
ibm.com/redbooks

Front cover

Preparing for and
Tuning the SQL Query
Engine on DB2 for i5/OS

Hernando Bedoya
Monti Abrahams

Nicolas Bueso
Luis Guirigay

Sabine Jordan
Dave Martin
Barry Thorn
Steve Tlusty

JaeHee Yang

Understand the new architecture for
query processing

Learn about the data access methods
and Statistics Manager

See how to monitor and tune
the SQL engine

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Preparing for and Tuning the SQL Query Engine
on DB2 for i5/OS

September 2006

SG24-6598-01

© Copyright International Business Machines Corporation 2003, 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM
Corp.

Second Edition (September 2006)
This edition applies to Version 5, Release 4 of IBM i5/OS, Program Number 5722-SS1.

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this redbook. ix
Become a published author . xi
Comments welcome. xii

Chapter 1. Overview of DB2 for i5/OS . 1
1.1 The history of DB2 for i5/OS . 2
1.2 The ‘new’ application world . 3
1.3 The database design. 4
1.4 The implementation. 5
1.5 Design criteria and features of SQE . 7

1.5.1 The objectives. 7
1.5.2 The SQE design . 8

Chapter 2. The architecture of DB2 for i5/OS . 11
2.1 SQL in a nutshell . 12

2.1.1 Static SQL. 12
2.1.2 Dynamic SQL . 12
2.1.3 Extended dynamic SQL . 12

2.2 Query processing before OS/400 V5R2 . 13
2.3 Query processing starting with OS/400 V5R2. 13

2.3.1 The Query Dispatcher . 16
2.3.2 The SQE Optimizer . 20
2.3.3 Statistics Manager . 22
2.3.4 Data access primitives . 24
2.3.5 The plan cache . 24

2.4 Summary. 26

Chapter 3. Data access methods . 27
3.1 Available data access methods. 28
3.2 SQE Primitives in action . 30
3.3 Details about the data access methods . 31

3.3.1 Permanent table operations . 31
3.3.2 Temporary result object methods . 40
3.3.3 Access methods in V5R4 . 59

Chapter 4. Statistics Manager . 63
4.1 Statistics and statistics collections . 64

4.1.1 Optimizer statistics request types . 65
4.1.2 Single-column statistics. 65
4.1.3 Automatic statistics collection . 68
4.1.4 Automatic statistics refresh . 69
4.1.5 Indexes versus column statistics. 70
4.1.6 Monitoring background statistics collections. 71
4.1.7 Manual collection and refresh of column statistics . 73
4.1.8 Statistics collection performance considerations . 73
© Copyright IBM Corp. 2003, 2006. All rights reserved. iii

4.1.9 Propagation of column statistics on copy operations . 74
4.2 Using iSeries Navigator to manage statistics . 75

4.2.1 Viewing statistics. 75
4.2.2 Creating new statistics . 77
4.2.3 Deleting a statistic . 79
4.2.4 Refreshing a statistic. 80
4.2.5 Blocking a statistics collection. 80
4.2.6 Viewing statistics collection requests . 81

4.3 Proactive statistics collection . 82
4.3.1 Determining which column statistics exist. 82
4.3.2 Reasons for proactive collection of column statistics . 85

4.4 Statistics Manager APIs . 87

Chapter 5. Monitoring and tuning SQE . 89
5.1 Query optimization feedback. 90

5.1.1 Debug messages . 92
5.1.2 Print SQL Information . 95
5.1.3 Database monitoring tools: SQL Performance Monitors. 96
5.1.4 Visual Explain . 118
5.1.5 Index Advised: System wide (V5R4). 120
5.1.6 Viewing the plan cache (V5R4). 123
5.1.7 Plan Cache Snapshot . 128
5.1.8 Query options table (QAQQINI) . 130

5.2 Performance tuning. 133
5.2.1 System environment . 133
5.2.2 Indexing basics . 134
5.2.3 Indexing and statistics strategy. 137
5.2.4 Optimization goal starting in V5R2 . 140
5.2.5 Other considerations. 141

Chapter 6. Practical experience . 143
6.1 General performance findings. 144
6.2 Join performance enhancements . 146
6.3 DISTINCT performance enhancements . 147
6.4 Influence of column statistics . 148
6.5 Fenced versus unfenced user-defined functions . 149
6.6 Reading through an index backwards. 151
6.7 VARCHAR. 152
6.8 Encoded-vector index maintenance enhancements . 152

Appendix A. Statistics Manager API code examples. 155
Create Statistics Collection . 156
Delete Statistics Collection. 163
Update Statistics Collection . 165
List Statistics Collection . 172

Appendix B. Sample database and SQL queries . 183
Sample database . 184
SQL statements . 185

Related publications . 189
IBM Redbooks . 189

Other resources . 189
Referenced Web sites . 189
iv Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

How to get IBM Redbooks . 190
Help from IBM . 190

Index . 191
 Contents v

vi Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2003, 2006. All rights reserved. vii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Ascendant®
AS/400®
Domino®
DB2 Universal Database™
DB2®
eServer™
IBM®
iSeries™

i5/OS®
Lotus Workflow™
Lotus®
Net.Data®
OS/400®
PartnerWorld®
QuickPlace®
Redbooks™

Redbooks (logo) ™
Sametime®
System i™
System i5™
System/36™
System/38™
WebSphere®

The following terms are trademarks of other companies:

Java, JDBC, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
viii Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Preface

The IBM® System i™ family, which encompasses the IBM AS/400®, eServer™ iSeries™,
eServer i5, and System i5™, has a successful 24-year history of satisfying hundreds of
customers’ requirements, thanks to its developers. DB2® for i5/OS®, also known as DB2
Universal Database™ for iSeries, is deeply rooted in the architecture and heritage of the
AS/400 and its predecessor System/38™.

The database has undergone significant changes over the years to maintain its competitive
advantage. However, with an increasing demand for change, IBM has made fundamental
changes to the structure of the database to compete successfully in the industry. In doing so,
IBM Rochester launched a project to re-engineer and redesign important components of the
database. The goal was to form the base for the future development of the product. This
made the product easier to maintain, enhance, and provide far better performance. The
redesigned components were architected using object-oriented design concepts and then
implemented using object-oriented implementation techniques.

The query optimizer was one of the key components that was redesigned. This IBM Redbook
gives a broad understanding of the architectural changes of the database regarding the query
optimizer. It explains the following concepts:

� The architecture of the query optimizer
� The data access methods used by the query optimizer
� The Statistics Manager included in V5R2
� The feedback message changes of the query optimizer
� Some performance measurements
� Changes and enhancements made in V5R4

The objective of this redbook is to help you minimize any SQL or database performance
issues when upgrading to OS/400® V5R2 or V5R3 or to IBM i5/OS V5R4. Prior to reading
this book, you should have some knowledge of database performance and query
optimization.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization (ITSO), Rochester Center.

Hernando Bedoya is an Information Technology (IT) Specialist at the ITSO, in Rochester,
MN. He writes extensively and teaches IBM classes worldwide in all areas of DB2 for i5/OS.
Before joining the ITSO, he worked in IBM Colombia as an AS/400 IT Specialist doing
presales support for the Andean countries. He has 18 years of experience in the computing
field and has taught database classes in Colombian universities. He holds a master degree in
computer science from EAFIT, Colombia, with an emphasis in database. His areas of
expertise are database technology, application development, and data warehousing.

Nicolas Bueso Quan is an iSeries presales senior Certified I/T Specialist at IBM Brazil in
Field Technical Sales Support. His main focus includes server consolidation, system

Important: This edition covers DB2 Universal Database for iSeries on OS/400 V5R2 and
V5R3, as well as DB2 for i5/OS V5R4. In general, throughout this book, we use the name
DB2 for i5/OS to refer to all versions, unless specifically noted.
© Copyright IBM Corp. 2003, 2006. All rights reserved. ix

management, performance, logical partition (LPAR), and solution design in iSeries. He has
worked for IBM for 15 years. He has been working with the System i platform since its
introduction, having previously worked on Systems/36 and Systems/38. Nicolas has worked
with many of the largest System i customers providing presales support and consulting
across Brazil.

Monti Abrahams is a Senior IT Specialist for IBM South Africa, based in Cape Town. He is
an IBM Certified Solutions Expert: DB2 Content Manager On Demand and a Certified SAP
Technical Consultant with more than 15 years experience in OS/400 and DB2 for i5/OS. Monti
provides technical support and consulting to System i clients throughout South Africa and
Namibia. He also conducts training courses for IBM IT Education Services. Monti has
coauthored several IBM Redbooks™ on various System i topics.

Luis Guirigay is an IT Specialist with Ascendant® Technology LLC, an IBM Premier
Business Partner based in Austin, TX. Luis has more than seven years of IT experience in
Lotus® Domino® and related products, such as Sametime®, QuickPlace®, and Lotus
Workflow™, and two years of experience with the System i platform. He is a Dual IBM
Certified Advanced Professional in Application Development and System Administration for
Notes and Domino 5, 6, and 7 and an IBM Certified Specialist for Collaborative Solutions.
Most recently, Luis has been focusing on projects that involve WebSphere® Portal. He has
also coauthored other IBM Redbooks that are soon to be released. He holds a Bachelor of
Science degree in Computer Engineering from Rafael Belloso Chacin University, Venezuela.

Sabine Jordan is a Technical Support Specialist with IBM, based in Germany. She has more
than 12 years of experience in working with the System i platform. Her areas of expertise
include Domino on iSeries, database performance, and porting database applications from
other databases to DB2 for i5/OS. She has written papers and given presentations on
System i database performance. She has also worked with customers and independent
software vendors (ISVs) on their specific performance or porting questions the DB2 for i5/OS
area.

Dave Martin is a Certified IT Specialist in Advanced Technical Support (ATS) who started his
IBM career in 1969 in St. Louis, Missouri, as a Systems Engineer. From 1979 to 1984, he
taught System/34 and System/38 implementation and programming classes to customers
and IBM representatives. In 1984, he moved to Dallas, Texas, where he has provided
technical support for S/36, S/38, AS/400, and iSeries in the areas of languages, operating
systems, systems management, availability and recovery, and most recently Business
Intelligence. He is frequently speaks at COMMON User Group and iSeries Technical
Conferences.

Barry Thorn is a Certified Consulting IT Specialist with the Enterprise Systems Group of IBM
United Kingdom, providing technical support within Europe, Middle East, and Asia (EMEA).
He has 32 years of IT experience in IBM, including 14 years of working with the System i
family. His areas of expertise include Business Intelligence and data warehouse
implementation, database technology, database performance, and database migration. He
has written papers and presentations and runs classes on iSeries Business Intelligence, data
warehouse implementation, and database. He has also been involved in several projects that
require the migration of a database to DB2 on the iSeries server.

Steve Tlusty is a Staff Software Engineer with IBM in Rochester, MN. He has been with IBM
for seven years. For the past year, has been working in Enterprise Resource Planning (ERP)
development. Before joining the Rochester lab, he was an IT Specialist for IBM Global
Services. His projects included supporting manufacturing systems in Rochester, MN, and
working with IBM Clients on a variety of Business Intelligence projects.
x Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

JaeHee Yang is an iSeries IT Specialist with IBM, based in Korea. She has more than 12
years of experience in the working with the System i family. She has nine years of experience
in AS/400 system applications development and two years of experience in database
replication between various database. JaeHee currently supports database and applications
on the System i platform in Korea and provides general System i technical support.

Thanks to the following people for their contributions to this project:

Michael Cain
Kent Milligan
Jarek Miszczyk
PartnerWorld® for Developers, IBM Rochester

Abdo Abdo
Robert Andrews
Robert Bestgen
Curt Boger
Dave Carlson
Robert Driesch
Randy Egan
Michael Faunce
Kevin Kathmann
Chuck King
Doug Mack
Tom McKinley
Paul Nelsestuen
Jerri Ostrem
Kurt Pinnow
Carol Ramler
Tom Schrieber
Jeff Tenner
Ulrich Thiemann
Denise Tompkin
iSeries Development, IBM Rochester

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You will team with IBM technical professionals, Business Partners and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you
will develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html
 Preface xi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our IBM Redbooks to be as helpful as possible. Send us your comments about this
or other IBM Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
xii Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Overview of DB2 for i5/OS

Data is the key. Quick and reliable access to business data is critical for making crucial
business decisions. However, the data needs to be turned into useful information to make
these business decisions. It is the job of the database management system (DBMS) to
provide and manage this process.

A robust DBMS has excellent performance capabilities and automated, built-in management
and administration functionality. It allows businesses to concentrate on making decisions
based on the information contained in their database, rather than managing the database.
DB2 for i5/OS is well known for being a DBMS that fully incorporates these capabilities and
functionality.

In August 2002, IBM introduced the newly designed architecture for DB2 Universal Database
for iSeries with the delivery of OS/400 V5R2. This is regarded by many as one of the most
important OS/400 release updates since V3R6. This new architecture included additional new
functionality for Structured Query Language (SQL) query processing, independent auxiliary
storage pools (ASPs), and New Transaction Services (NTS). This laid the foundation for
exciting future developments with the ability to respond to new demands quickly and
effectively.

In this chapter, we explain the rationale behind the re-engineering of DB2 Universal Database
for iSeries. We explore the history and evolution of the database. We discuss modern
application development trends, as well as business and technical trends that demand this
architecture in DB2 for i5/OS.

Also this this chapter, we discuss the various options considered in redeveloping the
database, the path IBM chose, and the reasons behind that choice. Plus, we present an
overview of the SQL Query Engine delivered with DB2 Universal Database for iSeries starting
in OS/400 V5R2 plus the new benefits added in V5R3 and V5R4.

1

Important: This edition covers DB2 Universal Database for iSeries on OS/400 V5R2 and
V5R3, as well as DB2 for i5/OS V5R4. In general, throughout this book, we use the name
DB2 for i5/OS to refer to all versions, unless specifically noted.
© Copyright IBM Corp. 2003, 2006. All rights reserved. 1

1.1 The history of DB2 for i5/OS
DB2 for i5/OS is a member of the DB2 family. Integrated into OS/400 and i5/OS, it has its
roots in the integrated relational database of the IBM System/38, the predecessor of the
AS/400. Applications for this system were written almost exclusively in high-level languages.
Although the database was always relational in nature, native file operations were used to
access the data.

With the debut of the AS/400 in 1988 came the introduction of SQL on the platform. The SQL
objects in DB2 for i5/OS include industry standard objects for relational databases. The
objects consist of tables, views, indexes, cursors, triggers, procedures, and schemas. SQL
provides an alternative method for accessing data, thereby complementing the existing native
file access methods. This helps protect a customer’s investment by allowing applications that
use native file access and SQL to coexist and access the same data. This coexistence also
allows customers and independent software vendors (ISV) to migrate their existing native file
access applications to SQL and to write new applications using SQL.

As mentioned earlier, the DB2 for i5/OS engine is integrated into OS/400 and i5/OS. It uses
and depends on the operating system to provide such services as locking, security,
archive/backup, buffer management, and transaction. The operating system, in turn, uses and
relies on the database engine to provide certain services. Figure 1-1 shows a high level
overview of the structure of DB2 for i5/OS.

Figure 1-1 The structure of DB2 for i5/OS

The same interfaces that manage the system are employed to manage the database.
Additional interfaces that are required to manage the database are provided as natural
extensions to the interfaces provided by the operating system. These interfaces make it

System i platform

MessagesMessages

TCP/IPTCP/IP

SNASNA

Clients

CLI CLI
ClientClient

Application

DRDADRDA
ClientClient Application

ODBCODBC
ClientClient Application

JDBCJDBC
ClientClient

Application
or Applet

DDMDDM
ClientClient Application

iSeries
Access

ADOADO
ClientClient Application

OLE DBOLE DB
ClientClient Application

D
B

2 fo
r i5/O

S
D

B
2 fo

r i5/O
S

Security

Message management

Other i5/OS primitives

Data management

Transaction management

Resource management

Index management

UNIX apps in i5/OS PASE

Windows NT apps on xSeries

Linux on xSeries

In
teg

rated

In
teg

rated

F
ile S

ystem
F

ile S
ystem

iSeries
Navigator

Storage management

SQL

NativeNative

SQL Server

ODBCODBC

JDBC Server

SQLJSQLJ

DRDA/DDM
Server

CLICLI Applications

DRDA/DDM
Server

Query/400
DB2 APIs

XMLXML
ClientClient

Application

Native

Query
Manager

OS/400 or i5/OS
2 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

unnecessary for a full-time database administrator (DBA) to manage the relatively simple
database tasks on the System i platform.

Focusing primarily on online transaction processing (OLTP) applications, the database has
satisfied customer requirements for well over 20 years. Many of the original System/38
applications, along with applications developed for other systems such as the System/36™,
are still in productive use around the world today.

More recently a different breed of applications started to dominate development efforts.
These applications are designed to accommodate rapidly changing business needs and
processes. Examples of such initiatives include:

� Internet-driven electronic commerce for business-to-business (B2B) and
business-to-consumer (B2C) transactions

� Management information reporting to support Business Intelligence (BI) requirements,
Customer Relationship Management (CRM), and integrated Supply Chain Management
(SCM) solutions

� Enterprise Resource Planning (ERP) and Enterprise Application Solutions (EAS)
applications to extend or replace the traditional back-office OLTP applications that are
currently supporting the basic business processes

1.2 The ‘new’ application world
The breed of applications referred to earlier has characteristics that include:

� Two or three-tier implementation across multiple, often heterogeneous, servers

For example, a typical application model today logically, and often physically, separates
the functions of a client user interface, application serving, and database serving.

� Database access using SQL

This is typically complex in nature, making full use of such capabilities as subqueries,
unions, and joins at multiple levels, each with their own complex predicates.

� Automatic generation of a dynamic SQL statement from within an application or tool

� Use of dynamic SQL

� Complex transactions with requirements for:

– Many transactions to use a single connection to the database
– One transaction to use multiple connections to the database
– Sophisticated control of transactional integrity to ensure optimum security and ease of

recovery for the user

� A potential end-user population of thousands, often using browser technology and
requiring excellent scalability to ensure good performance
Chapter 1. Overview of DB2 for i5/OS 3

Figure 1-2 shows an example of an application architecture that is becoming more prevalent
in its use. As shown, it is common to find the application spread across more than three tiers.

Figure 1-2 The new application world

To keep up with changing application paradigms, while maintaining the DB2 Universal
Database for iSeries value proposition, for OS/400 V5R2, the IBM development team
explored new methods to deliver increased performance and functionality without increasing
development costs.

1.3 The database design
To address the issues and satisfy the demands of the “new” application world, IBM
considered the following options for the database design of DB2 Universal Database for
iSeries for OS/400 V5R2:

� Continue to enhance the existing product
� Acquire a new database technology
� Re-engineer the existing product

Continual enhancement of the product did not seem to be a viable proposition. The increasing
development resources required to maintain the existing code would result in a reduction of
resources available to provide new functionality in a timely manner.

At that time, acquiring a new database technology would compromise some of the basic
tenets that distinguish the iSeries from the rest of the industry. These include the integration
of the database within OS/400 and the ease-of-use characteristics of the database that
minimize administration efforts. Losing these characteristics would significantly reduce the
cost of ownership benefits of the iSeries.

Re-engineering the existing product was a more practical solution. However, this could easily
become an overwhelming and potentially unsustainable task if an attempt was made to
re-engineer the entire product. It could also impact portions of the product that continue to
provide solid and efficient support to existing applications and functions.

Application
Server

Internet
Firewall

Web
Server

Client

Client

Client

Database
Server

Mobile Clients
4 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

After considering the options, IBM chose to re-engineer the product. We did so with the
added decision to focus on only those aspects of the product for which re-engineering offered
the greatest potential, that is the potential that offered the ability to:

� Support modern application, database, and transactional needs

� Allow the continued development of database functionality in an efficient and timely
manner

� Maintain and enhance the DB2 Universal Database for iSeries self-managing value
proposition

In line with this decision, the query engine was identified as an area that would benefit
substantially from such a re-engineering effort. The best current technologies and algorithms,
coupled with modern object-oriented design concepts and object-oriented programming
implementation, were applied in the re-design of the query engine and its components.

1.4 The implementation
It is always an attractive proposition to deliver maximum functionality over the shortest
possible time frame. However, this can pose a risk to customers’ existing production
applications, as well as other DB2 for i5/OS interfaces and other products. With this in mind,
IBM decided to deliver these enhancements using a phased implementation approach. This
minimizes the risk of disruption to our customers’ existing production environments.

As a result of this phase-in approach, two separate query engines coexist in the same
system. The redesigned query engine in DB2 for i5/OS is the SQL Query Engine (SQE). The
existing query engine is referred to as the Classic Query Engine (CQE).

Over time, more queries will use SQE and increasingly fewer queries will use CQE. At some
point, all queries, or at least those that originate from SQL interfaces, will use SQE.
Chapter 1. Overview of DB2 for i5/OS 5

Figure 1-3 shows this staged approach for adding new functionality to the product according
to any available version. The OS/400 V5R2 General Availability (GA) release incorporated
SQE with specific functionality. An optional PTF, SI07650, was made available after GA of
V5R2 to give customers the choice to increase the amount of SQL requests that could be
processed and executed by the SQL Query Engine.

Refer to Informational APAR II13486 for the latest information about the SQE functionality and
a list of the PTFs that provide this functionality. You can access this Informational APAR and
other SQE-related material on the Web at the following address:

http://www.iseries.ibm.com/db2/sqe.html

Figure 1-3 Staged implementation of new functionality

Important: Only one single interface into the query optimizer exists from the perspective of
the user application. It is not possible for a user application to select either SQE or CQE to
process the query request. No additional coding is required in the application program.

V5R2

• Automatic statistics
• Single table queries
• Base query engine

V5R2 + PTF S107650

DB2 for i5/OS

• Symmetric multiprocessing (SMP)
• Full join support
• IN and OR predicates

V5R3

• VIEWs
• UNIONs
• SubQueries
• INSERT, UPDATE, DELETE
• Star Schema Join (STAR_JOIN without QAQQINI support)

V5R4

• Visual Explain updates
• Viewing the plan cache with iSeries Navigator
• Using iSeries Navigator with detailed monitors
• Encoded vector index symbol table scan
• Display information with Database Health Center
• New database monitor format

• QAQQINI updates
• Set Current Degree
• Recursive query optimization
• Query optimizer index advisor
• Query resource governor
• Queue data access method

Future

• CCSID translation support
• CASE-DISTINCT-IN enhancements
• UDTF support
• Select/Omit Logical support
• Hints (index ONLY)
• Other miscellaneous performance
6 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

http://www.iseries.ibm.com/db2/sqe.html
http://www.iseries.ibm.com/db2/sqe.html

Figure 1-4 shows the supported interfaces for both SQE and CQE starting in OS/400 V5R2
and how they are routed. This routing is performed by a component of the query optimizer
known as the Query Dispatcher or dispatcher. Refer to 2.3.1, “The Query Dispatcher” on
page 16, for a detailed explanation of the features and functions of the dispatcher.

Most of the processing in CQE occurs above the Machine Interface (MI). In the case of SQE,
the majority of the processing occurs below the MI. This is one of the main features that adds
to the efficient way in which SQE processes queries.

Figure 1-4 Query optimizer supported interfaces

1.5 Design criteria and features of SQE
As mentioned previously, the re-engineering process of DB2 Universal Database for iSeries
focussed primarily on the areas that provide the greatest immediate benefits to our
customers. At the same time, this process allows for continual enhancements to the product,
to maintain the System i competitive edge.

In the following sections, we look at some of the design criteria considered during this
re-engineering process. We also examine the features that were ultimately incorporated in the
design of DB2 Universal Database for iSeries and the performance benefits from this design.

1.5.1 The objectives
In the design plan of the database engine for DB2 Universal Database for iSeries, the IBM
design team was given the challenge to create a database engine that meets the following
objectives:

� Make the DB2 SQL Query Engine easier to maintain
� Make the DB2 SQL Query Engine easier to enhance
� Give the DB2 SQL Query Engine far better performance

DATADATACQE

System Licensed Internal Code (SLIC)
Parts of the SQE Optimizer now

reside in SLIC

Query Dispatcher

Optimizer

Non-SQL Interfaces
OPNQRYF
Query/400

QQQQry API

Non-SQL Interfaces
OPNQRYF
Query/400

QQQQry API

SQL Based Interfaces
ODBC/JDBC/CLI

Embedded and Interactive SQL
Run SQL Scripts
Query Manager

Net.Data
RUNSQLSTM

SQL Based Interfaces
ODBC/JDBC/CLI

Embedded and Interactive SQL
Run SQL Scripts
Query Manager

Net.Data
RUNSQLSTM

SQECQE

SQE
Chapter 1. Overview of DB2 for i5/OS 7

1.5.2 The SQE design
In line with the design objectives, as of the release of OS/400 V5R2 through i5/OS V5R4,
DB2 for i5/OS incorporates the following features:

� A new query optimizer using object-oriented design and programming models, together
with enhanced algorithms

� More functions below the MI, including the majority of the SQE Optimizer

� A new part of the query optimizer known as the Query Dispatcher or dispatcher
The dispatcher routes the query request to either the SQE or the CQE portion of the
optimizer, depending on the type of query interface from which the request originated.

� A new, separate component known as the Statistics Manager
The Statistics Manager provides more sophisticated and more complex database
statistics for use in the query access plan.

� New System Licensed Internal Code (SLIC) data access methods, known as the SQE
Primitives, which are used in the actual implementation of a query

� An additional component of SQE known as the plan cache
The plan cache is a repository that controls and physically stores query access plans as
part of the query, without relying upon external objects or processes to provide it with
information.

� Additional and enhanced query feedback and debug information messages through the
Database Monitor (DBMON) and Visual Explain interfaces

These features translate into an SQE design that allows for greater flexibility in implementing
efficient database functions with improved performance. This has resulted in numerous
patent applications for the IBM development team responsible for the redesign of the query
engine.

Refer to Chapter 2, “The architecture of DB2 for i5/OS” on page 11, for a more detailed
explanation of the features and functionality in DB2 for i5/OS. The same chapter shows how
you can benefit from this enhanced technology.

Note: V5R4 of iSeries Navigator support includes the capabilities to view and analyze
the contents of the plan cache.
8 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Performance improvements
IBM Rochester has performed extensive benchmarks to test the benefits of SQE in the
execution of SQL statements in complex SQL environments. Some of the benchmarks are
documented in Chapter 6, “Practical experience” on page 143. In complex SQL
environments, we can conclude that, on average, the queries improve two times. Figure 1-5
shows response time improvements measured in an environment with 119 different longer
running Business Intelligence type queries.

Figure 1-5 Response time improvements in a BI environment, tested in a V5R2 environment

-200%

0%

200%

400%

600%

P
er

ce
nt

 I
m

pr
ov

em
en

t
(C

Q
E-

SQ
E)

/M
IN

(C
Q

E,
SQ

E)

SQL Query Engine response time averaged 166% better
than Classic Query Engine for these 119 longer running
Analytic (BI, OLAP) type queries.
Chapter 1. Overview of DB2 for i5/OS 9

10 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Chapter 2. The architecture of DB2 for i5/OS

In this chapter, we explain the architecture and features of the Structured Query Language
(SQL) Query Engine (SQE) in DB2 for i5/OS starting with OS/400 V5R2.

As mentioned in Chapter 1, “Overview of DB2 for i5/OS” on page 1, two separate query
engines coexist in the same system. These engines are the redesigned query engine (SQE)
and the existing Classic Query Engine (CQE). Some queries continue to use CQE in OS/400
V5R2 and V5R3 and i5/OS V5R4, while other queries that originate from SQL interfaces can
be processed by SQE. In line with the ease-of-use philosophy of the System i platform, the
routing decision for processing the query by either CQE or SQE is transparent and under the
control of the system. The requesting user or application program cannot control or influence
this behavior.

In this chapter, we present a detailed description of the new components and functionality of
SQE. We begin with a glance at the different methods in which SQL programs can be
implemented on the System i platform.

2

© Copyright IBM Corp. 2003, 2006. All rights reserved. 11

2.1 SQL in a nutshell
SQL is a standardized programming language that is used to define and manipulate data in a
relational database. The following sections provide a brief overview of the different methods in
which SQL programs are implemented. They also highlight some of the characteristics that
distinguish one type from the other.

2.1.1 Static SQL
Static SQL statements are embedded in the source code of a host application program.
These host application programs are typically written in high-level languages, such as
COBOL or RPG.

The host application source code must be processed by an SQL pre-compiler before
compiling the host application program itself. The SQL pre-compiler checks the syntax of the
embedded SQL statements and turns them into host language statements that interface with
the database manager upon execution of the program. This process is often referred to as
binding.

The SQL statements are therefore prepared before running the program and the associated
access plan persists beyond the execution of the host application program.

2.1.2 Dynamic SQL
Dynamic SQL statements are prepared at the time an SQL application is executed. The SQL
statements are passed to the database manager in the form of a character string. This string
uses interfaces with the PREPARE and EXECUTE statements or an EXECUTE IMMEDIATE
type of statement.

Access plans associated with dynamic SQL may not persist after a database connection or
job is ended.

2.1.3 Extended dynamic SQL
In extended dynamic SQL, the SQL statements are dynamic. However, SQL packages are
used to make the implementation of the dynamic SQL statements similar to that of static SQL.
The QSQPRCED application program interface (API) is used to prepare the dynamic SQL
statements and store the access plan in an SQL package. The SQL statements contained in
the resulting SQL package persist until the SQL package is deleted or the SQL statement is
explicitly dropped.

The iSeries Access Open Database Connectivity (ODBC) driver and Java™ Database
Connectivity (JDBC™) driver both have extended dynamic SQL options available. They
interface with the QSQPRCED API on behalf of the application program.

For more information about SQL in DB2 for i5/OS, refer to the DB2 Universal Database for
iSeries SQL Reference in the iSeries Information Center at the following Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/db2/rbafzmst.htm
12 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/db2/rbafzmst.htm

2.2 Query processing before OS/400 V5R2
To fully understand the implementation of query management and processing in DB2 for
i5/OS starting with OS/400 V5R2, it is important to see how the queries were implemented in
previous releases of OS/400 for DB2 Universal Database for iSeries.

Figure 2-1 shows a high-level overview of the architecture of DB2 Universal Database for
iSeries before OS/400 V5R2. The optimizer and database engine are implemented at
different layers of the operating system. The interaction between the optimizer and the
database engine occurs across the Machine Interface (MI). This results in a definite
performance overhead. This is one of the areas that was targeted for improvement during the
re-engineering process of DB2 Universal Database for iSeries for OS/400 V5R2.

Figure 2-1 Database architecture before OS/400 V5R2

2.3 Query processing starting with OS/400 V5R2
There are several new and updated components of SQE starting from OS/400 V5R2. The
SQE components include:

� Query Dispatcher
� SQE Optimizer
� Statistics Manager
� SQE Data Access Primitives
� Plan cache

In the following section, we look briefly at the underlying architecture that supports SQE in
OS/400 starting with V5R2. We follow this with a detailed discussion of the SQE components.

SLIC

Machine Interface (MI)

DB2 Universal Database
(Data Storage and Management)

Optimizer

Static
Compiled
embedded
statements

Dynamic
Prepare

every
time

Extended
Dynamic

Prepare once and
then reference

SQL

Host Server CLI/JDBC

ODBC/JDBC/ADO/DRDA/XDA

Network

Native
(Record I/O)
Chapter 2. The architecture of DB2 for i5/OS 13

The architecture
Figure 2-2 shows an overview of the DB2 for i5/OS architecture starting with OS/400 V5R2
and where each SQE component fits. The functional separation of each SQE component is
clearly evident. In line with our design objectives, this division of responsibility enables IBM to
more easily deliver functional enhancements to the individual components of SQE, as and
when required.

Notice that most of the SQE Optimizer components are implemented below the MI. This
translates into enhanced performance efficiency.

Figure 2-2 Database architecture starting with OS/400 V5R2

SLIC

Machine Interface (MI)

CQE Database Engine

Static
Compiled
embedded
statements

Dynamic
Prepare

every
time

Extended
Dynamic

Prepare once and
then reference

SQL

Host Server CLI/JDBC

ODBC/JDBC/ADO/DRDA/XDA

Network

Native
(Record I/O)

Optimizer

DB2 Universal Database (Data Storage and Management)

SQE Optimizer

SQE Data Access Primitives

SQE Statistics
Manager

CQE Database Engine

CQE Optimizer SQE Optimizer
14 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Object-oriented technology implementation
As mentioned previously, SQE is implemented using an object-oriented design and
implementation approach. It uses a tree-based model, where each node is an independent
and reusable query part. These components can interact and interface with each other in any
given order or combination. In line with the overall design methodology, this allows for greater
flexibility when creating new methods for implementing a query.

This design also allows SQE to optimize and execute these nodes independently from one
another, thereby increasing performance and efficiency. In contrast, CQE uses a procedural
model to implement a query. This model is less flexible, making it more difficult to implement
new optimization methods and enhancements.

Figure 2-3 shows an example of the
node-based implementation used in
SQE. In this example, NODE1
represents a typical index probe access
method. NODE2 and NODE3, each
designed to perform one specific
function, are independent from NODE1.
They are not interdependent on each
other either. Therefore, each node can
be optimized and run independently
from each other. In this example, NODE
2 only has one function, to retrieve the
index and place it into main memory.
Therefore, it is possible for any node in
this tree to call on NODE2 to perform
this function if it requires.

The ability to traverse an index in reverse order is another example of how a new data access
method can be added to SQE with relative ease. Again, the procedural nature of CQE
prevents it from being easily enhanced to read an index in reverse order. A tree node was
invented and implemented to accomplish this more easily in SQE. For details about the
benefits of traversing an index in reverse order, see 6.6, “Reading through an index
backwards” on page 151. The fact that most of the optimizer functions are implemented
below the MI assisted greatly in implementing this functionality.

A final example to demonstrate how the object-oriented tree model makes SQE easier to
enhance is SQE support for non-sensical queries. The term non-sensical describes a query
statement that does not return any result rows, for example:

Select * from testtable where 1 = 0

Surprisingly, many applications use this type of query to force no rows to be returned. Due to
the procedural nature of CQE, it is virtually impossible to enhance CQE to recognize the fact
that 1 will never equal 0. Therefore, CQE implements this query using a table scan. The scan
checks each row of the table, in hopes of finding a row where 1 equals 0. In contrast, the tree
node model of SQE easily allows a node to be added to check for non-sensical predicates
before reading any rows in the specified table.

Node 1
Index Probe

Node 1
Index Probe

Node 2
“bring index into
main memory”

Node 2
“bring index into
main memory”

Node 3
“test index

for predicate”

Node 3
“test index

for predicate”

Figure 2-3 Index probe node implementation in SQE
Chapter 2. The architecture of DB2 for i5/OS 15

2.3.1 The Query Dispatcher
The function of the Query Dispatcher is to route the query request to either CQE or SQE,
depending on the attributes of the query. One of these attributes includes the interface from
which the query originates, which is either SQL-based or non-SQL based. All queries,
irrespective of the interface used, are therefore processed by the dispatcher. It is not possible
for a user or application program to influence this behavior or to bypass the dispatcher.

Depending on the version of OS/400 or i5/OS, the dispatcher routes to SQE certain types of
SQL requests. Figure 2-4 shows that all the SQL requests are routed to SQE (the first three
items highlighted in green), and the other ones are routed to CQE for OS/400 V5R2. As you
can see, only a small percentage of the SQL requests are routed initially to SQE.

Figure 2-4 Query Dispatcher routing to SQE in V5R2

Copyright 2006 - IBM Corporation - Systems and Technology Group

DB2

Dispatched to CQE if:
– >1 Table (that is, no joins)
– OR and IN predicates
– SMP requested
– Non-read (INSERT with subselect can use new path)
– LIKE predicates
– UNIONS
– View or logical file references
– Subquery
– Derived tables and common table expressions, UDTFs
– LOB columns
– LOWER, TRANSLATE, or UPPER scalar function
– CHARACTER_LENGTH, POSITION, or SUBSTRING scalar function using UTF-8/16
– Sort sequences and CCSID translation between columns
– Distributed queries via DB2 Multisystem
– Non-SQL queries (QQQQry API, Query/400, OPNQRYF)
– ALWCPYDTA(*NO) specified
– Sensitive cursor

SQE support added into V5R2, May 2003
(Latest DB Group + SI07650)

Not part of
any PTF
package

The Query Dispatcher – V5R2
16 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

In OS/400 V5R3, the SQL requests that are routed to SQE are the first three (shown in green)
from Figure 2-4, as well as the ones stated in Figure 2-5.

Figure 2-5 Query Dispatcher routing to SQE in V5R3

Copyright 2006 - IBM Corporation - Systems and Technology Group

DB2
Dispatched to CQE if:

– LIKE predicates
– Logical file references
– UDTFs
– LOB columns
– LOWER, TRANSLATE, or UPPER scalar function
– CHARACTER_LENGTH, POSITION, or SUBSTRING scalar function using UTF-8/16
– Sort sequences and CCSID translation between columns
– Distributed queries via DB2 Multisystem
– Non-SQL queries (QQQQry API, Query/400, OPNQRYF)
– ALWCPYDTA(*NO) specified
– Sensitive cursor

SQE now optimizes
– VIEWS, UNIONS, subqueries
– INSERT, UPDATE, DELETE
– Star Schema Join queries

Only SQE optimizes
– INTERSECT
– EXCEPT
– Materialized query tables

The Query Dispatcher - V5R3
Chapter 2. The architecture of DB2 for i5/OS 17

In i5/OS V5R4, additional types of SQL requests are routed to SQE as shown in Figure 2-6.
As you can see with each release, more and more SQL types of requests are routed to SQE.

