationship 266

\'

verification of foreign key value 28

verification queries 28

view 167,168, 182

view of physical data 5

View Results button 229

Visual Explain 212, 301, 304
data access methods 305
Database Monitor data 318
icons 321
navigation 308
query attributes and values 315
Query/400 320
SQL performance analysis 323
SQL Script Center 306

Visual Explain Only option 307

Index

353

VPN journal 208

w

Work with Active Jobs (WRKACTJOB) command 118
Work with Commitment Definition (WRKCMTDFN) com-
mand 98

Work with Physical File Constraints (WRKPFCST) com-
mand 57

worksheet format file (WSF) 149

writing for DRDA programs 84

WRKACTJOB (Work with Active Jobs) command 118
WRKCMTDFN (Work with Commitment Definition) com-
mand 97, 98

WRKPFCST (Work with Physical File Constraints) com-
mand 57

WSF (worksheet format file) 149

X

XDB Systems 86

354 Advanced Functions and Administration on DB2 Universal Database for iSeries

Advanced Functions and Administration on DB2 Universal Database for iSeries

Redhooks

(0.5” spine)
0.475"<->0.873"
250 <-> 459 pages

Advanced Functions
and Administration

on DB2 Universal Database for iSeries

Learn about
referential integrity
and constraints

See how Database
Navigator maps your
database

Discover the secrets
of Visual Explain

Dive into the details of DB2 Universal Database for iSeries advanced
functions and database administration. This IBM Redbook equips
programmers, analysts, and database administrators with all the
skills and tools necessary to take advantage of the powerful features
of the DB2 Universal Database for iSeries relational database system.
It provides suggestions, guidelines, and practical examples about
when and how to effectively use DB2 Universal Database for iSeries.

This redbook contains information that you may not find anywhere
else, including programming techniques for the following functions:

» Referential integrity and check constraints

» DRDA over SNA, DRDA over TCP/IP, and two-phase commit
» DB2 Connect

» Import and Export utilities

This redbook also offers a detailed explanation of the new database
administration features that are available with Operations Navigator in
V5R1. Among the tools, you will find:

» Database Navigator

» Reverse engineering and Generate SQL

Visual Explain

» Database administration using Operations Navigator

v

With the focus on advanced functions and administration in this fourth
edition of the book, we moved the information about stored
procedures and triggers into a new redbook — Stored Procedures and
Triggers on DB2 Universal Database for iSeries, SG24-6503.

SG24-4249-03 ISBN 0738422320

T
@

Redhooks

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE
IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you

implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Preface
	The team that wrote this redbook
	Special notice
	IBM trademarks
	Comments welcome

	Part 1 Background
	Chapter 1. Introducing DB2 UDB for iSeries
	1.1 An integrated relational database
	1.2 DB2 UDB for iSeries: An overview
	1.2.1 DB2 UDB for iSeries basics
	1.2.2 DB2 UDB for iSeries advanced functions

	1.3 DB2 Universal Database for iSeries sample schema

	Chapter 2. Using the advanced functions: An Order Entry application
	2.1 Introduction to the Order Entry application
	2.2 Order Entry application overview
	2.3 Order Entry database overview
	2.4 DB2 UDB for iSeries advanced functions in the Order Entry database
	2.4.1 Referential integrity
	2.4.2 Two-phase commit

	Part 2 Advanced functions
	Chapter 3. Referential integrity
	3.1 Introduction
	3.2 Referential integrity concepts
	3.3 Defining a referential integrity relationship
	3.3.1 Constraint prerequisites
	3.3.2 Journaling and commitment control requirements
	3.3.3 Referential integrity and access paths

	3.4 Creating a referential constraint
	3.4.1 Primary key and unique constraints
	3.4.2 Referential constraint
	3.4.3 Another example: Order Entry scenario
	3.4.4 Self-referencing constraints

	3.5 Constraints enforcement
	3.5.1 Locking considerations
	3.5.2 Referential integrity rules ordering
	3.5.3 A CASCADE example

	3.6 Journaling and commitment control
	3.6.1 Referential integrity journal entries
	3.6.2 Applying journal changes and referential integrity

	3.7 Referential integrity application impact
	3.7.1 Referential integrity I/O messages
	3.7.2 Handling referential integrity messages in applications

	3.8 Referential integrity constraint management
	3.8.1 Constraint states
	3.8.2 Check pending
	3.8.3 Constraint commands
	3.8.4 Removing a constraint
	3.8.5 Save and restore considerations
	3.8.6 Restore and journal apply: An example
	3.8.7 Displaying constraint information

	Chapter 4. Check constraint
	4.1 Introduction
	4.1.1 Domain or table constraints
	4.1.2 Referential integrity constraints
	4.1.3 Assertions

	4.2 DB2 UDB for iSeries check constraints
	4.3 Defining a check constraint
	4.4 General considerations
	4.5 Check constraint integration into applications
	4.5.1 Check constraint I/O messages
	4.5.2 Check constraint application messages

	4.6 Check constraint management
	4.6.1 Check constraint states
	4.6.2 Save and restore considerations

	4.7 Tips and techniques

	Chapter 5. DRDA and two-phase commitment control
	5.1 Introduction to DRDA
	5.1.1 DRDA architecture
	5.1.2 SQL as a common DRDA database access language
	5.1.3 Application requester and application server
	5.1.4 Unit of work
	5.1.5 Openness

	5.2 Comparing DRDA-1 and DRDA-2
	5.3 DRDA-2 connection management
	5.3.1 Connection management methods
	5.3.2 Connection states