Figure 2-6 Query Dispatcher routing to SQE on V5R4

Table 2-1 summarizes which statements are being added to the SQE based on release.

Table 2-1 SQE integration timeline

V5R2 V5R2 + PTF
SI07650

V5R3 V5R4

Single Table x x x x

Grouping x x x x

Distinct x x x x

Ordering x x x x

Joins x x x

OR & IN Predicates x x x

SMP x x

START_JOIN INI Option x x

Views/NTEs/CTEs x x

Update/Delete x x

Subqueries x x

Unions x x

Copyright 2006 - IBM Corporation - Systems and Technology Group

DB2

Dispatched to CQE if:
– Logical file references
– UDTFs
– LOWER, TRANSLATE, or UPPER scalar function
– CHARACTER_LENGTH, POSITION, or SUBSTRING scalar function using UTF-8/16
– Sort sequences and CCSID translation between columns
– Lateral correlation
– Distributed queries via DB2 Multisystem
– Non-SQL queries (QQQQry API, Query/400, OPNQRYF)

SQE now optimizes
– LIKE predicates
– LOB columns
– ALWCPYDTA(*NO) specified
– Sensitive cursor

Only SQE optimizes
– Recursive common tables expressions
– OLAP functions (RANK, ROW NUMBER)

The Query Dispatcher - V5R4
18 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Not all SQL statements are routed to SQE. For this reason, as of V5R4, the dispatcher routes
an SQL statement to CQE if it finds that the statement references or contains the following
items:

� Table function or lateral correlation

� LOWER, TRANSLATE or UPPER scalar function

� CHARACTER_LENGTH, POSITION, or SUBSTRING scalar function with a UTF-8 or
UTF-16 argument

� CCSID character convention

� Sort sequence other than *HEX

� Distributed table (that is DB2 Multisystem)

� Reference to a data description specifications (DDS)-created logical file

� Reference to a table that has a logical file containing Select/Omit or Key derivations

The dispatcher also has the built-in capability to reroute an SQL query to CQE that was
initially routed to SQE. A query typically reverts back to CQE from SQE whenever the
optimizer processes table objects that define any of the following logical files or indexes:

� Logical files with the SELECT/OMIT DDS keyword specified

� Non-standard indexes or derived keys, for example logical files specifying the DDS
keywords

� RENAME or Alternate Collating Sequence (ACS) on a field referenced in the key

� Sort sequence NLSS specified for the index or logical file

Like Predicates x

LOBs (Referenced in queries) x

Sensitive Cursors (ALWCPYDTA(*NO)) x

Lateral Correlations NTEs

CCSID/Sort Sequence/Translation

Select/Omit and Derived Key Index Support (ignore option
via QAQQINI file)

User Defined Table Functions

Read Triggers

Distributed Queries via DB2 Multisystem

Native Database Logical File references

Non-SQL Queries (QQQQry API, Query/400, OPNQRYF)

Note: The IGNORE_DERIVED_INDEX QAQQINI option can be used to have the
dispatcher ignore the Select/Omit and derived logical files and route the query to SQE.

V5R2 V5R2 + PTF
SI07650

V5R3 V5R4
Chapter 2. The architecture of DB2 for i5/OS 19

The following SQL statements are supported only by the SQE Engine:

� Recursive common table expressions
� INTERSECT & EXCEPT operations
� OLAP Expressions - RowNumber, Rank, and DenseRank
� ORDER OF
� Scalar full-selects

Therefore, if one of these SQL features is run in an environment that is not supported by the
SQE, an error is signaled (SQL0255). For instance, imagine an application that is
successfully executing an SQL statement that contains a recursive table expression. Later the
application is changed to use a non-default sort sequence (that is, not *HEX) that an SQL
statement containing the recursive table expression will return an error since the non-default
sort sequence forces the dispatcher to use the CQE.

As new functionality is added in the future, the dispatcher will route more queries to SQE and
route increasingly fewer queries to CQE.

2.3.2 The SQE Optimizer
Like the CQE Optimizer, the SQE Optimizer controls the strategies and algorithms that are
used to determine which data access methods should be employed to retrieve the required
data. Its purpose is to find the best method to implement a given query.

The SQE Optimizer is a cost-based optimizer. This means that it attempts to implement a
query using an access method that has the least amount of central processing unit (CPU)
utilization and input/output (I/O) overhead costs, while still satisfying the required result set.

A fundamental characteristic distinguishes the SQE Optimizer from the CQE Optimizer. This
is the fact that the SQE Optimizer has a separate component that is in charge of the
knowledge of the metadata or the system’s processing and performance capabilities. It simply
asks questions that relate to the system and the tables used in the query. It uses the answers
in its algorithms to calculate the cost. For example, to perform its cost calculations, the SQE
Optimizer typically asks such questions as “How many rows are in the table?” or “How long
will it take to scan the entire table?” In line with the policy of separation of responsibilities built
into the new database engine, the Statistics Manager and SQE Data Access Primitives
supply the answers to most of the Optimizer’s questions. You can learn more about the
Statistics Manager in 2.3.3, “Statistics Manager” on page 22. Also refer to 2.3.4, “Data access
primitives” on page 24, which provides more information about SQE Data Access Primitives.

As shown in Figure 2-2 on page 14, most of the optimizer functionality is implemented
beneath the MI. This close proximity to the data and database management system allows for
greater flexibility and increased performance.

Note: SQL requests that are passed back to CQE from SQE may experience an overhead
of up to 10 to 15% in the query optimization time. However, that overhead is not generated
every time that an SQL statement is run. After the access plan is built by CQE, the Query
Dispatcher knows to route the SQL request to CQE on subsequent executions. The
overhead appears when the access plan is built the first time or rebuilt by the optimizer.
20 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

The SQE Optimizer uses both traditional optimization strategies and new techniques to
ensure the best query implementation. From a user perspective, some of the more noticeable
differences with the SQE Optimizer are:

� Temporary indexes are no longer considered.

� Table scans are more frequently considered, due to the implementation of the new, more
efficient SQE Data Access Primitives.

The access plans remain true to the object-oriented design and implementation
methodologies. They are now organized into tree-based structures to allow for maximum
flexibility. The optimizer remains responsible for collecting and processing query feedback
information messages. To learn more about query feedback messages, see 5.1, “Query
optimization feedback” on page 90.

The design of DB2 for i5/OS includes a way in which SQE manages the time it spends
optimizing dynamic SQL queries. The objective in both SQE and CQE is not to spend a small
fraction of the total time needed to run the query, to determine the most efficient way to run it.

Prior to OS/400 V5R2, the CQE Optimizer used a clock-based time-out algorithm. This limited
the time that was spent on optimizing the access plans of dynamic SQL queries where the
access plan would not be saved. Using an all-inclusive list of available indexes, it
resequenced the indexes, based on the number of matching index columns and the operators
used in the WHERE clause of the SQL statement. This approach ensured that the most
efficient indexes were optimized first, before the set time limit expired.

Starting with OS/400 V5R2, the amount of time that the SQE Optimizer spends optimizing an
access plan is not limited based on a set clock-based time limit. A check is done to determine
if any indexes exist on the table with keys built over the columns specified in WHERE or
SELECT clauses of the SQL statement. Next, these indexes are resequenced so that the
most appropriate indexes are processed first and then reorganized further based on
index-only access, index probe selectivity, total index selectivity, and the size of the index
keys.

In processing the list of indexes, the SQE Optimizer always considers every index that is
index-only access capable. However, while processing the remaining indexes, the SQE
Optimizer stops the optimization process as soon as it encounters an index that is more
expensive to use than the best index so far.

With the introduction of the plan cache component, the SQE Optimizer more consistently
ensures that it implements the best possible plan. It is justifiable to spend more time
optimizing a query to ensure that the best possible plan is saved in the plan cache from where
it will be retrieved for future reuse. You can learn more about the plan cache component in
2.3.5, “The plan cache” on page 24.

Constraint and Referential Integrity Awareness
As of V5R3, the SQL Query Engine is constraint awareness. This means it is capable of using
the constraint definitions from the database to rewrite queries in a more efficient way. We
illustrate this with an example. Let us add a CHECK constraint to table TB1 as shown in
Example 2-1.

Example 2-1 CHECK constraint on table TB1

ALTER TABLE TB1
CHECK(COL1 BETWEEN 1 AND 100)
Chapter 2. The architecture of DB2 for i5/OS 21

A particular user submits the query illustrated in Example 2-2. Assume that the user typed
150 for the host variable value.

Example 2-2 Original user query

SELECT * FROM TB1 WHERE COL1 = :HOSTVAR

The SQL Query Engine is cabable of rewriting the query as shown in Example 2-3. After the
query is rewritten, SQE does not have to read data since the result of the query is an empty
set.

Example 2-3 Rewritten query

SELECT * FROM TB1 WHERE (:HOSTVAR BETWEEN 1 AND 100) AND COL1= :HOSTVAR

As of V5R3, the SQL Query Engine also has Referential Integrity (RI) and Constraint
Awareness. This means that the optimizer is capable of using the RI conditions to rewrite the
queries to eliminate unneccesary join combinations.

2.3.3 Statistics Manager
The CQE and SQE Optimizer use statistical information to determine the best access plan for
implementing a query. Therefore, statistical information must be accurate, complete, and
current to be of good use to the optimizer. Better and more accurate statistics enable the
query optimizer to build a more accurate and realistic query implementation plan, which
results in a more efficient query.

One of the stated objectives in the design of DB2 for i5/OS was to enhance a component,
separate from the optimizer, that:

� Provides more sophisticated database statistics
� Provides more complete database statistics
� Interfaces with the optimizer in a flexible manner
� Exploits modern and statistics gathering techniques
� Automates collection and refresh of statistics

Prior to OS/400 V5R2, the optimizer relied solely on indexes as a source of statistical
information for any given table. In the design of DB2 for i5/OS, the function of collecting and
managing statistical data is performed by a new, separate component known as the Statistics
Manager. Unlike many other database products that rely on manual intervention and
processes to collect database statistics, this is a fully automated process in DB2 for i5/OS.
However, you have the facility to manually manage database statistics if you require to do so
for specific reasons.

The Statistics Manager does not actually run or optimize the query. Instead, it controls the
access to the metadata that is required to optimize the query. It uses this information to
provide answers to the questions posed by the query optimizer. Using many different sources
of statistical information, the Statistics Manager always provides an answer to the optimizer.
In cases where it cannot provide an answer based on actual existing statistics information, it
is designed to provide a predefined default answer.

Note: This new statistical information is only used by the SQE. Queries that are dispatched
to the CQE do not benefit from available statistics, nor do they trigger the collection of
statistics.
22 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

The Statistics Manager typically gathers and keeps track of the following information:

� Cardinality of values: This is the number of unique or distinct occurrences of a specific
value in a single column or multiple columns of a table.

� Selectivity: Also known as a histogram, this information is an indication of the number of
rows that will be selected by any given selection predicate or combination of predicates.
Using sampling techniques, it describes the selectivity and distribution of values in a given
column of the table.

� Frequent values: This is the top nn most frequent values of a column together with a
count of how frequently each value occurs. This information is obtained by using statistical
sampling techniques. Built-in algorithms eliminate the possibility of data skewing. For
example, NULL values and default values that can influence the statistical values are not
taken into account.

� Metadata information: This includes the total number of rows in the table, which indexes
exist over the table, and which indexes are useful for implementing the particular query.

� Estimate of I/O operation: This is an estimate of the amount of I/O operations that are
required to process the table or the identified index.

The SQE Statistics Manager uses a hybrid approach to manage database statistics. The
majority of this information can be obtained from existing binary-radix indexes or
encoded-vector indexes (EVI). An advantage of using indexes is that the information is
available to the Statistics Manager as soon as the index is created or maintained.

In cases where the required statistics cannot be gathered from existing indexes, statistical
information, such as cardinality, histograms, and frequent values, is constructed over single
columns of a table and stored internally as part of the table. By default, this information is
collected automatically by the system. You can manually control the collection of statistics by
manipulating the QDBFSTCCOL system value or by using the iSeries Navigator graphical
user interface (GUI). However, unlike indexes, statistics are not maintained immediately as
data in the tables changes. Refer to Chapter 4, “Statistics Manager” on page 63, which
discusses the Statistics Manger in more detail.

Although statistics provide a powerful mechanism for optimizing queries, do not
underestimate and disregard the importance of implementing a sound indexing strategy.
Well-defined indexes enable SQE to consistently provide efficient query optimization and
performance. Statistics cannot be used to access a table or sort the data during query
execution.

A good indexing strategy is both beneficial for providing statistics and mandatory for efficient
and fast query execution. Therefore, you should replace only indexes with statistics if the
indexes were created for the sole purpose of providing statistical information to the query
optimizer. In cases where an index provides fast and efficient access to a set of rows in a
table, DB2 for i5/OS continues to rely on its indexing technology to provide statistics
information and a data access method.

For more information about indexing and indexing strategies, refer to the IBM white paper
Indexing and Statistics Strategies for DB2 UDB for iSeries on the Web at:

http://www-03.ibm.com/servers/enable/site/bi/strategy/strategy.pdf

Note: The total size of the database object increases by approximately 8 KB to 12 KB per
column for which statistics are being maintained.
Chapter 2. The architecture of DB2 for i5/OS 23

http://www-03.ibm.com/servers/enable/site/bi/strategy/strategy.pdf

2.3.4 Data access primitives
The basic function of SQE Data Access Primitives is to implement the query. Using the data
access methods derived from the object-oriented, tree-based architecture, it provides the
actual implementation plan of the query.

You may notice that the SQE Data Access Primitives use main memory and subsystem
resources more aggressively than with CQE. This is due to the fact that the SQE data access
algorithms are more in tune with OS/400 and i5/OS single-level storage. This more efficient
algorithm is the primary reason why the table scan access method is used more often on
SQE than with CQE.

For example, the mechanisms for storing temporary results were remodelled. Complex SQL
queries often combine multiple tables. This required DB2 Universal Database to combine all
of the tables into a temporary result table before the specified grouping or ordering could be
performed. By exploiting the efficient structures of the data access primitives and its close
proximity to the actual data, the design minimizes data movement and eliminates the need to
create real database objects to store temporary results. Instead of creating real database
objects, SQE employs expert cache to simultaneously retrieve data into memory pages and
process the data directly from these memory pages. This significantly reduces processing
overhead.

Although the SQE Data Access Primitives employ many of the same data access methods as
used in CQE, it underwent a total redesign. It features several data access methods and
algorithms for distinct processing and implements queries by fully using the symmetric
multiprocessing (SMP) feature. On average, CPU consumption is much less than what it was
previously. For a more detailed discussion about the data access primitives, refer to
Chapter 3, “Data access methods” on page 27.

2.3.5 The plan cache
The plan cache is a repository that contains query implementation plans for queries that are
optimized by the SQE Optimizer. Query access plans generated by CQE are not stored in the
plan cache. The architecture of DB2 for i5/OS allows for only one plan cache per System i
model or logical partition (LPAR).

The purpose of the plan cache is to facilitate the reuse of a query access plan at some future
stage when the same query, or a similar query, is executed. After an access plan is created, it
is available for use by all users and all queries, irrespective of the interface from which the
query originates. Furthermore, when an access plan is tuned, for example when creating an
index, all queries can benefit from this updated access plan. This eliminates the need to
re-optimize the query and results in greater efficiency faster processing time. In the case of
CQE, each query had to update its own access plan to benefit from the newly created index.

Figure 2-7 shows the concept of reusability of the query access plans stored in the plan
cache. The plan cache is interrogated each time a query is run to determine if a valid access
plan exists that satisfies the requirements of the query. If a valid access plan is found, it is
used to implement the query. Otherwise, a new access plan is created and stored in the plan
cache for future use. The plan cache is automatically updated when new query access plans
are created or when new statistics or indexes become available. Access plans generated by
CQE are not stored in the SQE Plan Cache.
24 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Figure 2-7 Plan cache functionality

To demonstrate this concept, assume that Statement 2 in Figure 2-7 is executed for the first
time by the SQE. Statement 4 can only be implemented by CQE, which is why Statement 4
has no relationship to the plan cache. In this example, a new access plan is inserted into the
plan cache to satisfy Statement 2. The access plan for Statement 4 is not be stored in the
plan cache.

The SQE Plan Cache works in close conjunction with the system wide statement cache, as
well as SQL programs, SQL packages, and service programs. Initially created with an overall
size of 256 million bytes, occupying approximately 250 MB, a plan cache entry contains the
SQL statement text, the optimized access plan, and some additional information of the
runtime attributes. All systems are currently configured with the same size plan cache,
regardless of the server size or hardware configuration.

While each individual SQE access plan may vary in size, in its compressed state, it remains
significantly smaller than those generated and stored by CQE. When the plan cache exceeds
the designated size, a background task is automatically scheduled to remove old access
plans from the plan cache. Access plans are automatically deleted from the plan cache based
upon the age of the access plan and how frequently it is being used. The total number of
access plans stored in the plan cache depends largely upon the complexity of the SQL
statements that are executed. In our testing environments, we typically observe around 6,000
unique access plans stored in the plan cache.

Multiple access plans can be maintained for a single SQL statement. Although the SQL
statement is the primary hash key to the plan cache, a different environmental setting can
cause different access plans to be stored in the plan cache, each one matching the specific
environment. Examples of these environmental settings include:

� Different SMP degree settings for the same query
� Different library lists specified for the same SQL request
� Different settings for the job’s share of available memory in the current pool
� Different ALWCPYDTA settings

Plan Cache

Plan X

Plan Y

Plan Z

SQL Pgm-A

Statement 1

SQL PKG-2

Statement 3

Statement 5

SQL PKG-1

Statement 3

Statement 4

Statement 2

Plan Cache

Plan X

Plan Y

Plan Z

SQL Pgm-A

Statement 1

SQL PKG-2

Statement 3

Statement 5

SQL PKG-1

Statement 3

Statement 4

Statement 2
Chapter 2. The architecture of DB2 for i5/OS 25

Currently, the plan cache can maintain a maximum of three different access plans for the
same SQL statement. As new access plans are created for the same SQL statement, older
and less frequently used access plans are discarded to make room for the new access plans.
The number of access plans that can be stored for each SQL statement is adjustable and
may change in the future.

Based on this information, you may notice the real potential for the SQE Plan Cache to serve
as the foundation for a self-learning, self-adjusting query optimizer in future i5/OS releases.
Such a query optimizer can compare the access plan stored in the plan cache against the
actual execution time of the associated SQL request. Then it can automatically adjust its
implementation strategies in an effort to improve performance and efficiency.

2.4 Summary
You should now understand the architecture of DB2 for i5/OS, starting with OS/400 V5R2
through i5/OS V5R4, as well as the new components of SQE. With this knowledge, you
should understand clearly how this newly enhanced technology can benefit you now and in
future releases of i5/OS.

No two business environments are the same. Therefore, selecting and implementing the
correct strategies to suit your particular environment is equally important if you want to
achieve the benefits of the new database design and technology. In the next few chapters, we
introduce and explain some of the new SQE components in greater detail to assist you in
making better informed decisions that are appropriate for your particular environment and
requirements.

Note: The SQE Plan Cache is cleared when a system initial program load (IPL) is
performed.

Note: V5R4 support of iSeries Navigator includes the capabilities to view and analyze the
contents of the plan cache. It also has filtering capabilities to narrow down the analysis of
the data from the plan cache.
26 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Chapter 3. Data access methods

As explained in Chapter 2, “The architecture of DB2 for i5/OS” on page 11, the process of
optimizing a query (creating an access plan) is separate and different from the work of
actually performing the query (executing the access plan).

In this chapter, we discuss the data access methods or “tools” that are available to the
Structured Query Language (SQL) Query Engine (SQE) to perform the work of retrieving
physical rows from the DB2 for i5/OS database. We explain how the SQE uses its arsenal of
components (Primitives) to satisfy the variety of query requests that it receives. We also
discuss how the attributes of a particular query’s requirements affect the access methods or
algorithms used.

3

© Copyright IBM Corp. 2003, 2006. All rights reserved. 27

3.1 Available data access methods

The query engine has two kinds of raw material with which to satisfy a query request:

� The database objects that contain the data to be queried
� The executable instructions or routines to retrieve and massage the data into usable

information

Only two types of permanent database objects can be used as source material for a query:
tables (physical files) and indexes (binary-radix or encoded-vector indexes (EVIs). During the
execution of an access plan, the query engine may need to use temporary objects or work
spaces to hold interim results or references. The two major types of temporary objects are
hash tables and lists. Lists are further subdivided into sorted, unsorted, and address lists.
Address lists may take the form of either bitmaps or relative record number (RRN) lists.

The query engine’s toolkit consists of three types of operations to manipulate this set of
permanent and temporary objects: create, scan, and probe. Figure 3-1 and Figure 3-2 show
the operations that can be performed on each object type. The symbols shown in the tables
are similar to the icons used by Visual Explain (see 5.1.4, “Visual Explain” on page 118).
Figure 3-1 shows the access methods for permanent objects.

Figure 3-1 Access methods for permanent objects

Figure 3-2 shows the access methods for temporary objects.

Important: In Figure 3-2, the Create column is not an access method, but the query
optimizer needs to create a temporary object in order to use the access methods.

Radix Index

Encoded Vector
Index (EVI)

Table

NotesProbeScan

New in V5R3*

* New in V5R4
28 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Figure 3-2 Access methods for temporary objects

Notes for Figure 3-2:

� RRN (1): In the Classic Query Engine (CQE) environment, RRN is a temporary index
created by the database above the Machine Interface (MI) level. In an SQE
environment, it is an internal object that exists only in System Licensed Internal Code
(SLIC).

� Queue (2): The Queue is a temporary object that allows the optimizer to feed the
recursion of a recursive query by putting on the queue those data values that are
needed for the recursion. This data typically includes those values used on the
recursive join predicate and other recursive data that is being accumulated or
manipulated during the recursive process.

NAUnsorted List

Row Number
List (RRN)

Bitmap

NotesProbeScanCreate

Temporary
Table

Hash Table

Sorted List

New in V5R4

NANAQueue

New in V5R3

NABuffer

Temporary
Index

1

2

Chapter 3. Data access methods 29

3.2 SQE Primitives in action

SQE Primitives are responsible for executing the access plan as
formulated by the optimizer phase of the query process. An
access plan consists of one or more integrated steps (nodes)
assembled to retrieve and massage data from DB2 tables to
produce results desired by the information requestor. These
steps may involve selecting, ordering, summarizing, and
aggregating data elements from a single table or from related
(joined) rows from multiple tables.

A helpful way to represent the relationships of the steps
prescribed by a query access plan is to use a hierarchy diagram.
In this diagram, the final results node is illustrated at the top of
the chart, with the raw input source nodes illustrated toward the
bottom of the chart. These diagrams tend to look like a tree, with
the top nodes as the tree trunk and the lower nodes as the root
system. A simple query that requires a scan of a single table
(SELECT * FROM table) might appear like the example in
Figure 3-3.

An example of a more complex query requiring a join and intermediate temporary objects
(SELECT * FROM table1, table2 WHERE table1.columna = table2.columnb) might look like
the example in Figure 3-4.

Figure 3-4 Graphical representation of a query access plan

Figure 3-3 Graphical
representation of a simple
access plan
30 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Access plan flow and control
While the data provided by the permanent tables tends to flow upward through the nodes of
the diagram, the initiation of the nodes is controlled from the top, down, and from left to right.
For example, in Figure 3-4, the SQL requestor waits for the first row of results to be delivered
from the Final Select node. This forces the Final Select node to request the first row from the
result of the Join node. This, in turn, must produce the first row resulting from the join of the
table scan with the corresponding row or rows from the hash probe. As soon as the Hash
Probe is called upon to deliver rows, it triggers the creation and population of the hash table
by the Temporary Hash Table node. Each node in the access plan is, in effect, both a supplier
(source) of data to the node above it and a consumer (requestor) of data from the node below
it. This simplified approach is a direct result of the object-oriented (OO) techniques employed
in the enhanced query implementation referenced in Chapter 1, “Overview of DB2 for i5/OS”
on page 1.

It is up to the query optimizer to construct a plan in which each node maximizes its use of disk
inputs and outputs (I/Os), memory, and processor cycles. The job of the SQE Primitives is to
ensure that each node performs its assigned work as quickly and efficiently as possible. This
methodology also supports the ability to multithread each node or group of nodes within the
access plan to use multiple processors where appropriate.

SQE takes advantage of multiple processors to the extent allowed in the
PARALLEL_DEGREE environment variable in the QAQQINI table or via the Change Query
Attribute (CHGQRYA) command. While the PARALLEL_DEGREE value specifies the
maximum number of parallel threads for the overall query job, the actual number of threads
employed by each node within the implementation plan may be limited by the access method
and attributes of the temporary objects used. For example, if a temporary list is to be used for
grouping, but only three values exist for the grouped-by column, then a node can use only
three threads in parallel to create or scan the list.

3.3 Details about the data access methods

In the following section, we describe each data access method (sometimes referred to as
SQE Primitives). We also provide examples of requirements that may cause the use of the
method to satisfy a query. You can find symbols similar to the Visual Explain icons used to
represent the methods. Where appropriate, sample debug messages and Database Monitor
messages are included, which can indicate that a particular method is employed.

3.3.1 Permanent table operations

The tables and diagrams in the following sections explain the data access methods (scan and
probe) for the permanent object types of tables and indexes.
Chapter 3. Data access methods 31

Table scan
A table scan is the easiest and simplest operation that can be performed against a table. It
sequentially processes all of the rows in the table to determine if they satisfy the selection
criteria specified in the query. It does this in a way to maximize the I/O throughput for the
table. Table 3-1 outlines the attributes of the table scan.

Table 3-1 Table scan attributes

Data access
method

Table scan

Visual Explain
icon

Description This scan reads all of the rows from the table and applies the selection criteria to
each of the rows within the table. The rows in the table are processed in no
guaranteed order, but typically they are processed sequentially.

Advantages � It minimizes page I/O operations through asynchronous pre-fetching of the
rows since the pages are scanned sequentially.

� It requests a larger I/O to fetch the data efficiently.

Considerations All rows in the table are examined regardless of the selectivity of the query. Rows
marked as deleted are still paged into memory even though none will be selected.
You can reorganize the table to remove deleted rows.

Likely to be
used

� When expecting a large number of rows returned from the table

� When the number of large I/Os needed to scan is fewer than the number of
small I/Os that are required to probe the table

Example SQL
statement

SELECT * FROM Employee
WHERE WorkDept BETWEEN 'A01'AND 'E01'
OPTIMIZE FOR ALL ROWS

Messages
indicating use

� Optimizer Debug:
CPI4329 — Arrival sequence was used for file EMPLOYEE

� PRTSQLINF:
SQL4010 — Table scan access for table 1.
32 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Figure 3-5 illustrates the concept of scanning an entire table to select only certain rows.

Figure 3-5 Table scan concept

Table probe
A table probe operation is used to retrieve a specific row from a table based upon its row
number. The row number is provided to the table probe access method by some other
operation that generates a row number for the table. Table 3-2 outlines the attributes of the
table probe.

Table 3-2 Table probe attributes

Data access
method

Table probe

Visual Explain
icon

Description This probe reads a single row from the table based upon a specific row number. A
random I/O is performed against the table to extract the row.

Advantages � It requests smaller I/Os to prevent paging rows into memory that are not
needed.

� It can be used in conjunction with any access method that generates a row
number for the table probe to process.

Considerations Because of the synchronous random I/O, the probe can perform poorly when a
large number of rows is selected.

Likely to be
used

� When row numbers (either from indexes or temporary row number lists) are
being used, but data from the underlying table rows are required for further
processing of the query

� When processing any remaining selection or projection of the values
Chapter 3. Data access methods 33

Figure 3-6 shows the concept of probing individual rows within a table based on a record
address.

Figure 3-6 Table probe concept

Example SQL
statement

CREATE INDEX X1 ON Employee (LastName)
SELECT * FROM Employee
WHERE WorkDept BETWEEN 'A01' AND 'E01'
AND LastName IN ('Smith', 'Jones', 'Peterson')
OPTIMIZE FOR ALL ROWS

Messages
indicating use

There is no specific message that indicates the use of a table probe. The messages
in this example illustrate the use of a data access method that generates a row
number that is used to perform the table probe operation.
� Optimizer Debug:

CPI4328 — Access path of file X1 was used by query
� PRTSQLINF:

SQL4008 — Index X1 used for table 1.
SQL4011 — Index scan-key row positioning (probe)
 used on table 1.

Data access
method

Table probe
34 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Radix index scan
A radix index scan operation is used to retrieve the rows from a table in a keyed sequence.
Like a table scan, all of the rows in the index are sequentially processed, but the resulting row
numbers are sequenced based upon the key columns. Table 3-3 outlines the attributes of the
index scan.

Table 3-3 Radix index scan attributes

Data access
method

Radix index scan

Visual Explain
icon

Description This method sequentially scans and processes all of the keys associated with the
index. Any selection is applied to every key value of the index before a table row.

Advantages � Only those index entries that match any selection continue to be processed.

� There is the potential to extract all of the data from the index keys' values,
eliminating the need for a table probe.

� It returns the rows back in a sequence based upon the keys of the index.

Considerations Generally requires a table probe to be performed to extract any remaining columns
required to satisfy the query. Can perform poorly when a large number of rows are
selected because of the random I/O associated with the table probe.

Likely to be
used

� When asking for or expecting only a few rows to be returned from the index

� When sequencing the rows is required for the query (for example, ordering or
grouping)

� When the selection columns cannot be matched against the leading key
columns of the index

Example SQL
statement

CREATE INDEX X1 ON Employee (LastName, WorkDept)

SELECT * FROM Employee
WHERE WorkDept BETWEEN 'A01' AND 'E01'
ORDER BY LastName
OPTIMIZE FOR 30 ROWS

Messages
indicating use

� Optimizer Debug:
 CPI4328 -- Access path of file X1 was used by query.

� PRTSQLINF:
 SQL4008 -- Index X1 used for table 1.
Chapter 3. Data access methods 35

Figure 3-7 illustrates the concept of scanning an index to find selected key values.

Figure 3-7 Index scan concept

Radix index probe
A radix index probe operation is used to retrieve the rows from a table in a keyed sequence.
The main difference between the radix index probe and the radix index scan is that the rows
being returned must first be identified by a probe operation to subset the rows being retrieved.
Table 3-4 outlines the attributes of the index probe.

Table 3-4 Radix index probe attributes

Data access
method

Radix index probe

Visual Explain
icon

Description The index is quickly probed based upon the selection criteria that was rewritten into
a series of ranges. Only those keys that satisfy the selection are used to generate
a table row number.

Advantages � Only those index entries that match any selection continue to be processed.

� It provides quick access to the selected rows.

� There is the potential to extract all of the data from the index keys' values,
eliminating the need for a table probe.

� It returns the rows back in a sequence based upon the keys of the index.

Considerations It generally requires a table probe to be performed to extract any remaining
columns required to satisfy the query. It can perform poorly when a large number
of rows is selected because of the random I/O associated with the table probe.
36 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Figure 3-8 illustrates the concept of probing a permanent index to subset or sequence the
rows that are eventually selected.

Figure 3-8 Index probe concept

Likely to be
used

� When asking for or expecting only a few rows to be returned from the index

� When sequencing the rows is required by the query (for example, ordering or
grouping)

� When the selection columns match the leading key columns of the index

Example SQL
statement

CREATE INDEX X1 ON Employee (LastName, WorkDept)

SELECT * FROM Employee
WHERE WorkDept BETWEEN 'A01' AND 'E01'
AND LastName IN ('Smith', 'Jones', 'Peterson')
OPTIMIZE FOR ALL ROWS

Messages
indicating use

� Optimizer Debug:
 CPI4328 -- Access path of file X1 was used by query.

� PRTSQLINF:
SQL4008 -- Index X1 used for table 1.
SQL4011 -- Index scan-key row positioning used
 on table 1.

Data access
method

Radix index probe
Chapter 3. Data access methods 37

Encoded-vector index scan
An EVI symbol table scan operation is used to retrieve the entries from the symbol table
portion of the index. Table 3-5 outlines the attributes of the EVI index scan.

Table 3-5 Encoded-vector index scan

Data access
method

Encoded-vector index symbol table scan

Visual Explain
icon

Description This method sequentially scans and processes all of the symbol table entries that
are associated with the index. Any selection is applied to every entry in the symbol
table. Selected entries are retrieved directly without any access to the vector or the
associated table.

Advantages � The presummarized results are readily available.

� It only processes the unique values in the symbol table, avoiding processing
table records.

� It extracts all of the data from the index unique key values, eliminating the need
for a table probe or vector scan.

Considerations There is dramatic performance improvement for grouping queries where the
resulting number of groups is relatively small compared to the number of records in
the underlying table. It can perform poorly when there are a large number of groups
involved such that the symbol table is very large, especially if a large portion of
symbol table has been put into the overflow area.

Likely to be
used

� When asking for GROUP BY, DISTINCT, COUNT, or COUNT DISTINCT from
a single table and the referenced column or columns are in the key definition

� When the number of unique values in the column or columns of the key
definition is small relative to the number of records in the underlying table

� When there is no selection (Where clause) within the query or the selection
does not reduce the result set much

Example SQL
statement

CREATE ENCODED VECTOR INDEX EVI1 ON Sales (Region)

Example 1
SELECT Region, count(*)
FROM Sales
GROUP BY Region
OPTIMIZE FOR ALL ROWS

Example 2
SELECT DISTINCT Region
FROM Sales
OPTIMIZE FOR ALL ROWS

Example 3
SELECT COUNT(DISTINCT Region)
FROM Sales

Messages
indicating use

� Optimizer Debug:
CPI4328 -- Access path of file EVI1 was used by query.

� PRTSQLINF:
SQL4008 -- Index EVI1 used for table 1.SQL4010
38 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Encoded-vector index probe
The EVI is quickly probed based upon the selection criteria that was rewritten into a series of
ranges. It produces either a temporary row number list or bitmap. Table 3-6 outlines the
attributes of the EVI index probe.

Table 3-6 Encoded-vector index probe

Data access
method

Encoded-vector index probe

Visual Explain
icon

Description The EVI is quickly probed based upon the selection criteria that was rewritten into
a series of ranges. It produces either a temporary row number list or bitmap.

Advantages � Only those index entries that match any selection continue to be processed.
� It provides quick access to the selected rows.
� It returns the row numbers in ascending sequence so that the table probe can

be more aggressive in pre-fetching the rows for its operation.

Considerations EVIs are generally built over a single key. The more distinct the column is and the
higher the overflow percentage is, the less advantageous the EVI becomes. EVIs
always require a table probe to be performed on the result of the EVI probe
operation.

Likely to be
used

� When the selection columns match the leading key columns of the index
� When an EVI exists and savings in reduced I/O against the table justifies the

extra cost of probing the EVI and fully populating the temporary row number
list

Example SQL
statement

CREATE ENCODED VECTOR INDEX EVI1 ON
 Employee (WorkDept)
CREATE ENCODED VECTOR INDEX EVI2 ON
 Employee (Salary)
CREATE ENCODED VECTOR INDEX EVI3 ON
 Employee (Job)

SELECT *
FROM Employee
WHERE WorkDept = 'E01' AND Job = 'CLERK'
AND Salary = 5000
OPTIMIZE FOR 99999 ROWS

Messages
indicating use

� Optimizer Debug:
CPI4329 -- Arrival sequence was used for file
 EMPLOYEE.
CPI4338 -– 3 Access path(s) used for bitmap
 processing of file EMPLOYEE.

� PRTSQLINF:
SQL4010 -- Table scan access for table 1.
SQL4032 -- Index EVI1 used for bitmap processing
 of table 1.
SQL4032 -- Index EVI2 used for bitmap processing
 of table 1.
SQL4032 -- Index EVI3 used for bitmap processing
 of table 1.
Chapter 3. Data access methods 39

3.3.2 Temporary result object methods

Temporary objects are created by the optimizer in order to process a query. In general, these
temporary objects are internal objects and cannot be accessed by a user. The temporary
objects and access methods in this section may be used during an SQE execution.

Hash table creation
The temporary hash table is a temporary object that allows the optimizer to collate the rows
based upon a column or set of columns. The hash table can be either scanned or probed by
the optimizer to satisfy different operations of the query. Table 3-7 outlines the attributes of
hash table creation.

Table 3-7 Hash table creation

Data access
method

Hash table creation

Visual Explain
icon

Description Use a hashing algorithm to create a table that collates data with a common value
together.

Advantages � The hash table can be populated with all the rows or only the distinct rows
based on the key or keys used for the hashing algorithm.

� The data is organized for efficient retrieval from the hash table, reducing I/O as
the query progresses.

� Selection can be performed before generating the hash table to subset the
number of rows processed.

Considerations � A temporary copy of the data is required to be stored within the hash table.

� It can perform poorly when the entire hash table does not stay memory
resident as it is being processed.

� High cardinality columns can cause frequent collisions on a hash value.
Collisions are handled by a linked list. Long lists can degrade overall query
throughput.

Likely to be
used

� When the use of temporary results is allowed by the query environmental
parameter (ALWCPYDTA)

� When the data is required to be collated based upon a column or columns,
most typically for grouping, distinct, or join processing

Example SQL
statement

SELECT COUNT(*), FirstName FROM Employee
WHERE WorkDept BETWEEN ‘A01’ AND ‘E01’
GROUP BY FirstName

Messages
indicating use

� Optimizer Debug:
CPI4329 - Arrival sequence was used for file EMPLOYEE

� PRTSQLINF:
SQL4012 - Table scan access for table 1
SQL4029 - Hashing algorithm was used to implement the grouping

Note: The SQL4029 message indicates that the hash table being created
contains only the grouping column, for example the hash key, FirstName.
40 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Figure 3-9 illustrates the concept of creating and populating a hash table with distinct values
from an existing table (or tables).

Figure 3-9 Hash table creation concept

Hash table scan
During a hash table scan operation, the entire temporary hash table is scanned, and all of the
entries contained within the hash table are processed. Table 3-8 outlines the attributes of the
hash table scan.

Table 3-8 Hash table scan attributes

Data access
method

Hash table scan

Visual Explain
icon

Description It reads all of the entries in a temporary hash table. The hash table may perform
distinct processing to eliminate duplicates or takes advantage of the temporary
hash table to collate all of the rows with the same value together.

Advantages � It reduces the random I/O to the table that is generally associated with longer
running queries that may otherwise use an index to collate the data.

� Selection can be performed before generating the hash table to subset the
number of rows in the temporary object.

Considerations It is generally used for distinct or group by processing. It can perform poorly when
the entire hash table does not stay resident in memory as it is being processed.

Likely to be
used

� When the use of temporary results is allowed by the query environmental
parameter (ALWCPYDTA)

� When the data is required to be collated based upon a column or columns for
distinct or grouping
Chapter 3. Data access methods 41

Figure 3-10 illustrates the use of a temporary hash table to collate like data into distinct
groups. This diagram and those that follow are formatted more like the flowcharts that Visual
Explain produces. The symbols that are shown are similar to Visual Explain’s symbols, but
they are not identical in all cases.

Figure 3-10 Hash scan

Example SQL
statement

SELECT COUNT(*), FirstNme FROM Employee
WHERE WorkDept BETWEEN 'A01' AND 'E01'
GROUP BY FirstNme

Messages
indicating use

There are multiple ways in which a hash scan can be indicated through the
messages. The messages in this example illustrate how the SQL Query Engine
indicate that a hash scan was used.
� Optimizer Debug:

CPI4329 -- Arrival sequence was used for file
 EMPLOYEE.

� PRTSQLINF:
SQL4010 -- Table scan access for table 1.
SQL4029 -- Hashing algorithm used to process
 the grouping.

Data access
method

Hash table scan
42 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Hash table probe
A hash table probe operation is used to retrieve rows from a temporary hash table based
upon a probe lookup operation. Table 3-9 outlines the attributes of the hash table probe.

Table 3-9 Hash table probe attributes

Data access
method

Hash table probe

Visual Explain
icon

Description It quickly probes into a temporary hash table to subset the entries to only those that
match the selection or join criteria.

Advantages � It provides quick access to the selected rows that match the probe criteria.

� It reduces the random I/O to the table that is generally associated with longer
running queries that use an index to collate the data.

� Selection can be performed before generating the hash table to subset the
number of rows in the temporary object.

Considerations It is generally used to process equal join criteria. It can perform poorly when the
entire hash table does not stay resident in memory as it is being processed.

Likely to be
used

� When the use of temporary results is allowed by the query environmental
parameter (ALWCPYDTA)

� When data is required to be collated based upon a column or columns for join
processing

� When the join criteria was specified using an equals (=) operator

Example SQL
statement

SELECT * FROM Employee XXX, Department YYY
WHERE XXX.WorkDept = YYY.DeptNbr
OPTIMIZE FOR ALL ROWS

Messages
indicating use

There are multiple ways in which a hash probe can be indicated through
messages. The messages in this example illustrate how the SQL Query Engine
indicates that a hash probe was used.
� Optimizer Debug:

 CPI4327 -- File EMPLOYEE processed in join
 position 1.
 CPI4327 -- File DEPARTMENT processed in join
 position 2.

� PRTSQLINF:
 SQL4007 -- Query implementation for join
 position 1 table 1.
 SQL4010 -- Table scan access for table 1.
 SQL4007 -- Query implementation for join
 position 2 table 2.
 SQL4010 -- Table scan access for table 2.
Chapter 3. Data access methods 43

Figure 3-11 illustrates the use of the probe access method with a hash table.

Figure 3-11 Hash table probe

Sorted list creation
The temporary sorted list is a temporary object that allows the optimizer to sequence rows
based upon a column or set of columns. The sorted list can be either scanned or probed by
the optimizer to satisfy different operations of the query. Table 3-10 outlines the attributes of
the sorted list creation.

Table 3-10 Sorted list creation

Data access
method

Sorted list creation

Visual Explain
icon

Description A sort routine is used to create a sorted list to order or sequence data with a
common value together.

Advantages � The sorted list can be populated with all the rows or only the distinct rows
based on the key or keys used for the sort algorithm.

� Selection can be performed prior to generating the sorted list to subset the
number of rows processed.

Considerations � Two passes are made through the data to populate and then sort the values.
� A temporary copy of the data is required to be stored within the sorted list.

Likely to be
used

� When the use of temporary results is allowed by the query environmental
parameter (ALWCPYDTA)

� When the data is required to be ordered based upon a column or columns that
are most typically for ordering or distinct processing
44 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Figure 3-12 illustrates the creation of a temporary sorted list.

Figure 3-12 Sorted list creation

Example SQL
statements

CREATE INDEX X1 ON Employee (LastName, WorkDept)

SELECT *FROM Employee
WHERE WorkDept BETWEEN ‘A01’ AND ‘E01’
ORDER BY FirstName

Messages
indicating use

� Optimizer Debug:
CPI4328 - Access path of file X1 was used by query
No explicit reference that a sort is used. Check monitor data
messages or VE diagram

� PRTSQLINF:
SQL4002 - Reusable ODP sort used
SQL4008 - Index X1 used for table 1

Data access
method

Sorted list creation
Chapter 3. Data access methods 45

Sorted list scan
During a sorted list scan operation, the entire temporary sorted list is scanned, and all of the
entries contained within the sorted list are processed. Table 3-11 outlines the attributes of the
sorted list scan.

Table 3-11 Sorted list scan

Data access
method

Sorted list scan

Visual Explain
icon

Description This scan reads all of the entries in a temporary sorted list. The sorted list may
perform distinct processing to eliminate duplicate values or take advantage of the
temporary sorted list to sequence all of the rows.

Advantages � It reduces the random I/O to the table that is generally associated with longer
running queries that otherwise uses an index to sequence the data.

� Selection can be performed prior to generating the sorted list to subset the
number of rows in the temporary object.

Considerations It is generally used to process ordering or distinct processing. It can perform poorly
when the entire sorted list does not stay resident in memory as it is being populated
and processed.

Likely to be
used

� When the use of temporary results is allowed by the query environmental
parameter (ALWCPYDTA)

� When the data is required to be ordered based upon a column or columns for
ordering or distinct processing

Example SQL
statements

CREATE INDEX X1 ON Employee (LastName, WorkDept)

SELECT * FROM Employee
WHERE WorkDept BETWEEN 'A01' AND 'E01'
ORDER BY FirstNme
OPTIMZE FOR ALL ROWS

Messages
indicating use

There are multiple ways in which a sorted list scan can be indicated through the
messages. The messages in this example illustrate how the SQL Query Engine
indicates that a sorted list scan was used.
� Optimizer Debug:

CPI4328 -- Access path of file X1 was used by query.
CPI4325 -- Temporary result file built for query.

� PRTSQLINF:
SQL4008 -- Index X1 used for table 1.
SQL4002 -- Reusable ODP sort used.
46 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Figure 3-13 shows a diagram of how a sorted list scan may look.

Figure 3-13 Sorted list scan

Sorted list probe
A sorted list probe operation is used to retrieve rows from a temporary sorted list based upon
a probe lookup operation. Table 3-12 outlines the attributes of the sorted list probe.

Table 3-12 Sorted list probe attributes

Data access
method

Sorted list probe

Visual Explain
icon

Description The temporary sorted list is quickly probed based upon the join criteria.

Advantages � It provides quick access to the selected rows that match probe criteria.

� It reduces the random I/O to the table that is generally associated with longer
running queries that otherwise use an index to collate the data.

� Selection can be performed before generating the sorted list to subset the
number of rows that are in the temporary object.

Considerations It is generally used to process non-equal join criteria. It can perform poorly when
the entire sorted list does not stay resident in memory as it is being populated and
processed.

Likely to be
used

� When the use of temporary results is allowed by the query environmental
parameter (ALWCPYDTA)

� When the data is required to be collated based upon a column or columns for
join processing

� When the join criteria was specified using a non-equals operator
Chapter 3. Data access methods 47

Figure 3-14 illustrates the use of the sorted list probe access method.

Figure 3-14 Sorted list probe

Example SQL
statements

SELECT * FROM Employee XXX, Department YYY
WHERE XXX.WorkDept > YYY.DeptNbr
OPTIMIZE FOR ALL ROWS

Messages
indicating use

There are multiple ways in which a sorted list probe can be indicated through the
messages. The messages in this example illustrate how the SQL Query Engine will
indicate a sorted list probe was used.
� Optimizer Debug:

CPI4327 -- File EMPLOYEE processed in join position 1.
CPI4327 -- File DEPARTMENT processed in join
 position 2.

� PRTSQLINF:
SQL4007 -- Query implementation for join
 position 1 table 1.
SQL4010 -- Table scan access for table 1.
SQL4007 -- Query implementation for join
 position 2 table 2.
SQL4010 -- Table scan access for table 2.

Data access
method

Sorted list probe
48 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Unsorted list creation
The temporary unsorted list is a temporary object that allows the optimizer to store
intermediate results of a query. The list is an unsorted data structure that is used to simplify
the operation of the query. Since the list does not have any keys, the rows within the list can
only be retrieved by a sequential scan operation. Table 3-13 outlines the attributes of the
unsorted list creation.

Table 3-13 Unsorted list creation attributes

Data access
method

Unsorted list creation

Visual Explain
icon

Description An unsorted list or temporary table is created to store data for an intermediate
operation of the query. No key is associated with this object.

Advantages Selection can be performed prior to generating the unsorted list to subset the
number of rows processed for each iteration.

Considerations � No key is associated with this object, so the entire list must be scanned to
process any rows.

� A temporary copy of the data is required to be stored within the unsorted list.

Likely to be
used

� When the use of temporary results is allowed by the query environmental
parameter (ALWCPYDTA)

� When the query contains a complex operation that requires the engine to
break up the request into multiple steps to complete the query, most typically
associated with complex views, grouping, join queries, or symmetric
multiprocessing (SMP)

Example SQL
statements

SELECT XXX.* FROM Employee XXX, Department YYY
WHERE XXX.WorkDept > YYY.DeptNbr
GROUP BY YYY.DeptName, XXX.WorkDept

Messages
indicating use

� Optimizer Debug:
CPI4325 - Temporary result file built for query

� PRTSQLINF:
SQL4001 - Temporary result created.
SQL4007 - Query implementation for join position 1 table 1
SQL4010 - Table scan access for table 1
SQL4007 - Query implementation for join position 2 table 2
Chapter 3. Data access methods 49

Figure 3-15 represents the creation of a temporary unsorted list.

Figure 3-15 Unsorted list creation

Unsorted list scan
The list scan operation is used when a portion of the query is processed multiple times, but no
key columns can be identified. In these cases, that portion of the query is processed once
and its results are stored within the temporary list. The list can then be scanned for only those
rows that satisfy any selection or processing contained within the temporary object.

Table 3-14 outlines the attributes of the unsorted list scan.

Table 3-14 Unsorted list scan attributes

Data access
method

Unsorted list scan

Visual Explain
icon

Description This method sequentially scans and processes all of the rows in the temporary list.

Advantages � The temporary list and list scan can be used by the optimizer to minimize
repetition of an operation or to simplify the optimizer’s logic flow.

� Selection can be performed before generating the list to subset the number of
rows in the temporary object.

Considerations It is generally used to prevent portions of the query from being processed multiple
times when no key columns are required to satisfy the request.

Likely to be
used

� When the use of temporary results is allowed by the query environmental
parameter (ALWCPYDTA)

� When SMP will be used for the query
50 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Figure 3-16 illustrates the process of an unsorted list scan.

Figure 3-16 Unsorted list scan

Example SQL
statements

SELECT * FROM Employee XXX, Department YYY
WHERE XXX.LastName IN ('Smith', 'Jones', 'Peterson')
AND YYY.DeptNo BETWEEN 'A01' AND 'E01'
OPTIMIZE FOR ALL ROWS

Messages
indicating use

There are multiple ways in which a list scan can be indicated through the messages.
The messages in this example illustrate how the SQL Query Engine indicates that
a list scan was used.
� Optimizer Debug:

CPI4325 -- Temporary result file built for query.
CPI4327 -- File EMPLOYEE processed in join
 position 1.
CPI4327 -- File DEPARTMENT processed in join
 position 2.

� PRTSQLINF:
SQL4007 -- Query implementation for join
 position 1 table 1.
SQL4010 -- Table scan access for table 1.
SQL4007 -- Query implementation for join
 position 2 table 2.
SQL4001 -- Temporary result created
SQL4010 -- Table scan access for table 2

Data access
method

Unsorted list scan
Chapter 3. Data access methods 51

Address list creation (RRN or bitmap)
The temporary row number list (address list) is a temporary object that allows the optimizer to
sequence rows based upon their row address (their row number). The row number list can be
either scanned or probed by the optimizer to satisfy different operations of the query. In RRN
and bitmaps, both methods (scan and probe) act in the same way. Table 3-15 outlines the
attributes of the address list creation.

Table 3-15 Temporary row number list (address list)

Data access
method

Address list creation

Visual Explain
icon (RRN)

Visual Explain
icon (Bitmap)

Description This method generate a list of RRN values or a bitmap that represents the rows
from a table that match the selection.

Advantages � Selection can be applied against a variety of indexes using ANDing and
ORing logic to best mix and match the indexes that exist over the table.

� No I/O is generated against the table while the address list is generated.

� An RRN list is ordered based on the RRN values, or the bits in a bitmap
represent relative row locations within the table.

Considerations The address list must be fully populated before any rows can be retrieved from the
temporary object.

Likely to be
used

� When the use of temporary results is allowed by the query environmental
parameter (ALWCPYDTA)

� When the query contains selection that matches an existing index over the
table

Example SQL
statement

CREATE INDEX IX_Position ON Employee (Position)
CREATE ENCODED VECTOR INDEX EVI_Dept ON Employee (WorkDept)

SELECT * FROM Employee
WHERE Position <> ‘Mgr’
AND WorkDept IN (‘A01’, ‘B01’, ‘D01’)
AND Salary BETWEEN 50000 AND 100000
OPTIMIZE FOR ALL ROWS

Messages
indicating use

� Optimizer Debug:
CPI432C - All access paths were considered for file EMPLOYEE
CPI4338 - 2 Access path(s) used for bitmap processing of file
EMPLOYEE

� PRTSQLINF:
SQL4010 - Table scan access for table 1
SQL4032 - Index IX_Position used for bitmap processing of table 1
SQL4032 - Index IX_EVI_Dept used for bitmap processing of table 1
52 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Figure 3-17 shows an example of creating a temporary address list (either RRNs or bitmaps).

Figure 3-17 Address list creation

Address list scan (RRN or bitmap)
During a row number list scan operation (address list scan), the entire temporary row number
list is scanned, and all of the row addresses contained within the row number list are
processed. A row number list scan is generally considered when the optimizer is considering
a plan that involves an EVI or if the cost of the random I/O associated with an index probe or
scan operation can be reduced by first preprocessing and sorting the row numbers
associated with the table probe operation. Table 3-16 outlines the attributes of the address list
scan.

Table 3-16 Address list scan

Data access
method

Address list scan

Visual Explain
icon (RRN)

Visual Explain
icon (Bitmap)

Description This method scans the list of address values from the temporary object. Since the
address values are sorted, the table is sequentially processed.

Advantages � It minimizes page I/O operations by paging larger sections of the table when
the address values are clustered, for example groups of consecutive or nearly
consecutive addresses.

� The majority of the selection can be applied prior to any table I/O operations.

Considerations The address list is a static object and is not updated for the duration of the query.
Chapter 3. Data access methods 53

Figure 3-18 illustrates the use of an address list scan access method.

Figure 3-18 Address list scan

Likely to be
used

� When the use of temporary results is allowed by the query environmental
parameter (ALWCPYDTA)

� When the savings generated from minimizing I/O operations outweighs the
cost to generate and process the address list

Example SQL
statement

SELECT * FROM Employee
WHERE Position <> ‘Mgr’
AND WorkDept IN (‘A01’, ‘B01’, ‘D01’)
AND Salary BETWEEN 50000 AND 100000
OPTIMIZE FOR ALL ROWS

Messages
indicating use

� Optimizer Debug:
CPI432C - All access paths were considered for file EMPLOYEE
CPI4338 - 2 Access path(s) used for bitmap processing of file
EMPLOYEE

� PRTSQLINF:
SQL4010 - Table scan access for table 1
SQL4032 - Index IX_Position used for bitmap processing of table 1
SQL4032 - Index IX_EVI_Dept used for bitmap processing of table 1

Note: The scan of the address list is not explicitly identified in any of the
messages generated by this query.

Data access
method

Address list scan
54 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Address list probe
A row number list probe (address list probe) operation is used to test row numbers that are
generated by a separate operation against the selected rows of a temporary row number list.
The row numbers can be generated by any operation that constructs a row number for a
table. That row number is then used to probe into a temporary row number list to determine if
that row number matches the selection used to generate the temporary row number list.
Table 3-17 outlines the attributes of the address list probe.

Table 3-17 Address list probe attributes

Data access
method

Address list probe

Visual Explain
icon (RRN)

Visual Explain
icon (Bitmap)

Description Using an RRN value generated from a primary index, this method probes into the
temporary list of address values to determine if a matching address is found.

Advantages It allows an index to be used to sequence the data and still use additional indexes
to perform any available selection.

Considerations The address list is a static object and is not updated for the duration of the query.

Likely to be
used

� When the use of temporary results is allowed by the query environmental
parameter (ALWCPYDTA)

� When the savings generated from minimizing I/O operations outweighs the
cost to generate and process the address list

� When the data is required to be ordered based upon a column or columns that
match up to an index, but does not cover all of the available selection

Example SQL
statement

CREATE INDEX IX_Salary ON Employee (Salary)

SELECT * FROM Employee
WHERE Position <> ‘Mgr’
AND WorkDept IN (‘A01’, ‘B01’, ‘D01’)
AND Salary BETWEEN 50000 AND 100000
ORDER BY Salary

Messages
indicating use

� Optimizer Debug:
CPI4328 - Access path of file IX_Salary was used by query
CPI4338 - 2 Access path(s) used for bitmap processing of file
EMPLOYEE

� PRTSQLINF:

SQL4008 - Index IX_Salary used for table 1
SQL4011 - Index scan-key row positioning used on table 1
SQL4032 - Index IX_Position used for bitmap processing of table 1
SQL4032 - Index IX_EVI_Dept used for bitmap processing of table 1

Note: The index probe against IX_Salary is used as the primary access method
for this query to satisfy the ordering requirement.
Chapter 3. Data access methods 55

Figure 3-19 illustrates the use of an address list probe access method.

Figure 3-19 Address list probe

Temporary index scan
A temporary index is a temporary object that allows the optimizer to create and use a radix
index for a specific query. The temporary index has all of the same attributes and benefits as
a radix index that is created by a user through the CREATE INDEX SQL statement or Create
Logical File (CRTLF) CL command.

Additionally, the temporary index is optimized for use by the optimizer to satisfy a specific
query request. This includes setting the logical page size and applying any selection to the
creation to speed up the use of the temporary index after it has been created. Table 3-18
outlines the attributes of the temporary index scan.

Table 3-18 Temporary index scan

Data access
method

Temporary index scan

Visual Explain
icon

Description This method sequentially scans and processes all of the keys associated with the
temporary index.

Advantages � It has the potential to extract all of the data from the index keys' values, thus
eliminating the need for a table probe.

� It returns the rows back in a sequence based upon the keys of the index.

Considerations It generally requires a table probe to be performed to extract any remaining
columns that are required to satisfy the query. It can perform poorly when a large
number of rows is selected because of the random I/O associated with the table
probe.
56 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Temporary index probe
A temporary index probe operation is identical to the index probe operation that is performed
upon the permanent radix index. Its main function is to provide a form of quick access against
the index keys of the temporary index; however it can still used to retrieve the rows from a
table in a keyed sequence. Table 3-19 outlines the attributes of the temporary index probe.

Table 3-19 Temporary index probe

Likely to be
used

� When sequencing the rows is required for the query (for example, ordering or
grouping)

� When the selection columns cannot be matched against the leading key
columns of the index

� When the overhead cost associated with the creation of the temporary index
can be justified against other alternative methods to implement this query

Example SQL
Statement

SELECT * FROM Employee
WHERE WorkDept BETWEEN 'A01' AND 'E01'
ORDER BY LastName
OPTIMIZE FOR ALL ROWS

Messages
indicating use

� Optimizer Debug:
CPI4321 -- Access path built for file EMPLOYEE.

� PRTSQLINF:
SQL4009 -- Index created for table 1

Data access
method

Temporary index probe

Description The index is quickly probed based upon the selection criteria that was rewritten into
a series of ranges. Only those keys that satisfy the selection will be used to
generate a table row number.

Advantages � Only those index entries that match any selection continue to be processed. It
provides quick access to the selected rows.

� It has the potential to extract all of the data from the index keys' values, thus
eliminating the need for a table probe.

� It returns the rows back in a sequence based upon the keys of the index.

Considerations It generally requires a table probe to be performed to extract any remaining
columns that are required to satisfy the query. It can perform poorly when a large
number of rows is selected because of the random I/O associated with the table
probe.

Likely to be
used

� When the ability to probe the rows required for the query (for example, joins)
exists

� When the selection columns cannot be matched against the leading key
columns of the index

� When the overhead cost associated with the creation of the temporary index
can be justified against other alternative methods to implement this query

Example SQL
Statement

SELECT * FROM Employee XXX, Department YYY
WHERE XXX.WorkDept = YYY.DeptNo
OPTIMIZE FOR ALL ROWS

Data access
method

Temporary index scan
Chapter 3. Data access methods 57

Buffer scan
The temporary buffer is a temporary object that is used to help facilitate operations such as
parallelism. It is an unsorted data structure that is used to store intermediate rows of a query.
The main difference between a temporary buffer and a temporary list is that the buffer does
not need to be fully populated in order to allow its results to be processed. Table 3-20 outlines
the attributes of the buffer scan.

Table 3-20 Buffer scan

Messages
indicating use

� Optimizer Debug:
CPI4321 -- Access path built for file DEPARTMENT.
CPI4327 -- File EMPLOYEE processed in join
 position 1.
CPI4326 -- File DEPARTMENT processed in join
 position 2.

� PRTSQLINF:
SQL4007 -- Query implementation for join
 position 1 table 1.
SQL4010 -- Table scan access for table 1.
SQL4007 -- Query implementation for join
 position 2 table 2.
SQL4009 -- Index created for table 2.

Data access
method

Buffer scan

Visual Explain
icon

Description This method sequentially scans and processes all of the rows in the temporary
buffer. It enables SMP parallelism to be performed over a non-parallel portion of the
query.

Advantages � The temporary buffer can be used to enable parallelism over a portion of a
query that is non-parallel.

� The temporary buffer does not need to be fully populated in order to start
fetching rows.

Considerations It is generally used to prevent portions of the query from being processed multiple
times when no key columns are required to satisfy the request.

Likely to be
used

� When the query is attempting to take advantage of DB2 Universal Database
Symmetric Multiprocessing

� When a portion of the query cannot be performed in parallel (for example,
index scan or index probe)

Example SQL
Statement

CHGQRYA DEGREE(*OPTIMIZE)
CREATE INDEX X1 ON
 Employee (LastName, WorkDept)

SELECT * FROM Employee
WHERE WorkDept BETWEEN 'A01' AND 'E01'
AND LastName IN ('Smith', 'Jones', 'Peterson')
OPTIMIZE FOR ALL ROWS

Data access
method

Temporary index probe
58 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

3.3.3 Access methods in V5R4

A queue is new temporary object added in V5R4. Unlike other temporary objects created by
the optimizer, the queue is not populated in all at once by the underlying query node tree.
Instead it is really a real-time temporary holding area for values that feed the recursion. In this
regard, a queue is not considered temporary because it does not prevent the query from
running if ALWCPYDTA(*NO) was specified. This is because the data can still flow up and out
of the query at the same time that the recursive values are inserted into the queue to be used
to retrieve additional join rows.

A queue is an internal data structure and can only be created by the database manager.

The queue has two operations allowed:

� Enqueue, which puts data on the queue
� Dequeue, which takes data off the queue

Enqueue
During an enqueue operation, an entry is placed on the queue that contains key values that
are used by the recursive join predicates or data manipulated as a part of the recursion
process. The optimizer always supplies an enqueue operation to collect the required
recursive data on the query node directly above Union All. Table 3-21 outlines the attributes of
the enqueue operation.

Table 3-21 Enqueue attributes

Messages
indicating use

� Optimizer Debug:
CPI4328 -- Access path of file X1 was used by query.
CPI4330 -- 8 tasks used for parallel index scan
 of file EMPLOYEE.

� PRTSQLINF:
SQL4027 -- Access plan was saved with DB2 UDB
 SMP installed on the system.
SQL4008 -- Index X1 used for table 1.
SQL4011 -- Index scan-key row positioning
 used on table 1.
SQL4030 -- 8 tasks specified for parallel scan
 on table 1.

Data access
method

Buffer scan

Data access
method

Enqueue

Visual Explain
icon

Description This operation places an entry on the queue needed to cause further recursion.

Advantages � Required as a source for the recursion. Only enqueues required values for
the recursion process. Each entry has short life span, until it is dequeued.

� Each entry on the queue can seed multiple iterative fullselects that are
recursive from the same Recursive Common Table Expression (RCTE)/view.

Likely to be used For a required access method for recursive queries
Chapter 3. Data access methods 59

Use the CYCLE option in the definition of the recursive query if there is the possibility that the
data reflecting the parent, child relationship may be cyclic, causing an infinite recursion loop.
CYCLE prevents already visited recursive key values from being placed on the queue again
for a given set of related (ancestry chain) rows.

Use the SEARCH option in the definition of the recursive query to return the results of the
recursion in the specified parent-child hierarchical ordering. The search choices are Depth or
Breadth first. Depth first means that all the descendents of each immediate child are returned
before the next child is returned. Breadth first means that each child is returned before their
children are returned. SEARCH requires the specification of the relationship keys, which
columns make up the parent child relationship and the search type of Depth or Breadth. It
also requires an ORDER BY clause in the main query on the provided sequence column in
order to fully implement the specified ordering.

Dequeue
During a dequeue operation, an entry is taken off the queue, and those values specified by
recursive reference are fed back into the recursive join process. The optimizer always
supplies a corresponding enqueue, dequeue pair of operations for each reference of a
recursive common table expression or recursive view in the specifying query. Recursion ends
when there are no more entries to pull off the queue. Table 3-22 outlines the attributes of the
dequeue operation.

Table 3-22 Dequeue attributes

Example SQL
Statement

WITH RPL (PART, SUBPART, QUANTITY) AS
 (SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
 FROM PARTLIST ROOT
 WHERE ROOT.PART = '01'
 UNION ALL
 SELECT CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY
 FROM RPL PARENT, PARTLIST CHILD
 WHERE PARENT.SUBPART = CHILD.PART
)
SELECT DISTINCT PART, SUBPART, QUANTITY
 FROM RPL

Messages
indicating use

There are no explicit messages that indicate the use of an enqueue.

Data access
method

Dequeue

Visual
Explain icon

Description This operation removes an entry off the queue. It provides minimally one side of the
recursive join predicate that feeds the recursive join and other data values that are
manipulated through the recursive process. The dequeue is always on the left side
of inner join with a constraint, where the right side of the join contains the target child
rows.

Advantages � It provides quick access to recursive values.
� It allows for post selection of local predicate on recursive data values.

Data access
method

Enqueue
60 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Likely to be
used

� When there is a required access method for recursive queries

� When single dequeued values can feed the recursion of multiple iterative full
selects that reference the same Recursive Common Table Expression
(RCTE)/view

Example SQL
Statement

WITH RPL (PART, SUBPART, QUANTITY) AS
 (SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
 FROM PARTLIST ROOT
 WHERE ROOT.PART = '01'
 UNION ALL
 SELECT CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY
 FROM RPL PARENT, PARTLIST CHILD
 WHERE PARENT.SUBPART = CHILD.PART
)
SELECT DISTINCT PART, SUBPART, QUANTITY
 FROM RPL

Messages
indicating use

There are no explicit messages that indicate the use of a dequeue.

Data access
method

Dequeue
Chapter 3. Data access methods 61

62 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Chapter 4. Statistics Manager

Starting with OS/400 V5R2, the responsibility for statistical information was removed from the
optimizer and given to a new component called the Statistics Manager. In this chapter, we
discuss the interaction between the optimizer and Statistics Manager. We introduce the new
concept of single-column statistics and how they are created and maintained automatically by
the system.

In this chapter, we also explain how to manage statistics using iSeries Navigator. Finally we
show why and how to influence collection of column statistics yourself.

4

© Copyright IBM Corp. 2003, 2006. All rights reserved. 63

4.1 Statistics and statistics collections
Before OS/400 V5R2, the retrieval of statistics was a function of the optimizer. When the
optimizer needed to know information about a table, it looked at the table description to
retrieve the row count and table size. If an index was available, the optimizer could extract
further information about the data in the underlying table from that source. Figure 4-1
illustrates how Classic Query Engine (CQE) relies on indexes for statistics prior to V5R2.

The reliance on
indexes for meaningful
statistics often caused
a dependency on
creating new indexes to
solve performance
problems. Creating
new indexes to supply
statistics impacted disk
requirements for the
indexes and increased
the central processing
unit (CPU) load
required to maintain the
new indexes.

With the introduction of Structured Query Language (SQL) Query Engine (SQE) to OS/400
V5R2, the collection of statistics was removed from the optimizer. It is now handled by a
separate component called the Statistics Manager (see Figure 4-2). The Statistics Manager
has two major functions:

� Create and maintain column statistics
� Answer questions the optimizer asks when finding the best way to implement a given

query

These answers can be
derived from table header
information, existing
indexes, or single-column
statistics. Single-column
statistics provide
estimates of column
cardinality, most frequent
values, and value ranges.
These values may have
been previously available
through an index, but
statistics have the
advantage of being
precalculated and are
stored with the table for
faster access. Column
statistics stored with a
table do not dramatically
increase the size of the
table object. Statistics per column average only 8 to 12 KB in size. If none of these sources is
available to provide a statistical answer, then the Statistics Manager bases the answer on
default values (filter factors).

Optimizer

SQL
Query

Table Size
Row Count

Radix
Index EVI

Access
Plan

Statistics
Retrieval

Figure 4-1 Statistics in CQE

Figure 4-2 SQE Optimizer and Statistics Manager

SQE Optimizer
SQL

Query

Tables
& Stats

Radix
Index EVI

Access
Plan

Statistics Manager
64 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

4.1.1 Optimizer statistics request types
The optimizer questions the Statistics Manage about the following areas:

� Table and index definitions

Examples of such questions are: “How many rows are in a certain table?” and “Which
indexes are relevant to this query?”

� Filter factors

These factors are used to estimate the total number of rows that are expected to be
returned given specific selection criteria.

� Cardinality

This area is used to estimate the distinct number of values for a column.

� Number of entries accessed

The entries are used to estimate the effectiveness of using a particular index as the
access method.

� Input/output (I/O) costing

Costing provides an estimate of how many I/O operations will be performed and how much
parallelism can be performed.

The Statistics Manager must always provide an answer to the questions from the optimizer. It
uses the best method that is available to provide the answers. For example, it may use a
single-column statistic or perform a key range estimate over an index. Along with the answer,
Statistics Manager returns a confidence level to the optimizer that it may use to provide
greater latitude for sizing algorithms. For example, if the Statistics Manager provides a low
confidence level in the number of groups that are estimated for a grouping request, then the
optimizer may increase the size of the temporary hash table allocated.

4.1.2 Single-column statistics
Single-column statistics provide detailed information about one column within a table. The
information is collected by performing a full table scan. Then the collected information is
stored with the table.

Each column statistic provides the following information, which is provided in the Statistic
Data Details window as shown in the following examples:

Important: The Statistics Manager does not actually run or optimize the query. It controls
the access to the metadata and other information that is required to optimize the query.
Chapter 4. Statistics Manager 65

� General (Figure 4-3)

– Estimate of cardinality: Provides an estimate of the number of distinct values for the
column

– Number of nulls: Provides the number of records with the null value

Figure 4-3 Cardinality estimate and number of nulls
66 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

� Estimated value ranges (Figure 4-4)

This range shows how the data in a column is spread over the different values. The range
is also referred to as a histogram. The Statistics Manager tries to separate the rows into
equally sized buckets. Each bucket has an associated low and high value to determine the
range and the estimated number of records in that range. The lower value is exclusive,
and the upper value is inclusive.

Figure 4-4 Estimated Value Ranges page
Chapter 4. Statistics Manager 67

� Estimated frequent values list (Figure 4-5)

This list provides an estimate of the most frequent values and an estimated count for each
value. This information is shown on the Estimated Most Common Values page.

Figure 4-5 Estimated frequent value list

4.1.3 Automatic statistics collection
Most databases use statistics to assist with query optimization. They often rely on a database
administrator (DBA) to create the statistics and to refresh the statistics when they become
stale or no longer provide a meaningful representation of the data. With the goal of being an
easy-to-manage database, Statistics Manager is set, by default, to collect and refresh column
statistics automatically. Column statistics are automatically collected after an SQL statement
is executed based on statistics requests from the optimizer.

When Statistics Manager prepares its responses to the optimizer, it keeps track of which
responses are generated by using default filter factors, because column statistics or indexes
were not available. It uses this information while the access plan is written to the plan cache
to automatically generate a statistics collection request for such columns. As system
resources become available, the requested column statistics are collected in the background.
The intent is that the missing column statistics are available on future executions of the query.
This allows Statistics Manager to provide more accurate information to the optimizer. More
statistics make it easier for the optimizer to generate a good performing access plan.
68 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

In the plan cache, information is stored about which column statistics were used and which
ones were missing while generating the access plan. If an SQL request is canceled before or
during execution (for example, because of the query time limit), these requests for column
statistics are created, but only as long as execution reaches the point where the generated
access plan is written to the plan cache.

To minimize the number of passes through the table during statistics collection, the Statistics
Manager attempts to group multiple requests for the same table together. For example, table
T1 may not have any useful indexes or column statistics available. Two queries are executed,
with one query having selection criteria on column C1 and the other query having selection
criteria on column C2. In this case, Statistics Manager identifies both of these columns as
good candidates for column statistics. When Statistics Manager reviews the requests, it looks
for multiple requests for the same table and groups them together into one request. This
allows both column statistics to be created with only one pass through table T1.

In our tests, we found that collecting column statistics over one column of a table with 130
million rows and 35 GB in size takes six minutes. Collecting two single-column statistics on a
table with 260 million rows and 66 GB in size takes eight to nine minutes. These times ranges
will vary in other environments since these timings are from a non-busy system.

As stated earlier, column statistics are normally automatically created when Statistics
Manager must answer questions from the optimizer using default filter factors. However, there
is an exception. When an index is available that can be used to generate the answer, then
column statistics are not automatically generated. There may be cases where optimization
time benefits from column statistics in this scenario because using column statistics to
answer questions from the optimizer is more efficient than using the index data. If you have
cases where query optimization seems to be extended, check whether you have indexes over
the relevant columns in your query. If this is the case, try to manually generate column
statistics for these columns.

4.1.4 Automatic statistics refresh
Column statistics are not maintained when the underlying table data changes. This means
that there must be some mechanism for Statistics Manager to determine whether the column
statistics are still meaningful and when they need to be refreshed. This validation is done
each time the following actions occur:

� An Open Data Path (ODP) creation occurs for a query where column statistics were used
to create the access plan.

� A new plan is added to the plan cache, either because a completely new query was
optimized or because a plan was re-optimized.

Note: In some cases, the performance of an SQL statement run by SQE the first time on
V5R2 is slower than on previous releases. This is because statistics are not automatically
collected until a query or SQL request is run. The same query most likely runs faster on
subsequent executions since the optimizer has the benefit of the column statistics that
were automatically collected.

To avoid this possible first-time degradation in performance after upgrading to V5R2, then
proactively collect statistics manually on columns that are frequently searched and that do
not have indexes (or keyed logical files) created over them. The searched column or
columns must be the leading columns in the index for it to provide proper statistics. If
statistics only from indexes are available, then it is possible that SQE generates an access
plan different from CQE using the same index statistics.
Chapter 4. Statistics Manager 69

At that point, Statistics Manager checks whether either of the following situations applies:

� The number of rows in the table has increased or decreased by more than 15%.
� The number of rows changed in the table is more than 15% of the total table row count.

Statistics Manager then uses the stale column statistics to answer the question from the
optimizer. However, it also marks the column statistics as stale in the plan cache and
generates a request to refresh the stale column statistics.

Performing an ALTER TABLE and changing the attributes of a column that has column
statistics available, such as changing the length of a character field from 25 to 10, also
automatically starts a refresh of the column statistics.