	5.4 Two-phase commitment control
	5.4.1 Synchronization Point Manager (SPM)

	5.5 DB2 UDB for iSeries SQL support for connection management
	5.5.1 Example of an application flow using DRDA-2

	5.6 DRDA-1 and DRDA-2 coexistence
	5.7 Recovery from failure
	5.7.1 General considerations
	5.7.2 Automatic recovery
	5.7.3 Manual recovery

	5.8 Application design considerations
	5.8.1 Moving from DRDA-1 to DRDA-2

	5.9 DRDA-2 program examples
	5.9.1 Order Entry main program
	5.9.2 Deleting an order
	5.9.3 Inserting the detail rows

	5.10 DRDA over TCP/IP
	5.10.1 Configuring DRDA over TCP/IP
	5.10.2 Examples of using DRDA over TCP/IP
	5.10.3 Troubleshooting DRDA over TCP/IP

	5.11 DB2 Connect access to an iSeries server via TCP/IP
	5.11.1 On the iSeries server
	5.11.2 On the workstation
	5.11.3 Consideration

	Chapter 6. DB2 Import and Export utilities
	6.1 Introduction
	6.2 DB2 UDB for iSeries Import utility
	6.2.1 CPYFRMIMPF
	6.2.2 Data load example (file definition file)
	6.2.3 Data load example (Data Definition Language)
	6.2.4 Parallel data loader

	6.3 DB2 UDB for iSeries Export utility
	6.3.1 CPYTOIMPF
	6.3.2 Creating the import file (TOFILE)
	6.3.3 Exporting the TOFILE
	6.3.4 Creating the import file (STMF)
	6.3.5 Exporting the STMF

	6.4 Moving data from DB2 UDB 7.2 to DB2 UDB for iSeries
	6.4.1 First approach: Using the Export and Import utilities
	6.4.2 Second approach: Using Export and CPYFRMIMPF

	6.5 Moving data from DB2 UDB for iSeries into DB2 UDB 7.2
	6.5.1 Using the Import and Export utilities
	6.5.2 Using the CPYTOIMPF command and the Import utility

	Part 3 Database administration
	Chapter 7. Database administration
	7.1 Database overview
	7.1.1 New in V5R1

	7.2 DB2 Universal Database for iSeries through Operations Navigator overview
	7.2.1 Database functions overview
	7.2.2 Database library functions overview
	7.2.3 Creating an OS/400 library or collection
	7.2.4 Library-based functions
	7.2.5 Object-based functions

	7.3 Run SQL Scripts
	7.3.1 ODBC and JDBC connection
	7.3.2 Running a CL command under SQL script
	7.3.3 Run SQL Scripts example using a VPN journal
	7.3.4 Run SQL Scripts Run options
	7.3.5 DDM/DRDA Run SQL Script configuration summary

	7.4 Change Query Attributes
	7.5 Current SQL for a job
	7.6 SQL Performance Monitors
	7.6.1 Starting the SQL Performance Monitor
	7.6.2 Reviewing the SQL Performance Monitor results
	7.6.3 Importing data collected with Database Monitor

	Chapter 8. Database Navigator
	8.1 Introduction
	8.1.1 System requirements and planning

	8.2 Finding Database Navigator
	8.3 Finding database relationships prior to V5R1M0
	8.4 Database Navigator maps
	8.5 The Database Navigator map interface
	8.5.1 Objects to Display window
	8.5.2 Database Navigator map display

	8.6 Available options on each active icon on a map
	8.6.1 Table options
	8.6.2 Index options
	8.6.3 Constraint options
	8.6.4 View options
	8.6.5 Journal options
	8.6.6 Journal receiver options

	8.7 Creating a Database Navigator map
	8.7.1 Adding new objects to a map
	8.7.2 Changing the objects to include in a map
	8.7.3 Changing object placement and arranging object in a map
	8.7.4 Creating a user-defined relationship

	8.8 The Database Navigator map icons

	Chapter 9. Reverse engineering and Generate SQL
	9.1 Introduction
	9.1.1 System requirements and planning
	9.1.2 Generate SQL

	9.2 Generating SQL from the library in Operations Navigator
	9.2.1 Generating SQL to PC and data source files on the iSeries server
	9.2.2 Generating SQL from the Database Navigator map
	9.2.3 Generating SQL from DDS

	Chapter 10. Visual Explain
	10.1 A brief history of the database and SQL
	10.2 Database tuning so far
	10.2.1 Query optimizer debug messages
	10.2.2 Database Monitor
	10.2.3 The PRTSQLINF command
	10.2.4 Iterative approach

	10.3 Introducing Visual Explain
	10.3.1 What is Visual Explain
	10.3.2 Finding Visual Explain
	10.3.3 Data access methods and operations supported

	10.4 Using Visual Explain with the SQL Script Center
	10.4.1 The SQL Script Center
	10.4.2 Visual Explain Only
	10.4.3 Run and Explain

	10.5 Navigating Visual Explain
	10.5.1 Menu options
	10.5.2 Action menu items
	10.5.3 Controlling diagram level of detail
	10.5.4 Displaying the query environment
	10.5.5 Visual Explain query attributes and values

	10.6 Using Visual Explain with Database Monitor data
	10.7 Non-SQL interface considerations
	10.7.1 Query/400 and Visual Explain
	10.7.2 The Visual Explain icons

	10.8 SQL performance analysis using Visual Explain
	10.8.1 Database performance analysis methodology

	Appendix A. Order Entry application: Detailed flow
	Program flow for the Insert Order Header program
	Program description for the Insert Order Header program

	Program flow for the Insert Order Detail program
	Program description for Insert Order Detail program

	Program flow for the Finalize Order program
	Program description for the Finalize Order program

	Appendix B. Referential integrity: Error handling example
	Program code: Order Header entry program – T4249CINS

	Appendix C. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Special notices
	Index
	Back cover