4.1.5 Indexes versus column statistics
A major difference between indexes and column statistics is that indexes are permanently
updated when changes to the underlying table occur. Column statistics are not directly
updated in this case. Consider an environment where a specific index is needed only for
getting statistical information. Then compare the use of the index to the use of column
statistics. In this scenario, there are two situations if the data changes constantly. One is that
the optimizer might rely on stale column statistics frequently. The other is that maintaining the
index after each change to the table might take up more system resources than refreshing the
stale column statistics after a group of changes to the table has occurred.

When trying to determine the selectivity of predicates, Statistics Manager considers column
statistics and indexes as resources for its answers in the following order:

1. Try to use a multicolumn keyed index when ANDed or ORed predicates reference multiple
columns.

2. If there is no perfect index that contains all the columns in the predicates, try to find a
combination of indexes that can be used.

3. For single column questions, available column statistics are used.

4. If the answer derived from the column statistics shows a selectivity of less than 2%,
indexes are used to verify this answer.

Accessing column statistics to answer questions is faster than trying to find these answers
from indexes.

Another important difference is that column statistics can be used only for query optimization.
They cannot be used for the actual implementation of a query, where indexes can be used for
both.

Indexes and statistics working together
Let us illustrate how the optimizer uses statistics and indexes together in the execution of a
query. Assume that a user executes a query (Q1), with a grouping clause (GROUP BY) on
Customer_No. Also assume that there are no indexes and no statistics on Customer_No. We
illustrate this example in Figure 4-6.

On the first execution of the query, since there are no indexes and no column statistics by
Customer_No, the query (Q1) is optimized with the default values. It also submits a request to
create a column statistics by Customer_No.

On the second execution of the query, since there is a good chance that the column statistics
have already been created, the query (Q1) is optimized using the column statistic. There is
also a good chance that the optimizer has given feedback advising the creation of an index on
the table by Customer_No.
70 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Figure 4-6 Example of statistics and indexes working together

Let us assume that the database analyst decides to create an index by Customer_No. On the
third run of the query (Q1), the query is optimized with the statistic and the index, and the
optimizer may decide to use the index in the implementation of the query.

The example presented in this section illustrates how both concepts complement each other.

4.1.6 Monitoring background statistics collections
System value QDBFSTCCOL controls who is allowed to create statistics in the background.
To display the value of QDBFSTCCOL, on the command line, type:

DSPSYSVAL SYSVAL(QDBFSTCCOL)

The following list provides the possible values:

� *ALL: Allows all statistics to be collected in the background. This is the default setting.

� *NONE: Restricts everyone from creating statistics in the background. This does not
prevent immediate user-requested statistics from being collected.

� *USER: Allows only user-requested statistics to be collected in the background.

� *SYSTEM: Allows only system-requested statistics to be collected in the background.

When you switch the system value to something other than *ALL or *SYSTEM, it does not
mean that Statistics Manager does not place information about the column statistics it wanted
into the plan cache. It simply means that these column statistics are not gathered. When
switching the system value back to *ALL, for example, this initiates some background
processing that analyzes the entire plan cache and looks for any column statistics requests
that are there. This background task also checks which column statistics are used by any plan

No Index
No Stat

Q1 optimizes
with defaults,
runs without
index

Queue up
stats request
for Customer_No

Q1 = ...WHERE Customer_No = 112358 GROUP BY Customer_No...

No Index
Stat

Q1 optimizes
with stat,
runs without
index

Index
Stat

Q1 optimizes
with stat and
index, runs with
index

Generate
Stats for

Customer_No

Time

Create index for
Customer_No

Is there a
difference in

performance?

Note: User-initiated pending background requests are visible, for example, through the
iSeries Navigator graphical user interface (GUI) (Viewing Statistics Collection Requests)
and can be removed from that queue via the same interface.
Chapter 4. Statistics Manager 71

in the plan cache. It checks whether these column statistics have become stale. Requests for
new column statistics and for refresh of column statistics are then executed.

For a user to manually request column statistics collection, the user must have *OBJOPR and
*OBJALTER authority for the underlying table.

All background statistics collections initiated by the system or submitted to the background by
a user are performed by the system job QDBFSTCCOL. User-initiated immediate requests
are run within the user’s job. This job uses multiple threads to create the statistics. The
number of threads is determined by the number of processors the system has. Each thread is
then associated with a request queue.

There are four types of request queues based on who submitted the request and how long
the collection is estimated to take. The default priority assigned to each thread can determine
to which queue the thread belongs:

� Priority 90 is for short user requests.
� Priority 93 is for long user requests.
� Priority 96 is for short system requests.
� Priority 99 is for long system requests.

To view the number of threads that are set up, follow these steps:

1. Type the following command:

WRKJOB JOB(QDBFSTCCOL)

2. Select menu option 20 to work with threads. Figure 4-7 shows the Work with Threads
display that opens.

Figure 4-7 Threads for the QDBFSTCCOL job

Background versus immediate statistics collection: Background statistics collections
attempt to use as much parallelism as possible. This parallelism is independent of the
symmetric multiprocessing (SMP) feature installed on the System i platform. However,
parallel processing is allowed only for immediate statistics collection if SMP is installed on
the system and the job requesting the column statistics is set to allow parallelism.

 Work with Threads
 System: AS09
 Job: QDBFSTCCOL User: QSYS Number: 001673

 Type options, press Enter.
 3=Hold 4=End 5=Display attributes 6=Release 10=Display call stack
 11=Work with thread locks 14=Work with thread mutexes

 Total Aux Run
 Opt Thread Status CPU I/O Priority
 00000001 EVTW .263 290 50
 00000009 DEQW .132 185 99
 00000008 DEQW .185 201 99
 00000007 DEQW .292 606 96
 00000006 DEQW .232 585 96
 00000005 DEQW .277 523 96
 00000004 DEQW .000 0 93
 00000003 DEQW .000 0 90
 00000002 DEQW .000 1 90

 Bottom
72 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

The job log of the QDBFSTCCOL job contains information about which columns statistics
were requested, queued, or updated. Figure 4-8 shows some examples of the information
that can be found in the job log.

Figure 4-8 Information found in the QDBFSTCCOL job log

The detailed messages provide further information about the reason for the column statistics
request and the table for which the column statistics were collected. Figure 4-9 shows an
example of this.

Figure 4-9 Detailed message from the QDBFSTCCOL job log

4.1.7 Manual collection and refresh of column statistics
As stated earlier, the process of collecting and refreshing column statistics is, by default, a
completely automated process that does not require user intervention. However, it is possible
to manually collect column statistics and refresh column statistics.

You can do this by using iSeries Navigator, as explained in 4.2, “Using iSeries Navigator to
manage statistics” on page 75, or by using the Statistics Manager application program
interfaces (APIs) as discussed in Appendix A, “Statistics Manager API code examples” on
page 155. Refer to 4.3, “Proactive statistics collection” on page 82, for when you want to
manually collect column statistics.

4.1.8 Statistics collection performance considerations
The system background statistics collection is designed to minimize the impact on other user
jobs. This is mainly accomplished by running these collection jobs at a low priority. However,
system resource utilization, such as CPU usage, can increase. That is because the system
statistics collection uses the remaining available resources to accomplish its tasks.

Figure 4-10 shows how a currently active collection of column statistics looks in Work with
Active Jobs (WRKACTJOB). Look at the number of active threads with priority 99 that are
working on generating system requested column statistics. Do not become confused by the
first thread that shows a priority of 50. The real work for collecting column statistics is done in
all the other threads that show priority 99.

 Statistic collection QDBST_3071DD007B49185F954C0004AC03B224 updated.
 AutoStats request queued.
1 statistic collection(s) requested.
 AutoStats request queued.
 5 statistic collection(s) requested.

 Message : 1 statistic collection(s) requested.
 Cause : Statistic collection request for member ITEM_FACT, file
 ITEM_FACT, library STAR10G1, ASP *SYSBAS completed with reason code 3. The
 request contained 1 statistic collection(s), which altogether referenced
 column(s) 16.
 Reason codes and their meanings are as follows:
 01 -- The statistic collection was requested to be run immediately and
 completed successfully.
 02 -- The statistic collection was requested to be run in the background
 and the request was queued successfully.
 03 -- The statistic collection request was queued from a previous call and
 completed successfully now.
Chapter 4. Statistics Manager 73

Figure 4-10 Active collection of column statistics in WRKACTJOB

To reduce the impact of automatic statistics collection on any other workload on the system
even more, two additional concepts are used:

� The introduction of low priority I/O
� Work management changes for the QDBFSTCCOL job

Low priority I/O is implemented in the code of the driver for the hard disk drive. This code
makes sure that only a small percentage of the I/O resources can be used by statistics
collection at any given point in time.

Regarding the CPU consumption of the QDBFSTCCOL, you are familiar with the concept that
a job starts using the CPU. The job stays there until it either goes into wait status (because of
waiting for an I/O activity to finish, for example) or reaches its time slice end. The
QDBFSTCCOL job monitors the system for other jobs with higher priority that are waiting for
CPU resources. If this happens, it goes into wait status although it is not waiting for I/O and
has not reached its time slice end.

4.1.9 Propagation of column statistics on copy operations
Statistics are not copied to new tables when using the Copy File (CPYF) command. If
statistics are needed immediately after using this command, then they must be generated
manually using iSeries Navigator or the statistics APIs. If column statistics are not needed
immediately, then the creation of column statistics may be performed automatically by the
system after the first touch of a column by a query.

Statistics are copied when using the Create Duplicate Object (CRTDUPOBJ) command with
DATA(*YES). Using this command to create a copy of a file may be an alternative to manually
creating column statistics after using a CPYF command.

 Work with Threads
 System: AS09
 Job: QDBFSTCCOL User: QSYS Number: 001673

 Type options, press Enter.
 3=Hold 4=End 5=Display attributes 6=Release 10=Display call stack
 11=Work with thread locks 14=Work with thread mutexes

 Total Aux Run
 Opt Thread Status CPU I/O Priority
 00000001 EVTW .262 290 50
 000000AB RUN .413 1454 99
 000000AA RUN .465 1549 99
 000000A9 RUN .445 1532 99
 000000A8 RUN .451 1547 99
 000000A7 RUN .414 1373 99
 000000A6 RUN .369 1268 99
 000000A5 RUN .421 1415 99
 000000A4 RUN .432 1465 99
 00000009 DEQW .132 185 99
 More...

Note: If you schedule a low priority job that is permanently active on your system and that
is supposed to use all spare CPU cycles for processing, then this prevents an automatic
statistics collection from becoming active because of the previously mentioned concept.
74 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Since column statistics are part of the table, they are saved at the time that a save operation
to the table occurs. The same applies when we restore a table. The column statistics that
were saved with the table are restored with the restore operation.

4.2 Using iSeries Navigator to manage statistics
iSeries Navigator provides a GUI to the statistics information through the use of statistic APIs.
The following functionality was added to iSeries Navigator in iSeries Access for Windows®
V5R2:

� View statistics
� Create statistics
� Delete statistics
� Refresh statistics
� Block statistics from being created for a table
� View statistics collection requests

Previous versions of iSeries Access for Windows do not contain any statistics collection
functions.

4.2.1 Viewing statistics
To view statistics for a table:

1. Open iSeries Navigator.

2. Select the library in which the table is located. A list of all the tables and SQL aliases in the
library appears in the right panel of the window as shown in the example in Figure 4-11.
Right-click the desired table name and select Statistic Data.

Figure 4-11 Viewing statistics
Chapter 4. Statistics Manager 75

3. The statistics viewer window (Figure 4-12) opens. This window shows the basic
information for each column for which statistics are created. It also provides buttons for the
maintenance of the column statistics. Select the column statistics in which you are
interested and click the Details button.

Figure 4-12 Statistics viewer window

Then you see the Statistic Data Details window (Figure 4-13) with detailed statistical
information. The General tab provides the following information:

� Statistics name: The name of the statistics can be changed.

� Timestamps: These are for the last request and initial creation, as well as the user that
requested each of them.

� Statistics data: This data shows the estimate for cardinality and the number of nulls.

� Record counts and changed record counts: This is the primary factor when
determining a statistics staleness.

If there is a significant change in the number of rows in the table or a significant increase in
the number of inserts, updates, and deletes, then the stale indicator is set to “Yes” in the
statistics viewer window (Figure 4-12).

� Translation table (if used)

� Total space used for all statistics (collected for this table)

� Refresh option: The Age statistics manually check box at the bottom of the window
allows for changing between manual and system refresh options.

The second and third tabs provide a view of the estimated value ranges and the frequent
values list. See 4.1.2, “Single-column statistics” on page 65, for more information and an
example of each statistic type.
76 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Figure 4-13 Statistic Data Details: General page

4.2.2 Creating new statistics
To create new column statistics:

1. Go to the statistics viewer window (see 4.2.1, “Viewing statistics” on page 75). Click the
New button on the statistics viewer window (Figure 4-12).

2. The New Statistics window (Figure 4-14) that opens lists the columns that are available for
statistics. The scrollable panel on the left contains all of the columns that do not currently
have column statistics available.

a. To select the column for a possible statistics collection, select the column name and
click the Add button.
Chapter 4. Statistics Manager 77

Figure 4-14 New Statistics window

After you select a column, the right pane shows the column that you selected, the
name of the column statistics, and the refresh option as shown in the example in
Figure 4-15. You can specify a unique own name for the column statistics for
maintenance purposes. You can also change the name of the column statistics after
adding it by clicking the system generated name that appears in the window. Selecting
the Age statistics manually check box sets the column statistics to manual refresh only.
If you do not select the Age statistics manually check box, the column statistics are
automatically refreshed by the system.

Figure 4-15 New Statistics window with a column selected
78 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

b. After you select all of the columns for which you want statistics collected, click one of
the buttons at the bottom of the window (Figure 4-15):

• Estimate Time: Provides an estimate of how long all of the selected statistics
collections will take

• Collect Immediately: Starts the collection of the statistics and locks the window
until the statistics collection finishes

• Collect Background: Places the requests on one of the user background request
queues

The statistics collection starts when system resources are available and the system
value QDBFSTCCOL allows it.

• Close button: Closes the window and disregards any columns that might have
been selected

The statistics collection starts when system resources are available and the system value
allows it.

4.2.3 Deleting a statistic
To delete a statistic:

1. Go to the statistics viewer window (see 4.2.1, “Viewing statistics” on page 75). In the
statistics viewer window (Figure 4-12 on page 76), select one or more column statistics
and then click the Remove button.

2. In the Confirm Object Deletion window (Figure 4-16), you can either click the Delete
button to delete the statistics or click the Cancel button to return to the statistics viewer
window without deleting the statistics.

Figure 4-16 Deleting a statistics collection
Chapter 4. Statistics Manager 79

4.2.4 Refreshing a statistic
To refresh a statistic:

1. Go to the statistics viewer window (see 4.2.1, “Viewing statistics” on page 75). In the
statistics viewer window (Figure 4-12 on page 76), select one or more statistics and then
click the Update button.

2. In the Update Statistics window (Figure 4-17), you can choose to click any of the following
buttons at the bottom of the Update Statistics window:

– Estimate Time: Provides an estimate of how long the statistics refresh will take

– Collect Immediately: Starts the collection of the statistics and locks the window until
the statistics collection finishes

– Collect Background: Places the requests on one of the user background request
queues

The statistics collection starts when system resources are available and the system
value allows it.

– Close: Closes the window and disregards any columns that might have been selected

Figure 4-17 Refreshing a statistics collection

4.2.5 Blocking a statistics collection
Blocking a collection disables the system from automatically collecting and refreshing column
statistics on the table. Manual statistics collections are still allowed for the table.

To block statistics collections:

1. Go to the statistics viewer window (see 4.2.1, “Viewing statistics” on page 75). In the
statistics viewer window (Figure 4-12 on page 76), click the Block Collection button.

2. The button then changes to Unblock collection as shown in Figure 4-18. You can click the
Unblock Collection button to enable automatic statistics collections again for the table.
80 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Figure 4-18 Blocking automatic statistics collections

4.2.6 Viewing statistics collection requests
iSeries Navigator allows users to view pending user-requested statistics collections that are
active. To view these requests, right-click Database in the left pane of the iSeries Navigator
window and select Statistic Requests as shown in Figure 4-19.

Figure 4-19 Opening statistics requests view
Chapter 4. Statistics Manager 81

Then the Statistics Requests window (Figure 4-20) opens. This window shows all user
requested statistics collections that are pending or active. It also shows all system requested
statistics collections that are active or have failed.

Figure 4-20 Statistics collections request viewer

4.3 Proactive statistics collection
As stated earlier, statistics collection and refreshing is, by default, a completely automated
process on the System i platform that normally does not require any user intervention.
However, there are some situations where you might want to control which column statistics
are gathered or refreshed and when this maintenance is to occur. In the following sections,
we describe these situations and show ways to influence the automatic collection of column
statistics.

4.3.1 Determining which column statistics exist
When thinking about proactively managing the collection of column statistics, you may first be
interested in knowing which column statistics were automatically collected so far on your
system. The answer can be determined by running the SQL statement shown in
Example 4-1.

Example 4-1 SQL to view a list of auto-collected statistics

SELECT filnam, mbrnam, colnam
 FROM TABLE(dbstcmd.lstdbfstc(

asp_id,
libname10,
table_name,
member_name))AS A

 WHERE crtusr='*SYS' ORDER BY 1,2,3;
82 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

This example assumes that you created the List Statistics Collection user-defined table
function (UDTF) shown in 4.4, “Statistics Manager APIs” on page 87, and stored the UDTF as
LSTDBFSTC in library DBSTCMD.

When using the UDTF, pad all input parameters with blanks at the end so that they contain 10
characters each. Also be sure to use all uppercase characters for the names. The possible
input values are:

� For asp_id: The actual ASP name, special value *SYSBAS or * (meaning current)

� For library10: The actual library name, special values *LIBL, *CURLIB or *USRLIBL

� For table_name: The actual table name or special value *ALL if an actual library name
was provided

� For member_name: The actual member name, special value *FIRST, *LAST or *ALL

For SQL created tables, the value *FIRST should be used.

For example, consider running the following statement with iSeries Navigator:

SELECT filnam, mbrnam, colnam
 FROM TABLE(dbstcmd.lstdbfstc('* ',
 'STAR10G ',
 '*ALL ',
 '*ALL ')) AS A

WHERE crtusr ='*SYS' ORDER BY 1,2,3;

This statement produces the results shown in Figure 4-21.

Figure 4-21 List of columns with statistics collected

The example code works on a per-library basis. If you want to learn about column statistics
for all libraries, you must run this statement multiple times.

A common follow-on to determine which statistics are automatically collected is to see how
you can automate the recreation of those column statistics. The procedure in Example 4-2
creates a database file that contains the commands to recreate these column statistics.
Again, this is based on the CL commands in Appendix A, “Statistics Manager API code
examples” on page 155.

Example 4-2 Creating a command list file to recreate column statistics

/* How to call the SQL-procedure for library SQTEST; must be run inside SQL.
/* call dbstcmd.stats_script('SQTEST’)

/* SQL script to create procedure ----------------------------

CREATE PROCEDURE dbstcmd.stats_script(IN libname VARCHAR(10))
LANGUAGE SQL
RESULT SETS 1
set option dbgview=*SOURCE
Chapter 4. Statistics Manager 83

sp: BEGIN

/* Library name has to be fixed-length 10 character string */
DECLARE libname10 CHAR(10);

/* Search System ASP - SYSBAS */
DECLARE asp_id CHAR(10) DEFAULT '* ';

/* Search all tables & files in the specified library */
DECLARE table_name CHAR(10) DEFAULT '*ALL ';

/* Search all members in the specified library */
DECLARE member_name CHAR(10) DEFAULT '*ALL ';

DECLARE current_table CHAR(10) DEFAULT NULL;
DECLARE current_mbr CHAR(10);
DECLARE columnlist CHAR(8000);

DECLARE temp_table_exists CONDITION FOR SQLSTATE '42710';

/* Result set cursor */
DECLARE statcmds CURSOR WITH RETURN FOR SELECT * FROM dbstcmd.cmdtable;

DECLARE CONTINUE HANDLER FOR temp_table_exists
 SET current_table=NULL;

CREATE TABLE dbstcmd.cmdtable
 (clcmd VARCHAR(10000));

SET libname10 = UPPER(libname);

FOR loopvar AS
 collist CURSOR FOR
 SELECT filnam, mbrnam, colnam
 FROM TABLE(dbstcmd.lstdbfstc(

asp_id,
libname10,
table_name,
member_name))AS A

 WHERE crtusr='*SYS' ORDER BY 1,2,3
 DO
 IF current_table IS NULL THEN
 SET current_table = filnam;
 SET current_mbr = mbrnam;
 SET columnlist = '('||strip(colnam)||')';
 ELSEIF (current_table=filnam AND current_mbr=mbrnam)
 THEN
 SET columnlist = strip(columnlist) || ' ('||strip(colnam)||')';
 ELSE
 INSERT INTO dbstcmd.cmdtable VALUES(
 'CRTDBFSTC FILE(' || strip(libname10) || '/' ||
 strip(current_table) || ') MBR(' || strip(current_mbr) ||
 ') COLLMODE(*BACKGROUND) STCCOLL(' || strip(columnlist) || ')'
);
 SET current_table = filnam;
 SET current_mbr = mbrnam;
 SET columnlist = '('||strip(colnam)||')';
 END IF;
84 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

 END FOR;

 /* Generate cmd string for last table the FOR loop was working on */
 IF current_table IS NOT NULL THEN
 INSERT INTO dbstcmd.cmdtable VALUES(
 'CRTDBFSTC FILE(' || strip(libname10) || '/' ||
 strip(current_table) || ') MBR(' || strip(current_mbr) ||
 ') COLLMODE(*BACKGROUND) STCCOLL(' || strip(columnlist) || ')'
);

 END IF;

 /* Pass back result to invoker */
 OPEN statcmds;

END;

Figure 4-22 shows the example output when running the procedure.

Figure 4-22 Output from the stats_script procedure

4.3.2 Reasons for proactive collection of column statistics
There are several scenarios in which the manual management (create, remove, refresh, and
so on) of column statistics may be beneficial and recommended.

High availability solutions
When considering the design of high availability solutions where data is replicated to a
secondary system by using journal entries, it is important to know that column statistics
information is not journaled. This means that, on your backup system, no column statistics
are available when you first start using that system. To prevent the “warm up” effect that this
may cause, you might want to propagate the column statistics that were gathered on your
production system and recreate them on your backup system manually.

You can accomplish this by using the SQL procedure shown in 4.3.1, “Determining which
column statistics exist” on page 82. You must create the CL commands that are described in
Appendix A, “Statistics Manager API code examples” on page 155, on your production
system and on your backup system. Then you can run the procedure for each table for which
you want to analyze or propagate the column statistics. The command list file generated by
this example can then be replicated to the backup system and run there to recreate column
statistics.
Chapter 4. Statistics Manager 85

Notice that the sample code only shows the column statistics that were generated by the
system. If you want to include user-requested column statistics, you must change the where
clause selection of the sample program accordingly.

Independent software vendor preparation
An independent software vendor (ISV) may want to deliver a solution to a customer that
already includes column statistics that are frequently used in the application instead of waiting
for the automatic statistics collection to create them. A way to accomplish this is to run the
application on the development system for some time and examine which column statistics
were created automatically. You can then generate a script file to be shipped as part of the
application that should be executed on the customer system after the initial data load took
place. Generating this script file can again be accomplished with the code shown in
Example 4-2 on page 83.

Business Intelligence environments
In a large Business Intelligence environment, it is quite common for large data load and
update operations to occur overnight. When column statistics are marked as stale only when
they are touched by the Statistics Manager, and then refreshed after first touch, you may want
to consider refreshing them manually after loading the data.

You can do this easily by toggling the system value QDBFSTCCOL to *NONE and then back
to *ALL. This causes all stale column statistics to be refreshed and starts collection of any
column statistics that were previously requested by the system but that are not yet available.
Since this process relies on the access plans stored in the plan cache, avoid performing a
system initial program load (IPL) before toggling QDBFSTCCOL since an IPL clears the plan
cache.

You should be aware that this procedure works only if you do not delete (drop) the tables and
recreate them in the process of loading your data. When deleting a table, access plans in the
plan cache that refer to this table are deleted. Information about column statistics on that table
is also lost. The process in this environment is either to simply add data to your tables or to
clear the tables instead of deleting them.

However, if you are working with a procedure that needs to delete and recreate the tables, two
different options are available. You can either analyze the tables for column statistics that
were created using the code shown in Example 4-2 on page 83 before you delete them. After
you recreate and load the tables, you can use this information to recreate column statistics.
Alternatively you can simply create column statistics over all the columns in all of the tables
using the statistics APIs described in Appendix A, “Statistics Manager API code examples” on
page 155. This may be a good option if the queries that run against your tables are difficult to
predict. This may also be good if the time window for your data load is large enough to allow
for the extra time needed to create all the column statistics.

Massive data updates
Updating rows in a column statistics-enabled table that significantly change the cardinality,
add new ranges of values, or change the distribution of data values can affect the
performance for queries when they are first run against the new data. This may happen
because, on the first run of such a query, the optimizer uses stale column statistics to make
decisions on the access plan. At that point, it starts a request to refresh the column statistics.

If you know that you are doing this kind of update to your data, you may want to toggle the
system value QDBFSTCCOL to *NONE and back to *ALL or *SYSTEM. This causes an
analysis of the plan cache. The analysis includes searching for column statistics that were
used in the generation of an access plan, analyzing them for staleness, and requesting
updates for the stale statistics.
86 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

If you massively update or load data and run queries against these tables at the same time,
then the automatic collection of column statistics tries to refresh every time 15% of the data is
changed. This can be redundant processing since you are still in the process of updating or
loading the data. In this case, you may want to block automatic statistics collection for the
tables in question and unblock it again after the data update or load finishes. An alternative is
to turn off automatic statistics collection for the whole system before updating or loading the
data and then switch it back on after the updating or loading has finished.

Backup and recovery
When thinking about backup and recovery strategies, keep in mind that creation of column
statistics is not journaled. Column statistics that exist at the time that a save operation occurs
are saved as part of the table and restored with the table. Any column statistics that are
created after the save took place are lost and cannot be recreated by using techniques such
as applying journal entries. This means that, if you have a rather long interval between save
operations and rely heavily on journaling for restoring your environment to a current state, you
must consider keeping track of column statistics that are generated after the latest save
operation. You can accomplish this again by using the program code shown in Example 4-2
on page 83.

We did some testing regarding the impact that the save activity has on the collection of
column statistics. These tests showed that both tasks run independently from each other.
This means that a save does not lock a table in a way so that statistics collection is inhibited
or vice versa. Statistics collections took longer, however, when the save activity was present.
Our tests showed that collecting statistics for one column on a 16 GB table took about four
times longer if the table was concurrently saved than without the save taking place.

4.4 Statistics Manager APIs
The following APIs are used to implement the statistics function of iSeries Navigator:

� Cancel Requested Statistics Collections (QDBSTCRS, QdbstCancelRequestedStatistics)
immediately cancels statistics collections that have been requested, but are not yet
completed or not successfully completed.

� Delete Statistics Collections (QDBSTDS, QdbstDeleteStatistics) immediately deletes the
existing completed statistics collections.

� List Requested Statistics Collections (QDBSTLRS, QdbstListRequestedStatistics) lists all
of the columns and combination of columns and file members that have background
statistic collections requested, but are not yet completed.

� List Statistics Collection Details (QDBSTLDS, QdbstListDetailStatistics) lists additional
statistics data for a single statistics collection.

� List Statistics Collections (QDBSTLS, QdbstListStatistics) lists all of the columns and
combination of columns for a given file member that has statistics available.

� Request Statistics Collections (QDBSTRS, QdbstRequestStatistics) allows you to request
one or more statistics collections for a given set of columns of a specific file member.

� Update Statistics Collection (QDBSTUS, QdbstUpdateStatistics) allows you to update the
attributes and to refresh the data of an existing single statistics collection.
Chapter 4. Statistics Manager 87

For more information about Statistics Manager APIs, refer to the following Information
Centers:

� V5R2

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm

� V5R3

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp

� V5R4

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

For examples of using the Statistics Manager APIs, see Appendix A, “Statistics Manager API
code examples” on page 155.
88 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Chapter 5. Monitoring and tuning SQE

System performance and performance tuning are high priority items on any system
administrator’s agenda. The objective is to maximize system resource utilization, while
achieving maximum performance throughput.

The previous chapters in this redbook introduce the functionality delivered with Structured
Query Language (SQL) Query Engine (SQE) on DB2 for i5/OS starting in OS/400 V5R2. New
and added functionality may come at a price if appropriate steps are not taken to tune your
particular environment and SQL queries to take full advantage of these features and
functions.

In this chapter, we discuss performance considerations that relate to SQL queries and SQE.
We begin by examining the tools that are available to monitor the performance of your
queries. Then we introduce a few methods that you can employ to tune your SQL queries to
achieve increased performance.

For more detailed information about this topic, refer to the existing IBM Redbook SQL
Performance Diagnosis on IBM DB2 Universal Database for iSeries, SG24-6654.

5

© Copyright IBM Corp. 2003, 2006. All rights reserved. 89

5.1 Query optimization feedback
Monitoring your queries is the first important step to ensure that your queries are tuned for
optimal performance. Consider this monitoring as a type of diagnostic tool for early
determination and identification of potential problem areas. By using the information obtained
through the monitoring processes, you can take the appropriate corrective actions.

In the following sections, we introduce and discuss the tools and methods that can assist you
in monitoring the performance of your SQL queries. Each tool uses the feedback mechanism
of the query optimizer (CQE or SQE).

We start by describing the different feedback mechanisms that query optimizer has in OS/400
and i5/OS. For V5R2 and V5R3 of OS/400, the feedback mechanisms are illustrated in
Figure 5-1. An SQL request goes through the optimization phase, and the feedback is sent to
the different tools such as:

� PRTSQLINF: Provides a way to view information pertaining to SQL packages, service
programs, and embedded SQL statements from programs and packages

� Query debug messages

� Visual Explain

� Database monitoring tools, such as the SQL Performance Monitors, also known as the
database monitors

� Visual Explain

� SQE Plan Cache

Figure 5-1 Query Optimization feedback mechanisms in V5R2 and V5R3

Note: In Figure 5-1, the SQE Plan Cache box is represented by a dotted line because,
in V5R2 and V5R3, the plan cache is not externalized to the user. There is no way to
see the contents of the plan cache.

SQE Plan
Cache

Query Optimization

SQL request

DB Monitor
Data

Job Log
Messages

SQL Information
from PGMs and

PKGs

Visual
Explain

Query Optimization Feedback
90 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

In V5R4 of i5/OS, additional tools were added to monitor and tune SQL queries. These tools
are shown along the top of Figure 5-2 and include:

� System wide Index Advisor or Indexes Advised

� SQE Plan Cache with the capability of visualizing the plan cache with filtering capabilities

Note that the SQE Plan Cache box is no longer dotted. This is because V5R4 has a
visualizer that externalizes the content of the plan cache.

� SQE Plan Cache Snapshots

Figure 5-2 Query Optimization feedback mechanisms in V5R4

The best way to learn how to be effective with these different performance analysis tools is to
attend the DB2 for i5/OS SQL Performance Workshop. You can find information about the
workshop on the Web at:

http://www.ibm.com/servers/eserver/iseries/service/igs/db2performance.html

For some of these tools, you can also download more information from the Educational
Resources for Business Partners Web site at the following address:

http://www.ibm.com/servers/enable/site/education/ibo/view.html?oc#db2

In the following sections, we describe each of the tools.

Indexes
Advised

SQE Plan
Cache

Query
Optimization

SQL request

Detailed
DB Monitor

Data

Debug
Job Log

Messages
Print SQL

Information
Messages

Visual
Explain

Query Optimization Feedback

Summarized
DB Monitor

Data

SQE Plan
Cache

Snapshots
Chapter 5. Monitoring and tuning SQE 91

http://www-03.ibm.com/servers/eserver/iseries/service/igs/db2performance.html
http://www.ibm.com/servers/enable/site/education/ibo/view.html?oc#db2

5.1.1 Debug messages
The SQL Query Engine supports the generation of debug messages. However, the debug
messages were not enhanced for any of the access methods used by SQE. The SQE
optimizer chooses and uses the closest CQE debug message to the access method that it is
using. Thus, the debug messages for an SQL request processed by SQE may not be
completely accurate. For this reason, Visual Explain and the Database Monitor should be
your preferred tools for analyzing SQE Performance.

There are several ways in which you can direct the system to generate debug messages
while running your SQL statements, including:

� Selecting the option in the Run SQL Scripts interface of iSeries Navigator
� Using the Start Debug (STRDBG) CL command
� Setting the QAQQINI table parameter
� Using Visual Explain

You can choose to write only the debug messages for a particular job to its job log. Using
iSeries Navigator, you click Options → Include Debug Messages in Job Log as shown in
Figure 5-3.

Figure 5-3 Enabling debug messages for a single job

After you run your query, view the job log. Select View → Joblog on the Run SQL Scripts
window. In our example, we used the following SQL statement:

SELECT * FROM Employee
WHERE WorkDept BETWEEN 'A01' AND 'E01'
ORDER BY LastName
OPTIMIZE FOR ALL ROWS;

The detailed job log provides information that you can use to identify and analyze potential
problem areas in your query. Figure 5-4 shows an example of the debug messages that are in
the job log after you run the previous query.

After you enable these settings for a particular job, only debug messages that relate to
queries that are running in that job are written to the job log. You see the same debug
messages with this option as those explained later when the QAQQINI parameter
MESSAGES_DEBUG is set to *YES. You also see additional SQL messages, such as
“SQL7913 - ODP deleted and SQL7959 - Cursor CRSRxxxx closed,” in the job log.
92 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Figure 5-4 Job log debug messages

Select any of the debug messages that are displayed in the job log. You can click File →
Details to obtain more detailed information about the debug message. Figure 5-5 shows an
example of a detailed debug message that is displayed.

Figure 5-5 Detailed debug message information
Chapter 5. Monitoring and tuning SQE 93

When running SQL interactively, either through a 5250 session or via the Run SQL Scripts
function in iSeries Navigator, you can also use the STRDBG CL command to generate debug
messages in your job log. Remember that you must also run the Start Server Job
(STRSRVJOB) CL command if your query runs as a batch job.

By setting the value of the QAQQINI parameter MESSAGES_DEBUG to *YES, you can direct
the system to write detailed information about the execution of your queries into the job’s job
log. To activate this setting through the Run SQL Scripts interface of iSeries Navigator:

1. Select the QAQQINI table that you want to use as explained in 5.1.8, “Query options table
(QAQQINI)” on page 130.

2. In the QQAQQINI table, select the MESSAGES_DEBUG parameter, and change the
parameter value as shown in Figure 5-6.

Figure 5-6 Enabling debug messages in QAQQINI

3. After you make the appropriate change, close the window.

4. In the Change Query Attributes window (Figure 5-40 on page 131), click OK to save your
changes.

Later in this chapter, we provide additional information about managing the QAQQINI table.

Important: Changes made to the QAQQINI table take effect immediately. They affect all
users and queries that use this table. For example, if you set the MESSAGES_DEBUG
parameter to *YES in a particular QAQQINI table, all queries that use that QAQQINI table
write debug messages to their respective job logs.
94 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

5.1.2 Print SQL Information
The information contained in SQL packages, service programs, and embedded SQL
statements can also assist in identifying potential performance problems in your queries.

To view the information that pertains to the implementation and execution of your query,
select an SQL package from iSeries Navigator. Right-click the SQL Package name and
select Explain SQL as shown in Figure 5-7. This is equivalent to using the Print SQL
Information (PRTSQLINF) CL command.

Figure 5-7 Selecting to Print SQL Information

The information in the SQL package is comparable to the debug messages which we discuss
in 5.1.1, “Debug messages” on page 92. However, there is more detail in the first level
SQLxxxx messages. Figure 5-8 shows an example of the SQL package information that can
be displayed.

Figure 5-8 Viewing the SQL package information
Chapter 5. Monitoring and tuning SQE 95

As you can see in Figure 5-8, information that pertains to the join order of the files, the access
methods used in the implementation of the query, and runtime statistics are available. Notice
the messages that indicate which QAQQINI query options file was used for executing the
query and whether this query implementation used symmetric multiprocessing (SMP).

You can obtain this information by using the PRTSQLINF CL command as shown here:

PRTSQLINF OBJ(library_name/program_name) OBJTYPE(*SQLPKG)

The PRTSQLINF CL command directs the output data to a spooled file, from where you can
display or print the information.

5.1.3 Database monitoring tools: SQL Performance Monitors
Information that is gathered by the SQL Performance Monitors provides the most complete
picture about a query’s execution. You can gather performance statistics for a specific query
or for every query on the server. In general, there are two categories of performance data
(summary and detailed) and several ways to invoke the collection of the information. The two
categories of performance data are:

� Summary SQL Performance Monitor: Summary SQL performance data is collected via
a memory-resident database monitoring capability that can be managed with application
program interfaces (APIs) or with the iSeries Navigator. When the monitor is paused or
ended, the data is written to disk so it can be analyzed. Since the information is stored
only in memory while it is collected, the performance impact on the system is minimal, but
the trade-off is that only summary data is gathered.

� Detailed SQL Performance Monitor: Detailed SQL performance data is collected in real
time and recorded immediately to a database table. The monitor does not need to be
paused or ended to begin analysis of the results. Since this monitor saves the data in real
time, it may have a greater impact on overall system performance, depending on how
many jobs are monitored.

Notes:

� The information retrieved from an SQL package may not accurately reflect the access
plan used by the last execution of the SQL query. For example, if circumstances at
execution time cause the query to be re-optimized and the package or program is
locked, then a new access plan is dynamically generated and placed in the plan cache
(for SQE use). The version stored in the package or program is not updated.

� The information or messages that are shown with the PRTSQLINF were not enhanced
for any of the new access methods used by SQE. This tool will become less and less
strategic in the near future due to the more modern tools that are provided in V5R4.
96 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Running database performance monitor tools
There are two methods to start and end the collection of SQL performance data as explained
in the following sections.

Using iSeries Navigator on OS/400 V5R2 and V5R3
The easiest way to start collecting performance data for a query is to use the function
provided by iSeries Navigator as shown in Figure 5-9. As shown, in the left pane, select SQL
Performance Monitors. With this function, you can select the option to create either a
detailed or a summary SQL Performance Monitor. Right-click and select New → Detailed.

Figure 5-9 Creating a new SQL Performance Monitor in V5R2 and V5R3
Chapter 5. Monitoring and tuning SQE 97

To collect detailed information about a single query job and invoke the analysis of the
performance data:

1. In the New Detailed SQL Performance Monitor window (Figure 5-10), complete the
following actions:

a. On the General tab, type a name for the monitor and select a library name into which
the performance data will be collected.

Figure 5-10 Specifying the name and location of the new SQL Performance Monitor
98 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

b. Click the Monitored Jobs tab.

c. On the Monitored Jobs page (Figure 5-11), specify the jobs for which you want to
collect performance data. You see a list of all jobs that are currently active on your
server. From here, you can monitor one or more jobs of your choice. Select the relevant
jobs.

d. Click OK.

Figure 5-11 Selecting jobs for the SQL Performance Monitor
Chapter 5. Monitoring and tuning SQE 99

2. In the right pane of iSeries Navigator (Figure 5-12), notice that your new SQL
Performance Monitor is displayed with a status of Started. Your SQL Performance Monitor
is now ready to start collecting the performance data of the queries running in the
specified jobs.

Figure 5-12 SQL Performance Monitor status

3. After you run the query, end the SQL Performance Monitor and analyze the performance
data collected. To end the performance monitor, right-click the SQL Performance Monitor
name and select End. Alternatively, you can select File → End from the menu bar.

Tip: You can start, end, analyze, and delete performance data collections for your
particular job directly from the Run SQL Scripts interface of iSeries Navigator. Simply use
the Monitor option on the menu bar.
100 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Using iSeries Navigator on i5/OS V5R4
In V5R4, a wizard is included to start an SQL Performance Monitor. In iSeries Navigator, you
select SQL Performance Monitors, right-click, and select New → SQL Performance
Monitor as shown in Figure 5-13.

Figure 5-13 Creating a new SQL Performance Monitor in V5R4
Chapter 5. Monitoring and tuning SQE 101

With this function, you can create either a detailed or a summary SQL Performance Monitor.
To collect detailed information about a single query job and invoke the analysis of the
performance data:

1. In the SQL Performance Monitor Wizard window (Figure 5-14), specify a name for the
monitor and a schema name into which the performance data will be collected. For Type,
you can specify either a Detailed or Summary report from the monitor. In this example, we
choose Detailed. Click Next.

Figure 5-14 Specifying the name and location of the new SQL Performance Monitor

2. In the next panel (Figure 5-15), select the filters to obtain the information needed. Notice
the different filters that have been added in V5R4. In V5R2 and V5R3, it was not possible
to narrow the performance collection the way you can in V5R4.

Figure 5-15 Selecting filters
102 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

In V5R4, when you create a detailed monitor, you can limit the amount of data that is
collected, by specifying which filter to use to capture only the information that you want.
The different filters are explained here:

– Minimum estimated query runtime

Select this filter to include queries that exceed a specified amount of time. Select a
number and then a unit of time.

– Job name

Select this option to filter by a specific job name. Specify a job name in the field. You
can specify the entire ID or use a wildcard. For example, QZDAS* finds all jobs where
the name starts with QZDAS.

– Job user

Select this option to filter by job user. Specify a user ID in the field. You can specify the
entire ID or use a wildcard. For example, QUSER* finds all user IDs where the name
starts with QUSER.

– Current user

Select this option to filter by the current user of the job. Specify a user ID in the field.
You can specify the entire ID or use a wildcard. For example, QSYS* finds all users
where the name starts with QSYS.

– Internet address

Select this option to filter by Internet access. The format must be nnn.nnn.nnn.nnn, for
example, 5.5.199.199.

– Only queries that access these tables

Select this option to filter by only queries that use certain tables. Click Browse to select
the tables to include. To remove a table from the list, select the table and click Remove.
You can specify a maximum of ten table names.

– Activity to monitor

Select this option to collect monitor output for user-generated queries or for both
user-generated and system-generated queries.

Click Next.
Chapter 5. Monitoring and tuning SQE 103

3. If you did not narrow your performance collection by using the filters, when you click the
Next button, the Select the jobs panel (Figure 5-16) opens.

a. On this panel, click the Add button and then the Browse Jobs window (see inset in the
lower left corner of Figure 5-16) opens.

b. Select the jobs that you want to collect performance data by clicking the job and then
click the Add button.

c. Click Next.

If you did select any of the filters, then after you click the Next button, the details panel
(Figure 5-17) opens.

Figure 5-16 Selecting jobs for SQL Performance Monitor
104 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

4. Figure 5-17 shows the details of the monitored jobs. Review this page and click Finish.

Figure 5-17 Details of the monitored jobs in the SQL Performance Monitor Wizard

5. In iSeries Navigator, notice that your new SQL Performance Monitor is displayed with a
status of Started in the right pane (Figure 5-18). Your SQL Performance Monitor is now
ready to start collecting the performance data of the queries running in the specified jobs.

Figure 5-18 SQL Performance Monitor status

6. After you run the query, end the SQL Performance Monitor and analyze the performance
data collected. To end the performance monitor, right-click the SQL Performance Monitor
name and select End. Alternatively you can select File → End from the menu bar.
Chapter 5. Monitoring and tuning SQE 105

Using the Start Database Monitor command
The Start Database Monitor (STRDBMON) command is an i5/OS CL command that provides
another interface into the Detailed SQL Performance Monitor data collection facility. To start
collecting performance data for your query, use the STRDBMON CL command as shown in
the following example:

STRDBMON OUTFILE(SAMPLEDB01/IS3101_CH5) JOB(003241/QUSER/QZDASOINIT) TYPE(*SUMMARY)
COMMENT('Example of STRDBMON')

After you run your query, you can stop the collection of performance data by using the End
Database Monitor (ENDDBMON) CL command, as shown here:

ENDDBMON JOB(003241/QUSER/QZDASOINIT)

You can now proceed to analyze the collected performance data. For ease of use, the
structure and layout of the performance data are identical to the collection created by the SQL
Performance Monitor tool that we explained in “Using iSeries Navigator on i5/OS V5R4” on
page 101. This format allows you to use the predefined reports in iSeries Navigator to
analyze performance data.

To analyze Database Monitor data using the predefined reports, you must import the
performance data collection into SQL Performance Monitor:

1. In iSeries Navigator, select SQL Performance Monitors.

2. Import the data. Select File → Import.

3. Specify the details for importing your Database Monitor performance data. For V5R2 and
V5R3, you do this in the Import SQL Performance Monitor Files window (Figure 5-19).

Figure 5-19 Import SQL Performance Monitor Files window in V5R2 and V5R3
106 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

For V5R4, you specify the details for importing the data in the Import SQL Performance
Data window shown in Figure 5-20.

Figure 5-20 Import SQL Performance Data window in V5R4

Assign a name for your SQL Performance Monitor data collection and specify the file or
table and library or schema that contains the performance data.

Back in iSeries Navigator (Figure 5-21), your newly created SQL Performance Monitor now
reflects a status of Imported. Analyze the data using the predefined SQL Performance
Monitor reports as explained in the next section.

Figure 5-21 Analyzing the Database Monitor data using SQL Performance Monitor

Note: It is possible to run the Database Monitor on one System i machine and import the
data collected to a separate system to perform the analysis.
Chapter 5. Monitoring and tuning SQE 107

Analyzing SQL performance data on OS/400 V5R2 and V5R3
To access the collected performance data using iSeries Navigator:

1. Select the relevant SQL Performance Monitor. Select File → Analyze Results.

2. In the SQL monitor for problem Query Results window (Figure 5-22), you can select from
a variety of predefined reports to view performance-related information about your query.
Select the reports that you want to view. Click View Results to automatically format and
display the reports.

Figure 5-22 Selecting SQL Performance Monitor reports

3. Figure 5-23 shows examples of some predefined reports that are currently available. By
analyzing the contents of these reports, you can identify problem areas in your queries
and take the appropriate steps to remedy such problems.

SQL Performance Monitor also lets you retrieve the SQL statements of any of these
reports to use as a starting point for creating your own analysis reports. To retrieve the
SQL statements, select the report (Figure 5-22) that you need and then select Modify
Selected Queries.

The SQL statements are retrieved and displayed in the iSeries Navigator Run SQL Scripts
window, from where you can modify and execute it.
108 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Figure 5-23 SQL Performance Monitor predefined reports

SQL performance reports information
The predefined SQL Performance Monitor Summary Results reports include the following
information:

� General Summary: Contains information that summarizes all SQL activity. This
information provides the user with a high-level indication of the nature of the SQL
statements used. For example, it may indicate how much SQL is used in the application,
whether the SQL statements are mainly short-running or long running, and whether the
number of results returned is small or large.

� Job Summary: Contains a row of information for each job. Each row summarizes all SQL
activity for that job. This information can be used to indicate which jobs on the system are
the heaviest users of SQL, and therefore, which ones are candidates for performance
tuning. The user may then want to start a separate detailed performance monitor on an
individual job for more detailed information without monitoring the entire system.

� Operation Summary: Contains a row of summary information for each type of SQL
operation. Each row summarizes all SQL activity for that type of SQL operation. This
information provides the user a high-level indication of the type of SQL statements that are
used. For example, it may indicate whether the applications are mainly read-only or
whether there is a large amount of update, delete, or insert activity. This information can
be used to try specific performance tuning techniques. For example, if a large amount of
INSERT activity is occurring, you may want to use the Override Database File (OVRDBF)
command to increase the blocking factor or use the QDBENCWT API.

� Program Summary: Contains a row of information for each program that performed SQL
operations. Each row summarizes all SQL activity for that program. This information can
be used to identify which programs use the most or most expensive SQL statements. The
programs are then potential candidates for performance tuning. Note that a program name
is available only if the SQL statements are embedded inside a compiled program. SQL
statements that are issued through Open Database Connectivity (ODBC), Java Database
Connectivity (JDBC), or Object Link Embedded (OLE) Database (DB) have a blank
program name unless they result from a procedure, function, or trigger.

� SQL Attributes Summary: Contains a summary of the optimization attributes. This option
is available only when you use a detailed SQL Performance Monitor. This information
provides the user a high-level indication of some of the key SQL attributes that are used.
This can help identify attributes that potentially are more costly than others. For example,
in some cases, ALWCPYDTA(*YES) can allow the optimizer to run a query faster if live
Chapter 5. Monitoring and tuning SQE 109

data is not needed by the application. Also, *ENDMOD and *ENDPGM are much more
expensive to run than *ENDJOB or *ENDACTGRP.

� Isolation Level Summary: Contains a summary of the number of statements that were
run under each isolation level. This option is available only when you use a detailed SQL
Performance Monitor. This information provides the user a high-level indication of the
isolation level used. The higher the isolation level is, the higher the chance of contention is
between users. For example, a high level of Repeatable Read or Read Stability use may
likely produce a high level of contention. The lowest level isolation level that still satisfies
the application design requirement should always be used.

� Error Summary: Contains a summary of any SQL statement error messages or warnings
that were captured by the monitor.

� Statement Use Summary: Contains a summary of the number of statements that are
executed and the number of times they are executed during the performance monitor
collection period. This option is available only when you use a detailed SQL Performance
Monitor. This information provides the user a high-level indication of how often the same
SQL statements are used multiple times. If the same SQL statement is used more than
once, it may be cached and subsequent uses of the same statement are less expensive. It
is more important to tune an SQL statement that is executed many times than to tune an
SQL statement that is run only once.

� Open Summary: Contains a summary of the number of statements that perform an open
and the number of times they are executed during the performance monitor collection
period. This option is available only when you use a detailed SQL Performance Monitor.

This information provides the user a high-level indication of how often an Open Data Path
(ODP) is reused. The first open of a query in a job is a full open. After this, the ODP may
be pseudo-closed and then reused. An open of a pseudo-closed ODP is far less
expensive than a full open. The user can control when an ODP is pseudo-closed and how
many pseudo-closed ODPs are allowed in a job by using the Change Query Attributes
action in the Database Folder of iSeries Navigator. In rare cases, an ODP is not reusable.
High usage of non-reusable ODPs may indicate that the SQL statements causing the
non-reusable ODPs should be rewritten.

� Data Access Summary: Contains a summary of the number of SQL statements that are
read-only versus those that modify data. This option is available only when you use a
detailed SQL Performance Monitor. This information provides the user with a less detailed
view of the type of SQL statements that are used than what is available through the
Operation Summary. This information can be used to try specific performance tuning
techniques. For example, if a large amount of INSERT activity is occurring, you may want
to use the OVRDBF command to increase the blocking factor or use the QDBENCWT API.

� Statement Type Summary: Contains a summary of whether SQL statements are in
extended dynamic packages, system-wide statement cache, regular dynamic, or static
SQL statements. This option is available only when you use a detailed SQL Performance
Monitor.

This information provides the user a high-level indication of the number of the SQL
statements that were fully parsed and optimized (dynamic) or whether the SQL statements
and access plans were stored either statically in a program, procedure, function, package,
or trigger. An SQL statement that must be fully parsed and optimized is more expensive
than the same statement that is static, extended dynamic, or cached in the system-wide
statement cache.
110 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

� Parallel Processing Summary: Contains a summary of the parallel processing
techniques used. This option is available only when you use a detailed SQL Performance
Monitor.

This information provides the user a high-level indication of whether one of the many
parallel processing techniques was used to execute the SQL statements. Most parallel
processing techniques are available only if Symmetric Processing for iSeries is installed.
After the option is installed, the user must specify the degree of parallelism using the
Change Query Attributes action in the Database Folder of iSeries Navigator, the Change
Query Attribute (CHGQRYA) CL command, or the QQRYDEGREE system value.

� Optimizer Summary: Contains a summary of the optimizer techniques used. This option
is available only when you use a detailed SQL Performance Monitor. This information
provides the user a high-level indication of the types of queries and optimizer attributes
used. The user can use this information to determine whether the types of queries are
complex (use of subqueries or joins) and to identify attributes that may deserve further
investigation.

For example, an access plan rebuild occurs when the prior access plan is no longer valid
or if a change has occurred that identified a better access plan. If the number of access
plan rebuilds is high, it may indicate that some application redesign may be necessary.
Also, if the join order is forced, this may indicate that the access plan chosen is not the
most efficient. However, it may also indicate that someone has already tuned the SQL
statement and explicitly forced the join order because experimentation showed that a
specific join order should always provide the best result. Forcing the join order should be
used sparingly. It prevents the optimizer from analyzing any join order than the one that is
specified.

The Detailed Results reports contain additional and more detailed information. This
information includes:

� Basic statement information: Provides the user with basic information about each SQL
statement. The most expensive SQL statements are presented first in the list, so at a
glance, the user can see which statements (if any) were long running.

� Access plan rebuild information: Contains a row of information for each SQL statement
that required the access plan to be rebuilt. Re-optimization is occasionally necessary for
one of several reasons such as a new index being created or dropped, applying a program
temporary fix (PTF), and so on. Excessive access plan rebuilds may indicate a problem.

� Optimizer information: Contains a row of optimization information for each subselect in
an SQL statement. This information provides the user with basic optimizer information
about SQL statements that involve data manipulation (selects, opens, updates, and so
on). The most expensive SQL statements are presented first in the list.

� Index create information: Contains a row of information for each SQL statement that
required an index to be created. Temporary indexes may need to be created for several
reasons such as to perform a join, to support scrollable cursors, or to implement Order by
or Group by.

The indexes that are created may contain keys only for rows that satisfy the query. Such
indexes are known as sparse indexes. In many cases, index creation may be perfectly
normal and the most efficient way to perform the query. However, if the number of rows is
large, or if the same index is repeatedly created, you can create a permanent index to
improve performance of this query. This may be true regardless of whether an index was
advised.

� Index used information: Contains a row of information for each permanent index that an
SQL statement used. This information can be used to tell quickly if any of the permanent
indexes were used to improve the performance of a query.
Chapter 5. Monitoring and tuning SQE 111

Permanent indexes are typically necessary to achieve optimal query performance. This
information can also help determine how often a permanent index was used by in the
statements that were monitored. Indexes that are never (or rarely) used should be
dropped to improve the performance of inserts, updates, and deletes to a table. Before
dropping the index, you may want to look at the last used date in the description
information for the index.

� Open information: Contains a row of information for each open activity for each SQL
statement. The first time (or times) that an open occurs for a specific statement in a job, it
is a full open. A full open creates an ODP that is used to fetch, update, delete, or insert
rows. Since there are typically many fetch, update, delete, or insert operations for an ODP,
as much processing of the SQL statement as possible is done during the ODP creation so
that the same processing is not done on each subsequent input/output (I/O) operation. An
ODP may be cached at close time so that, if the SQL statement is run again during the job,
the ODP is reused. Such an open is called a pseudo open, which is less expensive than a
full open.

� Index advised information: Provides information about advised indexes. This option is
available only when you use a detailed SQL Performance Monitor. It can be used to
quickly tell if the optimizer recommends creating a specific permanent index to improve
performance.

While creating an index that is advised usually improves performance, this is not a
guarantee. After the index is created, more accurate estimates of the actual costs are
available. The optimizer may decide, based on this new information, that the cost of using
the index is too high. Even if the optimizer does not use the index to implement the query,
the new estimates available from the new index provide more detailed information to the
optimizer that may produce better performance.

� Governor timeout information: Provides information about all optimizer timeouts. This
option is available only when you use a detailed SQL Performance Monitor. This can be
used to determine how often users attempt to run queries that would exceed the governor
timeout value. A large number of governor timeouts may indicate that the timeout value is
set too low.

� Optimizer timeout information: Provides information about any optimizer timeouts. This
option is available only when you use a detailed SQL Performance Monitor. Choosing the
best access plan for a complex query can be time consuming. As the optimizer evaluates
different possible access plans, a better estimate of how long a query takes shape. At
some point, for dynamic SQL statements, the optimizer may decide that further time spent
optimizing is no longer reasonable and use the best access plan up to that point. This may
not be the best plan available.

If the SQL statement is run only a few times or if the performance of the query is good, an
optimizer timeout is not a concern. However, if the SQL statement is long running, or if it
runs many times and the optimizer times out, a better plan may be possible by enabling
extended dynamic package support or by using static SQL in a procedure or program.
Since many dynamic SQL statements can be cached in the system-wide statement cache,
optimizer timeouts are not common.

� Procedure call information: Provides information about procedure call usage. This
option is available only when you use a detailed SQL Performance Monitor. Performance
of client/server or Web-based applications is best when the number of round trips between
the client and the server is minimized, because the total communications cost is
minimized. A common way to accomplish this is to call a procedure that performs a
number of operations on the server before returning results, rather than to send each
individual SQL statement to the server.

� Hash table information: Provides information about any temporary hash tables that were
used. This option is available only when you use a detailed SQL Performance Monitor.
112 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Hash join and hash grouping may be chosen by the optimizer to perform an SQL
statement because it results in the best performance. However, hashing can use a
significant amount of temporary storage. If the hash tables are large, and several users
are performing hash joins or grouping at the same time, the total resources necessary for
the hash tables may become a problem.

� Distinct processing information: Provides information about any DISTINCT processing.
This option is available only when you use a detailed SQL Performance Monitor. SELECT
DISTINCT in an SQL statement may be a time consuming operation because a final sort
may be needed for the result set to eliminate duplicate rows. Use DISTINCT in long
running SQL statements only if it is necessary to eliminate the duplicate resulting rows.

� Table scan: Contains a row of information for each subselect that required records to be
processed in arrival sequence order. Table scans of large tables can be time consuming. A
long running SQL statement may indicate that an index is required to improve
performance.

� Sort information: Contains a row of information for each sort that an SQL statement
performed. Sorts of large result sets in an SQL statement may be a time-consuming
operation. In some cases, an index can be created that eliminates the need for a sort.

� Temporary file information: Contains a row of information for each SQL statement that
required a temporary result. Temporary results are sometimes necessary based on the
SQL statement. If the result set inserted into a temporary result is large, you may want to
investigate why the temporary result is necessary. In some cases, you can modify the SQL
statement to eliminate the need for the temporary result.

For example, if a cursor has an attribute of INSENSITIVE, a temporary result is created.
Eliminating the keyword INSENSITIVE usually removes the need for the temporary result,
but your application then sees changes as they are occur in the database tables.

� Data conversion information: Contains a row of information for each SQL statement that
required data conversion. For example, if a result column has an attribute of INTEGER,
but the variable of the result is returned to DECIMAL, the data must be converted from
integer to decimal. A single data conversion operation is inexpensive. However, if the
operation is repeated thousands or millions of times, it can become expensive. In some
cases, it is easiest to change one attribute so a faster direct map can be performed. In
other cases, conversion is necessary because no exact matching data type is available.

� Subquery information: Contains a row of subquery information. This information can
indicate which subquery in a complex SQL statement is the most expensive.

� Row access information: Contains information about the rows returned and I/Os
performed. This option is available only when you use a detailed SQL Performance
Monitor. This information can indicate the number of I/Os that occur for the SQL
statement. A large number of physical I/Os can indicate that a larger pool is necessary or
that the Set Object Access (SETOBJACC) command may be used to pre-bring some of
the data into main memory.

� Lock escalation information: Provides information about any lock escalation. This option
is available only when you use a detailed SQL Performance Monitor. In a few rare cases, a
lock must be escalated to the table level instead of the row level. This can cause much
more contention or lock wait timeouts between a user that is modifying the table and the
reader of the table. A large number of lock escalation entries may indicate a contention
performance problem.

� Bitmap information: Provides information about any bitmap creations or merges. This
option is available only when you use a detailed SQL Performance Monitor. Bitmap
generation is typically used when performing index ANDing or ORing. This typically is an
efficient mechanism.
Chapter 5. Monitoring and tuning SQE 113

� Union merge information: Provides information about any union operations. This option
is available only when you use a detailed SQL Performance Monitor. UNION is a more
expensive operation than UNION ALL because duplicate rows must be eliminated. If the
SQL statement is long running, make sure it is necessary that the duplicate rows be
eliminated.

� Group By information: Provides information about any Group by operations. This option
is available only when you use a detailed SQL Performance Monitor.

� Error information: Provides information about any SQL statement error messages and
warnings that were captured by the monitor.

� Start and end monitor information: Provides information about any start and end
Database Monitor operations. This option is available only when you use a detailed SQL
Performance Monitor.

The Extended Detailed Results reports provide essentially the same information as these
reports, but with added levels of detail.

For a complete definition of the various performance collection tables and a description of
each of the table columns, see the DB2 Universal Database for iSeries - Database
Performance and Query Optimization manual in the iSeries Information Center at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

When you reach this site, click Database. In the right panel, under DB2 manuals, select
Performance and Query Optimization.

Analyzing SQL performance data on V5R4
The reporting capability of the SQL Performance Monitor in V5R4 has been greatly enhanced
with a more flexible and intuitive drill-down reporting tool.

To access the reporting tool, using iSeries Navigator, select the relevant SQL Performance
Monitor. Select File → Analyze Results. The Analysis Overview for Imported Monitor
window (Figure 5-24) opens. Note that this is the enhanced interface, called the dashboard,
for the reports provided in V5R4.

In addition, when a green check mark is displayed under the Summary or Statements column,
as shown in Figure 5-24, you can select that row and click the Summary or Statements button
to view information about that row type.

Tip: For a quick of way to determine whether a query was processed by SQE or CQE, you
can run the following SQL statement on your performance data:

select QQC16 from library.performance_data_table where QQRID = 3014

If column QQC16 contains Y, then your query was processed by SQE.
114 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Figure 5-24 Selecting SQL Performance Monitor reports

The information is displayed in the SQL Monitor for Query - SQL Naming - Statements
window (Figure 5-25).

Figure 5-25 Statements and Summary window
Chapter 5. Monitoring and tuning SQE 115

Figure 5-26 shows additional examples of some of the reports that are currently available. By
analyzing the contents of these reports, you can identify problem areas in your queries and
take the appropriate steps to remedy such problems.

Figure 5-26 SQL Performance Monitor predefined reports

The SQL Performance Monitor also lets you retrieve the SQL statements of any of these
reports to use as a starting point for creating your own analysis reports. To retrieve the SQL
statements, select the report that you need. Then select the statement, right-click it, and
select Work with Statements (Figure 5-27). The SQL statements are retrieved and displayed
in the iSeries Navigator Run SQL Scripts window, from where you can execute it, modify it,
and use Visual Explain to explain it.

Figure 5-27 Working with statements
116 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Running Visual Explain on the SQL Performance Monitor data
From an SQL Performance Monitor, it is useful to select an SQL statement and to explain it
using Visual Explain. You can do this in OS/400 V5R2 and V5R3, as well as in i5/OS V5R4.
The difference is that, in V5R4, the interface was changed. We explain both interfaces in this
section.

From the SQL Performance Monitors status panel (Figure 5-18 page 105), select a monitor
row and right-click it. In V5R2 and V5R3, there is an option called List Explainable
Statements, and in V5R4, it is called Show Statements.

In V5R2 and V5R3, you are prompted with the SQL monitor for problem Query Explainable
Statement window (Figure 5-28).

Figure 5-28 List Explainable Statements in V5R2 and V5R3
Chapter 5. Monitoring and tuning SQE 117

In V5R4, you are prompted with the Query Monitor Statements window (Figure 5-29). From
this window, you can select an SQL statement and click the Run Visual Explain button. This
takes you directly to the Visual Explain panel (Figure 5-30). Also, you can run a separate
monitor for the statement with performance problems.

Figure 5-29 Statements from a monitor in V5R4

5.1.4 Visual Explain
One of the easiest ways to gather information about the execution of an SQL statement is
through the Visual Explain interface. Visual Explain is a component of iSeries Navigator. It
provides a full-color graphical representation of how the optimizer implemented your query. It
presents a tree-based diagram that shows which tables and indexes were used in the query,
how they were joined (where applicable), and the data flow through the query process until
the final selection or output step. In addition to the graphical overview, it provides detailed
information, presented in separate window panes, that describes how the optimizer
implemented the query.

Another added advantage of Visual Explain is its ability to explain the SQL statement, with
associated detailed information, through a simulation process, without actually running the
statement. This is especially useful for analyzing queries and simulating changes in your
production environment. You can select this feature after you invoke the SQL Script Center by
selecting Visual Explain → Explain on the menu bar.

These features make Visual Explain a great tool for architecting and modeling new queries,
as well as for analyzing and tuning existing queries. For more information about Visual
118 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Explain, refer to the IBM Redbook Advanced Functions and Administration on DB2 Universal
Database for iSeries, SG24-4249. Also refer to the IBM Redbook SQL Performance
Diagnosis on IBM DB2 Universal Database for iSeries, SG24-6654.

Figure 5-30 shows an example of the information presented by Visual Explain when selecting
either Visual Explain → Explain or Visual Explain → Run and Explain. In the examples
that follow, we used the following SQL statement:

SELECT * FROM Employee
WHERE WorkDept BETWEEN 'A01' AND 'E01'
AND LastName IN ('Smith', 'Jones', 'Peterson')
OPTIMIZE FOR ALL ROWS

Notice the optimizer messages displayed in the bottom pane of the window. These are similar
to the debug messages shown in Figure 5-4 page 93. If you double-click any of these
messages, you receive additional second-level text messages and extended detailed
information as shown in Figure 5-30.

The Visual Explain interface also details information about the tables and indexes used in
your query. When you select a table or index icon on the left hand graphical layout, Visual
Explain presents you with detailed information about the object in the right pane of the
window. As you can see in Figure 5-30, details are displayed that pertain to the table size, the
number of rows in the table, the number of rows selected from the table, and suggestions for
creating indexes. You can also get an indication of whether your query primarily used more
central processing unit (CPU) resources or I/O resources. These are all factors that you
should consider when devising a strategy to make your query more efficient.

Figure 5-30 Visual Explain debug messages
Chapter 5. Monitoring and tuning SQE 119

You can see examples of using the Index and Statistics Advisor functions of Visual Explain in
“Using the Statistics and Index Advisor” on page 137.

Visual Explain can assist you in understanding how your query is running. It can also help you
determine the changes that you can make to improve the query’s performance.

5.1.5 Index Advised: System wide (V5R4)
In V5R4, a new feature is available that is capable of showing, at the system wide, schema or
table level, all the indexes that have been advised by the optimizer. You can display the index
advised information from the optimizer by using iSeries Navigator. This information is based
on and located in the QSYS2/SYSIXADV system table.

To review the Index Advisor, select Database → Index Advisor → Index Advisor in iSeries
Navigator as shown in Figure 5-31.

Figure 5-31 Index Advisor

You can use the Index Advisor to manage the creation of recommended indexes that the
optimizer suggests to improve the performance of your query.
120 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

In the Index Advisor window, you can see the list of indexes recommended by the optimizer.
The resulting row is sequenced upon the table for which index was advised, but you can sort
the information by the column that you want and click the column name, as shown in
Figure 5-32.

Figure 5-32 Index Advisor window
Chapter 5. Monitoring and tuning SQE 121

Figure 5-33 shows the New Index window from which you can immediately create the
suggested index. Notice the new parameter Number of tasks for specifying to create the index
in parallel. The possible values are:

� Use current setting
� No parallel processing
� Managed by the optimizer
� Maximized by optimizer
� Use system value
� Integer value

Figure 5-33 Creating a new index from the Index Advisor

Note: You must have the system feature DB2 Symmetric Multiprocessing installed to
specify the number of tasks.
122 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

5.1.6 Viewing the plan cache (V5R4)
The plan cache contains a wealth of information about the SQE SQL statements that are run
through the database. Its contents are viewable through iSeries Navigator.

The plan cache interface provides a window into the database query operations on the
system. In iSeries Navigator, you can find it by selecting system name → Databases →
database name → SQL Plan Cache Snapshots as shown in Figure 5-34.

Figure 5-34 Viewing the plan cache using iSeries Navigator V5R4
Chapter 5. Monitoring and tuning SQE 123

When you right-click the SQL Plan Cache Snapshot, you can choose from a series of options
to allow different views of the current plan cache of the database. In the example shown in
Figure 5-35, we select SQL Plan Cache → Show Statements.

Figure 5-35 Viewing the plan cache

The SQL Plan Cache Statements window (Figure 5-36) opens. This window provides a direct
view of the current plan cache on the system and filtering capability. It also provides filtering
options that allow the user to more quickly isolate specific criteria of interest. No filters are
required to be specified (the default), although adding filtering shortens the time it takes to
show the results.

The list of queries that is returned is ordered by default so that those who are consuming the
most processing time are shown at the top. You can reorder the results by clicking the column
heading for which you want the list ordered. Repeated clicking toggles the order from
ascending to descending.

When you choose an individual entry, you can see more detailed information about that entry.
Show Longest Runs shows details of up to ten of the longest running instances of that query.
Run Visual Explain can also be performed against the chosen query to show the details of the
query plan. Finally, if one or more entries are highlighted, a snapshot (database performance
monitor file) for those selected entries can be generated.

Important: You must perform the retrieve action (push) to fill the display.
124 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Figure 5-36 Plan cache

The information in Figure 5-36 shows the SQL query text, the last time the query was run, the
most expensive single instance run of the query, total processing time consumed by the
query, total number of times the query has been run, and information about the user and job
that first created the plan entry. It also shows the number of times (if any) that the database
engine was able to reuse the results of a prior run of the query to avoid rerunning the entire
query.

The information presented can be used in multiple ways to help with performance tuning. For
example, Visual Explain of key queries can be used to show advice for creating an index to
improve those queries. Alternatively, the longest running information can be used to
determine if the query is being run during a heavy utilization period and can potentially be
rescheduled to a more opportune time.

One item to note is that the user and job name information given for each entry is for the user
and job that initially caused the creation of the cached entry (the user where full optimization
took place). This is not necessarily the same as the last user to run that query.
Chapter 5. Monitoring and tuning SQE 125

The filtering options provide a way to focus on a particular area of interest. The following
filters can be specified:

� Minimum runtime for the longest execution

This option filters those queries with at least one long individual query instance runtime.

� Queries run after this date and time

This option filters those queries that have been run recently

� Top ‘n’ most frequently run queries

This option finds those queries that are run most often.

� Top ‘n’ queries with the largest total accumulated runtime

This option shows the top resource consumers. This equates to the first n entries shown
by default when no filtering is given. Specifying a value for n improves the performance of
getting the first screen of entries, although the total entries displayed is limited to n.

� Queries ever run by user

This option provides a way to see the list of queries that a particular user has run. Note
that if this filter is specified, the user and job name information shown in the resulting
entries still reflect the originator of the cached entry, which is not necessarily the same as
the user who is specified on the filter.

� Queries currently active

This option shows the list of cached entries associated with queries that are still running or
are in pseudo close mode. As with user filtering, the user and job name information shown
in the resulting entries still reflects the originator of the cached entry, which is not
necessarily the same as the user currently running the query. Multiple users may be
running the query.

� Queries with index advised

This option limits the list to those queries where an index was advised by the optimizer to
improve performance.

� Queries with statistics advised

This option limits the list to those queries where a statistic that is not yet gathered might
have been useful to the optimizer if it was collected. The optimizer automatically gathers
these statistics in the background, so this option is normally not that interesting unless, for
whatever reason, you want to control the statistics gathering yourself.

� Include queries initiated by the operating system

This option includes the “hidden” queries that were initiated by the database itself behind
the scenes to process a request. By default, the list only includes user initiated queries.

� Queries that use or reference these objects

This option provides a way to limit the entries to those that referenced or use the table or
tables (or indexes) that are specified.

� SQL statement contains

This option provides a wildcard search capability on the SQL text itself. It is useful for
finding particular types of queries. For example, queries with a FETCH FIRST clause can
be found by specifying “fetch”. The search is case insensitive for ease of use. For example,
the string FETCH finds the same entries as the search string “fetch”.

Note: Current SQL for a job (right-click the Database icon) is an alternative to view a
particular job’s active query.
126 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Multiple filter options can be specified. Note that in a multifilter case, the candidate entries for
each filter are computed independently, and only those entries that are present in all the
candidate lists are shown. For example, if you specified the Top ‘n’ most frequently run
queries and Queries ever run by user options, you are shown those most run entries in the
cache that ran at some point by the specified user. You are not necessarily shown the most
frequently run queries run by the user, unless those queries also happen to be the most
frequently run queries in the entire cache.

You can also see the properties of the plan cache. Right-click SQL Plan Cache Snapshot
and select SQL Plan Cache → Properties. Then you see high level information about the
cache, such as the cache size, number of active queries, number of plans, and number of full
opens (see Figure 5-37).

Figure 5-37 SQL Plan Cache Properties

You can use this information to view overall database activity. If tracked over time, it provides
trends to help you better understand the database utilization peaks and valleys throughout
the day and week.
Chapter 5. Monitoring and tuning SQE 127

5.1.7 Plan Cache Snapshot
It is important to keep in mind that the plan cache is cleared by an initial program load (IPL).
For this reason, it is important to have a way to dump or store the contents of the plan cache
into a permanent or persistent object. This can be done by creating a Plan Cache Snapshot.
To create a snapshot in iSeries Navigator, you select SQL Plan Cache → New → Snapshot
as shown in Figure 5-38.

Figure 5-38 Creating a snapshot from SQL Plan Cache
128 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

When you create a snapshot from the plan cache, you can choose some filtering capabilities
as shown in Figure 5-39.

Figure 5-39 New Snapshot of SQL Plan Cache

The stored procedure, qsys2.dump_plan_cache, provides the simplest way to create a
database monitor file output (snapshot) from the plan cache. The dump_plan_cache
procedure takes two parameters, library name and file name, to identify the resulting
database monitor file. If the file does not exist, it is created. For example, to dump the plan
cache to a database performance monitor file in library QGPL, you enter:

CALL qsys2.dump_plan_cache(’QGPL’,’SNAPSHOT1’);

The plan cache is an actively changing cache. Therefore, it is important to realize that it
contains timely information. If information over long periods of time is of interest, consider
implementing a method of performing periodic snapshots of the plan cache to capture trends
Chapter 5. Monitoring and tuning SQE 129

and heavy usage periods. You can use the APIs described previously, in conjunction with job
scheduling (for example), to programmatically perform periodic snapshots.

5.1.8 Query options table (QAQQINI)
The QAQQINI query options table provides a facility to dynamically modify or override some
of the system environment values that were used when you ran your queries. Every System i
installation contains a template QAQQINI table that is located in the QSYS library. We
recommend that you do not modify this default QAQQINI table. Instead, create a copy of this
table in library QUSRSYS. Then you can modify this table to define system-wide default
values for queries without a unique QAQQINI table assigned.

To create a QAQQINI table in QUSRSYS or in other user libraries (for additional variations on
the query environment), use the Create Duplicate Object (CRTDUPOBJ) CL command or
select Edit → Copy/Paste using iSeries Navigator. This duplicates the triggers that are in
place to handle changes to the QAQQINI table to maintain its integrity. The following example
shows the CL command to create a copy of the QAQQINI table:

CRTDUPOBJ OBJ(QAQQINI) FROMLIB(QSYS) OBJTYPE(*FILE) TOLIB(MYLIB) DATA(*YES)

After you create your own copy of the QAQQINI table, you can direct your queries to use this
table by changing your query runtime attributes.

To change your query runtime attributes, in the Run SQL Scripts window in iSeries Navigator,
select Options → Change Query Attributes. Next, specify the name of the library that
contains the QAQQINI table that you want to use for running your query, as shown in
Figure 5-40.

Important: The default QSYS/QAQQINI table is used by certain system processes.
Changing this table may affect these processes. Also objects in library QSYS may
automatically be replaced when applying IBM PTFs or when upgrading your operating
system. This can result in user changes to the QSYS/QAQQINI table being reset to the
IBM-supplied default values.
130 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

You can set various parameters in the QAQQINI table that allow you to monitor the
performance of your queries. When you click the Edit Options button (Figure 5-40), you can
gain access to these parameters.

Figure 5-40 Specifying the location of the QAQQINI table
Chapter 5. Monitoring and tuning SQE 131

Figure 5-41 shows an example of some of these parameters in the QAQQINI table. You can
control the amount of detailed information that you want to see about your query execution by
setting the appropriate parameter values (QQVAL), for example:

� The MESSAGES_DEBUG parameter controls whether debug messages are written into
your job log.

� The SQL_SUPPRESS_WARNINGS parameter is used to determine if you want to see
SQL warnings when executing your queries.

Figure 5-41 QAQQINI parameters for monitoring query performance

For more information about valid parameter settings for the QAQQINI table, see Informational
APAR II13320. Also refer to (search on) “Creating the QAQQINI query options file” in the
iSeries Information Center at the following address:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Tip: You can also direct your SQL query to use a specific QAQQINI table or temporarily
change certain QAQQINI parameters by including the relevant CL command in your SQL
script as shown in the following examples:

CL: chgqrya degree(*optimize)
CL: chgqrya qryoptlib(library_name)
132 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

5.2 Performance tuning
The fundamental basis of performance tuning has not changed with the introduction of SQE.
Performance tuning can be summarized as:

� Ensuring that sufficient system resources are available for the anticipated query
environment

– CPU power (speed) and number of CPUs
– Main storage
– Disk arms

� Paying attention to the indexing strategy for the application environment

– Proactive creation of indexes to meet known application requirements
– Reactive creation of indexes in response to advice given by the optimizer after the

application is in test or production

SQE introduces additional considerations, which are discussed in the following sections.

5.2.1 System environment
There are several considerations for system configuration in the SQE environment.

Processors
Processing capacity is still important to ensure that complex queries are processed in a timely
and efficient manner. For the complex queries that do not use SQE starting in OS/400 V5R2,
the CPU power needed by CQE-handled queries is similar to V5R1. For SQE, some queries
see an improvement in processor utilization.

Multiple processors (iSeries n-way support) are an important consideration. When SQE uses
SQL non-indexed access methods starting in V5R2, multiple processors are a factor because
SQE can run all or part of an access plan tree in parallel. Since SQE uses threads instead of
tasks for splitting up a job, it uses fewer tasks. In addition to SQE using multiple processors
for executing the threads within an access plan, SMP can also be used by the statistics
engine to collect statistics for SQE.

Main storage
SQE uses a slightly smaller main storage footprint for a query compared with CQE. This
reduction is not significant enough to encourage smaller configurations to be deployed.

However, there is a change in the way that the optimizer calculates a fair share of memory for
a query. This is the maximum amount of memory that can be allocated to a query without
having a detrimental effect on other jobs running in the same memory pool.

CQE continues to compute a job’s fair share of memory by dividing the memory pool size by
the maximum activity level of that pool. SQE, in contrast, tries to compute the fair share of
memory calculation by dividing by the average number of active jobs instead of the maximum
activity level. SQE can make this computation only when the associated memory pool is
defined with a pool paging option of *CALC (also known as expert cache). If the pool paging
option is not *CALC, then it too divides by the maximum activity level. Because of the way
SQE calculates the fair share of memory, memory-constrained configurations may degrade
performance more severely than may be the case with CQE.

Note: Changing the number of CPUs (whole or fractions using logical partition (LPAR))
that are available to a query results in rebuilding the access plan.
Chapter 5. Monitoring and tuning SQE 133

The degree of parallelism is controlled by the DEGREE parameter of the CHGQRYA
command or by the PARALLEL_DEGREE value within the query attribute table (QAQQINI) in
use. This value controls parallelism as follows:

� *OPTIMIZE

– Use the fair share of memory as calculated previously.
– CPU bound queries use Degree up to the number of processors available.

� *MAX

– Use all memory available in the pool.
– CPU bound queries use Degree up to twice the number of processors available.

� *NBRTASKS

– Use the fair share of memory as calculated previously.
– Force the Degree specified in DEGREE value:

• CQE considers this as a maximum value for parallelism.
• SQE forces the use of this value for parallelism.

SQE Optimizer responds differently to changes in the memory pool size in terms of rebuilding
an access plan. CQE Optimizer rebuilds an access plan if there is a two-fold change in size.
SQE looks for a 10-fold change. While this seems like a dramatic change, remember that the
SQE computes the job’s fair share of memory differently from CQE.

Disk storage
We continually emphasize the need for a balanced system by ensuring that sufficient disk
arms are configured. SQE performs asynchronous I/O far more aggressively than CQE and
fully uses parallel pre-fetching of data. Therefore, any under configuration of the number of
disk drives on a system is accentuated by queries that use SQE, particularly those that
access a large number of table rows.

5.2.2 Indexing basics
DB2 for i5/OS has two kinds of persistent indexes. Binary-radix tree indexes became available
when the AS/400 systems (earlier model of the System i family) began shipping in 1988.
Encoded-vector indexes (EVIs) became available in 1998 with Version 4 Release 3. Both
types of indexes are useful in improving performance for certain kinds of queries.

Binary-radix tree indexes
A radix index is a multilevel, hybrid tree structure that allows a large number of key values to
be stored efficiently while minimizing access times. A key compression algorithm assists in
this process. The lowest level of the tree contains the leaf nodes. These nodes house the
address of the rows in the base table that are associated with the key value. The key value is
used to quickly navigate to the leaf node with a few simple binary search tests.

The binary-radix tree structure (Figure 5-42) is good for finding a small number of rows
because it can find a given row with a minimal amount of processing. For example, using a
binary-radix index over a customer number column for a typical online transaction processing
(OLTP) request, such as finding the outstanding orders for a single customer, results in fast
performance. An index created over the customer number field is considered the perfect index
for this type of query because it allows the database to focus on the rows it needs and
perform a minimal number of I/Os.
134 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Figure 5-42 Binary-radix tree index structure

In Business Intelligence environments, database analysts do not always have the same level
of predictability. Increasingly, users want ad hoc access to the detail data underlying their data
marts. For example, they may run a report every week to look at sales data and then drill
down for more information related to a particular problem area they found in the report. In this
scenario, database analysts cannot write all the queries in advance on behalf of users.
Without knowing what queries will be run, it is impossible to build the perfect index.

Encoded-vector indexes
To understand EVIs, you should have a basic knowledge of bitmap indexing. DB2 for i5/OS
does not create permanent bitmaps. SQL creates dynamic bitmaps temporarily for query
optimization.

A bitmap index is an array of distinct
values. For each value, the index
stores a bitmap, where each bit
represents a row in the table. If the
bit is set on, then that row contains
the specific key value. See
Figure 5-43.

With this indexing scheme, bitmaps
can be combined dynamically using
Boolean arithmetic (ANDing and ORing) to identify only those rows that are required by the
query. Unfortunately, this improved access comes with a price. In a very large database
(VLDB) environment, bitmap indexes can grow to ungainly size. For example, in a one billion
row table, you may have one billion bits for each distinct value. If the table contains many
distinct values, the bitmap index quickly becomes enormous. Usually, relational database
management systems (RDBMSs) rely on some sort of compression algorithm to help
alleviate this growth problem.

In addition, maintenance of very large bitmap indexes can be problematic. Every time the
database is updated, the system must update each bitmap. This is a potentially tedious
process, for example, if there are 1,000 unique values in a one billion row table. When adding
a new distinct key value, an entire bitmap must be generated. These issues usually result in
the database being used as “read only”.

Figure 5-43 Bitmap index structure
Chapter 5. Monitoring and tuning SQE 135

EVI is a new
solution developed
by IBM Research
to support
dynamic bitmap
indexing. It is a
data structure that
is stored as
basically two
components: the
symbol table and
vector
(Figure 5-44).

The symbol table
contains a distinct
key list, along with
statistical and descriptive information about each distinct key value in the index. The symbol
table maps each distinct value to a unique code. The mapping of any distinct key value to a
1-, 2-, or 4-byte code provides a type of key compression. Any key value, of any length, can
be represented by a small byte code.

The vector contains a byte code value for each row in the table. This byte code represents the
actual key value found in the symbol table and the respective row in the database table. The
byte codes are in the same ordinal position in the vector, as the row it represents in the table.
The vector does not contain any pointer or explicit references to the data in the table.

The optimizer can use the symbol table to obtain statistical information about the data and
key values represented in the EVI. If the optimizer decides to use an EVI to process the local
selection of the query, the database engine uses the vector to build a dynamic bitmap, which
contains one bit for each row in the table. The bits in the bitmap are in the same ordinal
position as the row it represents in the table. If the row satisfies the query, the bit is set on. If
the row does not satisfy the query, the bit is set off. The database engine can also derive a list
of relative record numbers (RRNs) from the EVI. These RRNs represent the rows that match
the selection criteria, without needing a bitmap.

Like a traditional bitmap index, the DB2 Universal Database dynamic bitmaps or RRN lists
can be ANDed and ORed together to satisfy an ad hoc query. For example, if a user wants to
see sales data for a certain region during a certain time period, the database analyst can
define an EVI over the Region column and the Quarter column of the database. When the
query runs, the database engine builds dynamic bitmaps using the two EVIs. Then it uses
ANDing on both bitmaps to produce a bitmap that represents all the local selection (bits
turned on for only the relevant rows). This ANDing capability effectively uses more than one
index to drastically reduce the number of rows that the database engine must retrieve and
process.

Note: In OS/400 V5R2, changes were made to the algorithms to handle the Symbol Table
overflow area for values added since the last rebuild. These changes resulted in significant
performance improvements for EVI maintenance, particularly for EVIs based on columns
with a high number of additions and changes.

Figure 5-44 Two components of EVI
136 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Indexes and the optimizer
Since the database optimizer uses cost-based optimization, the more information that the
optimizer is given about the rows and columns in the database, the better the optimizer can
create the best possible (least costly/fastest) access plan for the query. With the information
from the indexes, the optimizer can make better choices about how to process the request
(local selection, joins, grouping, and ordering).

The CQE Optimizer attempts to examine most, if not all, indexes built over a table unless or
until it times out. However, the SQE Optimizer only considers those indexes returned to it by
the Statistics Manager. With OS/400 V5R2, these include only indexes that the Statistics
Manager considers useful in performing local selection, based on the “where” clause
predicates. Consequently the SQE Optimizer does not time out.

The primary goal of the optimizer is to choose an implementation that quickly and efficiently
eliminates the rows that are not interesting or are required to satisfy the request. Normally,
query optimization is thought of as trying to find the rows of interest. A proper indexing
strategy assists the optimizer and database engine with this task.

5.2.3 Indexing and statistics strategy
Two approaches to index creation are proactive and reactive. As the name implies, proactive
index creation involves anticipating which columns will be most often used for selection,
joining, grouping, and ordering, and then building indexes over those columns. In the reactive
approach, indexes are created based on optimizer feedback, query implementation plan, and
system performance measurements.

Using the Statistics and Index Advisor
If you are using Visual Explain (see 5.1.4, “Visual Explain” on page 118), you can use the
Index and Statistics Advisor as follows to manage the creation of recommended indexes and
column statistics.

Consider the SQL statement and Visual Explain chart (Figure 5-30 page 119) from 5.1.4,
“Visual Explain” on page 118. When you select the Actions → Advisor, Visual Explain
presents all the optimizer suggestions for creating indexes and column statistics to improve
the performance of your query.
Chapter 5. Monitoring and tuning SQE 137

Index Advisor
Figure 5-45 shows the Index Advisor page of the Visual Explain Statistics and Index Advisor
window. In this case, the optimizer suggests that this query will benefit from a binary-radix
index on the EMPLOYEE table, with the LASTNAME column as the key. You can create the
index directly from here by clicking the Create button.

Figure 5-45 Visual Explain Index Advisor page
138 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Figure 5-46 shows the New Index window, from which you can immediately create the
suggested index. Notice that the suggested key column and ordering sequence is already
filled in for you. You simply specify a name and location for your index.

Figure 5-46 Creating a new index
Chapter 5. Monitoring and tuning SQE 139

Statistics Advisor
For this query, the optimizer also suggests that query performance can be improved if
statistics are available in certain table columns. Figure 5-47 shows an example of the
Statistics Advisor page.

You can create these suggested statistics directly from this window. However, if you set the
QDBFSTCCOL system value to either *SYSTEM or *ALL, statistics are automatically
collected by the QDBFSTCCOL system job whenever the optimizer suggests that statistics
are useful.

Figure 5-47 Visual Explain Statistics Advisor page

5.2.4 Optimization goal starting in V5R2
Optimization can be biased toward returning the first few rows in the result set, usually
sufficient to display the first panel for the user. Alternatively, it can be biased toward returning
every row of the result set.

This bias is controlled by different means depending on the query interface that is used. For
example, CLI uses the default *ALLIO. SQL uses the optional “OPTIMIZE FOR n ROWS”
clause. If this clause is not specified, the optimizer uses the default value as specified in
Table 5-1. If *FIRSTIO is selected, the optimizer tends to favor table scans or use existing
indexes. In the case of CQE, optimizing for all rows or for a number of rows greater than the
number in the result set may make the creation of a temporary index more likely if no
satisfactory permanent indexes existed.

While SQE does not build temporary indexes, the SQE Optimizer still uses the optimization
goal as a “costing” decision. However, when the clause is omitted from the SQL statement,
SQE uses a different default value for the number of rows for which to optimize. The CQE
default is 3% of the total number of rows anticipated in the result set. SQE defaults to 30 rows.
140 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Table 5-1 Default optimization goals for each interface (as of V5R2)

5.2.5 Other considerations
There are additional considerations that you must take into account when doing performance
tuning. We explore some of those considerations in the following sections.

Plan cache and access plans
Starting in V5R2, a system IPL causes the plan cache to be cleared. Therefore, you can
expect a query’s performance to be affected when it is run for the first time after an IPL
because the access plan needs to be rebuilt. However, because of the need to perform ODP
creations after an IPL, the access plan rebuild overhead may not be noticeable.

There are several other situations that cause a query’s access plan to be rebuilt in addition to
those situations described in 5.2.1, “System environment” on page 133. These include:

� Creating or deleting indexes
� Table size changing by 10%
� Creating a new statistic, automatically or manually
� Refreshing a statistic, automatically or manually
� Removing a stale statistic
� Applying database related PTFs

Notice that access plans are marked as invalid after an OS/400 or i5/OS release upgrade.

The SQE access plan rebuild activity takes place below the machine interface (MI).
Therefore, compared to CQE, you should see much less performance degradation caused by
lock contention on SQL packages, caches, and program objects.

Interfaces Default optimization goals

Embedded SQL *ALLIO

Dynamic Embedded SQL *FIRSTIO

Interactive SQL *FIRSTIO

CLI *ALLIO

ODBC,OLE DB, .NET Provider *FIRSTIO (*ALLIO with extended dynamic SQLPKG)

JDBC *FIRSTIO (*ALLIO with extended dynamic SQLPKG)

Native JDBC Driver *ALLIO

Net.Data® *FIRSTIO

Data Transfer (iSeries Access for Windows) *ALLIO
Chapter 5. Monitoring and tuning SQE 141

Handing queries back from SQE to CQE
You can minimize performance overhead that is incurred as a result of the optimizer handing
queries back from SQE to CQE (see 2.3.1, “The Query Dispatcher” on page 16) by avoiding
those functions that cause this behavior. For example, avoid the presence of any of the
following characteristics on tables that you query:

� Logical files with select or omit keys
� Logical files with derived keys: Perform intermediate mapping of keys

– Renaming fields
– Alternate collating sequence
– Translation

� Index or logical file with National Language Sort Sequence (NLSS) applied
� Keyed logical files built across multi-member physical files

An exception applies only if your query has no local selection, grouping, or ordering, and is
forced unconditionally to perform a table scan.
142 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Chapter 6. Practical experience

This chapter provides information about practical experiences gained so far. It shows
performance comparisons for queries running under OS/400 V5R2 using Classic Query
Engine (CQE) to the same queries running under OS/400 V5R2 that take advantage of
Structured Query Language (SQL) Query Engine (SQE). The tests were performed on
identical systems and identical configurations. They give a close approximation of
performance gains that can be expected between OS/400 V5R1 and OS/400 V5R2.

The queries that were chosen to be measured were selected from numerous sources such as
customer applications, IBM Business Partners, and industry benchmarks.

6

© Copyright IBM Corp. 2003, 2006. All rights reserved. 143

6.1 General performance findings
Figure 6-1 shows response time improvements measured in an environment with 119
different, longer running Business Intelligence (BI) type queries. In this specific environment,
response time with SQE was less than half of the response time with CQE for most of the
queries. To help you understand the complexity of the queries that were used in this test, the
original runtime was between 2 and 600 seconds per single query.

Figure 6-1 Response time improvements in a BI environment

-200%

0%

200%

400%

600%

P
er

ce
nt

 I
m

pr
ov

em
en

t
(C

Q
E-

SQ
E)

/M
IN

(C
Q

E,
SQ

E)

SQL Query Engine response time averaged 166% better
than Classic Query Engine for these 119 longer running
Analytic (BI, OLAP) type queries.
144 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

In addition to achieving mainly better performance in this BI type of environment, we saw
improvements in a mixed environment where query execution time was in the range from 1 to
15 seconds. See Figure 6-2.

Figure 6-2 Response time improvements in a mixed environment

-400%

-200%

0%

200%

400%

600%

800%

1000%

1200%

1400%

1600%

P
er

ce
nt

 I
m

pr
ov

em
en

t
(C

Q
E-

SQ
E)

/M
IN

(C
Q

E,
SQ

E)

SQL Query Engine response time averaged 2.8x better than
Classic Query Engine for BI queries that exceed 1 sec
execution time on CQE.
Chapter 6. Practical experience 145

Figure 6-3 shows another example of the performance improvements. This chart compares
query execution times for rather short running queries. All of them show subsecond execution
times.

Figure 6-3 Response time improvements for short running queries

You should be aware that response time improvements vary in different customer
environments.

6.2 Join performance enhancements
Join performance is an area that has demonstrated great performance results using SQE as
compared to CQE. This is due to the fact that SQE’s implementation of temporary result
objects is much more efficient than CQE. Running a given set of 20 queries that looked like
the one shown in Example 6-1, the overall runtime was 15 times faster using SQE than using
CQE. These results were achieved using a database of 100 GB with symmetric
multiprocessing (SMP) activated on a 12-way system with 120 GB of main memory.

Example 6-1 Join query

SELECT AL1.CUSTOMER, AL5.YEAR, AL5.MONTHNAME, SUM(AL2.QUANTITY)
FROM ITEM_FACT AL2, CUST_DIM AL1, TIME_DIM AL5
WHERE (AL2.CUSTKEY=AL1.CUSTKEY AND AL5.DATEKEY=AL2.SHIPDATE)
AND (AL5.YEAR=1998 AND AL5.MONTHNAME='October')
GROUP BY AL1.CUSTOMER, AL5.YEAR, AL5.MONTHNAME
ORDER BY 4 DESC

-400%

-200%

0%

200%

400%

600%

800%

1000%

1200%

1400%

1600%

P
er

ce
nt

 I
m

pr
ov

em
en

t
(C

Q
E-

SQ
E)

/M
IN

(C
Q

E,
SQ

E)

SQL Query Engine response time averaged 88% better
than Classic Query Engine for OLTP sub-second queries.
146 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

6.3 DISTINCT performance enhancements
Another area where we observed large performance improvements is in grouping and the use
of DISTINCT. Again tests were performed running a set of 10 different queries comparable to
the one shown in Example 6-2. The overall runtime was six times faster when using SQE
compared to CQE. These results were achieved using a database of 10 GB with SMP
activated on a 12-way system with 120 GB of main memory.

Example 6-2 Query using DISTINCT

SELECT YEAR, QUARTER, MONTH, CUSTKEY,
SUM(REVENUE_WO_TAX) AS TOTAL_REVENUE_WO_TAX,
SUM(REVENUE_W_TAX) AS TOTAL_REVENUE_W_TAX,
SUM(PROFIT_WO_TAX) AS TOTAL_PROFIT_WO_TAX,
SUM(PROFIT_W_TAX) AS TOTAL_PROFIT_W_TAX,
SUM(QUANTITY) AS TOTAL_QUANTITY,
SUM(SUPPLYCOST) AS TOTAL_SUPPLYCOST,
COUNT(DISTINCT ORDERKEY) AS TOTAL_NO_OF_ORDERS,
COUNT(DISTINCT (ORDERKEY + LINENUMBER)) AS TOTAL_NO_OF_LINES,
AVG(BIGINT(DAYS_ORDER_TO_SHIP)) AS AVG_DAYS_ORDER_TO_SHIP,
AVG(BIGINT(DAYS_ORDER_TO_RECEIPT)) AS AVG_DAYS_ORDER_TO_RECEIPT,
AVG(BIGINT(DAYS_SHIP_TO_RECEIPT)) AS AVG_DAYS_SHIP_TO_RECEIPT,
AVG(BIGINT(DAYS_COMMIT_TO_RECEIPT)) AS AVG_DAYS_COMMIT_TO_RECEIPT

FROM ITEM_FACT
GROUP BY YEAR, QUARTER, MONTH, CUSTKEY
Chapter 6. Practical experience 147

6.4 Influence of column statistics
Having column statistics available may help reducing optimization time. It may also help in
reducing query execution time. An example of this is grouping over columns that do not have
indexes available. The example in Figure 6-4 shows that the query is implemented using hash
grouping. Since the Statistics Manager can only use default values for the cardinality of the
month column, the generated hash table is much larger than it actually needs to be. This
results in longer query execution time.

Figure 6-4 Optimization without column statistics
148 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Consider the example in Figure 6-5. The same query was given to the optimizer. Only this
time, column statistics for month are available. The optimizer comes back with the same
access plan as before, but the size of the temporary hash table is much smaller now. This is
because the Statistics Manager can provide a more accurate answer for the cardinality of that
column.

Figure 6-5 Optimization with column statistics

6.5 Fenced versus unfenced user-defined functions
With V5R2, when you create a user-defined function (UDF), you can decide whether to make
the UDF a fenced UDF or an unfenced UDF. By default, UDFs are created as fenced UDFs.

Fenced indicates that the database should run the UDF in a separate thread. For complex
UDFs, this separation is meaningful, because it avoids potential problems such as generating
unique SQL cursor names. Not having to be concerned about resource conflicts is one
reason to use the default and create the UDF as a fenced UDF.

A UDF created with the NOT FENCED option indicates to the database that the user is
requesting that the UDF can run within the same thread that initiated the UDF. Unfenced is a
suggestion to the database that can still decide to run the UDF in the same manner as a
fenced UDF.
Chapter 6. Practical experience 149

Example 6-3 shows creating a fenced UDF versus an unfenced UDF.

Example 6-3 Creating a fenced UDF versus creating an unfenced UDF

CREATE FUNCTION QGPL.FENCED (parameter1 INTEGER)
RETURNS INTEGER LANGUAGE SQL
BEGIN
RETURN parameter1 * 3;
END;

CREATE FUNCTION QGPL.UNFENCED1 (parameter1 INTEGER)
RETURNS INTEGER LANGUAGE SQL NOT FENCED
-- Build the UDF to request faster execution via the NOT FENCED option
BEGIN
RETURN parameter1 * 3;
END;

The use of unfenced versus fenced UDFs provides better performance since the original
query and the UDF can run within the same thread. We ran tests using 56 different
statements of the form shown in Example 6-4 within one job. We gradually increased the
number of concurrent jobs on the system. This test was run on a 12-way system with 15 GB
of main memory and 135 disk arms. The underlying database table contains nearly 200,000
records and has a size of nearly 220 MB. The UDF DB2TX.CONTAINS was implemented
once as a fenced UDF and once as an unfenced UDF.

Example 6-4 SQL statement using text extender UDFs

SELECT MOVIE_ID, FORMAT_CODE, MOVIE_YEAR, MOVIE_NAME, MOVIE_RATING
FROM EMOVIES.MOVIES
WHERE DB2TX.CONTAINS (H_PLOT_L, '("Yinshi","Creek","Riding")') = 1
ORDER BY FORMAT_CODE, MOVIE_YEAR desc, MOVIE_RATING ;

The results are shown in Figure 6-6 and Figure 6-7. They clearly show that the elapsed time
for executing the 56 statements is much better when using unfenced UDFs, especially since
the number of jobs on the system increases. This implementation requires greater central
processing unit (CPU) resource utilization.

Figure 6-6 Elapsed time using fenced versus unfenced UDFs

1 5 15 25 35

Nr of Jobs

0

1000

2000

3000

4000

5000

A
vg

 T
im

e
in

 s
ec

Not fenced elapsed seconds
Fenced elapsed seconds

DB2 UDB Text Extender
150 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Figure 6-7 CPU seconds using fenced versus unfenced UDFs

6.6 Reading through an index backwards
Before OS/400 V5R2, the system could only read through an index forward for ordering
purposes. Starting with V5R2, you can read backwards through an index for ordering. This
means that an index in ascending order can be used to execute a query with ordering or
grouping in descending sequence.

We tested the following example:

CREATE INDEX ITEM_PART ON ITEM_FACT (PARTKEY ASC)
SELECT MAX(PARTKEY) FROM ITEM_FACT

In this example, it was only necessary to read the last entry in the ascending index to find the
maximum value. Prior to OS/400 V5R2, you needed to either read through the entire table or
create an index in descending order.

1 5 15 25 35

Nr of Jobs

0

100

200

300

400

A
vg

 T
im

e
in

 s
ec

Not fenced CPU Seconds
Fenced CPU seconds

DB2 UDB Text Extender
Chapter 6. Practical experience 151

As you can see in Figure 6-8, the index was actually used to implement the query. This
resulted in substantially lower I/O and execution time.

Figure 6-8 Debug messages for using index

6.7 VARCHAR
When a column is defined as a VARCHAR data type, it is given an allocated length, either
explicitly or by default. When data is inserted into the column, and the data’s length exceeds
the allocated length, the complete data for this column is placed into an overflow area and the
allocated length is not used.

There is a performance impact when accessing the data because additional I/O operations
are generated to retrieve the data in the overflow area. Because SQE drives asynchronous
I/O operations much more aggressively than CQE, you should see improved performance
when handling VARCHAR data.

6.8 Encoded-vector index maintenance enhancements
Figure 6-9 shows the internal representation of an encoded-vector index (EVI). An EVI
consists of a symbol table, which is a sorted list of distinct key values with a code assigned to
each value. Since this list is sorted, a binary search can be used on it.

The EVI maintenance problem may arise when adding records that do not arrive in ascending
order to the base file. Because there is no room between two entries in the symbol table and
it must stay sorted, out-of-range values are placed into a non-sorted overflow area. Since this
overflow area is not sorted, a linear search must be performed each time a specific key is
searched for in the overflow area.

Considering that this may cause a performance impact, thresholds are placed on the number
of values in the overflow area. They depend on the byte code size of the EVI:

� 1 Byte EVI → Threshold set to 100 entries in the overflow area
� 2 Byte EVI → Threshold set to 1,000 entries in the overflow area
� 4 Byte EVI → Threshold set to 10,000 entries in the overflow area
152 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Each time the threshold is reached, the EVI becomes invalidated. It is refreshed,
incorporating the overflow area into the sorted symbol table. This means that inserting new
values into a table, with an EVI defined on it, generated considerable overhead when:

� The new value was out of order.
� The new value was out of order and the overflow area threshold was reached.

Figure 6-9 EVI maintenance

Because of this behavior, one of the main recommendations is to use EVIs only on read-only
tables or on tables with a minimum of INSERT, UPDATE or DELETE activity. Another
recommendation is to create EVIs with the maximum byte code size expected for the table.
When loading data, the recommendation is to drop the EVIs, load the data and then create
the EVIs again so that all data is held in the symbol table.

Starting with V5R2, the overflow area is indexed after 100 entries are present. With this, a
binary search is now possible for the overflow area. The internal threshold was raised to
500,000 entries independent of the byte code size of the EVI.

Keep in mind that the index on the overflow area does not persist over an initial program load
(IPL). Also, when saving the EVI, the radix index on the overflow area is not saved. It is
recreated “on first touch”. This can be during query optimization time or by using the Display
Library (DSPLIB) command.

Important: When you save an EVI from a system with V5R2 installed, and restore this EVI
to a system with an older version of OS/400, the new threshold of 500,000 entries in the
overflow area is preserved on that system. In these cases, recreate the EVI. Otherwise,
performance problems may occur when using the EVI.

5
1
2
1
7
3
3
4
3
.
.
8
9
8
.
.

Row
1
2
3
4
5
6
7
8
9
...

VectorKey Code
A 1
B 2
C 3
D 4
X 5
Y 6
Z 7

Key Code
E 8
G 9

Symbol Table

Overflow Area

Sorted list
used with

binary
search

Unsorted list
used with

linear
search

26
Distinct
values

1 byte
code

Threshold
100 - 1 byte
1,000 - 2 byte
10,000 4 byte

Existing values A, B, C, D
Insert 'X'
Insert 'Y'
Insert 'E'
Insert 'Z'
Insert 'G'
Chapter 6. Practical experience 153

With the new threshold of 500,000 entries for the overflow area and the index over the
overflow area, it is possible to use EVIs on tables with a larger insert rate than before V5R2.
We tested the worst case for an EVI by inserting rows with new key values into a table in
reverse order. We achieved insert rates that were more than 1,000 times higher than when
trying to do the same on a system with V5R1 installed.

Note: You can expect EVI maintenance performance gains on your production system to
be lower. Our test looked at the worst case for using EVIs prior to V5R2.
154 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Appendix A. Statistics Manager API code
examples

This appendix provides provides sample code on how to use the APIs inside a program. To
learn more about the types of APIs that are available with Statistics Manager in iSeries
Navigator, see 4.4, “Statistics Manager APIs” on page 87.

A

© Copyright IBM Corp. 2003, 2006. All rights reserved. 155

Create Statistics Collection
Example A-1 shows how to use the Create Statistics Collection API to generate a CL
command to actually create column statistics for a given table. Using this command, you can
generate user requests for column statistics that are either executed immediately or in the
background.

Example: A-1 Create Statistics Collection API

// DESCRIPTION: Create database file statistics
//
// FUNCTION: Program for sample CRTDBFSTC CL command
// using the QdbstRequestStatistics API.
//
// PARAMETER LIST:
// PARM USE TYPE DESCRIPTION
// 1 I CHAR(10) Library ASP device name
// 2 I CHAR(20) Qualified database file name (file/lib)
// 3 I CHAR(10) Database file member
// 4 I CHAR(12) Collection mode
// 5.1 I BIN(16) Number of stats collections following
// 5.1.1 I BIN(16) Displacement to first stats collection
// ...
// 5.1.n I BIN(16) Displacement to last stats collection
// i-th stats collection at given displacment:
// 5.i.1 I BIN(16) Number of elements specified (1...4)
// 5.i.2 I CHAR(10) Column name
// 5.i.3 I CHAR(30) Stats name
// 5.i.4 I CHAR(10) Aging mode
// 5.i.5 I CHAR(20) Qualified translation table name (file/lib)
//

Have CRTDBFSTC.C400 source as DBSTCMD/QCPPSRC(CRTDBFSTC)

CRTCPPMOD MODULE(DBSTCMD/CRTDBFSTC)
 SRCFILE(DBSTCMD/QCPPSRC)

CRTPGM PGM(DBSTCMD/CRTDBFSTC)
 MODULE(DBSTCMD/CRTDBFSTC)
 ENTMOD(CRTDBFSTC)
 BNDSRVPGM(QSYS/QDBSTMGR QSYS/QP0ZCPA)
 ACTGRP(*CALLER)

//--- Have the following in DBSTCMD/QCMDSRC(CRTDBFSTC) ------------------------

CMD PROMPT('Create DB-File Statistics')
 PARM KWD(ASPDEV) TYPE(*SNAME) LEN(10) +
 DFT(*) PROMPT('Library ASP device name') +
 SPCVAL((*) (*SYSBAS))
 PARM KWD(FILE) TYPE(FILEQUAL) PROMPT('Database file')
 PARM KWD(MBR) TYPE(*SNAME) PROMPT('Member') +
 DFT(*FIRST) SPCVAL((*FIRST) (*LAST))
 PARM KWD(COLLMODE) TYPE(*CHAR) LEN(12) RSTD(*YES) +
 DFT(*IMMEDIATE) SPCVAL((*IMMEDIATE) +
 (*BACKGROUND)) PROMPT('Collection mode')
 PARM KWD(STCCOLL) TYPE(STCCOLLFMT) MIN(0) +
156 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

 MAX(300) LISTDSPL(*INT2)

/* QUALIFIED FILE NAME */
 FILEQUAL: QUAL TYPE(*SNAME) LEN(10)
 QUAL TYPE(*SNAME) LEN(10) DFT(*LIBL) +
 SPCVAL((*LIBL) (*CURLIB) (*USRLIBL)) +
 PROMPT('Library')

/* QUALIFIED TRANSLATE TABLE NAME */
 TBLQUAL: QUAL TYPE(*SNAME) LEN(10) DFT(*NONE) +
 SPCVAL((*NONE ' '))
 QUAL TYPE(*SNAME) LEN(10) DFT(*NONE) +
 SPCVAL((LIBL) (*CURLIB) +
 (*USRLIBL) (*NONE ' ')) +
 PROMPT('Library')

/* A single, single column stats collection definition */
STCCOLLFMT: ELEM TYPE(*SNAME) PROMPT('Column name')
 ELEM TYPE(*NAME) LEN(30) DFT(*GEN) +
 SPCVAL((*GEN)) PROMPT('Statistics name')
 ELEM TYPE(*CHAR) LEN(10) RSTD(*YES) DFT(*SYS) +
 SPCVAL((*SYS) (*USER)) PROMPT('Aging mode')
 ELEM TYPE(TBLQUAL) PROMPT('Translate table')

// Use the following to create the actual command -----------------------------

CRTCMD CMD(DBSTCMD/CRTDBFSTC)
PGM(DBSTCMD/CRTDBFSTC)
SRCFILE(DBSTCMD/QCMDSRC)
SRCMBR(CRTDBFSTC)

//--- Start of C++ Source Code --

// database file statistics APIs
#ifndef QDBSTMGR_H
#include <qdbstmgr.h>
#endif

// memcpy, ...
#ifndef memory_h
#include <memory.h>
#endif

// API error code structures
#ifndef QUSEC_h
#include <qusec.h>
#endif

// job log output
#ifndef __QP0ZTRC_H
#include <qp0ztrc.h>
#endif

// convert hex to char
#ifndef __cvthc_h
#include <mih/cvthc.h>
Appendix A. Statistics Manager API code examples 157

#endif

// exception handling
#ifndef __except_h
#include <except.h>
#endif

// resend escape message
#ifndef QMHRSNEM_h
#include <qmhrsnem.h>
#endif

#include <assert.h>

//---
// Calculate the stats name length (quoted '"', or ' ' or '\0' terminated)
static QDBST_uint32 QdbstCmd_calcStatsNameLen
(
 const char *StatsName,
 const size_t maxLen
);
//---
// Resignal exceptions to one above the invocation pointer given as
// communications "area" passed on the #pragma exception_handler.
static void QdbstCmd_ResignalHdlr(_INTRPT_Hndlr_Parms_T *errmsg);
//---
// CL inner list input for single stats collection definition
struct QdbstCmd_SingleStats_argv_t
{
 QDBST_uint16 nElements;
 char colName[10];
 char statsName[30];
 char agingMode[10];
 char transTable[20];
};
//---
// Dynamic allocation of API input buffer and exception safe cleanup
struct QdbstCmd_AutoPtr
{
 QdbstCmd_AutoPtr(const size_t Size)
 : xPtr(new char[Size]),
 xSize(Size)
 {}

 ~QdbstCmd_AutoPtr()
 { delete[] xPtr; }

 char *xPtr;
 size_t xSize;
};
//---
int main(int argc, char *argv[])
{
 // setup exception resignal handler
 // get invocation pointer for resignal scoping
 volatile _INVPTR invPtr = _INVP(0);

 #pragma exception_handler (QdbstCmd_ResignalHdlr, invPtr, 0, _C2_MH_ESCAPE)

 // check number of parameters
158 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

 // ...

 // address (sub set of) input parameters
 const char* const ASPDeviceName = argv[1];
 const char* const FileName = argv[2];
 const char* const LibName = argv[2] + 10;
 const char* const MbrName = argv[3];
 const char* const CollMode = argv[4];
 const char* const ListBuffer = argv[5];

 const QDBST_uint16 nStats = *(const QDBST_uint16 *) ListBuffer;
 assert(nStats);

 const QDBST_uint16 *pStatsDispl = ((QDBST_uint16 *) ListBuffer) + 1;

 // allocate API input buffer
 QdbstCmd_AutoPtr pInputRequestKeeper(
 sizeof(Qdbst_STIR0100_Hdr_t) +
 nStats * (sizeof(Qdbst_STIR0100_StatsHdr_t) +
 sizeof(Qdbst_STIR0100_StatsDtl_t)));

 struct InputRequest_t
 {
 Qdbst_STIR0100_Hdr_t hdr;
 struct SingleStats_t
 {
 Qdbst_STIR0100_StatsHdr_t statshdr;
 Qdbst_STIR0100_StatsDtl_t statsdtl;
 } Stats[1]; // gives addressiblity via and beyond first element
 } *pInputRequest = (InputRequest_t *) pInputRequestKeeper.xPtr;

 // init input buffer
 memset(pInputRequest, 0, pInputRequestKeeper.xSize);

 // set input header
 memcpy(pInputRequest->hdr.ASPDeviceName, ASPDeviceName, 10);
 memcpy(pInputRequest->hdr.FileName, FileName, 10);
 memcpy(pInputRequest->hdr.FileLibraryName, LibName, 10);
 memcpy(pInputRequest->hdr.FileMemberName, MbrName, 10);
 memcpy(pInputRequest->hdr.CollectionMode, CollMode, 12);
 pInputRequest->hdr.iStatsOffset = offsetof(InputRequest_t, Stats);
 pInputRequest->hdr.iStatsCount = nStats;

 // fill single stats collections in input buffer
 for(unsigned int iStats = 0; iStats < nStats; ++iStats)
 {
 // address current stats coll input
 QdbstCmd_SingleStats_argv_t *pStatsArgv =
 (QdbstCmd_SingleStats_argv_t *) (ListBuffer + pStatsDispl[iStats]);
 assert(pStatsArgv->nElements == 4);

 // set stats hdr
 pInputRequest->Stats[iStats].statshdr.iStatsLen =
 sizeof(Qdbst_STIR0100_StatsHdr_t) +
 sizeof(Qdbst_STIR0100_StatsDtl_t);
 pInputRequest->Stats[iStats].statshdr.iStatsNameLen =
 QdbstCmd_calcStatsNameLen(pStatsArgv->statsName,
 sizeof(pStatsArgv->statsName));
 memcpy(pInputRequest->Stats[iStats].statshdr.StatsName,
 pStatsArgv->statsName,
Appendix A. Statistics Manager API code examples 159

 pInputRequest->Stats[iStats].statshdr.iStatsNameLen);
 memcpy(pInputRequest->Stats[iStats].statshdr.AgingMode,
 pStatsArgv->agingMode, 10);
 pInputRequest->Stats[iStats].statshdr.iColumnDisplacement =
 sizeof(Qdbst_STIR0100_StatsHdr_t);
 pInputRequest->Stats[iStats].statshdr.iColumnCount = 1;

 // set stats dtl
 pInputRequest->Stats[iStats].statsdtl.iColumnDefLen =
 sizeof(Qdbst_STIR0100_StatsDtl_t);
 memcpy(pInputRequest->Stats[iStats].statsdtl.ColumnName,
 pStatsArgv->colName, 10);
 memcpy(pInputRequest->Stats[iStats].statsdtl.TransTableName,
 pStatsArgv->transTable, 10);
 memcpy(pInputRequest->Stats[iStats].statsdtl.TransTableLibName,
 pStatsArgv->transTable+10, 10);

 } // end: fill single stats collections

 // setup feedback related data
 // Note: Not required, just as an example.

 // number of keys to be requested
 const unsigned int ciFeedbackKeys = 5;
 const unsigned int ciExpectedFeedbackKeys = 3 + 2 * nStats;

 unsigned int FeedbackKeys[ciFeedbackKeys] =
 {Qdbst_KeyNo_ElapsedTime,
 Qdbst_KeyNo_RequestID,
 Qdbst_KeyNo_StatsCount,
 Qdbst_KeyNo_StatsID,
 Qdbst_KeyNo_StatsName};

 struct Fullfeedback_t
 {
 Qdbst_FeedbackArea_Hdr_t Header;
 Qdbst_KeyValue_ElapsedTime_t ElapsedTime;
 Qdbst_KeyValue_RequestID_t RequestID;
 Qdbst_KeyValue_StatsCount_t StatsCount;
 char Buffer[1];
 };

 QdbstCmd_AutoPtr FeedbackAreaBuffer(
 sizeof(Fullfeedback_t) - 1 + // fixed portion
 nStats * (sizeof(Qdbst_KeyValue_t) + 128) + // max stats names
 nStats * (sizeof(Qdbst_KeyValue_StatsID_t)));

 // call the Create Stats API

 // force exceptions to be signalled
 Qus_EC_t ec;
 ec.Bytes_Provided = 0;

 QDBST_uint32 iInputLen = pInputRequestKeeper.xSize;
 QDBST_uint32 iFeedbackKeys = ciFeedbackKeys;

 QdbstRequestStatistics(pInputRequest,
 &iInputLen,
 "STIR0100",
 FeedbackAreaBuffer.xPtr,
160 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

 &FeedbackAreaBuffer.xSize,
 FeedbackKeys,
 &iFeedbackKeys,
 &ec);

 // log the feedback
 // Note: Not required, just as an example.
 {
 const Fullfeedback_t *const pFeedbackArea =
 (Fullfeedback_t *) FeedbackAreaBuffer.xPtr;
 char szBuffer[256];

 assert(pFeedbackArea->Header.iKeysReturned == ciExpectedFeedbackKeys);

 Qp0zLprintf("ELAPSED/ESTIMATED TIME: %i\n",
 pFeedbackArea->ElapsedTime.Data);

 if (!memcmp(CollMode, Qdbst_CollectionMode_BACKGRND,
 sizeof(Qdbst_CollectionMode_BACKGRND)-1))
 {
 cvthc(szBuffer, pFeedbackArea->RequestID.Data, 32);
 szBuffer[32] = '\0';
 Qp0zLprintf("REQUESTID: %s\n", szBuffer);
 }
 else
 if (!memcmp(CollMode, Qdbst_CollectionMode_IMMEDIATE,
 sizeof(Qdbst_CollectionMode_IMMEDIATE)-1))
 {
 assert(pFeedbackArea->StatsCount.Data == nStats);

 const Qdbst_KeyValue_StatsID_t *pStatsID =
 (const Qdbst_KeyValue_StatsID_t *) pFeedbackArea->Buffer;
 for(unsigned int iStats = 0; iStats < nStats;
 ++iStats, pStatsID = (Qdbst_KeyValue_StatsID_t *)
 ((char *) pStatsID + pStatsID->iEntryLen))
 {
 cvthc(szBuffer, pStatsID->Data, 32);
 szBuffer[32] = '\0';
 Qp0zLprintf("STATSID (%i) : %s\n", iStats, szBuffer);
 }

 const Qdbst_KeyValue_t *pStatsName = (Qdbst_KeyValue_t *) pStatsID;
 for(unsigned int iStats = 0; iStats < nStats;
 ++iStats, pStatsName = (const Qdbst_KeyValue_t *)
 ((char *) pStatsName + pStatsName->iEntryLen))
 {
 memcpy(szBuffer, (char *) pStatsName + sizeof(Qdbst_KeyValue_t),
 pStatsName->iDataLen);
 szBuffer[pStatsName->iDataLen] = '\0';
 Qp0zLprintf("STATSNAME (%i): %s\n", iStats, szBuffer);
 }

 } // end: if *IMMEDIATE

 } // end: log feedback

 // return success
 #pragma disable_handler
 return 0;
Appendix A. Statistics Manager API code examples 161

} // end: main
//---
static QDBST_uint32 QdbstCmd_calcStatsNameLen
(
 const char *StatsName,
 const size_t maxLen
)
{
 QDBST_uint32 iLen = 0;

 if (StatsName[0] == '\"')
 {
 for(++iLen; (iLen < maxLen && StatsName[iLen] != '\"'); ++iLen);
 ++iLen;
 }
 else
 {
 for(;(iLen < maxLen && StatsName[iLen] != ' ' && StatsName[iLen]); ++iLen);
 }

 return iLen;
} // end: QdbstCmd_calcStatsNameLen
//---
static void QdbstCmd_ResignalHdlr(_INTRPT_Hndlr_Parms_T *errmsg)
{
 // force errors with QMHRSNEM to be signalled, not stored
 Qus_EC_t ec;
 ec.Bytes_Provided = 0;

 // QMHRSNEM input - use format 0200 to specify "to call stack" via
 // invocation pointer
 Qmh_Rsnem_RSNM0200_t rsnm0200;

 // com area contains invocation pointer of a call stack level.
 // We will resignal to 1 (Call_Counter) above that level.
 // *PGMBDY allows us to skip ILE PEP etc.
 rsnm0200.Call_Stack_Entry = *((_INVPTR *) errmsg->Com_Area);
 rsnm0200.Call_Counter = 1;
 memcpy(rsnm0200.Pointer_Qualifier, "*PGMBDY ", 10);

 // resignal
 QMHRSNEM((char *)&errmsg->Msg_Ref_Key, // Message key
 &ec, // Error code
 &rsnm0200, // To call stack entry
 sizeof(rsnm0200), // Length of to call stack
 "RSNM0200", // Format
 &(errmsg->Target), // From call stack entry
 0); // From call stack counter

} // end: QdbstCmd_ResignalHdlr
//---
162 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Delete Statistics Collection
Example A-2 shows how to use the Delete Statistics Collection API to delete a specific or all
column statistics that were collected for a table. First, you must create a C++ program. Then
create a corresponding command that can then be used. To delete a specific column statistic
for a table, you must know the statistics ID. You can obtain this value by using the List
Statistics Collection API.

Example: A-2 Delete Statistics Collection API

//
// DESCRIPTION: Program behind the DLTDBFSTC CL command
//
// FUNCTION: Delete database file statistics using
// the database file statistics API
// QdbstDeleteStatistics.
//
// PARAMETER LIST:
// PARM USE TYPE DESCRIPTION
// 1 I CHAR(10) Library ASP device name
// 2 I CHAR(20) Qualified database file name (file/lib)
// 3 I CHAR(10) Database file member
// 4 I HEX(16) Statistics ID
//
// Program create and function registration
// Have source as DBSTCMD/QCPPSRC(DLTDBFSTC)

CHGCURLIB DBSTCMD

CRTCPPMOD
 MODULE(DBSTCMD/DLTDBFSTC)
 SRCFILE(DBSTCMD/QCPPSRC)

CRTSRVPGM
 SRVPGM(DBSTCMD/DLTDBFSTC)
 MODULE(DBSTCMD/DLTDBFSTC)
 BNDSRVPGM(QSYS/QDBSTMGR QSYS/QP0ZCPA)
 EXPORT(*ALL)
 STGMDL(*SNGLVL)
 ACTGRP(*CALLER)

// Have the following in DBSTCMD/QCMDSRC(DLTDBFSTC)

CMD PROMPT('Delete DB-File Statistics')
 PARM KWD(ASPDEV) TYPE(*SNAME) LEN(10) +
 DFT(*) PROMPT('Library ASP device name') +
 SPCVAL((*) (*SYSBAS))
 PARM KWD(FILE) TYPE(FILEQUAL) PROMPT('Database file')
 PARM KWD(MBR) TYPE(*SNAME) PROMPT('Member') +
 DFT(*FIRST) SPCVAL((*FIRST) (*LAST))
 PARM KWD(STCID) TYPE(*HEX) LEN(16) +
 DFT(*ANY) PROMPT('Statistics ID') +
 SPCVAL((*ANY 0000000000000000))

/* QUALIFIED FILE NAME */
 FILEQUAL: QUAL TYPE(*SNAME) LEN(10)
 QUAL TYPE(*SNAME) LEN(10) DFT(*LIBL) +
Appendix A. Statistics Manager API code examples 163

 SPCVAL((*LIBL) (*CURLIB) (*USRLIBL)) +
 PROMPT('Library')

// Use the following to create the actual command

CRTCMD CMD(DBSTCMD/DLTDBFSTC)
PGM(DBSTCMD/DLTDBFSTC)
SRCFILE(DBSTCMD/QCMDSRC)

//----- START OF C++ SOURCE --

#ifndef QDBSTMGR_H
#include <qdbstmgr.h>
#endif

#ifndef memory_h
#include <memory.h>
#endif

#ifndef QUSEC_h
#include <qusec.h>
#endif

#include <assert.h>

//---
int main(int argc, char *argv[])
{
 // check number of parameters
 // NOTE: refine
 assert(argc == 5);

 // fill in API input
 Qdbst_STID0100_t InputDelete;

 memcpy(InputDelete.ASPDeviceName, argv[1], 10);
 memcpy(InputDelete.FileName, argv[2], 10);
 memcpy(InputDelete.FileLibraryName, argv[2]+10, 10);
 memcpy(InputDelete.FileMemberName, argv[3], 10);
 memcpy(InputDelete.StatisticsID, argv[4], 16);

 // call the API
 Qus_EC_t ec;
 ec.Bytes_Provided = 0;

 QDBST_uint32 iInputLen = sizeof(InputDelete);
 QDBST_uint32 iFeedback = 0;

 QdbstDeleteStatistics(&InputDelete,
 &iInputLen,
 "STID0100",
 0, 0, 0, &iFeedback, // no feedback
 &ec);
164 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

 // return
 return 0;

} // end: main
//---

Update Statistics Collection
Example A-3 shows how to update existing column statistics using the Update Statistics
Collection API. Note that one of the input parameters is the hexadecimal statistics ID. You can
obtain this value by using the List Statistics Collection API. Using this command, you can:

� Change the name of a statistics collection
� Refresh a statistics collection
� Change whether the statistics data is aged by the system or manually aged
� Block the system statistics collection for a file

Example: A-3 Update Statistics Collection API

// DESCRIPTION: Update database file statistics
//
// FUNCTION: Program for sample UPDDBFSTC CL command
// using the QdbstUpdateStatistics API.
//
// PARAMETER LIST:
// PARM USE TYPE DESCRIPTION
// 1 I CHAR(10) Library ASP device name
// 2 I CHAR(20) Qualified database file name (file/lib)
// 3 I CHAR(10) Database file member
// 4 I CHAR(32) Statistics ID
// 5 I CHAR(12) Data refresh (mode | *NO)
// 6 I CHAR(10) Aging mode (mode | *SAME)
// 7 I CHAR(5) Block system activity (*YES | *NO | *SAME)
// 8 I CHAR(30) Stats name (name | *SAME)
//
// Create commands:
//

Have UPDDBFSTC.C400 source as DBSTCMD/QCPPSRC(UPDDBFSTC)

CRTCPPMOD MODULE(DBSTCMD/UPDDBFSTC)
 SRCFILE(DBSTCMD/QCPPSRC)

CRTPGM PGM(DBSTCMD/UPDDBFSTC)
 MODULE(DBSTCMD/UPDDBFSTC)
 ENTMOD(UPDDBFSTC)
 BNDSRVPGM(QSYS/QDBSTMGR QSYS/QP0ZCPA)
 ACTGRP(*CALLER)

// Have the following in DBSTCMD/QCMDSRC(UPDDBFSTC)

CMD PROMPT('Update DB-File Statistics')
 PARM KWD(ASPDEV) TYPE(*SNAME) LEN(10) +
 DFT(*) PROMPT('Library ASP device name') +
 SPCVAL((*) (*SYSBAS))
Appendix A. Statistics Manager API code examples 165

 PARM KWD(FILE) TYPE(FILEQUAL) PROMPT('Database file')
 PARM KWD(MBR) TYPE(*SNAME) PROMPT('Member') +
 DFT(*FIRST) SPCVAL((*FIRST) (*LAST))
 PARM KWD(STCID) TYPE(*HEX) LEN(16) +
 PROMPT('Statistics ID')
 PARM KWD(UPDDTA) TYPE(*CHAR) LEN(12) RSTD(*YES) +
 DFT(*IMMEDIATE) SPCVAL((*IMMEDIATE) +
 (*BACKGROUND) (*NO)) PROMPT('Data refresh')
 PARM KWD(AGEMODE) TYPE(*CHAR) LEN(10) RSTD(*YES) DFT(*SAME) +
 SPCVAL((*SYS) (*USER) (*SAME)) PROMPT('Aging mode')
 PARM KWD(BLKSYS) TYPE(*CHAR) LEN(5) RSTD(*YES) DFT(*SAME) +
 SPCVAL((*YES) (*NO) (*SAME)) +
 PROMPT('Block system activity')
 PARM KWD(STCNAM) TYPE(*CHAR) LEN(30) DFT(*SAME) +
 SPCVAL((*SAME)) PROMPT('Statistics name')

/* QUALIFIED FILE NAME */
 FILEQUAL: QUAL TYPE(*SNAME) LEN(10)
 QUAL TYPE(*SNAME) LEN(10) DFT(*LIBL) +
 SPCVAL((*LIBL) (*CURLIB) (*USRLIBL)) +
 PROMPT('Library')

// Use the following to create the actual command

CRTCMD CMD(DBSTCMD/UPDDBFSTC)
PGM(DBSTCMD/UPDDBFSTC)
SRCFILE(DBSTCMD/QCMDSRC)

//--- Start of C++ Source ---

// database file statistics APIs
#ifndef QDBSTMGR_H
#include <qdbstmgr.h>
#endif

// memcpy, ...
#ifndef memory_h
#include <memory.h>
#endif

// API error code structures
#ifndef QUSEC_h
#include <qusec.h>
#endif

// job log output
#ifndef __QP0ZTRC_H
#include <qp0ztrc.h>
#endif

/*
// convert char to hex
#ifndef __cvtch_h
#include <mih/cvtch.h>
#endif
*/
166 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

// convert hex to char
#ifndef __cvthc_h
#include <mih/cvthc.h>
#endif

// exception handling
#ifndef __except_h
#include <except.h>
#endif

// resend escape message
#ifndef QMHRSNEM_h
#include <qmhrsnem.h>
#endif

#include <assert.h>

//---
// Calculate the stats name length (quoted '"', or ' ' or '\0' terminated)
static QDBST_uint32 QdbstCmd_calcStatsNameLen
(
 const char *StatsName,
 const size_t maxLen
);
//---
// Resignal exceptions to one above the invocation pointer given as
// communications "area" passed on the #pragma exception_handler.
static void QdbstCmd_ResignalHdlr(_INTRPT_Hndlr_Parms_T *errmsg);
//---
int main(int argc, char *argv[])
{
 // setup exception resignal handler
 // get invocation pointer for resignal scoping
 volatile _INVPTR invPtr = _INVP(0);

 #pragma exception_handler (QdbstCmd_ResignalHdlr, invPtr, 0, _C2_MH_ESCAPE)

 // check number of parameters
 // ...

 // address (sub set of) input parameters
 const char* const ASPDeviceName = argv[1];
 const char* const FileName = argv[2];
 const char* const LibName = argv[2] + 10;
 const char* const MbrName = argv[3];
 const char* const StatsID = argv[4];
 const char* const CollMode = argv[5];
 const char* const AgingMode = argv[6];
 const char* const BlockOption = argv[7];
 const char* const StatsName = argv[8];

 // API input
 struct InputUpdate_t
 {
 Qdbst_STIU0100_Hdr_t hdr;
 char Buffer[sizeof(Qdbst_KeyValue_StatsData_t) +
 sizeof(Qdbst_KeyValue_AgingMode_t) +
 sizeof(Qdbst_KeyValue_BlockOption_t) +
 sizeof(Qdbst_KeyValue_t) + 128];
Appendix A. Statistics Manager API code examples 167

 } InputUpdate;

 // init input buffer
 memset(&InputUpdate, 0, sizeof(InputUpdate));

 // set input header (fixed part)
 memcpy(InputUpdate.hdr.ASPDeviceName, ASPDeviceName, 10);
 memcpy(InputUpdate.hdr.FileName, FileName, 10);
 memcpy(InputUpdate.hdr.FileLibraryName, LibName, 10);
 memcpy(InputUpdate.hdr.FileMemberName, MbrName, 10);

 //cvtch(InputUpdate.hdr.StatisticsID, StatsID, 32);
 memcpy(InputUpdate.hdr.StatisticsID, StatsID, 16);

 InputUpdate.hdr.iFieldOffset = offsetof(InputUpdate_t, Buffer);

 // determine and set dynamic input
 int updData = 0;
 int updAgingMode = 0;
 int updStatsName = 0;
 int updBlockOption = 0;

 {
 unsigned int iOffset = 0;
 QDBST_uint32 iKeys = 0;

 // data refresh requested?
 if (memcmp(CollMode, "*NO", sizeof("*NO")-1))
 {
 Qdbst_KeyValue_StatsData_t *pStatsData =
 (Qdbst_KeyValue_StatsData_t *) (InputUpdate.Buffer + iOffset);

 pStatsData->iEntryLen = sizeof(Qdbst_KeyValue_StatsData_t);
 pStatsData->iDataLen = sizeof(Qdbst_StatsData_IMMEDIATE)-1;
 pStatsData->iKey = Qdbst_KeyNo_StatsData;
 memcpy(pStatsData->Data, CollMode, pStatsData->iDataLen);

 updData = 1;

 iOffset += pStatsData->iEntryLen;
 ++iKeys;
 }

 // aging mode update requested?
 if (memcmp(AgingMode, "*SAME", sizeof("*SAME")-1))
 {
 Qdbst_KeyValue_AgingMode_t *pAgingMode =
 (Qdbst_KeyValue_AgingMode_t *) (InputUpdate.Buffer + iOffset);

 pAgingMode->iEntryLen = sizeof(Qdbst_KeyValue_AgingMode_t);
 pAgingMode->iDataLen = sizeof(Qdbst_AgingMode_SYS)-1;
 pAgingMode->iKey = Qdbst_KeyNo_AgingMode;
 memcpy(pAgingMode->Data, AgingMode, pAgingMode->iDataLen);

 updAgingMode = 1;

 iOffset += pAgingMode->iEntryLen;
 ++iKeys;
 }
168 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

 // block system activity update requested?
 if (memcmp(BlockOption, "*SAME", sizeof("*SAME")-1))
 {
 Qdbst_KeyValue_BlockOption_t *pBlockOption =
 (Qdbst_KeyValue_BlockOption_t *) (InputUpdate.Buffer + iOffset);

 pBlockOption->iEntryLen = sizeof(Qdbst_KeyValue_BlockOption_t);
 pBlockOption->iDataLen = sizeof(Qdbst_BlockOption_NOBLOCK);
 pBlockOption->iKey = Qdbst_KeyNo_BlockOption;
 pBlockOption->Data[0] = (BlockOption[1] == 'Y'
 ? Qdbst_BlockOption_BLOCK
 : Qdbst_BlockOption_NOBLOCK);

 updBlockOption = 1;

 iOffset += pBlockOption->iEntryLen;
 ++iKeys;
 }

 // stats name update requested?
 if (memcmp(StatsName, "*SAME", sizeof("*SAME")-1))
 {
 Qdbst_KeyValue_t *pStatsNameHdr =
 (Qdbst_KeyValue_t *) (InputUpdate.Buffer + iOffset);

 pStatsNameHdr->iDataLen = QdbstCmd_calcStatsNameLen(StatsName, 30);
 pStatsNameHdr->iEntryLen = sizeof(Qdbst_KeyValue_t) +
 ((pStatsNameHdr->iDataLen+3) & (~3U));
 pStatsNameHdr->iKey = Qdbst_KeyNo_StatsName;
 memcpy((char*) pStatsNameHdr + sizeof(Qdbst_KeyValue_t),
 StatsName, pStatsNameHdr->iDataLen);

 updStatsName = 1;

 iOffset += pStatsNameHdr->iEntryLen;
 ++iKeys;
 }

 InputUpdate.hdr.iFieldCount = iKeys;
 } // end: dynamic update options

 // setup feedback related data
 // Note: Not required, just as an example.

 // number of keys to be requested
 const unsigned int ciFeedbackKeys = 4;

 unsigned int FeedbackKeys[ciFeedbackKeys] =
 {Qdbst_KeyNo_RequestID,
 Qdbst_KeyNo_AgingMode,
 Qdbst_KeyNo_BlockOption,
 Qdbst_KeyNo_StatsName};

 struct Fullfeedback_t
 {
 Qdbst_FeedbackArea_Hdr_t Header;
 Qdbst_KeyValue_RequestID_t RequestID;
 Qdbst_KeyValue_AgingMode_t AgingMode;
 Qdbst_KeyValue_BlockOption_t BlockOption;
 Qdbst_KeyValue_t StatsName_Hdr;
Appendix A. Statistics Manager API code examples 169

 char StatsName_Data[128];
 } FeedbackArea;

 // call the Update Stats API

 // force exceptions to be signalled
 Qus_EC_t ec;
 ec.Bytes_Provided = 0;

 QDBST_uint32 iInputLen = sizeof(InputUpdate);
 QDBST_uint32 iFeedbackKeys = ciFeedbackKeys;
 QDBST_uint32 iFeedbackSize = sizeof(FeedbackArea);

 QdbstUpdateStatistics(&InputUpdate,
 &iInputLen,
 "STIU0100",
 &FeedbackArea,
 &iFeedbackSize,
 FeedbackKeys,
 &iFeedbackKeys,
 &ec);

 // log the feedback
 // Note: Not required, just as an example.
 {
 assert(FeedbackArea.Header.iKeysReturned == ciFeedbackKeys);

 char szBuffer[256];

 if (updData)
 {
 cvthc(szBuffer, FeedbackArea.RequestID.Data, 32);
 szBuffer[32] = '\0';
 Qp0zLprintf("REQUESTID: %s\n", szBuffer);
 }

 if (updAgingMode)
 {
 memcpy(szBuffer, FeedbackArea.AgingMode.Data,
 sizeof(Qdbst_AgingMode_SYS)-1);
 szBuffer[sizeof(Qdbst_AgingMode_SYS)-1] = '\0';
 Qp0zLprintf("PREVIOUS AGING MODE: %s\n", szBuffer);
 }

 if (updBlockOption)
 {
 Qp0zLprintf("PREVIOUS BLOCK OPTION: %c\n",
 FeedbackArea.BlockOption.Data[0]);
 }

 if (updStatsName)
 {
 memcpy(szBuffer, FeedbackArea.StatsName_Data,
 FeedbackArea.StatsName_Hdr.iDataLen);
 szBuffer[FeedbackArea.StatsName_Hdr.iDataLen] = '\0';
 Qp0zLprintf("PREVIOUS STATSNAME: %s\n", szBuffer);
 }

 } // end: log feedback
170 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

 // return success
 #pragma disable_handler
 return 0;

} // end: main
//---
static QDBST_uint32 QdbstCmd_calcStatsNameLen
(
 const char *StatsName,
 const size_t maxLen
)
{
 QDBST_uint32 iLen = 0;

 if (StatsName[0] == '\"')
 {
 for(++iLen; (iLen < maxLen && StatsName[iLen] != '\"'); ++iLen);
 ++iLen;
 }
 else
 {
 for(;(iLen < maxLen && StatsName[iLen] != ' ' && StatsName[iLen]); ++iLen);
 }

 return iLen;
} // end: QdbstCmd_calcStatsNameLen
//---
static void QdbstCmd_ResignalHdlr(_INTRPT_Hndlr_Parms_T *errmsg)
{
 // force errors with QMHRSNEM to be signalled, not stored
 Qus_EC_t ec;
 ec.Bytes_Provided = 0;

 // QMHRSNEM input - use format 0200 to specify "to call stack" via
 // invocation pointer
 Qmh_Rsnem_RSNM0200_t rsnm0200;

 // com area contains invocation pointer of a call stack level.
 // We will resignal to 1 (Call_Counter) above that level.
 // *PGMBDY allows us to skip ILE PEP etc.
 rsnm0200.Call_Stack_Entry = *((_INVPTR *) errmsg->Com_Area);
 rsnm0200.Call_Counter = 1;
 memcpy(rsnm0200.Pointer_Qualifier, "*PGMBDY ", 10);

 // resignal
 QMHRSNEM((char *)&errmsg->Msg_Ref_Key, // Message key
 &ec, // Error code
 &rsnm0200, // To call stack entry
 sizeof(rsnm0200), // Length of to call stack
 "RSNM0200", // Format
 &(errmsg->Target), // From call stack entry
 0); // From call stack counter

} // end: QdbstCmd_ResignalHdlr
//---
Appendix A. Statistics Manager API code examples 171

List Statistics Collection
This example demonstrates how to use the List Statistics Collection API to create a
user-defined table function (UDTF). Example A-4 shows the code that you need to generate
the programs and the source code. When using the UDTF, make sure to pad all input
parameters with blanks at the end so that they contain 10 characters each. Also be sure to
use all uppercase for the names. Otherwise, the UDTF returns an error.

Possible input values are:

� For ASP Device name: The actual ASP name, special value *SYSBAS, or * (meaning
current)

� For library name: The actual library name, special values *LIBL, *CURLIB, or *USRLIBL

� For filename: The actual file name or special value *ALL if an actual library name was
provided

� For member name: The actual member name, special value *FIRST, *LAST, or *ALL

Example: A-4 List Statistics Collection API

// DESCRIPTION: Sample UDTF LSTDBFSTC
//
// FUNCTION: List database file statistics via a
// user-defined table function (UDTF)
// using the database file statistics
// QdbstListStatistics API.
//
// Program create, function registration, and sample function call
// Have source as DBSTCMD/QCPPSRC(LSTDBFSTC)

CRTCPPMOD
 MODULE(DBSTCMD/LSTDBFSTC)
 SRCFILE(DBSTCMD/QCPPSRC)

CRTSRVPGM
 SRVPGM(DBSTCMD/LSTDBFSTC)
 MODULE(DBSTCMD/LSTDBFSTC)
 BNDSRVPGM(QSYS/QDBSTMGR QSYS/QP0ZCPA)
 EXPORT(*ALL)
 STGMDL(*SNGLVL)
 ACTGRP(*CALLER)

// SQL statements to create UDTF

DROP FUNCTION DBSTCMD/LSTDBFSTC

CREATE FUNCTION DBSTCMD/LSTDBFSTC
(
 ASPDEV VARCHAR(10),
 LIBNAM VARCHAR(10),
 FILNAM VARCHAR(10),
 MBRNAM VARCHAR(10)
)
RETURNS TABLE
(
 ASPDEV CHAR(10),
 LIBNAM CHAR(10),
172 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

 FILNAM CHAR(10),
 MBRNAM CHAR(10),
 COLNAM CHAR(10),
 CRTUSR CHAR(10),
 STALE CHAR(1),
 AGEMOD CHAR(10),
 BLKOPT CHAR(1),
 CARDIN BIGINT,
 MFVCNT INTEGER,
 HSTCNT INTEGER,
 STCID CHAR(32),
 STCSIZ BIGINT,
 STCNAM VARCHAR(128)
)
RETURNS NULL ON NULL INPUT
NO FINAL CALL
NO DBINFO
EXTERNAL NAME 'DBSTCMD/LSTDBFSTC(LSTDBFSTC)'
LANGUAGE C++
SCRATCHPAD
PARAMETER STYLE DB2SQL
DISALLOW PARALLEL
NOT FENCED
CARDINALITY 1000

// Sample SQL statements to use UDTF - getting stats info for all files in LIB1

SELECT *
FROM TABLE(LSTDBFSTC('* ',
 'LIB1 ',
 '*ALL ',
 '*ALL ')) AS A

// Sample SQL statements to use UDTF - getting info required for UPTDBFSTC for stale stats

SELECT FILNAM, MBRNAM, STCID
FROM TABLE(LSTDBFSTC('* ',
 'LIB1 ',
 '*ALL ',
 '*ALL ')) AS A
WHERE STALE = 'Y'

//-START OF C++ SOURCE CODE--
// Include files

// SQL UDF/UDTF support
#ifndef SQL_H_SQLUDF
#include <sqludf.h>
#endif

// statistics APIs
#ifndef QDBSTMGR_H
#include <qdbstmgr.h>
#endif
Appendix A. Statistics Manager API code examples 173

// User space handling - generic header
#ifndef QUSGEN_h
#include <qusgen.h>
#endif

// User space handling - resolve user space pointer
#ifndef QUSPTRUS_h
#include <qusptrus.h>
#endif

// User space handling - delete user space
#ifndef QUSDLTUS_h
#include <qusdltus.h>
#endif

// User space handling - create user space
#ifndef QUSCRTUS_h
#include <quscrtus.h>
#endif

#ifndef memory_h
#include <memory.h>
#endif

#ifndef __string_h
#include <string.h>
#endif

#ifndef __stddef_h
#include <stddef.h>
#endif

#ifndef __stdlib_h
#include <stdlib.h>
#endif

#ifndef QUSEC_h
#include <qusec.h>
#endif

#ifndef __except_h
#include <except.h>
#endif

// convert hex to char
#ifndef __cvthc_h
#include <mih/cvthc.h>
#endif

// for debug
#ifndef __QP0ZTRC_H
#include <qp0ztrc.h>
#endif

//---
// classes/structs

struct LSTDBFSTC_ListEntry_t
{
 enum { KeyIndex_MAX = 15 };
174 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

 static const QDBST_uint32 KeyNumbers[KeyIndex_MAX];

 Qdbst_STOL0100_Hdr_t ListEntryHeader;
 Qdbst_KeyValue_ASPDeviceUsed_t ASPName;
 Qdbst_KeyValue_FileLibUsed_t LibName;
 Qdbst_KeyValue_FileUsed_t FilName;
 Qdbst_KeyValue_FileMbrUsed_t MbrName;
 Qdbst_KeyValue_OneColumnName_t ColName;
 Qdbst_KeyValue_CreatingUser_t CrtUser;
 Qdbst_KeyValue_AgingStatus_t Stale;
 Qdbst_KeyValue_AgingMode_t AgingMode;
 Qdbst_KeyValue_BlockOption_t BlockOption;
 Qdbst_KeyValue_CurStatsSize_t StatsSize;
 Qdbst_KeyValue_Cardinality_t Cardinality;
 Qdbst_KeyValue_MFVCount_t MFVCount;
 Qdbst_KeyValue_HistRCount_t HistRCount;
 Qdbst_KeyValue_StatsID_t StatsID;
 Qdbst_KeyValue_t StatsName_Hdr;
 char StatsName_Data[128];
};

const QDBST_uint32
 LSTDBFSTC_ListEntry_t::KeyNumbers[LSTDBFSTC_ListEntry_t::KeyIndex_MAX] =
{
 Qdbst_KeyNo_ASPDeviceUsed,
 Qdbst_KeyNo_FileLibUsed,
 Qdbst_KeyNo_FileUsed,
 Qdbst_KeyNo_FileMbrUsed,
 Qdbst_KeyNo_ColumnNames,
 Qdbst_KeyNo_CreatingUser,
 Qdbst_KeyNo_AgingStatus,
 Qdbst_KeyNo_AgingMode,
 Qdbst_KeyNo_BlockOption,
 Qdbst_KeyNo_CurStatsSize,
 Qdbst_KeyNo_Cardinality,
 Qdbst_KeyNo_MFVCount,
 Qdbst_KeyNo_HistRCount,
 Qdbst_KeyNo_StatsID,
 Qdbst_KeyNo_StatsName
};

struct LSTDBFSTC_ScratchPad_t
{
 // of scratch pad, as set by SQL environment
 // keep in here, to have pointers below aligned OK
 unsigned long length;

 // keep track of how many list entries already processed
 QDBST_uint32 iCurrentListEntry;

 // Pointer to user space used for QdbstListStatistics.
 // Will be initialized in OPEN call and possibly gets updated
 // in FETCH calls, when we reach a continuation point.
 Qus_Generic_Header_0300_t *pUserSpaceStart;

 // Pointer to next list entry to process,
 // if iCurrentListEntry is less than total number of list entries
 // available in current userspace
 // (compare pUserSpaceStart->Number_List_Entries)
Appendix A. Statistics Manager API code examples 175

 LSTDBFSTC_ListEntry_t *pCurrentListEntry;

 // qualified userspace name
 char UserSpaceName[20];

}; // end: LSTDBFSTC_ScratchPad_t

//---
// Local functions

// Handle UDTF call type OPEN
static int LSTDBFSTC_Open
(
 const char*const ASPName_in,
 const char*const LibName_in,
 const char*const FilName_in,
 const char*const MbrName_in,
 LSTDBFSTC_ScratchPad_t *pScratchPad,
 char *const SQLState_out,
 char *const SQLMsgTxt_out
);

// Handle UDTF call type CLOSE
static int LSTDBFSTC_Close
(
 LSTDBFSTC_ScratchPad_t *pScratchPad,
 char *const SQLState_out,
 char *const SQLMsgTxt_out
);

//---
// UDTF main entry point
extern "C" void LSTDBFSTC
(
 const char ASPName_in[10],
 const char LibName_in[10],
 const char FilName_in[10],
 const char MbrName_in[10],

 char ASPName_out[10],
 char LibName_out[10],
 char FilName_out[10],
 char MbrName_out[10],
 char ColName_out[10],
 char CrtUser_out[10],
 char *const pStale_out,
 char AgingMode_out[10],
 char *const pBlockOption_out,
 long long *const pCardinality_out,
 int *const pMFVCount_out,
 int *const pHistRCount_out,
 char *const pStatsID_out,
 long long *const pStatsSize_out,
 char StatsName_out[128+1],

 const short *const pASPName_inInd,
 const short *const pLibName_inInd,
 const short *const pFilName_inInd,
 const short *const pMbrName_inInd,
176 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

 short *const pASPName_outInd,
 short *const pLibName_outInd,
 short *const pFilName_outInd,
 short *const pMbrName_outInd,
 short *const pColName_outInd,
 short *const pCrtUser_outInd,
 short *const pStale_outInd,
 short *const pAgingMode_outInd,
 short *const pBlockOption_outInd,
 short *const pCardinality_outInd,
 short *const pMFVCount_outInd,
 short *const pHistRCount_outInd,
 short *const pStatsID_outInd,
 short *const pStatsSize_outInd,
 short *const pStatsName_outInd,

 char *const SQLState_out,
 const char *const, // sqludf_fname
 const char *const, // sqludf_fspecname
 char *const SQLMsgTxt_out,
 LSTDBFSTC_ScratchPad_t *const pScratchPad,
 const SQLUDF_CALL_TYPE *const pCallType
)
{
 #pragma exception_handler(LSTDBFSTC_Error, 0, _C1_ALL, _C2_ALL, _CTLA_HANDLE)

 // init basic output
 strcpy(SQLState_out, "01H00");
 *SQLMsgTxt_out = '\0';

 // act based on call type
 switch(*pCallType)
 {
 case SQLUDF_ENUM_CALLTYPE_MINUS1: // *OPEN
 LSTDBFSTC_Open(ASPName_in,
 LibName_in,
 FilName_in,
 MbrName_in,
 pScratchPad,
 SQLState_out,
 SQLMsgTxt_out);
 return;

 case SQLUDF_ENUM_CALLTYPE_PLUS1: // *CLOSE
 LSTDBFSTC_Close(pScratchPad, SQLState_out, SQLMsgTxt_out);
 return;

 case SQLUDF_ENUM_CALLTYPE_ZERO: // *FETCH - fall through
 break;

 default: // call type not handled here
 return;

 } // end: switch

 // check for EOF
 if (pScratchPad->iCurrentListEntry >=
 pScratchPad->pUserSpaceStart->Number_List_Entries)
 {
Appendix A. Statistics Manager API code examples 177

 // NOTE: add list continuation handling code

 // return EOF
 strcpy(SQLState_out, "02000");
 return;
 }

 // fill in output from current entry
 memcpy(ASPName_out, pScratchPad->pCurrentListEntry->ASPName.Data, 10);
 memcpy(LibName_out, pScratchPad->pCurrentListEntry->LibName.Data, 10);
 memcpy(FilName_out, pScratchPad->pCurrentListEntry->FilName.Data, 10);
 memcpy(MbrName_out, pScratchPad->pCurrentListEntry->MbrName.Data, 10);
 memcpy(ColName_out, pScratchPad->pCurrentListEntry->ColName.Data, 10);
 memcpy(CrtUser_out, pScratchPad->pCurrentListEntry->CrtUser.Data, 10);
 *pStale_out =
 (pScratchPad->pCurrentListEntry->Stale.Data[0]-'0' ? 'Y' : 'N');
 memcpy(AgingMode_out, pScratchPad->pCurrentListEntry->AgingMode.Data, 10);
 *pBlockOption_out =
 (pScratchPad->pCurrentListEntry->BlockOption.Data[0]-'0' ? 'Y' : 'N');
 *pStatsSize_out = pScratchPad->pCurrentListEntry->StatsSize.Data;
 *pCardinality_out = pScratchPad->pCurrentListEntry->Cardinality.Data;
 *pMFVCount_out = pScratchPad->pCurrentListEntry->MFVCount.Data;
 *pHistRCount_out = pScratchPad->pCurrentListEntry->HistRCount.Data;

 cvthc(pStatsID_out, pScratchPad->pCurrentListEntry->StatsID.Data, 32);

 memcpy(StatsName_out, pScratchPad->pCurrentListEntry->StatsName_Data,
 pScratchPad->pCurrentListEntry->StatsName_Hdr.iDataLen);
 StatsName_out[pScratchPad->pCurrentListEntry->StatsName_Hdr.iDataLen]='\0';

 *pASPName_outInd = 0;
 *pLibName_outInd = 0;
 *pFilName_outInd = 0;
 *pMbrName_outInd = 0;
 *pColName_outInd = 0;
 *pStatsName_outInd = 0;
 *pCrtUser_outInd = 0;
 *pStale_outInd = 0;
 *pAgingMode_outInd = 0;
 *pBlockOption_outInd= 0;
 *pStatsSize_outInd = 0;
 *pCardinality_outInd= 0;
 *pMFVCount_outInd = 0;
 *pHistRCount_outInd = 0;
 *pStatsID_outInd = 0;

 // do some tracing
 /*
 Qp0zLprintf("ASP/LIB/FIL/MBR (%i): %s, %s, %s, %s\n",
 pScratchPad->iCurrentListEntry,
 ASPName_out,
 LibName_out,
 FilName_out,
 MbrName_out);
 */

 // advance to next entry
 if (++(pScratchPad->iCurrentListEntry) <
 pScratchPad->pUserSpaceStart->Number_List_Entries)
178 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

 pScratchPad->pCurrentListEntry = (LSTDBFSTC_ListEntry_t *)
 ((char *) pScratchPad->pCurrentListEntry +
 pScratchPad->pCurrentListEntry->ListEntryHeader.iEntryLen);

 // return
 strcpy(SQLState_out, "00000");
 return;

 #pragma disable_handler
 // exception handler
 LSTDBFSTC_Error:
 // indicate error state
 strcpy(SQLState_out, "58004");

 // dump some context data
 #pragma exception_handler(LSTDBFSTC_Error2, 0, _C1_ALL, _C2_ALL, _CTLA_HANDLE)

 Qp0zLprintf("ASP name = %s\n", ASPName_in);
 Qp0zLprintf("Lib name = %s\n", LibName_in);
 Qp0zLprintf("Fil name = %s\n", FilName_in);
 Qp0zLprintf("Mbr name = %s\n", MbrName_in);
 Qp0zLprintf("iCurrentListEntry = %i\n", pScratchPad->iCurrentListEntry);

 system("DLTUSRSPC QTEMP/LSTDBFSTC");

 #pragma disable_handler

 LSTDBFSTC_Error2: ;

} // end: LSTDBFSTC
//---
static int LSTDBFSTC_Open
(
 const char*const ASPName_in,
 const char*const LibName_in,
 const char*const FilName_in,
 const char*const MbrName_in,
 LSTDBFSTC_ScratchPad_t *pScratchPad,
 char *const SQLState_out,
 char *const SQLMsgTxt_out
)
{
 Qus_EC_t ec;

 // create a temporary user space
 memcpy(pScratchPad->UserSpaceName, "LSTDBFSTC QTEMP ", 20);

 // force (unexpected) exceptions to be signalled
 ec.Bytes_Provided = 0;

 // call the Create User Space API
 QUSCRTUS((void *) pScratchPad->UserSpaceName, // Name
 "UDTF ", // extended attribute
 0x10000, // initial size (64K)
 "\0", // initial value
 "*EXCLUDE ", // public authority
 "LSTDBFSTC_OPEN", // desc
 "*NO ", // no replace.
 &ec);
Appendix A. Statistics Manager API code examples 179

 // call the list API
 // input structure with our number of keys in variable length part

 struct LSTDBFSTC_STIL0100_t
 {
 Qdbst_STIL0100_Hdr hdr;
 QDBST_uint32 keys[LSTDBFSTC_ListEntry_t::KeyIndex_MAX];
 } STIL0100;

 memset(&STIL0100, 0, sizeof(STIL0100));

 // set header
 memcpy(STIL0100.hdr.ASPDeviceName, ASPName_in, 10);
 memcpy(STIL0100.hdr.FileLibraryName, LibName_in, 10);
 memcpy(STIL0100.hdr.FileName, FilName_in, 10);
 memcpy(STIL0100.hdr.FileMemberName, MbrName_in, 10);
 STIL0100.hdr.ColumnOption = Qdbst_ColumnOption_STATSONLY;

 memcpy(STIL0100.hdr.ContinuationHandle,
 Qdbst_ContinuationHandle_FIRST,
 sizeof(STIL0100.hdr.ContinuationHandle));

 STIL0100.hdr.iFieldCount = LSTDBFSTC_ListEntry_t::KeyIndex_MAX;
 STIL0100.hdr.iFieldOffset = offsetof(LSTDBFSTC_STIL0100_t, keys);

 // set keys
 memcpy(STIL0100.keys, LSTDBFSTC_ListEntry_t::KeyNumbers,
 sizeof(LSTDBFSTC_ListEntry_t::KeyNumbers));

 // call API
 // force (unexpected) exceptions to be signalled
 ec.Bytes_Provided = 0;

 // copy constant, so that we can pass pointer to API
 unsigned int iInputLen = sizeof(LSTDBFSTC_STIL0100_t);

 QdbstListStatistics(pScratchPad->UserSpaceName,
 "STOL0100",
 &STIL0100,
 &iInputLen,
 "STIL0100",
 &ec);

 // address user space
 // force (unexpected) exceptions to be signalled
 ec.Bytes_Provided = 0;

 QUSPTRUS(pScratchPad->UserSpaceName,
 &pScratchPad->pUserSpaceStart,
 &ec);

 // update remaining scratchpad fields
 pScratchPad->pCurrentListEntry = (LSTDBFSTC_ListEntry_t *)
 (((char*) pScratchPad->pUserSpaceStart) +
 pScratchPad->pUserSpaceStart->Offset_List_Data);
 pScratchPad->iCurrentListEntry = 0;

 // update status
 if (pScratchPad->pUserSpaceStart->Information_Status == 'I')
 {
180 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

 strcpy(SQLState_out, "58004");
 return -1;
 }

 strcpy(SQLState_out, "00000");
 return 0;

} // end: LSTDBFSTC_Open
//---
static int LSTDBFSTC_Close
(
 LSTDBFSTC_ScratchPad_t *pScratchPad,
 char *const SQLState_out,
 char *const SQLMsgTxt_out
)
{
 // delete the temporary user space
 if (pScratchPad->pUserSpaceStart)
 {
 // force (unexpected) exceptions to be signalled
 Qus_EC_t ec;
 ec.Bytes_Provided = 0;

 // call the Delete User Space API
 QUSDLTUS((void *) pScratchPad->UserSpaceName,
 &ec);
 }

 strcpy(SQLState_out, "00000");
 return 0;

} // end: LSTDBFSTC_Close
//---

The result of using the UDTF is a table that shows the following values for each column of
statistics for one or more tables:

� Name of the ASP
� Library name
� File name
� Member name
� Column statistics are gathered on
� User that requested collection of statistics
� Status of statistic date (stale or not stale)
� Aging of statistics is done by the system or the user
� Whether statistics collection for this table was blocked
� Size of all statistics for the table
� Cardinality
� Number of the most frequent value
� Number of groups in the histogram
� ID of the statistics
� Name of the statistics

You can download the compiled versions of these programs and commands from the Web at:

ftp://testcase.boulder.ibm.com/as400/fromibm/dbsttools.savf
Appendix A. Statistics Manager API code examples 181

ftp://testcase.boulder.ibm.com/as400/fromibm/dbsttools.savf

182 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Appendix B. Sample database and SQL
queries

This appendix details the sample database that was used for some of the tests described in
this redbook. It also lists the Structured Query Language (SQL) query statements used for
some of our testing of the SQL Query Engine (SQE). Some of the queries were run against a
schema with five tables as shown in Figure B-1.

Figure B-1 Schema of STARLIB

B

ITEM FACT TABLE
item_fact
orderkey
partkey FK
suppkey FK
linenumber
quantity
extendedprice
discount
tax
returnflag
linestatus
shipdate
commitdate
receiptdate
shipmode
supplycost
custkey FK
orderdate FK
orderprioriy
shippriority
revenue_wo_tax
revenue_w_tax
profit_wo_tax
profit_w_tax
days_order_to_ship
days_order_to_receipt
days_ship_to_receipt
days_commit_to_receipt
dummykey

PART DIM TABLE
part_dim
partkey PK
part
mfgr
brand
type
size
container
retailprice
dummykey

CUSTOMER DIM TABLE
cust_dim
custkey PK
customer
address
phone
mktsegment
country
continent
region
territory
salesperson
dummykey

TIME DIM TABLE
time_dim
alpha
year
month
week
day
datekey PK
quarter
monthname
dummykey

SUPPLIER DIM TABLE
supp_dim
suppkey PK
supplier
address
phone
country
continent
dummykey
© Copyright IBM Corp. 2003, 2006. All rights reserved. 183

Sample database
The database table used for the tests described in this redbook was ITEM_FACT. Its layout is
shown in Table B-1. The table contained 6,001,215 rows and occupied approximately 1.6 GB.
Indexes were created and dropped as needed to perform specific tests. A modified copy of
the table, ITEM_FACT_SHORT, was created with some VARCHAR columns. This was used
specifically to test performance of queries referencing variable length character columns.

The table sizes are:

� Table PART_DIM has 200,000 records.
� Table SUPPLIER_DIM has 10,000 records.
� Table CUST_DIM has 150,000 records.
� Table TIME_DIM has 1,450 records.
� Table ITEM_FACT has 6,001,215 records.

Table B-1 ITEM_FACT: Database table layout

Column name Type Length

ORDERKEY DECIMAL 16,0

PARTKEY INTEGER

SUPPKEY INTEGER

LINENUMBER INTEGER

QUANTITY DECIMAL 15,2

EXTENDED PRICE DECIMAL 15,2

DISCOUNT DECIMAL 15,2

TAX DECIMAL 15,2

RETURNFLAG CHARACTER 1

LINESTATUS CHARACTER 1

SHIPDATE DATE

COMMITDATE DATE

RECEIPTDATE DATE

SHIPMODE CHARACTER 10

SUPPLYCOST DECIMAL 15,2

CUSTKEY INTEGER

ORDERDATE DATE

ORDERPRIORITY CHARACTER 15

SHIPPRIORITY INTEGER

REVENUE_WO_TAX DECIMAL 15,2

REVENUE_W_TAX DECIMAL 15,2

PROFIT_WO_TAX DECIMAL 15,2

PROFIT_W-TAX DECIMAL 15,2
184 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

SQL statements
The SQL query statements used for some of our SQE testing are listed here:

/* Query 1 - Simple select */
SELECT *
 FROM VETEAM01.ITEM_FACT;

/* Query 2 - Simple select with “equal” where predicate */
SELECT *
 FROM VETEAM01.ITEM_FACT
 WHERE RETURNFLAG = 'R';

/* Query 3 - Simple select with two “equal” ANDed where predicates */
SELECT *
 FROM VETEAM01.ITEM_FACT
 WHERE RETURNFLAG = 'R' AND SHIPMODE = 'AIR';

/* Query 4 - Simple select with “equal” & “not equal” ANDed where predicates*/
SELECT *
 FROM VETEAM01.ITEM_FACT
 WHERE RETURNFLAG = 'R' AND RECEIPTDATE < '1997-11-7';

/* Query 5 - Select with derived source column and derived where predicate*/
SELECT ORDERKEY, ((SUPPLYCOST*10) - (PROFIT_WO_TAX)) AS VARIANCE
 FROM VETEAM01.ITEM_FACT
 WHERE (PROFIT_WO_TAX) < (SUPPLYCOST*10);
* +++++++++++++++++++++ Queries with COUNT function ++++++++++++++++++++ */
/* Query 6 */
SELECT COUNT (*) FROM VETEAM01.ITEM_FACT;
/* Query 7 */
SELECT COUNT(*) FROM VETEAM01.ITEM_FACT
 WHERE RETURNFLAG = 'R';
/* Query 8 */
SELECT COUNT(*) FROM VETEAM01.ITEM_FACT
 WHERE RETURNFLAG = 'R' AND SHIPMODE = 'AIR';
/* Query 9 */
SELECT COUNT(*) FROM VETEAM01.ITEM_FACT
 WHERE RETURNFLAG = 'R' AND RECEIPTDATE < '1997-11-7';

* ++++++++++ Queries with COUNT DISTINCT function +++++++ */

DAYS_ORDER_TO_SHIP INTEGER

DAYS_ORDER_TO_RECEIPT INTEGER

DAYS_SHIP_TO_RECEIPT INTEGER

DAYS_COMMIT_TO_RECEIPT INTEGER

YEAR SMALLINT

MONTH SMALLINT

QUARTER SMALLINT

DUMMYKEY CHARACTER 1

EXPANDER CHARACTER 100

Column name Type Length
Appendix B. Sample database and SQL queries 185

/* Query 10 */
SELECT COUNT (DISTINCT SUPPKEY) FROM VETEAM01.ITEM_FACT;
/* Query 11 */
SELECT COUNT(DISTINCT SUPPKEY) FROM VETEAM01.ITEM_FACT
 WHERE RETURNFLAG = 'R';
/* Query 12 */
SELECT COUNT(DISTINCT SUPPKEY) FROM VETEAM01.ITEM_FACT
 WHERE RETURNFLAG = 'R' AND SHIPMODE = 'AIR ';
/* Query 13 */
SELECT COUNT(DISTINCT SUPPKEY) FROM VETEAM01.ITEM_FACT
 WHERE RETURNFLAG = 'R' AND RECEIPTDATE < '1997-11-7';
/* ++++++++ Queries with DISTINCT function ++++++++++++ */
/* Query 14 */
SELECT DISTINCT SUPPKEY FROM VETEAM01.ITEM_FACT;
/* Query 15 */
SELECT DISTINCT SUPPKEY FROM VETEAM01.ITEM_FACT
 WHERE RETURNFLAG = 'R';
/* Query 16 */
SELECT DISTINCT SUPPKEY FROM VETEAM01.ITEM_FACT
 WHERE RETURNFLAG = 'R' AND SHIPMODE = 'AIR';
/* Query 17 */
SELECT DISTINCT SUPPKEY FROM VETEAM01.ITEM_FACT
 WHERE RETURNFLAG = 'R' AND RECEIPTDATE < '1997-11-7';

* ++++++++++++++ Queries with GROUP BY ++++++++++++++++ */
/* Query 18 */
SELECT SUPPKEY, SUM(REVENUE_W_TAX) FROM VETEAM01.ITEM_FACT
 GROUP BY SUPPKEY;
/* Query 19 */
SELECT SUPPKEY, PARTKEY, SUM(REVENUE_W_TAX) FROM VETEAM01.ITEM_FACT
 GROUP BY SUPPKEY, PARTKEY;
/* Query 20 */
SELECT SUPPKEY, PARTKEY, SUM(REVENUE_W_TAX) FROM VETEAM01.ITEM_FACT
 WHERE RETURNFLAG = 'R' AND RECEIPTDATE < '1997-11-7' AND
 SHIPMODE = 'AIR'
 GROUP BY SUPPKEY, PARTKEY;

/* +++++++++++++++ Queries with ORDER BY ++++++++++++++++ */
/* Query 21 */
SELECT * FROM VETEAM01.ITEM_FACT
 ORDER BY YEAR, MONTH;
/* Query 22 - Order by Descending */
SELECT * FROM VETEAM01.ITEM_FACT
 ORDER BY ORDERPRIORITY DESC;
/* Query 23 */
SELECT ORDERKEY, SUPPKEY, SUPPLYCOST
 FROM VETEAM01.ITEM_FACT
 WHERE RETURNFLAG = 'R' AND RECEIPTDATE < '1997-11-7'
 ORDER BY SHIPDATE;
/* Query 24 */
SELECT ORDERKEY, ((SUPPLYCOST*10) - (PROFIT_WO_TAX)) AS VARIANCE
 FROM VETEAM01.ITEM_FACT
 WHERE (PROFIT_WO_TAX) < (SUPPLYCOST*10)
 ORDER BY VARIANCE DESC;
/* Query 25 - Order by with Group by */
SELECT SUPPKEY, PARTKEY, SUM(REVENUE_W_TAX) TOTAL_REVENUE
 FROM VETEAM01.ITEM_FACT
 WHERE RETURNFLAG = 'R' AND RECEIPTDATE < '1997-11-7' AND
 SHIPMODE = 'AIR'
 GROUP BY SUPPKEY, PARTKEY
186 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

ORDER BY PARTKEY;

/* ++++++++++++++++ Queries with HAVING +++++++++++++++ */
/* Query 26 */
SELECT SUPPKEY, SUM(REVENUE_W_TAX) FROM VETEAM01.ITEM_FACT
 GROUP BY SUPPKEY
 HAVING SUPPKEY = 7029;
/* Query 27 */
SELECT SUPPKEY, PARTKEY, SUM(REVENUE_W_TAX) FROM VETEAM01.ITEM_FACT
 GROUP BY SUPPKEY, PARTKEY
 HAVING PARTKEY> 106170;
/* Query 28 */
SELECT SUPPKEY, PARTKEY, SUM(REVENUE_W_TAX) FROM VETEAM01.ITEM_FACT
 WHERE RETURNFLAG = 'R' AND RECEIPTDATE < '1997-11-7' AND
 SHIPMODE = 'AIR'
 GROUP BY SUPPKEY, PARTKEY
 HAVING COUNT (*) > 5;

/* ++++++++++++ Queries with VARCHAR Columns +++++++++++ */
/* Query 29 */
SELECT * FROM VETEAM01.ITEM_FACT_SHORT
 WHERE QUANTITY < 30 AND SHIPMODE = 'REG AIR';
/* Query 30 */
SELECT * FROM VETEAM01.ITEM_FACT_SHORT
 WHERE SHIPMODE != 'REG AIR' AND ORDERPRIORITY = '4-NOT SPECIFIED'
 ORDER BY SHIPMODE;

/* +++++++++++ Query with Compound Key Selection ++++++++++++++++++ */
/* Query 31 */
SELECT ORDERKEY, PARTKEY, SUPPKEY, SUPPLYCOST
 FROM VETEAM01.ITEM_FACT
 WHERE SHIPMODE = 'TRUCK' AND
 (PROFIT_W_TAX) < (REVENUE_W_TAX*0.4)
 ORDER BY SHIPDATE;
/* +++++++++++++++++++++ Illogical Query ++++++++++++++++++++++++ */
/* Query 32 */
SELECT ORDERKEY, ((SUPPLYCOST*10) - (PROFIT_WO_TAX)) AS VARIANCE
 FROM VETEAM01.ITEM_FACT
 WHERE 99 =100
 ORDER BY VARIANCE DESC;
Appendix B. Sample database and SQL queries 187

188 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM Redbooks” on
page 190.

� Advanced Functions and Administration on DB2 Universal Database for iSeries,
SG24-4249

� SQL Performance Diagnosis on IBM DB2 Universal Database for iSeries, SG24-6654

� Stored Procedures, Triggers and User Defined Functions on DB2 Universal Database for
iSeries, SG24-6503

� Using AS/400 Database Monitor and Visual Explain To Identify and Tune SQL Queries,
REDP-0502

Other resources
These publications are also relevant as further information sources:

� DB2 Universal Database for iSeries SQL Reference

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/db2/rbafzmst.htm

� DB2 Universal Database for iSeries - Database Performance and Query Optimization
manual

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

When you reach this site, click Database → Performance and Query Optimization.

� Indexing and Statistics Strategies for DB2 UDB for iSeries white paper

http://www-03.ibm.com/servers/enable/site/bi/strategy/strategy.pdf

Referenced Web sites
These Web sites are also relevant as further information sources:

� IBM eServer iSeries Information Center

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

� iDoctor for iSeries

https://www-912.ibm.com/i_dir/idoctor.nsf/
© Copyright IBM Corp. 2003, 2006. All rights reserved. 189

https://www-912.ibm.com/i_dir/idoctor.nsf/
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/db2/rbafzmst.htm
http://www-03.ibm.com/servers/enable/site/bi/strategy/strategy.pdf
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
190 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

A
access method 20

V5R4 59
access plan 30, 141

flow and control 31
rebuild information 111

address list 28
creation (RRN or bitmap) 52
probe 55
scan 53

algorithm 5
ALTER TABLE 70
ALWCPYDTA parameter 40
API (application program interface) 12

code examples 155
application program interface (API) 12
automatic statistics collection 68
automatic statistics refresh 69

B
B2B (business-to-business) 3
B2C (business-to-consumer) 3
background statistics collections 71–72
backup 87
basic statement information 111
binary-radix tree

index 23, 134
structure 134

binding 12
bitmap index 135
bitmap information 113
Boolean arithmetic 135
bucket 67
Business Intelligence 3

environment 86
business-to-business (B2B) 3
business-to-consumer (B2C) 3

C
call level interface (CLI) 141
cardinality 23, 40, 64–66

of values 23
Change Query Attribute (CHGQRYA) command 31, 111
CHGQRYA CL command 31, 111
Classic Query Engine (CQE) 5, 11
CLI (call level interface) 141
column statistics 70, 73, 148

determination of existing 82
proactive collection 85
propagation on copy operations 74

confidence level 65
cost-based optimizer 20
CQE (Classic Query Engine) 5, 11
© Copyright IBM Corp. 2003, 2006. All rights reserved.
Create Duplicate Object (CRTDUPOBJ) command 74,
130
Create Statistics Collection API 156
CRM (Customer Relationship Management) 3
CRTDUPOBJ CL command 74, 130
Customer Relationship Management (CRM) 3

D
dashboard 114
data access methods 27–28

details 31
permanent table operations 31

data access primitives 20–21, 24
Data Access Summary 110
data conversion information 113
Data Transfer 141
data update 86
database

administrator 3
design 4
monitoring tools 90, 96
performance monitor tools 97
statistics 22

database management system (DBMS) 1
Database Monitor (DBMON) 8, 90
DB2 for i5/OS 1

architecture 11
history 2
new applications 3
query processing before OS/400 V5R2 13
structure 2

DB2 Universal Database for iSeries
database design 4
implementation of SQE and CQE 5
query processing in OS/400 V5R2 13

DBMON 8
debug information message 8
debug message 90, 92, 95
default filter factors 69
Delete Statistics Collection API 163
dequeue operation 60
Detailed Results report 111
detailed SQL Performance Monitor 96
disk storage 134
dispatcher 7–8
DISTINCT performance enhancements 147
distinct processing information 113
distinct values 66
DMBS (database management system) 1
dynamic embedded SQL 141
dynamic SQL 3, 12

E
EAS (Enterprise Application Solutions) 3
 191

electronic commerce 3
embedded SQL 141

statements 95
encoded-vector index (EVI) 23, 134–135

maintenance 152
maintenance enhancements 152

enqueue operation 59
Enterprise Application Solutions (EAS) 3
Enterprise Resource Planning (ERP) 3
entries accessed 65
ERP (Enterprise Resource Planning) 3
error information 114
Error Summary 110
estimate of cardinality 66
estimate of I/O operation 23
estimated frequent values list 68
estimated value range 67
EVI (encoded-vector index) 23, 134
EXECUTE IMMEDIATE 12
EXECUTE statement 12
expert cache 24, 133
extended dynamic SQL 12

F
feedback 21
feedback information message 8
fenced UDF 149
filter factor 65
frequent collisions 40
frequent values 23, 64

list 68
full open 112

G
General Summary 109
governor timeout information 112
governor timeout value 112
Group By information 114
group of nodes 31

H
hash probe 31
hash table 28, 112

creation 40
probe 43
scan 41

hexadecimal statistics ID 165
high availability solutions 85
high cardinality 40
histogram 23, 67

I
I/O costing 65
IASP (independent auxiliary storage pool) 1
immediate statistics collection 72
implementation 5
independent auxiliary storage pool (IASP) 1
index 70, 151

advised information 112
create information 111
definition 65
optimizer 137
probe 15, 21, 36
scan 35
used information 111

Index Advisor 120, 137
indexing 134

statistics strategy 137
Informational APAR II13320 132
Informational APAR II13486 6
interactive SQL 141
iSeries Access for Windows 141
iSeries Navigator 75
Isolation Level Summary 110
ISV preparation 86

J
JDBC 141
Job Summary 109
join performance 146
joins 3

K
key range estimate 65

L
List Statistics Collection API 172
lists 28
lock escalation information 113
logical partition (LPAR) 24
LPAR (logical partition) 24

M
main storage 133
manual statistics collection 73
metadata 20

information 23

N
Native JDBC Driver 141
Net.Data 141
new applications 3
New Transaction Services (NTS) 1
node-based 15
non-sensical query 15
NTS (New Transaction Services) 1
nulls, number of 66
number of nulls 66

O
object-oriented 8

design concept 5
programming 5
technology implementation 15
192 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

ODBC (Open Database Connectivity) 141
ODP (Open Data Path) 69
ODP creation 69
OLTP (online transaction processing) 3, 134
online transaction processing (OLTP) 3, 134
Open Data Path (ODP) 69
Open Database Connectivity (ODBC) 141
open information 112
Open Summary 110
Operation Summary 109
optimization 140
optimizer

dispatcher 8
information 111
statistics 65
timeout 112

Optimizer Summary 111
OS/400 V5R2 1
Override Database File (OVRDBF) command 109
OVRDBF command 109

P
Parallel Processing Summary 111
PARALLEL_DEGREE 31
performance

findings 144
monitoring 90
tuning 89, 133

permanent index 112
phase-in approach 5
plan cache 8, 21, 24, 68, 141

LPAR 24
reusability of query access plans 24

PREPARE statement 12
prepared SQL statements 12
Print SQL Information 95
proactive collection of column statistics 85
proactive index creation 137
proactive statistics collection 82
processing capacity 133
processors 133
Program Summary 109
programming models 8
PRTSQLINF CL command 96
pseudo open 112
pseudo-closed ODP 110
PTFs 130

Q
QAQQINI 130

query options 96
QDBFSTCCOL 71–72
QDBSFTCCOL 79
QQRYDEGREE 111
QQVAL 132
Query Dispatcher 7–8, 16
query engine 5
query optimizer ix, 198
query options table 130

query processing in OS/400 13
queue 59

R
radix index 134
reactive index creation 137
reactive query tuning 137
reading backwards 151
recovery 87
Redbooks Web site 190

Contact us xii
Relative Record Number (RRN) lists 28
row access information 113
RRN (Relative Record Number) 28

S
SCM (Supply Chain Management) 3
scrollable cursors 111
selectivity 23
service programs 95
single-column statistics 64–65
single-level storage 24
SMP (symmetric multiprocessing) 24
sort information 113
sorted list 28

creation 44
probe 47
scan 46

sparse index 111
SQE (SQL Query Engine) 5, 64
SQE Data Access Primitives 20–21
SQE Optimizer 20
SQE Plan Cache 25
SQE Primitives 8, 30–31
SQL

interfaces 5
package 12, 90, 95
performance data 114
performance report 109
programs 11

SQL (Structured Query Language) 12
SQL Attributes Summary 109
SQL Performance Monitor 106–107

detailed data 96
summary data 96
Visual Explain 117

SQL Query Engine 1
Database Monitor 8
Dispatcher 8

SQL Query Engine (SQE) 5
design criteria and features 7
monitoring 89
performance improvements 9
query optimizer 8
tuning 89

start and end monitor information 114
Start Database Monitor (STRDBMON) command 106
Start Debug (STRDBG) command 92, 94
Statement Type Summary 110
 Index 193

Statement Use Summary 110
static SQL 12
statistic 64

automatic collection 68
automatic refresh 69
blocking 80
column 70
column refresh 73
deleting 79
iSeries Navigator 75
manual collection 73
monitoring background collections 71
new 77
refreshing 80
single column 64–65
strategy 137
viewing 75
viewing collection requests 81

Statistics Advisor 120, 137, 140
statistics collection 64

blocking 80
performance considerations 73
proactive 82
viewing requests 81

Statistics Manager 8, 20, 22, 63–64
STRDBG command 92, 94
STRDBMON command 106
STRSRVJOB CL command 94
Structured Query Language (SQL) 12
subquery 3

information 113
summary SQL Performance Monitor 96
Supply Chain Management (SCM) 3
symbol table 136
symmetric multiprocessing (SMP) 24
system environment 133

T
table

definition 65
operations 31
probe 33
scan 21, 31–32, 113

temporary file information 113
temporary hash table 31
temporary result 24

object methods 40
text extender UDF 150
three-tier implementation 3
tree-based model 15

U
UDF (user-defined function) 150
unfenced UDF 149
union 3

merge information 114
unsorted list 28

creation 49
scan 50

Update Statistics Collection API 165
user-defined function (UDF) 150

V
value range 64, 67
VARCHAR 152
vector 136
very large database (VLDB) 135
viewing statistics 75
Viewing Statistics Collection Requests 71
Visual Explain 90, 92

icons 31
interface 8
SQL Performance Monitor data 117

VLDB (very large database) 135
194 Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

Preparing for and Tuning the SQL Query Engine on DB2 for i5/OS

®

SG24-6598-01 ISBN 0738494992

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Preparing for and
Tuning the SQL Query
Engine on DB2 for i5/OS
Understand the new
architecture for query
processing

Learn about the data
access methods and
Statistics Manager

See how to monitor
and tune the SQL
engine

The IBM System i family, which encompasses the IBM AS/400, eServer
iSeries, eServer i5, and System i5, has a successful 24-year history of
satisfying hundreds of customers’ requirements, thanks to its developers.
DB2 for i5/OS, also known as DB2 Universal Database for iSeries, is deeply
rooted in the architecture and heritage of the AS/400 and its predecessor
System/38.

The database has undergone significant changes over the years to
maintain its competitive advantage including fundamental changes to the
structure of the database to compete successfully in the industry. In doing
so, IBM Rochester launched a project to re-engineer and redesign
important components of the database. The redesigned components were
architected using object-oriented design concepts and then implemented
using object-oriented implementation techniques.

The query optimizer was one of the key components that was redesigned.
This IBM Redbook gives a broad understanding of the architectural
changes of the database concerning the query optimizer. It explains the
following concepts:

� The architecture of the query optimizer
� The data access methods used by the query optimizer
� The Statistics Manager included in V5R2
� The feedback message changes of the query optimizer
� Some performance measurements
� Changes and enhancements made in V5R4

The objective of this redbook is to help you minimize any SQL or database
performance issues when upgrading to OS/400 V5R2 or V5R3 or to IBM
i5/OS V5R4. Prior to reading this book, you should have some knowledge
of database performance and query optimization.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Overview of DB2 for i5/OS
	1.1 The history of DB2 for i5/OS
	1.2 The ‘new’ application world
	1.3 The database design
	1.4 The implementation
	1.5 Design criteria and features of SQE
	1.5.1 The objectives
	1.5.2 The SQE design

	Chapter 2. The architecture of DB2 for i5/OS
	2.1 SQL in a nutshell
	2.1.1 Static SQL
	2.1.2 Dynamic SQL
	2.1.3 Extended dynamic SQL

	2.2 Query processing before OS/400 V5R2
	2.3 Query processing starting with OS/400 V5R2
	2.3.1 The Query Dispatcher
	2.3.2 The SQE Optimizer
	2.3.3 Statistics Manager
	2.3.4 Data access primitives
	2.3.5 The plan cache

	2.4 Summary

	Chapter 3. Data access methods
	3.1 Available data access methods
	3.2 SQE Primitives in action
	3.3 Details about the data access methods
	3.3.1 Permanent table operations
	3.3.2 Temporary result object methods
	3.3.3 Access methods in V5R4

	Chapter 4. Statistics Manager
	4.1 Statistics and statistics collections
	4.1.1 Optimizer statistics request types
	4.1.2 Single-column statistics
	4.1.3 Automatic statistics collection
	4.1.4 Automatic statistics refresh
	4.1.5 Indexes versus column statistics
	4.1.6 Monitoring background statistics collections
	4.1.7 Manual collection and refresh of column statistics
	4.1.8 Statistics collection performance considerations
	4.1.9 Propagation of column statistics on copy operations

	4.2 Using iSeries Navigator to manage statistics
	4.2.1 Viewing statistics
	4.2.2 Creating new statistics
	4.2.3 Deleting a statistic
	4.2.4 Refreshing a statistic
	4.2.5 Blocking a statistics collection
	4.2.6 Viewing statistics collection requests

	4.3 Proactive statistics collection
	4.3.1 Determining which column statistics exist
	4.3.2 Reasons for proactive collection of column statistics

	4.4 Statistics Manager APIs

	Chapter 5. Monitoring and tuning SQE
	5.1 Query optimization feedback
	5.1.1 Debug messages
	5.1.2 Print SQL Information
	5.1.3 Database monitoring tools: SQL Performance Monitors
	5.1.4 Visual Explain
	5.1.5 Index Advised: System wide (V5R4)
	5.1.6 Viewing the plan cache (V5R4)
	5.1.7 Plan Cache Snapshot
	5.1.8 Query options table (QAQQINI)

	5.2 Performance tuning
	5.2.1 System environment
	5.2.2 Indexing basics
	5.2.3 Indexing and statistics strategy
	5.2.4 Optimization goal starting in V5R2
	5.2.5 Other considerations

	Chapter 6. Practical experience
	6.1 General performance findings
	6.2 Join performance enhancements
	6.3 DISTINCT performance enhancements
	6.4 Influence of column statistics
	6.5 Fenced versus unfenced user-defined functions
	6.6 Reading through an index backwards
	6.7 VARCHAR
	6.8 Encoded-vector index maintenance enhancements

	Appendix A. Statistics Manager API code examples
	Create Statistics Collection
	Delete Statistics Collection
	Update Statistics Collection
	List Statistics Collection

	Appendix B. Sample database and SQL queries
	Sample database
	SQL statements

	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

